Exponential ReLU DNN Expression of Holomorphic Maps in High Dimension

For a parameter dimension d ∈ N , we consider the approximation of many-parametric maps u : [ - 1 , 1 ] d → R by deep ReLU neural networks. The input dimension d may possibly be large, and we assume quantitative control of the domain of holomorphy of u : i.e., u admits a holomorphic extension to a B...

Full description

Saved in:
Bibliographic Details
Published inConstructive approximation Vol. 55; no. 1; pp. 537 - 582
Main Authors Opschoor, J. A. A., Schwab, Ch, Zech, J.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0176-4276
1432-0940
DOI10.1007/s00365-021-09542-5

Cover

Loading…