Exponential ReLU DNN Expression of Holomorphic Maps in High Dimension
For a parameter dimension d ∈ N , we consider the approximation of many-parametric maps u : [ - 1 , 1 ] d → R by deep ReLU neural networks. The input dimension d may possibly be large, and we assume quantitative control of the domain of holomorphy of u : i.e., u admits a holomorphic extension to a B...
Saved in:
Published in | Constructive approximation Vol. 55; no. 1; pp. 537 - 582 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0176-4276 1432-0940 |
DOI | 10.1007/s00365-021-09542-5 |
Cover
Loading…