Question routing via activity-weighted modularity-enhanced factorization

Question Routing (QR) in Community-based Question Answering (CQA) websites aims at recommending newly posted questions to potential users who are most likely to provide “accepted answers”. Most of the existing approaches predict users’ expertise based on their past question answering behavior and th...

Full description

Saved in:
Bibliographic Details
Published inSocial network analysis and mining Vol. 12; no. 1; p. 155
Main Authors Krishna, Vaibhav, Vasiliauskaite, Vaiva, Antulov-Fantulin, Nino
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Question Routing (QR) in Community-based Question Answering (CQA) websites aims at recommending newly posted questions to potential users who are most likely to provide “accepted answers”. Most of the existing approaches predict users’ expertise based on their past question answering behavior and the content of new questions. However, these approaches suffer from challenges in three aspects: (1) sparsity of users’ past records results in lack of personalized recommendation that at times does not match users’ interest or domain expertise, (2) modeling based on all questions and answers content makes periodic updates computationally expensive, and (3) while CQA sites are highly dynamic, they are mostly considered as static. This paper proposes a novel approach to QR that addresses the above challenges. It is based on dynamic modeling of users’ activity on topic communities. Experimental results on three real-world datasets demonstrate that the proposed model significantly outperforms competitive baseline models.
AbstractList Question Routing (QR) in Community-based Question Answering (CQA) websites aims at recommending newly posted questions to potential users who are most likely to provide “accepted answers”. Most of the existing approaches predict users’ expertise based on their past question answering behavior and the content of new questions. However, these approaches suffer from challenges in three aspects: (1) sparsity of users’ past records results in lack of personalized recommendation that at times does not match users’ interest or domain expertise, (2) modeling based on all questions and answers content makes periodic updates computationally expensive, and (3) while CQA sites are highly dynamic, they are mostly considered as static. This paper proposes a novel approach to QR that addresses the above challenges. It is based on dynamic modeling of users’ activity on topic communities. Experimental results on three real-world datasets demonstrate that the proposed model significantly outperforms competitive baseline models.
ArticleNumber 155
Author Antulov-Fantulin, Nino
Krishna, Vaibhav
Vasiliauskaite, Vaiva
Author_xml – sequence: 1
  givenname: Vaibhav
  surname: Krishna
  fullname: Krishna, Vaibhav
  email: vaibhavkrishna@ethz.ch
  organization: ETH Zürich
– sequence: 2
  givenname: Vaiva
  surname: Vasiliauskaite
  fullname: Vasiliauskaite, Vaiva
  organization: ETH Zürich
– sequence: 3
  givenname: Nino
  surname: Antulov-Fantulin
  fullname: Antulov-Fantulin, Nino
  organization: ETH Zürich
BookMark eNp9kE9LAzEQxYNUsNZ-AU8LnlfzZzfJHqWoFQoi9B6y2Wyb0iY1yVbqpzfbFQUPPc0wvN_Mm3cNRtZZDcAtgvcIQvYQEMGM5xDjHMIqdfQCjBGnVV4WtBr99iW8AtMQNhBCBAmpIB2D-XunQzTOZt510dhVdjAykyqag4nH_FOb1TrqJtu5pttK38-0XUur0qxNMufNl-z5G3DZym3Q0586Acvnp-Vsni_eXl5nj4tcEUpiXpS8pY2WqiUNapXkqCaqobyQDUFMMcwkJLisUEMoqytMC8RQzQmjRRIzMgF3w9q9dx-9dbFxnbfposAVhiXmRXptAvigUt6F4HUrlIknm9FLsxUIij45MSQnUnLilJygCcX_0L03O-mP5yEyQCGJ7Ur7P1dnqG8dVIMk
CitedBy_id crossref_primary_10_1371_journal_pone_0297627
crossref_primary_10_1145_3690380
crossref_primary_10_1016_j_ipm_2024_103773
crossref_primary_10_1016_j_eswa_2023_121576
crossref_primary_10_1016_j_ins_2024_121116
crossref_primary_10_1109_ACCESS_2024_3450544
Cites_doi 10.1109/MC.2009.263
10.1007/s13278-020-0626-2
10.1007/s10462-018-09680-6
10.1177/0165551511423149
10.1145/2505515.2505670
10.1145/2766462.2767840
10.1145/170036.170072
10.1609/icwsm.v6i1.14262
10.1145/2396761.2398493
10.1103/PhysRevE.70.066111
10.1145/963770.963775
10.1609/aaai.v33i01.3301192
10.1007/s41109-019-0165-9
10.1145/3331184.3331303
10.1038/s41598-019-41695-z
10.1103/PhysRevE.70.025101
10.1016/j.chb.2016.11.010
10.1007/s10462-015-9443-9
10.1103/PhysRevE.69.066133
10.1109/ASWEC.2015.28
10.1145/2063576.2063885
10.1145/2505515.2505720
10.1145/2934687
10.21105/joss.02174
10.1145/2187980.2188202
10.1088/1742-5468/2008/10/P10008
10.1145/2492517.2492559
10.1145/2187980.2188201
10.1609/icwsm.v7i1.14387
10.1109/SNPD.2019.8935747
10.1007/s11390-018-1845-0
10.1609/icwsm.v3i1.13937
10.1002/9780471462422.eoct979
10.1007/s13278-018-0534-x
10.1103/PhysRevE.77.046119
10.1145/1242572.1242603
10.3758/BF03213979
10.1016/j.csda.2017.10.006
10.1145/324133.324140
10.1007/978-3-662-49390-8_3
10.1109/TKDE.2014.2356461
10.1145/1871437.1871658
10.1016/j.jmva.2006.11.013
10.1016/j.neucom.2018.01.034
10.1016/j.ipm.2017.04.002
10.1145/1148170.1148212
10.1002/widm.1102
10.1109/CyberC.2015.87
10.1109/MS.2016.34
10.1109/ASONAM.2014.6921702
10.1007/978-0-387-85820-3_8
10.1109/ASONAM.2016.7752346
10.1145/1052934.1052942
10.1145/1774088.1774266
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7XB
88J
8BJ
8FE
8FG
8FK
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FQK
GNUQQ
HCIFZ
JBE
JQ2
K7-
M2R
P5Z
P62
PHGZM
PHGZT
PKEHL
POGQB
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
DOI 10.1007/s13278-022-00978-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Social Science Database (Alumni Edition)
International Bibliography of the Social Sciences (IBSS)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
International Bibliography of the Social Sciences
ProQuest Central Student
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Computer Science Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Sociology & Social Sciences Collection
ProQuest Central
ProQuest One Applied & Life Sciences
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Law
Computer Science
EISSN 1869-5469
ExternalDocumentID 10_1007_s13278_022_00978_6
GrantInformation_xml – fundername: SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics
  grantid: 871042; 871042
– fundername: Swiss Federal Institute of Technology Zurich
GroupedDBID -EM
0R~
0VY
203
2VQ
30V
4.4
406
408
409
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAJSJ
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACULB
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
BENPR
BGLVJ
BGNMA
C6C
CCPQU
CSCUP
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GNUQQ
GQ6
GQ8
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
ITM
IWAJR
IZIGR
J-C
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M2R
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RIG
RLLFE
ROL
RSV
S1Z
S27
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z7Z
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABEEZ
ABFSG
ACSTC
AEZWR
AFDZB
AFGXO
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
0-V
3V.
7XB
8BJ
8FE
8FG
8FK
FQK
JBE
JQ2
P62
PKEHL
POGQB
PQEST
PQGLB
PQQKQ
PQUKI
PRQQA
Q9U
ID FETCH-LOGICAL-c363t-458f6deacf3d1fca81b3cd684ad317c727a032591d367b9264171b83764ca873
IEDL.DBID U2A
ISSN 1869-5450
IngestDate Fri Jul 25 23:43:29 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Tue Jul 01 02:45:47 EDT 2025
Fri Feb 21 02:44:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Question routing
Community detection
Expert recommendation systems
Social network analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-458f6deacf3d1fca81b3cd684ad317c727a032591d367b9264171b83764ca873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s13278-022-00978-6
PQID 2920528403
PQPubID 2044166
ParticipantIDs proquest_journals_2920528403
crossref_citationtrail_10_1007_s13278_022_00978_6
crossref_primary_10_1007_s13278_022_00978_6
springer_journals_10_1007_s13278_022_00978_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Heidelberg
PublicationTitle Social network analysis and mining
PublicationTitleAbbrev Soc. Netw. Anal. Min
PublicationYear 2022
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the international AAAI conference on web and social media vol 3, pp 361–362
Al-TaieMZKadrySObasaAIUnderstanding expert finding systems: domains and techniquesSoc Netw Anal Min2018811910.1007/s13278-018-0534-x
YangJBozzonAHoubenG-JE-wise: an expertise-driven recommendation platform for web question answering systemsInternational conference on web engineering2015BerlinSpringer691694
Zhou G, Lai S, Liu K, Zhao J (2012) Topic-sensitive probabilistic model for expert finding in question answer communities. In: Proceedings of the 21st ACM international conference on information and knowledge management, pp 1662–1666
CarissimoACutilloLDe FeisIValidation of community robustnessComput Stat Data Anal2018120124374220510.1016/j.csda.2017.10.0061469.62029
ZhaoZZhangLHeXNgWExpert finding for question answering via graph regularized matrix completionIEEE Trans Knowl Data Eng2014274993100410.1109/TKDE.2014.2356461
Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, pp 207–216
TraagVAWaltmanLVan EckNJFrom louvain to leiden: guaranteeing well-connected communitiesSci Rep20199111210.1038/s41598-019-41695-z
Sung J, Lee J-G, Lee U (2013) Booming up the long tails: discovering potentially contributive users in community-based question answering services. In: Proceedings of the international AAAI conference on web and social media, vol 7, pp 602–610
MeilăMComparing clusterings-an information based distanceJ Multivar Anal2007985873895232541210.1016/j.jmva.2006.11.0131298.91124
WangXHuangCYaoLBenatallahBDongMA survey on expert recommendation in community question answeringJ Comput Sci Technol201833462565310.1007/s11390-018-1845-0
ZhengXHuZXuAChenDLiuKLiBAlgorithm for recommending answer providers in community-based question answeringJ Inf Sci201238131410.1177/0165551511423149
Zhang J, Ackerman MS, Adamic L (2007) Expertise networks in online communities: structure and algorithms. In: Proceedings of the 16th international conference on world wide web, pp 221–230
Fukui K, Miyazaki T, Ohira M (2019) Suggesting questions that match each user’s expertise in community question and answering services. In: 2019 20th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), pp 501–506. IEEE
HuangZChenHZengDApplying associative retrieval techniques to alleviate the sparsity problem in collaborative filteringACM Trans Inf Syst (TOIS)200422111614210.1145/963770.963775
KorenYBellRVolinskyCMatrix factorization techniques for recommender systemsComputer2009428303710.1109/MC.2009.263
Le LT, Shah C (2016) Retrieving rising stars in focused community question-answering. In: Asian conference on intelligent information and database systems, pp 25–36. Springer, Berlin
HugNSurprise: a python library for recommender systemsJ Open Source Softw2020552217410.21105/joss.02174
NajafabadiMKMahrinMNChupratSSarkanHMImproving the accuracy of collaborative filtering recommendations using clustering and association rules mining on implicit dataComput Hum Behav20176711312810.1016/j.chb.2016.11.010
KarrerBLevinaENewmanMERobustness of community structure in networksPhys Rev E200877404611910.1103/PhysRevE.77.046119
BorodinARobertsGORosenthalJSTsaparasPLink analysis ranking: algorithms, theory, and experimentsACM Trans Int Technol (TOIT)20055123129710.1145/1052934.1052942
Ji Z, Wang B (2013) Learning to rank for question routing in community question answering. In: Proceedings of the 22nd ACM international conference on information and knowledge management, pp 2363–2368
GuimeraRSales-PardoMAmaralLANModularity from fluctuations in random graphs and complex networksPhys Rev E200470202510110.1103/PhysRevE.70.025101
ShaniGGunawardanaAEvaluating recommendation systemsRecomm Syst Handb2011BostonSpringer25729710.1007/978-0-387-85820-3_8
RossettiGMilliLCazabetRCdlib: a python library to extract, compare and evaluate communities from complex networksAppl Netw Sci20194112610.1007/s41109-019-0165-9
Chang S, Pal A (2013) Routing questions for collaborative answering in community question answering. In: 2013 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2013), pp 494–501. IEEE
Kao W-C, Liu D-R, Wang S-W (2010) Expert finding in question-answering websites: a novel hybrid approach. In: Proceedings of the 2010 ACM symposium on applied computing, pp 867–871
Sontag D, Roy D (2011) Complexity of inference in latent dirichlet allocation. Advances in neural information processing systems, p 24
SrbaIBielikovaMWhy is stack overflow failing? preserving sustainability in community question answeringIEEE Softw2016334808910.1109/MS.2016.34
van Dijk D, Tsagkias M, de Rijke M (2015) Early detection of topical expertise in community question answering. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, pp 995–998
Pal A, Chang S, Konstan J (2012) Evolution of experts in question answering communities. In: Proceedings of the international AAAI conference on web and social media, vol 6, pp 274–281
Li Z, Jiang J-Y, Sun Y, Wang W (2019) Personalized question routing via heterogeneous network embedding. In: Proceedings of the AAAI conference on artificial intelligence vol 33, pp 192–199
IdrissiNZellouAA systematic literature review of sparsity issues in recommender systemsSoc Netw Anal Min202010112310.1007/s13278-020-0626-2
Woolson RF (2007) Wilcoxon signed‐rank test. Wiley encyclopedia of clinical trials, pp 1–3
MomtaziSNaumannFTopic modeling for expert finding using latent dirichlet allocationWiley Interdiscip Rev Data Min Knowl Discov20133534635310.1002/widm.1102
Li B, King I, Lyu MR (2011) Question routing in community question answering: putting category in its place. In: Proceedings of the 20th ACM international conference on information and knowledge management, pp 2041–2044
KleinbergJMAuthoritative sources in a hyperlinked environmentJ ACM (JACM)1999465604632174764910.1145/324133.3241401065.68660
Zhou TC, Lyu MR, King I (2012) A classification-based approach to question routing in community question answering. In: Proceedings of the 21st international conference on world wide web, pp 783–790
Bishop, Christopher M (2006) Pattern recognition and machine learning. New York: Springer
BleiDMNgAYJordanMILatent dirichlet allocationJ Mach Learn Res20033Jan99310221112.68379
ChenZZhangCZhaoZYaoCCaiDQuestion retrieval for community-based question answering via heterogeneous social influential networkNeurocomputing201828511712410.1016/j.neucom.2018.01.034
NajafabadiMKMahrinMNA systematic literature review on the state of research and practice of collaborative filtering technique and implicit feedbackArtif Intell Rev201645216720110.1007/s10462-015-9443-9
Choetkiertikul M, Avery D, Dam HK, Tran T, Ghose A (2015) Who will answer my question on stack overflow? In: 2015 24th Australasian software engineering conference, pp 155–164. IEEE
Yang B, Manandhar S (2014) Tag-based expert recommendation in community question answering. In: 2014 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2014), pp 960–963. IEEE
SrbaIBielikovaMA comprehensive survey and classification of approaches for community question answeringACM Trans Web (TWEB)201610316310.1145/2934687
BlondelVDGuillaumeJ-LLambiotteRLefebvreEFast unfolding of communities in large networksJ Stat Mech Theory Exp20082008101000810.1088/1742-5468/2008/10/P100081459.91130
YuanSZhangYTangJHallWCabotàJBExpert finding in community question answering: a reviewArtif Intell Rev202053284387410.1007/s10462-018-09680-6
Jeon J, Croft WB, Lee JH, Park S (2006) A framework to predict the quality of answers with non-textual features. In: Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, pp 228–235
ClausetANewmanMEMooreCFinding community structure in very large networksPhys Rev E200470606611110.1103/PhysRevE.70.066111
Pal A, Konstan JA (2010) Expert identification in community question answering: exploring question selection bias. In: Proceedings of the 19th ACM international conference on information and knowledge management, pp 1505–1508
Wang L, Wu B, Yang J, Peng S (2016) Personalized recommendation for new questions in community question answering. In: 2016 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 901–908. IEEE
PageLBrinSMotwaniRWinogradTThe pagerank citation ranking: bringing order to the web1999Stanford InfoLabTechnical report
Yang L, Qiu M, Gottipati S, Zhu F, Jiang J, Sun H, Chen Z (2013) Cqarank: jointly model topics and expertise in community question answering. In: Proceedings of the 22nd ACM international conference on information and knowledge management, pp 99–108
GreenLFristoeNMyersonJTemporal discounting and preference reversals in choice between delayed outcomesPsychon Bull Rev19941338338910.3758/BF03213979
Surowiecki J (2005) The wisdom of crowds
NewmanMEFast algorithm for detecting community structure in networksPhys Rev E200469606613310.1103/PhysRevE.69.066133
Riahi F, Zolaktaf Z, Shafiei M, Milios E (2012) Finding expert users in community question answering. In: Proceedings of the 21st international conference on world wide web, pp 791–798
Li H, Jin S, Shudong L (2015) A hybrid model for experts finding in community question answering. In: 2015 International conference on cyber-enabled distributed computing and knowledge discovery, pp 176–185. IEEE
NeshatiMFallahnejadZBeigyHOn dynamicity of expert finding in community question answeringInf Process Manage20175351026104210.1016/j.ipm.2017.04.002
Dai Z, Callan J (2019) Deeper text understanding for ir with contextual neural language modeling. In: Pr
X Wang (978_CR49) 2018; 33
A Borodin (978_CR7) 2005; 5
S Momtazi (978_CR31) 2013; 3
978_CR50
MK Najafabadi (978_CR32) 2016; 45
978_CR54
978_CR53
VD Blondel (978_CR6) 2008; 2008
978_CR51
978_CR14
978_CR13
978_CR56
978_CR11
G Shani (978_CR41) 2011
S Yuan (978_CR55) 2020; 53
978_CR9
978_CR59
978_CR4
JM Kleinberg (978_CR24) 1999; 46
ME Newman (978_CR35) 2004; 69
M Meilă (978_CR30) 2007; 98
Z Zhao (978_CR57) 2014; 27
A Clauset (978_CR12) 2004; 70
VA Traag (978_CR47) 2019; 9
978_CR60
A Carissimo (978_CR8) 2018; 120
978_CR21
978_CR20
MK Najafabadi (978_CR33) 2017; 67
978_CR22
978_CR29
978_CR28
978_CR27
978_CR26
J Yang (978_CR52) 2015
I Srba (978_CR44) 2016; 33
L Page (978_CR36) 1999
DM Blei (978_CR5) 2003; 3
M Neshati (978_CR34) 2017; 53
978_CR39
978_CR38
978_CR37
MZ Al-Taie (978_CR2) 2018; 8
G Rossetti (978_CR40) 2019; 4
978_CR3
978_CR1
X Zheng (978_CR58) 2012; 38
N Hug (978_CR18) 2020; 5
B Karrer (978_CR23) 2008; 77
Y Koren (978_CR25) 2009; 42
Z Huang (978_CR17) 2004; 22
978_CR42
I Srba (978_CR43) 2016; 10
978_CR46
978_CR45
R Guimera (978_CR16) 2004; 70
N Idrissi (978_CR19) 2020; 10
978_CR48
L Green (978_CR15) 1994; 1
Z Chen (978_CR10) 2018; 285
References_xml – reference: Fukui K, Miyazaki T, Ohira M (2019) Suggesting questions that match each user’s expertise in community question and answering services. In: 2019 20th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), pp 501–506. IEEE
– reference: KorenYBellRVolinskyCMatrix factorization techniques for recommender systemsComputer2009428303710.1109/MC.2009.263
– reference: Li H, Jin S, Shudong L (2015) A hybrid model for experts finding in community question answering. In: 2015 International conference on cyber-enabled distributed computing and knowledge discovery, pp 176–185. IEEE
– reference: Jeon J, Croft WB, Lee JH, Park S (2006) A framework to predict the quality of answers with non-textual features. In: Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, pp 228–235
– reference: ChenZZhangCZhaoZYaoCCaiDQuestion retrieval for community-based question answering via heterogeneous social influential networkNeurocomputing201828511712410.1016/j.neucom.2018.01.034
– reference: Ji Z, Wang B (2013) Learning to rank for question routing in community question answering. In: Proceedings of the 22nd ACM international conference on information and knowledge management, pp 2363–2368
– reference: KarrerBLevinaENewmanMERobustness of community structure in networksPhys Rev E200877404611910.1103/PhysRevE.77.046119
– reference: Li Z, Jiang J-Y, Sun Y, Wang W (2019) Personalized question routing via heterogeneous network embedding. In: Proceedings of the AAAI conference on artificial intelligence vol 33, pp 192–199
– reference: MomtaziSNaumannFTopic modeling for expert finding using latent dirichlet allocationWiley Interdiscip Rev Data Min Knowl Discov20133534635310.1002/widm.1102
– reference: Chang S, Pal A (2013) Routing questions for collaborative answering in community question answering. In: 2013 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2013), pp 494–501. IEEE
– reference: CarissimoACutilloLDe FeisIValidation of community robustnessComput Stat Data Anal2018120124374220510.1016/j.csda.2017.10.0061469.62029
– reference: HugNSurprise: a python library for recommender systemsJ Open Source Softw2020552217410.21105/joss.02174
– reference: Choetkiertikul M, Avery D, Dam HK, Tran T, Ghose A (2015) Who will answer my question on stack overflow? In: 2015 24th Australasian software engineering conference, pp 155–164. IEEE
– reference: YangJBozzonAHoubenG-JE-wise: an expertise-driven recommendation platform for web question answering systemsInternational conference on web engineering2015BerlinSpringer691694
– reference: Zhou G, Lai S, Liu K, Zhao J (2012) Topic-sensitive probabilistic model for expert finding in question answer communities. In: Proceedings of the 21st ACM international conference on information and knowledge management, pp 1662–1666
– reference: Kao W-C, Liu D-R, Wang S-W (2010) Expert finding in question-answering websites: a novel hybrid approach. In: Proceedings of the 2010 ACM symposium on applied computing, pp 867–871
– reference: NajafabadiMKMahrinMNA systematic literature review on the state of research and practice of collaborative filtering technique and implicit feedbackArtif Intell Rev201645216720110.1007/s10462-015-9443-9
– reference: Yang L, Qiu M, Gottipati S, Zhu F, Jiang J, Sun H, Chen Z (2013) Cqarank: jointly model topics and expertise in community question answering. In: Proceedings of the 22nd ACM international conference on information and knowledge management, pp 99–108
– reference: Pal A, Konstan JA (2010) Expert identification in community question answering: exploring question selection bias. In: Proceedings of the 19th ACM international conference on information and knowledge management, pp 1505–1508
– reference: ShaniGGunawardanaAEvaluating recommendation systemsRecomm Syst Handb2011BostonSpringer25729710.1007/978-0-387-85820-3_8
– reference: Zhang J, Ackerman MS, Adamic L (2007) Expertise networks in online communities: structure and algorithms. In: Proceedings of the 16th international conference on world wide web, pp 221–230
– reference: WangXHuangCYaoLBenatallahBDongMA survey on expert recommendation in community question answeringJ Comput Sci Technol201833462565310.1007/s11390-018-1845-0
– reference: YuanSZhangYTangJHallWCabotàJBExpert finding in community question answering: a reviewArtif Intell Rev202053284387410.1007/s10462-018-09680-6
– reference: Dai Z, Callan J (2019) Deeper text understanding for ir with contextual neural language modeling. In: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval, pp 985–988
– reference: Riahi F, Zolaktaf Z, Shafiei M, Milios E (2012) Finding expert users in community question answering. In: Proceedings of the 21st international conference on world wide web, pp 791–798
– reference: NeshatiMFallahnejadZBeigyHOn dynamicity of expert finding in community question answeringInf Process Manage20175351026104210.1016/j.ipm.2017.04.002
– reference: Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the international AAAI conference on web and social media vol 3, pp 361–362
– reference: HuangZChenHZengDApplying associative retrieval techniques to alleviate the sparsity problem in collaborative filteringACM Trans Inf Syst (TOIS)200422111614210.1145/963770.963775
– reference: ZhengXHuZXuAChenDLiuKLiBAlgorithm for recommending answer providers in community-based question answeringJ Inf Sci201238131410.1177/0165551511423149
– reference: Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on management of data, pp 207–216
– reference: Surowiecki J (2005) The wisdom of crowds
– reference: RossettiGMilliLCazabetRCdlib: a python library to extract, compare and evaluate communities from complex networksAppl Netw Sci20194112610.1007/s41109-019-0165-9
– reference: Al-TaieMZKadrySObasaAIUnderstanding expert finding systems: domains and techniquesSoc Netw Anal Min2018811910.1007/s13278-018-0534-x
– reference: PageLBrinSMotwaniRWinogradTThe pagerank citation ranking: bringing order to the web1999Stanford InfoLabTechnical report
– reference: TraagVAWaltmanLVan EckNJFrom louvain to leiden: guaranteeing well-connected communitiesSci Rep20199111210.1038/s41598-019-41695-z
– reference: BorodinARobertsGORosenthalJSTsaparasPLink analysis ranking: algorithms, theory, and experimentsACM Trans Int Technol (TOIT)20055123129710.1145/1052934.1052942
– reference: Le LT, Shah C (2016) Retrieving rising stars in focused community question-answering. In: Asian conference on intelligent information and database systems, pp 25–36. Springer, Berlin
– reference: ClausetANewmanMEMooreCFinding community structure in very large networksPhys Rev E200470606611110.1103/PhysRevE.70.066111
– reference: NewmanMEFast algorithm for detecting community structure in networksPhys Rev E200469606613310.1103/PhysRevE.69.066133
– reference: Yang B, Manandhar S (2014) Tag-based expert recommendation in community question answering. In: 2014 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2014), pp 960–963. IEEE
– reference: Bishop, Christopher M (2006) Pattern recognition and machine learning. New York: Springer
– reference: Zhou TC, Lyu MR, King I (2012) A classification-based approach to question routing in community question answering. In: Proceedings of the 21st international conference on world wide web, pp 783–790
– reference: ZhaoZZhangLHeXNgWExpert finding for question answering via graph regularized matrix completionIEEE Trans Knowl Data Eng2014274993100410.1109/TKDE.2014.2356461
– reference: MeilăMComparing clusterings-an information based distanceJ Multivar Anal2007985873895232541210.1016/j.jmva.2006.11.0131298.91124
– reference: GreenLFristoeNMyersonJTemporal discounting and preference reversals in choice between delayed outcomesPsychon Bull Rev19941338338910.3758/BF03213979
– reference: KleinbergJMAuthoritative sources in a hyperlinked environmentJ ACM (JACM)1999465604632174764910.1145/324133.3241401065.68660
– reference: Li B, King I, Lyu MR (2011) Question routing in community question answering: putting category in its place. In: Proceedings of the 20th ACM international conference on information and knowledge management, pp 2041–2044
– reference: NajafabadiMKMahrinMNChupratSSarkanHMImproving the accuracy of collaborative filtering recommendations using clustering and association rules mining on implicit dataComput Hum Behav20176711312810.1016/j.chb.2016.11.010
– reference: GuimeraRSales-PardoMAmaralLANModularity from fluctuations in random graphs and complex networksPhys Rev E200470202510110.1103/PhysRevE.70.025101
– reference: SrbaIBielikovaMA comprehensive survey and classification of approaches for community question answeringACM Trans Web (TWEB)201610316310.1145/2934687
– reference: van Dijk D, Tsagkias M, de Rijke M (2015) Early detection of topical expertise in community question answering. In: Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, pp 995–998
– reference: Wang L, Wu B, Yang J, Peng S (2016) Personalized recommendation for new questions in community question answering. In: 2016 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 901–908. IEEE
– reference: Woolson RF (2007) Wilcoxon signed‐rank test. Wiley encyclopedia of clinical trials, pp 1–3
– reference: Sontag D, Roy D (2011) Complexity of inference in latent dirichlet allocation. Advances in neural information processing systems, p 24
– reference: BleiDMNgAYJordanMILatent dirichlet allocationJ Mach Learn Res20033Jan99310221112.68379
– reference: BlondelVDGuillaumeJ-LLambiotteRLefebvreEFast unfolding of communities in large networksJ Stat Mech Theory Exp20082008101000810.1088/1742-5468/2008/10/P100081459.91130
– reference: IdrissiNZellouAA systematic literature review of sparsity issues in recommender systemsSoc Netw Anal Min202010112310.1007/s13278-020-0626-2
– reference: Sung J, Lee J-G, Lee U (2013) Booming up the long tails: discovering potentially contributive users in community-based question answering services. In: Proceedings of the international AAAI conference on web and social media, vol 7, pp 602–610
– reference: Pal A, Chang S, Konstan J (2012) Evolution of experts in question answering communities. In: Proceedings of the international AAAI conference on web and social media, vol 6, pp 274–281
– reference: SrbaIBielikovaMWhy is stack overflow failing? preserving sustainability in community question answeringIEEE Softw2016334808910.1109/MS.2016.34
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 978_CR25
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 978_CR19
  publication-title: Soc Netw Anal Min
  doi: 10.1007/s13278-020-0626-2
– volume: 53
  start-page: 843
  issue: 2
  year: 2020
  ident: 978_CR55
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-018-09680-6
– volume: 38
  start-page: 3
  issue: 1
  year: 2012
  ident: 978_CR58
  publication-title: J Inf Sci
  doi: 10.1177/0165551511423149
– ident: 978_CR21
  doi: 10.1145/2505515.2505670
– volume-title: The pagerank citation ranking: bringing order to the web
  year: 1999
  ident: 978_CR36
– ident: 978_CR48
  doi: 10.1145/2766462.2767840
– ident: 978_CR1
  doi: 10.1145/170036.170072
– ident: 978_CR37
  doi: 10.1609/icwsm.v6i1.14262
– ident: 978_CR60
  doi: 10.1145/2396761.2398493
– volume: 70
  start-page: 066111
  issue: 6
  year: 2004
  ident: 978_CR12
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.70.066111
– volume: 22
  start-page: 116
  issue: 1
  year: 2004
  ident: 978_CR17
  publication-title: ACM Trans Inf Syst (TOIS)
  doi: 10.1145/963770.963775
– ident: 978_CR27
  doi: 10.1609/aaai.v33i01.3301192
– volume: 4
  start-page: 1
  issue: 1
  year: 2019
  ident: 978_CR40
  publication-title: Appl Netw Sci
  doi: 10.1007/s41109-019-0165-9
– ident: 978_CR4
– volume: 3
  start-page: 993
  issue: Jan
  year: 2003
  ident: 978_CR5
  publication-title: J Mach Learn Res
– ident: 978_CR13
  doi: 10.1145/3331184.3331303
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 978_CR47
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41695-z
– volume: 70
  start-page: 025101
  issue: 2
  year: 2004
  ident: 978_CR16
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.70.025101
– volume: 67
  start-page: 113
  year: 2017
  ident: 978_CR33
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2016.11.010
– volume: 45
  start-page: 167
  issue: 2
  year: 2016
  ident: 978_CR32
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-015-9443-9
– volume: 69
  start-page: 066133
  issue: 6
  year: 2004
  ident: 978_CR35
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.066133
– ident: 978_CR11
  doi: 10.1109/ASWEC.2015.28
– ident: 978_CR29
  doi: 10.1145/2063576.2063885
– ident: 978_CR54
  doi: 10.1145/2505515.2505720
– volume: 10
  start-page: 1
  issue: 3
  year: 2016
  ident: 978_CR43
  publication-title: ACM Trans Web (TWEB)
  doi: 10.1145/2934687
– volume: 5
  start-page: 2174
  issue: 52
  year: 2020
  ident: 978_CR18
  publication-title: J Open Source Softw
  doi: 10.21105/joss.02174
– ident: 978_CR39
  doi: 10.1145/2187980.2188202
– volume: 2008
  start-page: 10008
  issue: 10
  year: 2008
  ident: 978_CR6
  publication-title: J Stat Mech Theory Exp
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: 978_CR9
  doi: 10.1145/2492517.2492559
– ident: 978_CR59
  doi: 10.1145/2187980.2188201
– ident: 978_CR45
  doi: 10.1609/icwsm.v7i1.14387
– ident: 978_CR14
  doi: 10.1109/SNPD.2019.8935747
– ident: 978_CR42
– volume: 33
  start-page: 625
  issue: 4
  year: 2018
  ident: 978_CR49
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-018-1845-0
– ident: 978_CR3
  doi: 10.1609/icwsm.v3i1.13937
– ident: 978_CR51
  doi: 10.1002/9780471462422.eoct979
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 978_CR2
  publication-title: Soc Netw Anal Min
  doi: 10.1007/s13278-018-0534-x
– volume: 77
  start-page: 046119
  issue: 4
  year: 2008
  ident: 978_CR23
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.77.046119
– ident: 978_CR46
– ident: 978_CR56
  doi: 10.1145/1242572.1242603
– volume: 1
  start-page: 383
  issue: 3
  year: 1994
  ident: 978_CR15
  publication-title: Psychon Bull Rev
  doi: 10.3758/BF03213979
– volume: 120
  start-page: 1
  year: 2018
  ident: 978_CR8
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2017.10.006
– volume: 46
  start-page: 604
  issue: 5
  year: 1999
  ident: 978_CR24
  publication-title: J ACM (JACM)
  doi: 10.1145/324133.324140
– ident: 978_CR26
  doi: 10.1007/978-3-662-49390-8_3
– volume: 27
  start-page: 993
  issue: 4
  year: 2014
  ident: 978_CR57
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2014.2356461
– ident: 978_CR38
  doi: 10.1145/1871437.1871658
– volume: 98
  start-page: 873
  issue: 5
  year: 2007
  ident: 978_CR30
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2006.11.013
– volume: 285
  start-page: 117
  year: 2018
  ident: 978_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.034
– volume: 53
  start-page: 1026
  issue: 5
  year: 2017
  ident: 978_CR34
  publication-title: Inf Process Manage
  doi: 10.1016/j.ipm.2017.04.002
– ident: 978_CR20
  doi: 10.1145/1148170.1148212
– volume: 3
  start-page: 346
  issue: 5
  year: 2013
  ident: 978_CR31
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1102
– ident: 978_CR28
  doi: 10.1109/CyberC.2015.87
– start-page: 691
  volume-title: International conference on web engineering
  year: 2015
  ident: 978_CR52
– volume: 33
  start-page: 80
  issue: 4
  year: 2016
  ident: 978_CR44
  publication-title: IEEE Softw
  doi: 10.1109/MS.2016.34
– ident: 978_CR53
  doi: 10.1109/ASONAM.2014.6921702
– start-page: 257
  volume-title: Recomm Syst Handb
  year: 2011
  ident: 978_CR41
  doi: 10.1007/978-0-387-85820-3_8
– ident: 978_CR50
  doi: 10.1109/ASONAM.2016.7752346
– volume: 5
  start-page: 231
  issue: 1
  year: 2005
  ident: 978_CR7
  publication-title: ACM Trans Int Technol (TOIT)
  doi: 10.1145/1052934.1052942
– ident: 978_CR22
  doi: 10.1145/1774088.1774266
SSID ssj0001033906
Score 2.301031
Snippet Question Routing (QR) in Community-based Question Answering (CQA) websites aims at recommending newly posted questions to potential users who are most likely...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 155
SubjectTerms Answers
Applications of Graph Theory and Complex Networks
Classification
Computer Science
Data Mining and Knowledge Discovery
Dynamic models
Economics
Experts
Game Theory
Humanities
Law
Methodology of the Social Sciences
Modelling
Modularity
Original Article
Questions
Social and Behav. Sciences
Statistics for Social Sciences
Subject specialists
User generated content
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEF3UXryIomK1Sg7edDHpJpP0JCotRbCIVOgtbPYDBU1rP_TvO7PZGBTsNdnsYXYz-2Z23jzGzo2mY4jqwmRkeBynwIuetlxDiHGcldY6evTDCIbP8f0kmfiE28KXVdY-0TlqPVWUI78iVaUEfWkormcfnFSj6HbVS2hssha64AyDr9Ztf_T41GRZQoFBvaMYZdDjCBdCz5yp-HOiSw1mMR5zfAYOv0-nBnL-uSV1h89gl-141BjcVMu8xzZMuc-GLlmJdg3m0xVVLwefrzIgogLpQfAvl_Q0Onifaqo1pWemfHE3_kEls-M5mAdsPOiP74bcCyNwJUAseZxkFjS6TCt0ZJVE6CmUhiyWGuGAQkgiQ4FxTaQFpEUPMU-URgWGohDj4FQcsq1yWpojFiCcS0QRmqhQKgbZlRZAC5WqQhhIpGmzqLZHrnzTcNKueMubdsdkwxxtmDsb5tBmFz_fzKqWGWtHd2oz5_73WeTNYrfZZW365vX_sx2vn-2EbXdptV05SodtLecrc4qgYlmc-Z3zDVL7yHg
  priority: 102
  providerName: ProQuest
Title Question routing via activity-weighted modularity-enhanced factorization
URI https://link.springer.com/article/10.1007/s13278-022-00978-6
https://www.proquest.com/docview/2920528403
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYdoALjwFiMKYeuEGktmnT7jimPcRjQmiT4FSlSSqQoEN7sL-Pk6VUIEDiVClNcrCT-HPizwY4U1KbIR0Xxj1FgiBiJG3LjEjmoh-X8Swz9OjbERtOgquH8MGSwuZFtHvxJGlO6pLsRn2dDRadJ0M-IKwCtVD77riKJ36nvFlxKTryhlYUszZBiOBatszP03y1SCXM_PYyagxOfxe2LVJ0OmvV7sGGyuuwU1RhcOymrMNmwS2e16Fyw1f7MDS3mChwZzZd6rBm5_2ZO5rBoAtFkJW5DVXSeZ1KHYSq21T-ZEIBnHX9HUvOPIBxvzfuDomtmEAEZXRBgjDOmMSzNKPSywRHTEqFZHHAJeIEgViFuxQdHk9SFqVtBENe5KXoo7IAO0f0EKr5NFdH4CDOC2nqKi8VImDc5xljkopIpFSxkKsGeIXQEmGzieuiFi9JmQdZCzpBQSdG0AlrwPnnmLd1Lo0_ezcLXSR2X80TXVsrRIvq0gZcFPopf_8-2_H_up_Alq-XiIlbaUJ1MVuqU0Qfi7QFlbg_aEGtM3i87uH3sje6u8fWLuu2zEL8AMvX1FI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGBBIEAUCmSACSySOHHaASEElPLqVCQ2y7EdgQRtoS0VP4r_yJ2TEIFEN1bHueF8vpfv7gPYs4bMENWFqcCyKEoES5smY0b4GMdlKstce_RdR7Tvo-uH-GEGPsteGCqrLHWiU9SmrylHfkSoSjHqUp-fDF4ZoUbR62oJoZGLxY39mGDINjy-Osfz3Q_D1kX3rM0KVAGmueAjFsWNTBjUNxk3QaYV-m1cG9GIlEFbqtGeK59jUBAYLpK0iQ5DkAQpxnEiws0JR7KzMB9x3qQL1WhdVikdHxcdmifhPDH0TfyiTSdv1uMhTbPF4M81TzDx0xRW_u2vJ1ln6VrLsFS4qN5pLlMrMGN7q9B2mVE8RO-tP6ZSae_9SXnUFUHgE2ziMqzWeC99Q4WttGZ7j668wMsxfYqGzzXo_ge_1mGu1-_ZDfDQd4x56tsg1ToSKlSZEIbrRKfciljZGgQlP6QuJpQTUMazrGYrEw8l8lA6HkpRg4Pvfwb5fI6pu-slm2VxV4eykqwaHJasrz7_TW1zOrVdWGh3727l7VXnZgsWQzp5VwdTh7nR29huozczSnecDHkg_1lmvwBeQgKt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYALSwFRKJADNzAkdeK0xwooZRUHkOAUOV4EAtKqTanE1zN2EgIIkBDXxLESj-N5Y897A7CtpHFDJi-Me4r4fshI3JKaSOZiHKe51pYefXHJujf-6W1w-4HFb7PdiyPJjNNgVJqSdL8v9X5JfKMNowyLgZQlIhA2CVO-0barwFT7-O7swz6LSzGstySjJmsRBAxuzp35vqPP_qkEnV_OSa376cwDL148yzp53Bul8Z54_aLp-J8vW4C5HJs67WwyLcKESqowX9R9cPJloAozBZt5WIXJcz5egq7dN0UTO4PeyCRSOy8P3DGcCVOagozt_quSznNPmrRXc00l9zb5wMkq_uR00GW47hxdH3RJXqOBCMpoSvygqZnE1VtT6WnBEQVTIVnT5xKRiUB0xF2KIZYnKQvjFsIvL_RijIqZj41DugKVpJeoVXAQWQY0dpUXC-Ez3uCaMUlFKGKqWMBVDbzCMJHI9ctNGY2nqFReNmMX4dhFduwiVoOd92f6mXrHr63rhb2j_E8eRqaaV4A-3KU12C3MV97-ube1vzXfgumrw050fnJ5tg6zDTMBbNJMHSrpYKQ2EPqk8WY-u98AR3P4Nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Question+routing+via+activity-weighted+modularity-enhanced+factorization&rft.jtitle=Social+network+analysis+and+mining&rft.au=Krishna%2C+Vaibhav&rft.au=Vasiliauskaite%2C+Vaiva&rft.au=Antulov-Fantulin%2C+Nino&rft.date=2022-12-01&rft.issn=1869-5450&rft.eissn=1869-5469&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1007%2Fs13278-022-00978-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13278_022_00978_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-5450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-5450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-5450&client=summon