Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network
•A deep convolutional neural network is proposed to the estimate above ground biomass for winter wheat at early growth stages.•The proposed method is using RGB images of winter wheat canopy as input.•The estimated above ground biomass shows a strong correlation to the actual measurements.•The propos...
Saved in:
Published in | European journal of agronomy Vol. 103; pp. 117 - 129 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A deep convolutional neural network is proposed to the estimate above ground biomass for winter wheat at early growth stages.•The proposed method is using RGB images of winter wheat canopy as input.•The estimated above ground biomass shows a strong correlation to the actual measurements.•The proposed method has a good potential for the estimation of the growth-related traits.
Above ground biomass (AGB) is a critical trait indicating the growth of winter wheat. Currently, non-destructive methods for measuring AGB heavily depend on tools such as Remote Sensing and LiDAR, which is subject to specialized knowledge and high-cost. Low-cost solutions appear therefore to be a necessary supplement. In this study, an easy-to-use AGB estimation method for winter wheat at early growth stages was proposed by using digital images captured under field conditions and Deep Convolutional Neural Network (DCNN). Using canopy images as input, the DCNN was trained to learn the relationship between the canopy and the corresponding AGB. To compare the results of the DCNN, conventionally adopted methods for estimating AGB in conjunction with some color and texture feature extraction techniques were used. Results showed strong correlations could be observed between the actual measurements of AGB to those estimated by the DCNN, with high coefficient of determination (R2 = 0.808) and low Root-Mean-Square-Error (RMSE = 0.8913 kg/plot, NRMSE = 24.95%). Factors may influence the accuracy of the DCNN were evaluated. Results showed selecting suitable values of these factors for the DCNN was the guarantee to accurate estimation results. Plant density was proved to be an influence of factor to all the estimation methods based on digital images. The performances of all the methods were influenced to varying degrees while the DCNN achieved the best robustness, indicating the DCNN with RGB images could be an efficient and robust tool for estimating AGB of winter wheat at early growth stages. |
---|---|
AbstractList | •A deep convolutional neural network is proposed to the estimate above ground biomass for winter wheat at early growth stages.•The proposed method is using RGB images of winter wheat canopy as input.•The estimated above ground biomass shows a strong correlation to the actual measurements.•The proposed method has a good potential for the estimation of the growth-related traits.
Above ground biomass (AGB) is a critical trait indicating the growth of winter wheat. Currently, non-destructive methods for measuring AGB heavily depend on tools such as Remote Sensing and LiDAR, which is subject to specialized knowledge and high-cost. Low-cost solutions appear therefore to be a necessary supplement. In this study, an easy-to-use AGB estimation method for winter wheat at early growth stages was proposed by using digital images captured under field conditions and Deep Convolutional Neural Network (DCNN). Using canopy images as input, the DCNN was trained to learn the relationship between the canopy and the corresponding AGB. To compare the results of the DCNN, conventionally adopted methods for estimating AGB in conjunction with some color and texture feature extraction techniques were used. Results showed strong correlations could be observed between the actual measurements of AGB to those estimated by the DCNN, with high coefficient of determination (R2 = 0.808) and low Root-Mean-Square-Error (RMSE = 0.8913 kg/plot, NRMSE = 24.95%). Factors may influence the accuracy of the DCNN were evaluated. Results showed selecting suitable values of these factors for the DCNN was the guarantee to accurate estimation results. Plant density was proved to be an influence of factor to all the estimation methods based on digital images. The performances of all the methods were influenced to varying degrees while the DCNN achieved the best robustness, indicating the DCNN with RGB images could be an efficient and robust tool for estimating AGB of winter wheat at early growth stages. |
Author | Li, Yunxia Ma, Juncheng Du, Keming Zheng, Feixiang Sun, Zhongfu Chen, Yunqiang Zhang, Lingxian |
Author_xml | – sequence: 1 givenname: Juncheng surname: Ma fullname: Ma, Juncheng organization: Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China – sequence: 2 givenname: Yunxia surname: Li fullname: Li, Yunxia organization: College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China – sequence: 3 givenname: Yunqiang surname: Chen fullname: Chen, Yunqiang organization: College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China – sequence: 4 givenname: Keming orcidid: 0000-0003-1396-9913 surname: Du fullname: Du, Keming email: dukeming@caas.cn organization: Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China – sequence: 5 givenname: Feixiang orcidid: 0000-0002-5163-8026 surname: Zheng fullname: Zheng, Feixiang organization: Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China – sequence: 6 givenname: Lingxian orcidid: 0000-0002-8665-7075 surname: Zhang fullname: Zhang, Lingxian organization: College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China – sequence: 7 givenname: Zhongfu surname: Sun fullname: Sun, Zhongfu organization: Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China |
BookMark | eNp9kN1KxDAQhYOs4O8DeJcXaJ1p2m6LVyL-wYI3eh3SZLqbdU0kye6yl765qXotDMwwM-fjcM7YzHlHjF0hlAjYXq9LWquyAuxKrEqA-oidYjcXxVwInOUZWyxAAJ6wsxjXANBVTX3Kvu5jsh8qWbfkavA74svgt87wwfoPFSP3I99blyjw_YpU4rlIhc1h-tunFY9JLSnybZwIxi5tUhueidNSZY4h-uTau53fbJP1Ll8dbcNPS3sf3i_Y8ag2kS7_-jl7e7h_vXsqFi-Pz3e3i0KLVqSi7huldd_W0CE2UDfd0GOvW9MMowDVNQpEPzYaO9EYI0RNMNCgjdDtvIWKxDnDX64OPsZAo_wM2Wc4SAQ5ZSjXMmcopwwlVjJnmDU3vxrKxnaWgozaktNkbCCdpPH2H_U3Uyl-WA |
CitedBy_id | crossref_primary_10_1016_j_compag_2023_107957 crossref_primary_10_3390_rs12010017 crossref_primary_10_17221_91_2021_CJGPB crossref_primary_10_3390_rs15235444 crossref_primary_10_1080_1343943X_2023_2210767 crossref_primary_10_3390_fi16050145 crossref_primary_10_3390_rs13163095 crossref_primary_10_1016_j_isprsjprs_2020_12_010 crossref_primary_10_1016_j_compag_2019_105159 crossref_primary_10_1007_s10722_019_00816_3 crossref_primary_10_1016_j_compag_2024_108642 crossref_primary_10_1016_j_rse_2022_113262 crossref_primary_10_3390_rs14215333 crossref_primary_10_1007_s11119_020_09734_2 crossref_primary_10_3390_s24082464 crossref_primary_10_1080_07038992_2021_1926952 crossref_primary_10_1016_j_ecolind_2024_112061 crossref_primary_10_3390_rs14133052 crossref_primary_10_1016_j_biosystemseng_2021_09_015 crossref_primary_10_3390_drones6120423 crossref_primary_10_3390_agronomy12040807 crossref_primary_10_1016_j_asoc_2022_109761 crossref_primary_10_1007_s11042_022_12160_3 crossref_primary_10_1016_j_watres_2023_120024 crossref_primary_10_1080_01431161_2022_2026521 crossref_primary_10_3390_rs14163912 crossref_primary_10_3389_fpls_2023_1204791 crossref_primary_10_3390_agriculture14030378 crossref_primary_10_1016_j_compag_2021_106480 crossref_primary_10_3390_agronomy12061352 crossref_primary_10_1007_s42452_020_03599_w crossref_primary_10_34133_plantphenomics_0073 crossref_primary_10_1007_s12230_022_09897_w crossref_primary_10_1016_j_compag_2020_105519 crossref_primary_10_3390_rs14112692 crossref_primary_10_1016_j_eswa_2021_116226 crossref_primary_10_3390_s20174802 crossref_primary_10_1016_j_biosystemseng_2023_08_002 crossref_primary_10_1016_j_agrformet_2020_107938 crossref_primary_10_1016_S2095_3119_20_63319_6 crossref_primary_10_3390_agriculture12030384 crossref_primary_10_1016_j_agwat_2023_108140 crossref_primary_10_3389_fpls_2024_1367828 crossref_primary_10_3390_agronomy10020175 crossref_primary_10_1016_j_compag_2020_105662 crossref_primary_10_1080_01431161_2022_2107882 crossref_primary_10_3390_rs11222678 crossref_primary_10_1016_j_compag_2022_107087 crossref_primary_10_1038_s41438_020_00345_6 crossref_primary_10_1080_1343943X_2022_2103003 crossref_primary_10_1016_j_compag_2021_106092 crossref_primary_10_34133_2022_9850486 crossref_primary_10_3390_su16031051 crossref_primary_10_3390_rs14122864 crossref_primary_10_1016_j_cej_2023_147174 crossref_primary_10_1016_j_compag_2020_105786 crossref_primary_10_3390_s21123971 crossref_primary_10_1016_j_eja_2020_126030 crossref_primary_10_1016_j_fcr_2022_108582 crossref_primary_10_1007_s11119_022_09932_0 |
Cites_doi | 10.1016/j.biombioe.2017.06.027 10.1016/j.compag.2017.05.032 10.3390/rs8090706 10.3390/rs9010098 10.3389/fpls.2015.00619 10.1016/j.compag.2016.09.017 10.1016/j.jag.2015.02.012 10.1016/j.compag.2017.10.027 10.1016/j.eja.2016.04.013 10.1016/j.rse.2015.02.023 10.1016/j.compag.2016.02.003 10.1016/j.compag.2016.01.007 10.1016/j.fcr.2017.11.024 10.2134/agronj15.0150 10.1016/j.eswa.2018.01.055 10.1016/j.compag.2016.08.021 10.1016/j.fcr.2016.06.022 10.1186/s13007-015-0048-8 10.1016/j.compag.2018.01.009 10.1016/j.compag.2017.08.023 10.1364/AO.16.001151 10.13031/2013.27838 10.1016/j.compag.2018.08.048 10.1186/s13007-017-0254-7 10.1016/j.fcr.2014.01.008 10.1016/j.biosystemseng.2017.02.004 10.1016/S0034-4257(00)00113-9 10.1038/nature14539 10.3390/s150202920 10.1016/0034-4257(79)90013-0 10.1016/j.biosystemseng.2014.11.007 10.1016/j.cj.2016.01.008 10.1111/jipb.12117 10.1016/j.compag.2016.07.003 10.14358/PERS.73.10.1141 10.1016/j.eja.2015.11.026 10.1016/j.jag.2014.05.006 10.1016/j.isprsjprs.2017.01.010 10.1023/A:1010933404324 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eja.2018.12.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-7331 |
EndPage | 129 |
ExternalDocumentID | 10_1016_j_eja_2018_12_004 S1161030118301977 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSZ T5K UHS ~G- ~KM AAHBH AAXKI AAYXX ACRPL ADNMO AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c363t-495acc964081150458b919c6d5bf30a85a039f5c1835dd334e0bebcd3c67602e3 |
IEDL.DBID | .~1 |
ISSN | 1161-0301 |
IngestDate | Fri Dec 06 02:53:52 EST 2024 Fri Feb 23 02:28:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Above ground biomass RGB images Deep convolutional neural network Winter wheat |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-495acc964081150458b919c6d5bf30a85a039f5c1835dd334e0bebcd3c67602e3 |
ORCID | 0000-0003-1396-9913 0000-0002-8665-7075 0000-0002-5163-8026 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_eja_2018_12_004 elsevier_sciencedirect_doi_10_1016_j_eja_2018_12_004 |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationTitle | European journal of agronomy |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Breiman (bib0020) 2001; 45 Rahaman, Chen, Gillani, Klukas, Chen (bib0175) 2015; 6 Woebbecke, Meyer, Von Bargen, Mortensen (bib0225) 1995; 38 Ding, Taylor (bib0050) 2016; 123 Simonyan, Zisserman (bib0200) 2014 Tucker (bib0210) 1979; 8 Ma, Du, Zhang, Zheng, Chu, Sun (bib0130) 2017; 142 Krause, Sugita, Baek, Lim (bib0110) 2018 Baresel, Rischbeck, Hu, Kipp, Hu, Barmeier, Mistele (bib0010) 2017; 140 Eitel, Magney, Vierling, Brown, Huggins (bib0055) 2014; 159 LeCun, Bengio, Hinton (bib0120) 2015; 521 Jiang, Li, Paterson (bib0105) 2016; 130 Xiong, Duan, Liu, Tu, Yang, Wu, Chen, Xiong, Yang, Liu (bib0230) 2017; 13 Greaves, Vierling, Eitel, Boelman, Magney, Prager, Griffin (bib0090) 2015; 164 Moeckel, Safari, Reddersen, Fricke, Wachendorf (bib0140) 2017; 9 Mohanty, Hughes, Salathe (bib0145) 2016 Patrignani, Ochsner (bib0155) 2015; 107 Chung, Choi, Silva, Kang, Eom, Kim (bib0035) 2017; 105 Jannoura, Brinkmann, Uteau, Bruns, Joergensen (bib0100) 2015; 129 Schirrmann, Hamdorf, Garz, Ustyuzhanin, Dammer (bib0195) 2016; 121 Krizhevsky, Sutskever, Hinton (bib0115) 2012 Rischbeck, Elsayed, Mistele, Barmeier, Heil, Schmidhalter (bib0185) 2016; 78 Chang, Zaman, Rehman, Farooque, Esau, Jameel (bib0030) 2017; 157 Daughtry, Walthall, Kim, de Colstoun, McMurtrey (bib0045) 2000; 74 Rasmussen, Ntakos, Nielsen, Svensgaard, Poulsen, Christensen (bib0180) 2016; 74 Ferentinos (bib0065) 2018; 145 Gnyp, Bareth, Li, Lenz-Wiedemann, Koppe, Miao, Hennig, Jia, Laudien, Chen, Zhang (bib0085) 2014 Ma, Du, Zheng, Zhang, Gong, Sun (bib0135) 2018; 154 Naito, Ogawa, Valencia, Mohri, Urano, Hosoi, Shimizu, Chavez, Ishitani, Selvaraj, Omasa (bib0150) 2017; 125 Grinblat, Uzal, Larese, Granitto (bib0095) 2016; 127 Wang, Zhou, Zhu, Dong, Guo (bib0220) 2016; 4 Ferreira, Freitas, Silva, Pistori, Folhes (bib0070) 2017; 143 Pölönen, Saari, Kaivosoja, Honkavaara, Pesonen (bib0165) 2013; 888 Fan, Kawamura, Guo, Xuan, Lim, Yuba, Kurokawa, Obitsu, Lv, Tsumiyama, Yasuda, Wang (bib0060) 2017 Gizaw, Garland-Campbell, Carter (bib0080) 2016; 196 Walter, Edwards, McDonald, Kuchel (bib0215) 2018; 216 Tucker (bib0205) 1977; 16 Casadesús, Villegas (bib0025) 2014; 56 Zhang, Verma, Stockwell, Chowdhury (bib0235) 2018; 101 Bai, Ge, Hussain, Baenziger, Graef (bib0005) 2016; 128 Bendig, Yu, Aasen, Bolten, Bennertz, Broscheit, Gnyp, Bareth (bib0015) 2015 Liebisch, Kirchgessner, Schneider, Walter, Hund (bib0125) 2015; 11 Schirrmann, Giebel, Gleiniger, Pflanz, Lentschke, Dammer (bib0190) 2016; 8 Pittman, Arnall, Interrante, Moffet, Butler (bib0160) 2015; 15 Possoch, Bieker, Hoffmeister, Bolten, Schellberg, Bareth, Conservation, Group, Conservation, Ecology, Model (bib0170) 2016; XLI Clevers, van der Heijden, Verzakov, Schaepman (bib0040) 2007; 73 Ghosal, Blystone, Singh, Ganapathysubramanian, Singh (bib0075) 2018 Rasmussen (10.1016/j.eja.2018.12.004_bib0180) 2016; 74 Bendig (10.1016/j.eja.2018.12.004_bib0015) 2015 Grinblat (10.1016/j.eja.2018.12.004_bib0095) 2016; 127 Ferentinos (10.1016/j.eja.2018.12.004_bib0065) 2018; 145 Jiang (10.1016/j.eja.2018.12.004_bib0105) 2016; 130 Ghosal (10.1016/j.eja.2018.12.004_bib0075) 2018 Krause (10.1016/j.eja.2018.12.004_bib0110) 2018 Greaves (10.1016/j.eja.2018.12.004_bib0090) 2015; 164 Ma (10.1016/j.eja.2018.12.004_bib0135) 2018; 154 Rahaman (10.1016/j.eja.2018.12.004_bib0175) 2015; 6 Tucker (10.1016/j.eja.2018.12.004_bib0210) 1979; 8 Chang (10.1016/j.eja.2018.12.004_bib0030) 2017; 157 Jannoura (10.1016/j.eja.2018.12.004_bib0100) 2015; 129 Casadesús (10.1016/j.eja.2018.12.004_bib0025) 2014; 56 Gnyp (10.1016/j.eja.2018.12.004_bib0085) 2014 Ferreira (10.1016/j.eja.2018.12.004_bib0070) 2017; 143 Woebbecke (10.1016/j.eja.2018.12.004_bib0225) 1995; 38 Pölönen (10.1016/j.eja.2018.12.004_bib0165) 2013; 888 Daughtry (10.1016/j.eja.2018.12.004_bib0045) 2000; 74 Eitel (10.1016/j.eja.2018.12.004_bib0055) 2014; 159 Bai (10.1016/j.eja.2018.12.004_bib0005) 2016; 128 Breiman (10.1016/j.eja.2018.12.004_bib0020) 2001; 45 Schirrmann (10.1016/j.eja.2018.12.004_bib0190) 2016; 8 Krizhevsky (10.1016/j.eja.2018.12.004_bib0115) 2012 Liebisch (10.1016/j.eja.2018.12.004_bib0125) 2015; 11 Ding (10.1016/j.eja.2018.12.004_bib0050) 2016; 123 Mohanty (10.1016/j.eja.2018.12.004_bib0145) 2016 Rischbeck (10.1016/j.eja.2018.12.004_bib0185) 2016; 78 Ma (10.1016/j.eja.2018.12.004_bib0130) 2017; 142 Xiong (10.1016/j.eja.2018.12.004_bib0230) 2017; 13 Chung (10.1016/j.eja.2018.12.004_bib0035) 2017; 105 Walter (10.1016/j.eja.2018.12.004_bib0215) 2018; 216 Wang (10.1016/j.eja.2018.12.004_bib0220) 2016; 4 LeCun (10.1016/j.eja.2018.12.004_bib0120) 2015; 521 Pittman (10.1016/j.eja.2018.12.004_bib0160) 2015; 15 Tucker (10.1016/j.eja.2018.12.004_bib0205) 1977; 16 Gizaw (10.1016/j.eja.2018.12.004_bib0080) 2016; 196 Possoch (10.1016/j.eja.2018.12.004_bib0170) 2016; XLI Baresel (10.1016/j.eja.2018.12.004_bib0010) 2017; 140 Naito (10.1016/j.eja.2018.12.004_bib0150) 2017; 125 Zhang (10.1016/j.eja.2018.12.004_bib0235) 2018; 101 Moeckel (10.1016/j.eja.2018.12.004_bib0140) 2017; 9 Simonyan (10.1016/j.eja.2018.12.004_bib0200) 2014 Patrignani (10.1016/j.eja.2018.12.004_bib0155) 2015; 107 Clevers (10.1016/j.eja.2018.12.004_bib0040) 2007; 73 Schirrmann (10.1016/j.eja.2018.12.004_bib0195) 2016; 121 Fan (10.1016/j.eja.2018.12.004_bib0060) 2017 |
References_xml | – volume: 128 start-page: 181 year: 2016 end-page: 192 ident: bib0005 article-title: A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding publication-title: Comput. Electron. Agric. contributor: fullname: Graef – volume: 142 start-page: 110 year: 2017 end-page: 117 ident: bib0130 article-title: A segmentation method for greenhouse vegetable foliar disease spots images using color information and region growing publication-title: Comput. Electron. Agric. contributor: fullname: Sun – volume: 196 start-page: 199 year: 2016 end-page: 206 ident: bib0080 article-title: Use of spectral reflectance for indirect selection of yield potential and stability in Pacific Northwest winter wheat publication-title: Field Crop. Res. contributor: fullname: Carter – volume: 164 start-page: 26 year: 2015 end-page: 35 ident: bib0090 article-title: Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR publication-title: Remote Sens. Environ. contributor: fullname: Griffin – volume: 121 start-page: 374 year: 2016 end-page: 384 ident: bib0195 article-title: Estimating wheat biomass by combining image clustering with crop height publication-title: Comput. Electron. Agric. contributor: fullname: Dammer – volume: 4 start-page: 212 year: 2016 end-page: 219 ident: bib0220 article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data publication-title: Crop J. contributor: fullname: Guo – volume: 157 start-page: 35 year: 2017 end-page: 44 ident: bib0030 article-title: A real-time ultrasonic system to measure wild blueberry plant height during harvesting publication-title: Biosyst. Eng. contributor: fullname: Jameel – start-page: 1 year: 2016 end-page: 6 ident: bib0145 article-title: Inference of Plant Diseases from Leaf Images Through Deep Learning contributor: fullname: Salathe – volume: 11 year: 2015 ident: bib0125 article-title: Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach publication-title: Plant Methods contributor: fullname: Hund – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0120 article-title: Deep learning publication-title: Nature contributor: fullname: Hinton – volume: 8 start-page: 706 year: 2016 ident: bib0190 article-title: Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery publication-title: Remote Sens. contributor: fullname: Dammer – volume: 13 start-page: 1 year: 2017 end-page: 15 ident: bib0230 article-title: Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization publication-title: Plant Methods contributor: fullname: Liu – volume: 78 start-page: 44 year: 2016 end-page: 59 ident: bib0185 article-title: Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley publication-title: Eur. J. Agron. contributor: fullname: Schmidhalter – volume: 15 start-page: 2920 year: 2015 end-page: 2943 ident: bib0160 article-title: Estimation of biomass and canopy height in Bermudagrass, Alfalfa, and wheat using ultrasonic, laser, and spectral sensors publication-title: Sensors (Switzerland) contributor: fullname: Butler – volume: 130 start-page: 57 year: 2016 end-page: 68 ident: bib0105 article-title: High throughput phenotyping of cotton plant height using depth images under field conditions publication-title: Comput. Electron. Agric. contributor: fullname: Paterson – volume: XLI start-page: 12 year: 2016 end-page: 19 ident: bib0170 article-title: Multi-temporal crop surface models combined with the RGB vegetation index fromUAV-based images for forage monitoring in grassland publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. contributor: fullname: Model – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0020 article-title: Random forests publication-title: Mach. Learn. contributor: fullname: Breiman – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: bib0210 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. contributor: fullname: Tucker – volume: 107 start-page: 2312 year: 2015 end-page: 2320 ident: bib0155 article-title: Canopeo: a powerful new tool for measuring fractional green canopy cover publication-title: Agron. J. contributor: fullname: Ochsner – volume: 38 start-page: 259 year: 1995 end-page: 269 ident: bib0225 article-title: Color indices for weed identification under various soil, residue, and lighting conditions publication-title: Trans. Am. Soc. Agric. Eng. contributor: fullname: Mortensen – volume: 9 start-page: 1 year: 2017 end-page: 14 ident: bib0140 article-title: Fusion of ultrasonic and spectral sensor data for improving the estimation of biomass in grasslands with heterogeneous sward structure publication-title: Remote Sens. contributor: fullname: Wachendorf – volume: 73 start-page: 1141 year: 2007 end-page: 1148 ident: bib0040 article-title: Estimating grassland biomass using svm band shaving of hyperspectral data publication-title: Photogramm. Eng. Rem. Sens. contributor: fullname: Schaepman – year: 2014 ident: bib0085 article-title: Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Zhang – start-page: 1 year: 2017 end-page: 10 ident: bib0060 article-title: A simple visible and near-infrared (V-NIR) camera system for monitoring the leaf area index and growth stage of Italian ryegrass publication-title: Comput. Electron. Agric. contributor: fullname: Wang – volume: 125 start-page: 50 year: 2017 end-page: 62 ident: bib0150 article-title: Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras publication-title: ISPRS J. Photogramm. Remote Sens. contributor: fullname: Omasa – volume: 123 start-page: 17 year: 2016 end-page: 28 ident: bib0050 article-title: Automatic moth detection from trap images for pest management publication-title: Comput. Electron. Agric. contributor: fullname: Taylor – start-page: 517 year: 2018 end-page: 520 ident: bib0110 article-title: WTPlant (what’s that plant?): A deep learning system for identifying plants in natural images publication-title: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval - ICMR’ 18 contributor: fullname: Lim – volume: 16 start-page: 1151 year: 1977 end-page: 1156 ident: bib0205 article-title: Asymptotic nature of grass canopy spectral reflectance publication-title: Appl. Opt. contributor: fullname: Tucker – volume: 159 start-page: 21 year: 2014 end-page: 32 ident: bib0055 article-title: LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status publication-title: Field Crop. Res. contributor: fullname: Huggins – year: 2014 ident: bib0200 article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition contributor: fullname: Zisserman – volume: 143 start-page: 314 year: 2017 end-page: 324 ident: bib0070 article-title: Weed detection in soybean crops using convnets publication-title: Comput. Electron. Agric. contributor: fullname: Folhes – volume: 6 start-page: 1 year: 2015 end-page: 15 ident: bib0175 article-title: Advanced phenotyping and phenotype data analysis for the study of plant growth and development publication-title: Front. Plant Sci. contributor: fullname: Chen – start-page: 1 year: 2012 end-page: 9 ident: bib0115 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Hinton – volume: 140 start-page: 25 year: 2017 end-page: 33 ident: bib0010 article-title: Use of a digital camera as alternative method for non-destructive detection of the leaf chlorophyll content and the nitrogen nutrition status in wheat publication-title: Comput. Electron. Agric. contributor: fullname: Mistele – volume: 129 start-page: 341 year: 2015 end-page: 351 ident: bib0100 article-title: Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter publication-title: Biosyst. Eng. contributor: fullname: Joergensen – volume: 56 start-page: 7 year: 2014 end-page: 14 ident: bib0025 article-title: Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding publication-title: J. Integr. Plant Biol. contributor: fullname: Villegas – volume: 74 start-page: 229 year: 2000 end-page: 239 ident: bib0045 article-title: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance publication-title: Remote Sens. Environ. contributor: fullname: McMurtrey – volume: 154 start-page: 18 year: 2018 end-page: 24 ident: bib0135 article-title: A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network publication-title: Comput. Electron. Agric. contributor: fullname: Sun – volume: 888 start-page: 521 year: 2013 end-page: 525 ident: bib0165 article-title: Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV publication-title: Proc. SPIE Int. Soc. Opt. Eng. contributor: fullname: Pesonen – volume: 145 start-page: 311 year: 2018 end-page: 318 ident: bib0065 article-title: Deep learning models for plant disease detection and diagnosis publication-title: Comput. Electron. Agric. contributor: fullname: Ferentinos – volume: 216 start-page: 165 year: 2018 end-page: 174 ident: bib0215 article-title: Photogrammetry for the estimation of wheat biomass and harvest index publication-title: Field Crop. Res. contributor: fullname: Kuchel – volume: 74 start-page: 75 year: 2016 end-page: 92 ident: bib0180 article-title: Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? publication-title: Eur. J. Agron. contributor: fullname: Christensen – volume: 105 start-page: 207 year: 2017 end-page: 210 ident: bib0035 article-title: Case study: estimation of sorghum biomass using digital image analysis with Canopeo publication-title: Biomass Bioenergy contributor: fullname: Kim – volume: 127 start-page: 418 year: 2016 end-page: 424 ident: bib0095 article-title: Deep learning for plant identification using vein morphological patterns publication-title: Comput. Electron. Agric. contributor: fullname: Granitto – start-page: 1 year: 2018 end-page: 6 ident: bib0075 article-title: An explainable deep machine vision framework for plant stress phenotyping publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Singh – year: 2015 ident: bib0015 article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Bareth – volume: 101 start-page: 213 year: 2018 end-page: 227 ident: bib0235 article-title: Density weighted connectivity of grass pixels in image frames for biomass estimation publication-title: Expert Syst. Appl. contributor: fullname: Chowdhury – volume: 105 start-page: 207 year: 2017 ident: 10.1016/j.eja.2018.12.004_bib0035 article-title: Case study: estimation of sorghum biomass using digital image analysis with Canopeo publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.06.027 contributor: fullname: Chung – start-page: 1 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0145 contributor: fullname: Mohanty – volume: 140 start-page: 25 year: 2017 ident: 10.1016/j.eja.2018.12.004_bib0010 article-title: Use of a digital camera as alternative method for non-destructive detection of the leaf chlorophyll content and the nitrogen nutrition status in wheat publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.05.032 contributor: fullname: Baresel – volume: 888 start-page: 521 year: 2013 ident: 10.1016/j.eja.2018.12.004_bib0165 article-title: Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV publication-title: Proc. SPIE Int. Soc. Opt. Eng. contributor: fullname: Pölönen – volume: 8 start-page: 706 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0190 article-title: Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery publication-title: Remote Sens. doi: 10.3390/rs8090706 contributor: fullname: Schirrmann – volume: 9 start-page: 1 year: 2017 ident: 10.1016/j.eja.2018.12.004_bib0140 article-title: Fusion of ultrasonic and spectral sensor data for improving the estimation of biomass in grasslands with heterogeneous sward structure publication-title: Remote Sens. doi: 10.3390/rs9010098 contributor: fullname: Moeckel – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.eja.2018.12.004_bib0175 article-title: Advanced phenotyping and phenotype data analysis for the study of plant growth and development publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00619 contributor: fullname: Rahaman – volume: 130 start-page: 57 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0105 article-title: High throughput phenotyping of cotton plant height using depth images under field conditions publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.09.017 contributor: fullname: Jiang – year: 2015 ident: 10.1016/j.eja.2018.12.004_bib0015 article-title: Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2015.02.012 contributor: fullname: Bendig – volume: 143 start-page: 314 year: 2017 ident: 10.1016/j.eja.2018.12.004_bib0070 article-title: Weed detection in soybean crops using convnets publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.10.027 contributor: fullname: Ferreira – volume: 78 start-page: 44 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0185 article-title: Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2016.04.013 contributor: fullname: Rischbeck – volume: 164 start-page: 26 year: 2015 ident: 10.1016/j.eja.2018.12.004_bib0090 article-title: Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.023 contributor: fullname: Greaves – volume: XLI start-page: 12 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0170 article-title: Multi-temporal crop surface models combined with the RGB vegetation index fromUAV-based images for forage monitoring in grassland publication-title: ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. contributor: fullname: Possoch – volume: 123 start-page: 17 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0050 article-title: Automatic moth detection from trap images for pest management publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.02.003 contributor: fullname: Ding – volume: 121 start-page: 374 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0195 article-title: Estimating wheat biomass by combining image clustering with crop height publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.01.007 contributor: fullname: Schirrmann – volume: 216 start-page: 165 year: 2018 ident: 10.1016/j.eja.2018.12.004_bib0215 article-title: Photogrammetry for the estimation of wheat biomass and harvest index publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2017.11.024 contributor: fullname: Walter – volume: 107 start-page: 2312 year: 2015 ident: 10.1016/j.eja.2018.12.004_bib0155 article-title: Canopeo: a powerful new tool for measuring fractional green canopy cover publication-title: Agron. J. doi: 10.2134/agronj15.0150 contributor: fullname: Patrignani – volume: 101 start-page: 213 year: 2018 ident: 10.1016/j.eja.2018.12.004_bib0235 article-title: Density weighted connectivity of grass pixels in image frames for biomass estimation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.01.055 contributor: fullname: Zhang – volume: 128 start-page: 181 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0005 article-title: A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.08.021 contributor: fullname: Bai – volume: 196 start-page: 199 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0080 article-title: Use of spectral reflectance for indirect selection of yield potential and stability in Pacific Northwest winter wheat publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2016.06.022 contributor: fullname: Gizaw – volume: 11 year: 2015 ident: 10.1016/j.eja.2018.12.004_bib0125 article-title: Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach publication-title: Plant Methods doi: 10.1186/s13007-015-0048-8 contributor: fullname: Liebisch – volume: 145 start-page: 311 year: 2018 ident: 10.1016/j.eja.2018.12.004_bib0065 article-title: Deep learning models for plant disease detection and diagnosis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.01.009 contributor: fullname: Ferentinos – volume: 142 start-page: 110 year: 2017 ident: 10.1016/j.eja.2018.12.004_bib0130 article-title: A segmentation method for greenhouse vegetable foliar disease spots images using color information and region growing publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.08.023 contributor: fullname: Ma – start-page: 517 year: 2018 ident: 10.1016/j.eja.2018.12.004_bib0110 article-title: WTPlant (what’s that plant?): A deep learning system for identifying plants in natural images contributor: fullname: Krause – start-page: 1 year: 2012 ident: 10.1016/j.eja.2018.12.004_bib0115 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Krizhevsky – volume: 16 start-page: 1151 year: 1977 ident: 10.1016/j.eja.2018.12.004_bib0205 article-title: Asymptotic nature of grass canopy spectral reflectance publication-title: Appl. Opt. doi: 10.1364/AO.16.001151 contributor: fullname: Tucker – volume: 38 start-page: 259 year: 1995 ident: 10.1016/j.eja.2018.12.004_bib0225 article-title: Color indices for weed identification under various soil, residue, and lighting conditions publication-title: Trans. Am. Soc. Agric. Eng. doi: 10.13031/2013.27838 contributor: fullname: Woebbecke – start-page: 1 year: 2017 ident: 10.1016/j.eja.2018.12.004_bib0060 article-title: A simple visible and near-infrared (V-NIR) camera system for monitoring the leaf area index and growth stage of Italian ryegrass publication-title: Comput. Electron. Agric. contributor: fullname: Fan – volume: 154 start-page: 18 year: 2018 ident: 10.1016/j.eja.2018.12.004_bib0135 article-title: A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.08.048 contributor: fullname: Ma – volume: 13 start-page: 1 year: 2017 ident: 10.1016/j.eja.2018.12.004_bib0230 article-title: Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization publication-title: Plant Methods doi: 10.1186/s13007-017-0254-7 contributor: fullname: Xiong – volume: 159 start-page: 21 year: 2014 ident: 10.1016/j.eja.2018.12.004_bib0055 article-title: LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2014.01.008 contributor: fullname: Eitel – volume: 157 start-page: 35 year: 2017 ident: 10.1016/j.eja.2018.12.004_bib0030 article-title: A real-time ultrasonic system to measure wild blueberry plant height during harvesting publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2017.02.004 contributor: fullname: Chang – volume: 74 start-page: 229 year: 2000 ident: 10.1016/j.eja.2018.12.004_bib0045 article-title: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00113-9 contributor: fullname: Daughtry – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.eja.2018.12.004_bib0120 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun – volume: 15 start-page: 2920 year: 2015 ident: 10.1016/j.eja.2018.12.004_bib0160 article-title: Estimation of biomass and canopy height in Bermudagrass, Alfalfa, and wheat using ultrasonic, laser, and spectral sensors publication-title: Sensors (Switzerland) doi: 10.3390/s150202920 contributor: fullname: Pittman – volume: 8 start-page: 127 year: 1979 ident: 10.1016/j.eja.2018.12.004_bib0210 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 contributor: fullname: Tucker – start-page: 1 year: 2018 ident: 10.1016/j.eja.2018.12.004_bib0075 article-title: An explainable deep machine vision framework for plant stress phenotyping publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Ghosal – volume: 129 start-page: 341 year: 2015 ident: 10.1016/j.eja.2018.12.004_bib0100 article-title: Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2014.11.007 contributor: fullname: Jannoura – volume: 4 start-page: 212 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0220 article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data publication-title: Crop J. doi: 10.1016/j.cj.2016.01.008 contributor: fullname: Wang – year: 2014 ident: 10.1016/j.eja.2018.12.004_bib0200 contributor: fullname: Simonyan – volume: 56 start-page: 7 year: 2014 ident: 10.1016/j.eja.2018.12.004_bib0025 article-title: Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12117 contributor: fullname: Casadesús – volume: 127 start-page: 418 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0095 article-title: Deep learning for plant identification using vein morphological patterns publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.07.003 contributor: fullname: Grinblat – volume: 73 start-page: 1141 issue: 10 year: 2007 ident: 10.1016/j.eja.2018.12.004_bib0040 article-title: Estimating grassland biomass using svm band shaving of hyperspectral data publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.73.10.1141 contributor: fullname: Clevers – volume: 74 start-page: 75 year: 2016 ident: 10.1016/j.eja.2018.12.004_bib0180 article-title: Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2015.11.026 contributor: fullname: Rasmussen – year: 2014 ident: 10.1016/j.eja.2018.12.004_bib0085 article-title: Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2014.05.006 contributor: fullname: Gnyp – volume: 125 start-page: 50 year: 2017 ident: 10.1016/j.eja.2018.12.004_bib0150 article-title: Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.01.010 contributor: fullname: Naito – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.eja.2018.12.004_bib0020 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman |
SSID | ssj0008254 |
Score | 2.531473 |
Snippet | •A deep convolutional neural network is proposed to the estimate above ground biomass for winter wheat at early growth stages.•The proposed method is using RGB... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 117 |
SubjectTerms | Above ground biomass Deep convolutional neural network RGB images Winter wheat |
Title | Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network |
URI | https://dx.doi.org/10.1016/j.eja.2018.12.004 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4Euqa5WPNcYhjKu6k4K00yWudhzrmdDfB_9z3uhYV8SKUlqZNKC_Jy--lv_ceY6d5X0KmtIu0BzRQtFdR5rSOsswIrwcuSQQ5ON9OzPheXT_ohxa7aHxhiFZZ6_6VTq-0dV3Sq6XZm02nPZyHRlSAPsETwhjyYNcxZTE4f_-ieZAFVCVYMUQdikXzZ7PieMEThR4SSbUjWOdq-7U2fVtvRltsswaKfLj6lm3WgnKHbQyLeR0sA3bZxyXOT0KcZcGxL9-Ak49GGTj51CMo5s85X1I8iDlfks7leAAFNKb3lotHjsiwgBdO3PeCh2lBCUQ4tkiFGbYTAGaceOn1-MSnFP-yulTs8T12P7q8uxhHdUqFyEsjFxGaQ5n31ihEAggFlU6cFdaboF0u4yzRWSxtrj3KVIcgpYLYgfNBejMwcR_kPmuXzyUcMJ4YH3IJwssYlM0HTuZkaAvrLKIqZTvsrBFmOltFzkgbStlTipJPSfKp6Kco-Q5TjbjTH92fomb_u9rh_6odsXW8syvy9TFrL-avcILYYuG61eDpsrXh1c148gnf8M_k |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rHtSD-MS3OXgS6jabxzZHEWXV1ZOCt9Ck07p7qMu6ujfBf-5Mt0VFvAilhaQJZZJMvkm_mWHsOO9ISJX2kQ6ABooOKkq91lGaGhF01yeJIAfn2zvTe1DXj_qxxc4bXxiiVda6f6bTK21dl7RrabZHg0Eb16ERFaBP8IYwZo4tKI3oFyf16fsXz4NMoCrDiiHuUCyaX5sVyQuGFHtIJNWRYJ2s7dfm9G3DuVxlKzVS5Gezj1ljLSjX2fJZMa6jZcAG-7jABUqQsyw4DuYbcHLSKDNOTvWIivlzzqcUEGLMp6R0OV5AEY3pvenkiSM0LOCFE_m94NmgoAwiHHukwhT7yQBGnIjp9QTFWgqAWT0q-vgme7i8uD_vRXVOhShIIycR2kNpCNYohAKIBZVOvBU2mEz7XMZpotNY2lwHFKrOMikVxB58yGQwXRN3QG6x-fK5hG3GExOyXIIIMgZl866XOVnawnqLsErZHXbSCNONZqEzXMMpGzqUvCPJO9FxKPkdphpxux_j71C1_91s93_Njthi7_627_pXdzd7bAlr7IyJvc_mJ-NXOECgMfGH1UT6BO_J0YE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+above+ground+biomass+of+winter+wheat+at+early+growth+stages+using+digital+images+and+deep+convolutional+neural+network&rft.jtitle=European+journal+of+agronomy&rft.au=Ma%2C+Juncheng&rft.au=Li%2C+Yunxia&rft.au=Chen%2C+Yunqiang&rft.au=Du%2C+Keming&rft.date=2019-02-01&rft.issn=1161-0301&rft.volume=103&rft.spage=117&rft.epage=129&rft_id=info:doi/10.1016%2Fj.eja.2018.12.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eja_2018_12_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1161-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1161-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1161-0301&client=summon |