Representation of Lipschitz Maps and Metric Coordinate Systems
Here, we prove some general results that allow us to ensure that specific representations (as well as extensions) of certain Lipschitz operators exist, provided we have some additional information about the underlying space, in the context of what we call enriched metric spaces. In this conceptual f...
Saved in:
Published in | Mathematics (Basel) Vol. 10; no. 20; p. 3867 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, we prove some general results that allow us to ensure that specific representations (as well as extensions) of certain Lipschitz operators exist, provided we have some additional information about the underlying space, in the context of what we call enriched metric spaces. In this conceptual framework, we introduce some new classes of Lipschitz operators whose definition depends on the notion of metric coordinate system, which are defined by specific dominance inequalities involving summations of distances between certain points in the space. We analyze “Pietsch Theorem inspired factorizations" through subspaces of ℓ∞ and L1, which are proved to characterize when a given metric space is Lipschitz isomorphic to a metric subspace of these spaces. As an application, extension results for Lipschitz maps that are obtained by a coordinate-wise adaptation of the McShane–Whitney formulas, are also given. |
---|---|
AbstractList | Here, we prove some general results that allow us to ensure that specific representations (as well as extensions) of certain Lipschitz operators exist, provided we have some additional information about the underlying space, in the context of what we call enriched metric spaces. In this conceptual framework, we introduce some new classes of Lipschitz operators whose definition depends on the notion of metric coordinate system, which are defined by specific dominance inequalities involving summations of distances between certain points in the space. We analyze “Pietsch Theorem inspired factorizations" through subspaces of ℓ∞ and L1, which are proved to characterize when a given metric space is Lipschitz isomorphic to a metric subspace of these spaces. As an application, extension results for Lipschitz maps that are obtained by a coordinate-wise adaptation of the McShane–Whitney formulas, are also given. Here, we prove some general results that allow us to ensure that specific representations (as well as extensions) of certain Lipschitz operators exist, provided we have some additional information about the underlying space, in the context of what we call enriched metric spaces. In this conceptual framework, we introduce some new classes of Lipschitz operators whose definition depends on the notion of metric coordinate system, which are defined by specific dominance inequalities involving summations of distances between certain points in the space. We analyze “Pietsch Theorem inspired factorizations" through subspaces of ℓ[sub.∞] and L[sup.1], which are proved to characterize when a given metric space is Lipschitz isomorphic to a metric subspace of these spaces. As an application, extension results for Lipschitz maps that are obtained by a coordinate-wise adaptation of the McShane–Whitney formulas, are also given. |
Audience | Academic |
Author | Calabuig, Jose M Sánchez Pérez, Enrique A Arnau, Roger |
Author_xml | – sequence: 1 givenname: Roger orcidid: 0000-0003-2544-8875 surname: Arnau fullname: Arnau, Roger – sequence: 2 givenname: Jose M. orcidid: 0000-0001-8398-8664 surname: Calabuig fullname: Calabuig, Jose M. – sequence: 3 givenname: Enrique A. orcidid: 0000-0001-8854-3154 surname: Sánchez Pérez fullname: Sánchez Pérez, Enrique A. |
BookMark | eNpNUUtLxDAQDqLgunrzBxS82jWvdtKLIIsv2EXwcQ5pmmiWbVOTeFh_vdGKOHOY4ZuZbz5mjtD-4AeD0CnBC8YafNGr9EYwxUzUsIdmlFIoIRf2_-WH6CTGDc7WECZ4M0OXj2YMJpohqeT8UHhbrNwY9ZtLn8VajbFQQ1esTQpOF0vvQ-cGlUzxtIvJ9PEYHVi1jebkN87Ry8318_KuXD3c3i-vVqVmNUsl5wJqzIFrgNY2DGNgvGobqCpSi7YjnTLQdsKKVoAhlAHVmtQMQDDOWs7m6H7i7bzayDG4XoWd9MrJH8CHV6lCcnprJKusIm2DVdVZDqJuWq2NEpSz75UaZ66ziWsM_v3DxCQ3_iMMWb6kQPNV6pqT3LWYul5VJnWD9Skonb0zvdP59NZl_Ao4h4qTrHOOzqcBHXyMwdg_mQTL7w_J_x9iX3hYgsA |
Cites_doi | 10.1016/j.na.2012.04.044 10.1016/j.jmaa.2015.11.050 10.1007/978-3-662-03961-8 10.1090/S0002-9947-1934-1501735-3 10.1353/ajm.2007.0000 10.4064/fm-22-1-77-108 10.3390/math10020220 10.1090/S0002-9939-2011-11140-7 10.1090/S0002-9939-09-09865-7 10.1007/s43037-020-00060-3 10.1016/j.jmaa.2009.10.025 10.1090/S0002-9904-1934-05978-0 10.1016/j.jfa.2011.03.013 10.1007/978-3-030-16489-8 10.1017/CBO9780511526138 10.1215/20088752-3720614 10.1515/crelle-2018-0037 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PIMPY PQEST PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math10203867 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_35fa1b90a5df47869bccea8243345bc0 A744754178 10_3390_math10203867 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -~X 3V. 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABJNI ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M0N M7S MODMG M~E OK1 PIMPY PQQKQ PROAC PTHSS RNS 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D P62 PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-448760474c77bf93007345b9755168bd1dae7bd8f8b87e12372cc163778343b43 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Tue Oct 22 15:15:14 EDT 2024 Thu Oct 10 20:03:30 EDT 2024 Tue Nov 12 23:56:57 EST 2024 Tue Oct 29 02:51:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-448760474c77bf93007345b9755168bd1dae7bd8f8b87e12372cc163778343b43 |
ORCID | 0000-0003-2544-8875 0000-0001-8854-3154 0000-0001-8398-8664 |
OpenAccessLink | https://doaj.org/article/35fa1b90a5df47869bccea8243345bc0 |
PQID | 2728496641 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_35fa1b90a5df47869bccea8243345bc0 proquest_journals_2728496641 gale_infotracacademiconefile_A744754178 crossref_primary_10_3390_math10203867 |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Achour (ref_4) 2017; 8 Ambrosio (ref_8) 2020; 764 (ref_5) 2011; 261 Brudnyi (ref_9) 2007; 129 ref_13 ref_12 ref_11 McShane (ref_14) 1934; 40 ref_10 ref_20 (ref_6) 2012; 140 Whitney (ref_15) 1934; 36 Chen (ref_7) 2012; 75 ref_19 Botelho (ref_21) 2010; 365 Farmer (ref_1) 2009; 137 ref_17 Achour (ref_2) 2020; 14 Achour (ref_3) 2016; 436 Calcaterra (ref_18) 2009; 6 Kirszbraun (ref_16) 1934; 22 |
References_xml | – volume: 75 start-page: 5270 year: 2012 ident: ref_7 article-title: Lipschitz p-integral operators and Lipschitz p-nuclear operators publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2012.04.044 contributor: fullname: Chen – volume: 436 start-page: 217 year: 2016 ident: ref_3 article-title: Lipschitz operator ideals and the approximation property publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2015.11.050 contributor: fullname: Achour – ident: ref_19 doi: 10.1007/978-3-662-03961-8 – volume: 6 start-page: 79 year: 2009 ident: ref_18 article-title: Metric Coordinate Systems publication-title: Commun. Math. Anal. contributor: fullname: Calcaterra – volume: 36 start-page: 63 year: 1934 ident: ref_15 article-title: Analytic extensions of differentiable functions defined in closed sets publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1934-1501735-3 contributor: fullname: Whitney – ident: ref_10 – ident: ref_11 – volume: 129 start-page: 217 year: 2007 ident: ref_9 article-title: Metric spaces with linear extensions preserving Lipschitz condition publication-title: Am. J. Math. doi: 10.1353/ajm.2007.0000 contributor: fullname: Brudnyi – volume: 22 start-page: 77 year: 1934 ident: ref_16 article-title: Über die zusammenziehende und Lipschitzsche Transformationen publication-title: Fund. Math. doi: 10.4064/fm-22-1-77-108 contributor: fullname: Kirszbraun – ident: ref_12 doi: 10.3390/math10020220 – volume: 140 start-page: 3101 year: 2012 ident: ref_6 article-title: Lipschitz (q,p)-mixing operators publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-2011-11140-7 – ident: ref_17 – volume: 137 start-page: 2989 year: 2009 ident: ref_1 article-title: Lipschitz p-summing operators publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-09-09865-7 contributor: fullname: Farmer – volume: 14 start-page: 1241 year: 2020 ident: ref_2 article-title: The Lipschitz injective hull of Lipschitz operator ideals and applications publication-title: Banach J. Math. Anal. doi: 10.1007/s43037-020-00060-3 contributor: fullname: Achour – volume: 365 start-page: 269 year: 2010 ident: ref_21 article-title: A unified Pietsch domination theorem publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2009.10.025 contributor: fullname: Botelho – volume: 40 start-page: 837 year: 1934 ident: ref_14 article-title: Extension of range of functions publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1934-05978-0 contributor: fullname: McShane – volume: 261 start-page: 387 year: 2011 ident: ref_5 article-title: Duality for Lipschitz p-summing operators publication-title: Ann. Funct. Anal. doi: 10.1016/j.jfa.2011.03.013 – ident: ref_13 doi: 10.1007/978-3-030-16489-8 – ident: ref_20 doi: 10.1017/CBO9780511526138 – volume: 8 start-page: 38 year: 2017 ident: ref_4 article-title: (p, σ)-Absolutely Lipschitz operators publication-title: Ann. Funct. Anal. doi: 10.1215/20088752-3720614 contributor: fullname: Achour – volume: 764 start-page: 1 year: 2020 ident: ref_8 article-title: Linear extension operators between spaces of Lipschitz maps and optimal transport publication-title: J. Reine Angew. Math. doi: 10.1515/crelle-2018-0037 contributor: fullname: Ambrosio |
SSID | ssj0000913849 |
Score | 2.2461486 |
Snippet | Here, we prove some general results that allow us to ensure that specific representations (as well as extensions) of certain Lipschitz operators exist,... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 3867 |
SubjectTerms | Algebra Coordinates extension Lipschitz Mappings (Mathematics) Mathematical research metric coordinates Metric space operator Operators (mathematics) Representations Subspaces |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQkAcQU0RjOzlnARVEqRBlQFRis2wngS5JacrCr8fnui0LrHlI1vl8953v7jtCzpHh3DrHHDEsoRGxlZFhVkToLWSR2hw88fzwOR2MxONb8hYu3JpQVrmwid5Q57XFO_IrBs6QOmwu4pvJZ4RTozC7GkZorJONmAFg8CX7D8s7FuS8dD_N6925i-6vHAr8iDH5Jv1g-ZUn8oT9f5ll72v6O2Q7gETam-_qLlkrqj2yNVwyrDb75PrFl7CGzqGK1iV9Gk8azAp806GeNFRXOR3ivCxL72oXYo4rBytpYCg_IKP-_evdIAqzECLLUz6LXBQFaVeAsACmzDhm2ERiMsBElzR5nOsCTC5LaSQUzh0Bs9ZhLcBBGtwIfkhaVV0VR4SaoiwhYej7c8GM1olNS26y1O2Zw9pxm1ws5KImc8oL5UIFlJ_6Lb82uUWhLb9Bomr_oJ6-q6D3iieljk3W1UleCpBpZqwttGSC4_Jtt00uUeQKj9Nsqq0OXQFuqUhMpXqAjIQiBtkmncWuqHDOGrXSiuP_X5-QTYaNC74Mr0Nas-lXcergxMyceZ35AT3Hx4E priority: 102 providerName: ProQuest |
Title | Representation of Lipschitz Maps and Metric Coordinate Systems |
URI | https://www.proquest.com/docview/2728496641 https://doaj.org/article/35fa1b90a5df47869bccea8243345bc0 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED1BWWBAfIryUXkAMUU0sRM7CxKgFoQIQhWV2CzbSUSXtGrDwq_nzgmlC2JhjTJc7mK_e7q7dwDnpHDuEJiDiFpoROhUYCMnAkILVSQul154PntOHsbi8S1-W1n1RT1hjTxw47grHpcmtGnfxHkppEpS61xhVCQ4F7F1DVvvpytkyt_BaciVSJtOd468_grzv_eQym7Kr5T_wSAv1f_bhexRZrgD2216yG4as3Zhraj2YCtbaqsu9uF65JtX25mhik1L9jSZLage8MkyM1swU-Uso01Zjt1NkVxOKkwoWatNfgDj4eD17iFotyAEjie8DpA_yaQvpHBS2jLlVFvDL08llbiUzcPcFNLmqlRWyQKBSEbOYZYlaYUGt4IfQqeaVsURMFuUpYwjQv1cRNaY2CUlt2mC0cIsO-zCxbdf9KwRu9BIEsh_etV_Xbglpy3fIYlq_wADp9vA6b8C14VLcrmmg1TPjTPtPACaSpJU-kaSFqEIperC6XdUdHvCFjqSCKzI1UR4_B_WnMBmRIMNvk3vFDr1_KM4w3Sjtj1YV8P7HmzcDp5fRj3_n30B0PXS4A |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9tAEB0VOBQOqIVWpKV0D1ScLGLv2ru-gBIUlEIcVVGQuK121zbkYqdxuPDrO-NsEi7l6g9pNTs782Zn5g3AOTGcO3TMQUQlNCJ0KrCREwF5C1UkLpct8Xw2ToYP4u4xfvQXbo0vq1zbxNZQ57WjO_LLSKIhRWwuwuv534CmRlF21Y_Q2IE9oqrC4GuvPxj_mWxuWYj1En9bVbxzjO8vEQc-h5R-U-1o-a0vain7_2eYW29z-wkOPUxkvdW-foYPRXUEB9mGY7U5hqtJW8Tqe4cqVpdsNJs3lBd4ZZmZN8xUOctoYpZjNzUGmbMKgSXzHOVf4OF2ML0ZBn4aQuB4wpcBxlEy6QopnJS2TDnl2ERsU0mpLmXzMDeFtLkqlVWyQIckI-cQbUkapcGt4F9ht6qr4gSYLcpSxhF5_1xE1pjYJSW3aYK7hmg77MCvtVz0fEV6oTFYIPnpt_LrQJ-EtvmGqKrbB_XiSXvN1zwuTWjTronzUkiVpNa5wqhIcFq-63bggkSu6UAtF8YZ3xeASyVqKt2TxEkoQqk6cLreFe1PWqO3evHt_dc_4eNwmo306Pf4_jvsR9TG0BblncLucvFS_EBwsbRnXoP-AS4iy9I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT-MwEB1BkRAc0LK7aAss-LCrPUVtYid2LiC-KmBphRBI3CzbidlektKUC7-emdQte4FrEkXW2J5543l-A_CLFM4dBuYoIQqNiJ2KbOJERNFClZkrZCs8Pxxllw_i-jF9DPynJtAqFz6xddRF7eiMvJdIdKSIzUXc84EWcXs-OJ48R9RBiiqtoZ3GKqxJkfF-B9ZOL0a3d8sTF1LAxF_M2e8cc_0eYsJ_MZXiVNtm_j0utfL9HznpNvIMvsBWgIzsZD7H27BSVl9hc7jUW22-wdFdS2gN94gqVnt2M540VCN4ZUMzaZipCjak7lmOndWYcI4rBJks6JV_h4fBxf3ZZRQ6I0SOZ3wWYU4ls76Qwklpfc6p3iZSm0sqeylbxIUppS2UV1bJEoOTTJxD5CWprQa3gu9Ap6qr8gcwW3ov04SQQCESa0zqMs9tnuEMIvKOu_B7YRc9mQtgaEwcyH76f_t14ZSMtvyGZKvbB_X0SYddoHnqTWzzvkkLL6TKcutcaVQiOA3f9bvwh0yuaXPNpsaZcEcAh0oyVfpEkj6hiKXqwv5iVnTYdY1-XyO7n78-hHVcPPrmavR3DzYSutHQ8vP2oTObvpQ_EWfM7EFYQG-VntAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+of+Lipschitz+Maps+and+Metric+Coordinate+Systems&rft.jtitle=Mathematics+%28Basel%29&rft.au=Arnau%2C+Roger&rft.au=Calabuig%2C+Jose+M.&rft.au=S%C3%A1nchez+P%C3%A9rez%2C+Enrique+A.&rft.date=2022-10-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=10&rft.issue=20&rft.spage=3867&rft_id=info:doi/10.3390%2Fmath10203867&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math10203867 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |