Asymptotics of the Hypergraph Bipartite Turán Problem

For positive integers s ,  t ,  r , let K s , t ( r ) denote the r -uniform hypergraph whose vertex set is the union of pairwise disjoint sets X , Y 1 , ⋯ , Y t , where | X | = s and | Y 1 | = ⋯ = | Y t | = r - 1 , and whose edge set is { { x } ∪ Y i : x ∈ X , 1 ≤ i ≤ t } . The study of the Turán fu...

Full description

Saved in:
Bibliographic Details
Published inCombinatorica (Budapest. 1981) Vol. 43; no. 3; pp. 429 - 446
Main Authors Bradač, Domagoj, Gishboliner, Lior, Janzer, Oliver, Sudakov, Benny
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0209-9683
1439-6912
DOI10.1007/s00493-023-00019-6

Cover

Abstract For positive integers s ,  t ,  r , let K s , t ( r ) denote the r -uniform hypergraph whose vertex set is the union of pairwise disjoint sets X , Y 1 , ⋯ , Y t , where | X | = s and | Y 1 | = ⋯ = | Y t | = r - 1 , and whose edge set is { { x } ∪ Y i : x ∈ X , 1 ≤ i ≤ t } . The study of the Turán function of K s , t ( r ) received considerable interest in recent years. Our main results are as follows. First, we show that 1 ex n , K s , t ( r ) = O s , r t 1 s - 1 n r - 1 s - 1 for all s , t ≥ 2 and r ≥ 3 , improving the power of n in the previously best bound and resolving a question of Mubayi and Verstraëte about the dependence of ex ( n , K 2 , t ( 3 ) ) on t . Second, we show that ( 1 ) is tight when r is even and t ≫ s . This disproves a conjecture of Xu, Zhang and Ge. Third, we show that ( 1 ) is not tight for r = 3 , namely that ex ( n , K s , t ( 3 ) ) = O s , t ( n 3 - 1 s - 1 - ε s ) (for all s ≥ 3 ). This indicates that the behaviour of ex ( n , K s , t ( r ) ) might depend on the parity of r . Lastly, we prove a conjecture of Ergemlidze, Jiang and Methuku on the hypergraph analogue of the bipartite Turán problem for graphs with bounded degrees on one side. Our tools include a novel twist on the dependent random choice method as well as a variant of the celebrated norm graphs constructed by Kollár, Rónyai and Szabó.
AbstractList For positive integers s ,  t ,  r , let K s , t ( r ) denote the r -uniform hypergraph whose vertex set is the union of pairwise disjoint sets X , Y 1 , ⋯ , Y t , where | X | = s and | Y 1 | = ⋯ = | Y t | = r - 1 , and whose edge set is { { x } ∪ Y i : x ∈ X , 1 ≤ i ≤ t } . The study of the Turán function of K s , t ( r ) received considerable interest in recent years. Our main results are as follows. First, we show that 1 ex n , K s , t ( r ) = O s , r t 1 s - 1 n r - 1 s - 1 for all s , t ≥ 2 and r ≥ 3 , improving the power of n in the previously best bound and resolving a question of Mubayi and Verstraëte about the dependence of ex ( n , K 2 , t ( 3 ) ) on t . Second, we show that ( 1 ) is tight when r is even and t ≫ s . This disproves a conjecture of Xu, Zhang and Ge. Third, we show that ( 1 ) is not tight for r = 3 , namely that ex ( n , K s , t ( 3 ) ) = O s , t ( n 3 - 1 s - 1 - ε s ) (for all s ≥ 3 ). This indicates that the behaviour of ex ( n , K s , t ( r ) ) might depend on the parity of r . Lastly, we prove a conjecture of Ergemlidze, Jiang and Methuku on the hypergraph analogue of the bipartite Turán problem for graphs with bounded degrees on one side. Our tools include a novel twist on the dependent random choice method as well as a variant of the celebrated norm graphs constructed by Kollár, Rónyai and Szabó.
For positive integers s ,  t ,  r , let $$K_{s,t}^{(r)}$$ K s , t ( r ) denote the r -uniform hypergraph whose vertex set is the union of pairwise disjoint sets $$X,Y_1,\dots ,Y_t$$ X , Y 1 , ⋯ , Y t , where $$|X| = s$$ | X | = s and $$|Y_1| = \dots = |Y_t| = r-1$$ | Y 1 | = ⋯ = | Y t | = r - 1 , and whose edge set is $$\{\{x\} \cup Y_i: x \in X, 1\le i\le t\}$$ { { x } ∪ Y i : x ∈ X , 1 ≤ i ≤ t } . The study of the Turán function of $$K_{s,t}^{(r)}$$ K s , t ( r ) received considerable interest in recent years. Our main results are as follows. First, we show that $$\begin{aligned} \textrm{ex}\left( n,K_{s,t}^{(r)}\right) = O_{s,r}\left( t^{\frac{1}{s-1}}n^{r - \frac{1}{s-1}}\right) \end{aligned}$$ ex n , K s , t ( r ) = O s , r t 1 s - 1 n r - 1 s - 1 for all $$s,t\ge 2$$ s , t ≥ 2 and $$r\ge 3$$ r ≥ 3 , improving the power of n in the previously best bound and resolving a question of Mubayi and Verstraëte about the dependence of $$\textrm{ex}(n,K_{2,t}^{(3)})$$ ex ( n , K 2 , t ( 3 ) ) on t . Second, we show that (1) is tight when r is even and $$t \gg s$$ t ≫ s . This disproves a conjecture of Xu, Zhang and Ge. Third, we show that (1) is not tight for $$r = 3$$ r = 3 , namely that $$\textrm{ex}(n,K_{s,t}^{(3)}) = O_{s,t}(n^{3 - \frac{1}{s-1} - \varepsilon _s})$$ ex ( n , K s , t ( 3 ) ) = O s , t ( n 3 - 1 s - 1 - ε s ) (for all $$s\ge 3$$ s ≥ 3 ). This indicates that the behaviour of $$\textrm{ex}(n,K_{s,t}^{(r)})$$ ex ( n , K s , t ( r ) ) might depend on the parity of r . Lastly, we prove a conjecture of Ergemlidze, Jiang and Methuku on the hypergraph analogue of the bipartite Turán problem for graphs with bounded degrees on one side. Our tools include a novel twist on the dependent random choice method as well as a variant of the celebrated norm graphs constructed by Kollár, Rónyai and Szabó.
For positive integers s, t, r, let Ks,t(r) denote the r-uniform hypergraph whose vertex set is the union of pairwise disjoint sets X,Y1,⋯,Yt, where |X|=s and |Y1|=⋯=|Yt|=r-1, and whose edge set is {{x}∪Yi:x∈X,1≤i≤t}. The study of the Turán function of Ks,t(r) received considerable interest in recent years. Our main results are as follows. First, we show that 1exn,Ks,t(r)=Os,rt1s-1nr-1s-1for all s,t≥2 and r≥3, improving the power of n in the previously best bound and resolving a question of Mubayi and Verstraëte about the dependence of ex(n,K2,t(3)) on t. Second, we show that (1) is tight when r is even and t≫s. This disproves a conjecture of Xu, Zhang and Ge. Third, we show that (1) is not tight for r=3, namely that ex(n,Ks,t(3))=Os,t(n3-1s-1-εs) (for all s≥3). This indicates that the behaviour of ex(n,Ks,t(r)) might depend on the parity of r. Lastly, we prove a conjecture of Ergemlidze, Jiang and Methuku on the hypergraph analogue of the bipartite Turán problem for graphs with bounded degrees on one side. Our tools include a novel twist on the dependent random choice method as well as a variant of the celebrated norm graphs constructed by Kollár, Rónyai and Szabó.
Author Gishboliner, Lior
Sudakov, Benny
Bradač, Domagoj
Janzer, Oliver
Author_xml – sequence: 1
  givenname: Domagoj
  surname: Bradač
  fullname: Bradač, Domagoj
  organization: Department of Mathematics, ETH
– sequence: 2
  givenname: Lior
  surname: Gishboliner
  fullname: Gishboliner, Lior
  organization: Department of Mathematics, ETH
– sequence: 3
  givenname: Oliver
  surname: Janzer
  fullname: Janzer, Oliver
  email: oj224@cam.ac.uk
  organization: Department of Mathematics, ETH, Department of Pure Mathematics and Mathematical Statistics, University of Cambridge
– sequence: 4
  givenname: Benny
  surname: Sudakov
  fullname: Sudakov, Benny
  organization: Department of Mathematics, ETH
BookMark eNp9kL9OwzAQhy1UJNrCCzBFYg6c_8RxxlIBRaoEQ5ktN7FbV20cbHfI4_AsvBiGICExdDjdDb_v7vRN0Kh1rUboGsMtBijvAgCraA4kFQCucn6GxpjRNFSYjNAYCFR5xQW9QJMQdikkKC7GiM9Cf-iii7YOmTNZ3Ops0Xfab7zqttm97ZSPNupsdfSfH2326t16rw-X6NyofdBXv32K3h4fVvNFvnx5ep7PlnlNOY05w1zVCrAgwMtCMELXjTGladaMFKIAzmpgquFUVZQzxsuybAxhRcM1NQwMnaKbYW_n3ftRhyh37ujbdFISUVAoKAecUmJI1d6F4LWRtY0qWtdGr-xeYpDfluRgSSZL8seS5Akl_9DO24Py_WmIDlBI4Xaj_d9XJ6gvIx96sQ
CitedBy_id crossref_primary_10_1137_22M1543318
crossref_primary_10_1112_blms_12721
Cites_doi 10.1016/j.jcta.2008.09.002
10.1007/BF02124681
10.1007/BF01787573
10.1007/BF02579216
10.1007/s00493-005-0042-2
10.1007/BF01261323
10.1016/j.ejc.2020.103161
10.1006/jctb.1999.1906
10.1016/j.jcta.2020.105299
10.1016/j.jctb.2005.06.013
10.1016/j.jcta.2004.02.002
10.1002/rsa.20344
10.1007/s11425-020-1892-4
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00493-023-00019-6
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1439-6912
EndPage 446
ExternalDocumentID 10_1007_s00493_023_00019_6
GroupedDBID -52
-5D
-5G
-BR
-EM
-ET
-Y2
-~C
-~X
.86
.DC
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-416aca018206758423bdff7fdb42585064c04ad63a936446777df245d6e3f40f3
IEDL.DBID AGYKE
ISSN 0209-9683
IngestDate Fri Jul 25 11:01:34 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Tue Jul 01 04:31:26 EDT 2025
Fri Feb 21 02:43:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 05C65
Turan problem
bipartite graphs
hypergraphs
05C35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-416aca018206758423bdff7fdb42585064c04ad63a936446777df245d6e3f40f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00493-023-00019-6
PQID 2853053601
PQPubID 2043757
PageCount 18
ParticipantIDs proquest_journals_2853053601
crossref_citationtrail_10_1007_s00493_023_00019_6
crossref_primary_10_1007_s00493_023_00019_6
springer_journals_10_1007_s00493_023_00019_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Combinatorica (Budapest. 1981)
PublicationTitleAbbrev Combinatorica
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Pikhurko (CR13) 2005; 103
CR3
Pikhurko, Verstraëte (CR14) 2009; 116
Fox, Sudakov (CR5) 2011; 38
Füredi (CR7) 1984; 4
Keevash, Chapman (CR8) 2011
Mubayi, Verstraëte (CR12) 2004; 106
Xu, Zhang, Ge (CR16) 2020; 89
CR17
Bukh (CR2) 2015; 47
Mubayi (CR11) 2006; 96
Ergemlidze, Jiang, Methuku (CR4) 2020; 176
Keevash, Sudakov (CR9) 2005; 25
Frankl (CR6) 1990; 6
Kollár, Rónyai, Szabó (CR10) 1996; 16
Sidorenko (CR15) 1989; 9
Alon, Rónyai, Szabó (CR1) 1999; 76
Z Füredi (19_CR7) 1984; 4
19_CR3
19_CR17
Z Xu (19_CR16) 2020; 89
B Bukh (19_CR2) 2015; 47
J Kollár (19_CR10) 1996; 16
D Mubayi (19_CR12) 2004; 106
D Mubayi (19_CR11) 2006; 96
P Frankl (19_CR6) 1990; 6
P Keevash (19_CR9) 2005; 25
AF Sidorenko (19_CR15) 1989; 9
O Pikhurko (19_CR13) 2005; 103
O Pikhurko (19_CR14) 2009; 116
B Ergemlidze (19_CR4) 2020; 176
J Fox (19_CR5) 2011; 38
N Alon (19_CR1) 1999; 76
P Keevash (19_CR8) 2011
References_xml – volume: 116
  start-page: 637
  issue: 3
  year: 2009
  end-page: 649
  ident: CR14
  article-title: The maximum size of hypergraphs without generalized 4-cycles
  publication-title: J. Comb. Theory Series A
  doi: 10.1016/j.jcta.2008.09.002
– start-page: 83
  year: 2011
  end-page: 140
  ident: CR8
  article-title: Hypergraph Turán problems
  publication-title: Surveys in Combinatorics
– volume: 9
  start-page: 207
  issue: 2
  year: 1989
  end-page: 215
  ident: CR15
  article-title: Asymptotic solution for a new class of forbidden -graphs
  publication-title: Combinatorica
  doi: 10.1007/BF02124681
– volume: 47
  start-page: 939
  year: 2015
  end-page: 945
  ident: CR2
  article-title: Random algebraic construction of extremal graphs
  publication-title: Bull. Lond. Math. Soc.
– ident: CR3
– volume: 6
  start-page: 223
  year: 1990
  end-page: 227
  ident: CR6
  article-title: Asymptotic solution of a Turán-type problem
  publication-title: Graphs Comb.
  doi: 10.1007/BF01787573
– volume: 4
  start-page: 161
  issue: 2
  year: 1984
  end-page: 168
  ident: CR7
  article-title: Hypergraphs in which all disjoint pairs have distinct unions
  publication-title: Combinatorica
  doi: 10.1007/BF02579216
– ident: CR17
– volume: 25
  start-page: 673
  issue: 6
  year: 2005
  end-page: 706
  ident: CR9
  article-title: On a hypergraph Turán problem of Frankl
  publication-title: Combinatorica
  doi: 10.1007/s00493-005-0042-2
– volume: 16
  start-page: 399
  issue: 3
  year: 1996
  end-page: 406
  ident: CR10
  article-title: Norm-graphs and bipartite Turán numbers
  publication-title: Combinatorica
  doi: 10.1007/BF01261323
– volume: 89
  year: 2020
  ident: CR16
  article-title: Some tight lower bounds for Turán problems via constructions of multi-hypergraphs
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2020.103161
– volume: 76
  start-page: 280
  issue: 2
  year: 1999
  end-page: 290
  ident: CR1
  article-title: Norm-graphs: variations and applications
  publication-title: J. Comb. Theory Series B
  doi: 10.1006/jctb.1999.1906
– volume: 176
  year: 2020
  ident: CR4
  article-title: New bounds for a hypergraph bipartite Turán problem
  publication-title: J. Comb. Theory Series A
  doi: 10.1016/j.jcta.2020.105299
– volume: 96
  start-page: 122
  issue: 1
  year: 2006
  end-page: 134
  ident: CR11
  article-title: A hypergraph extension of Turán’s theorem
  publication-title: J. Comb. Theory Series B
  doi: 10.1016/j.jctb.2005.06.013
– volume: 106
  start-page: 237
  issue: 2
  year: 2004
  end-page: 253
  ident: CR12
  article-title: A hypergraph extension of the bipartite Turán problem
  publication-title: J. Comb. Theory Series A
  doi: 10.1016/j.jcta.2004.02.002
– volume: 103
  start-page: 11
  year: 2005
  ident: CR13
  article-title: Exact computation of the hypergraph Turán function for expanded complete 2-graphs
  publication-title: J. Comb. Theory Series B
– volume: 38
  start-page: 68
  year: 2011
  end-page: 99
  ident: CR5
  article-title: Dependent random choice
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.20344
– volume: 25
  start-page: 673
  issue: 6
  year: 2005
  ident: 19_CR9
  publication-title: Combinatorica
  doi: 10.1007/s00493-005-0042-2
– volume: 38
  start-page: 68
  year: 2011
  ident: 19_CR5
  publication-title: Random Struct. Algorithms
  doi: 10.1002/rsa.20344
– volume: 9
  start-page: 207
  issue: 2
  year: 1989
  ident: 19_CR15
  publication-title: Combinatorica
  doi: 10.1007/BF02124681
– volume: 89
  year: 2020
  ident: 19_CR16
  publication-title: Eur. J. Comb.
  doi: 10.1016/j.ejc.2020.103161
– volume: 76
  start-page: 280
  issue: 2
  year: 1999
  ident: 19_CR1
  publication-title: J. Comb. Theory Series B
  doi: 10.1006/jctb.1999.1906
– volume: 103
  start-page: 11
  year: 2005
  ident: 19_CR13
  publication-title: J. Comb. Theory Series B
– start-page: 83
  volume-title: Surveys in Combinatorics
  year: 2011
  ident: 19_CR8
– volume: 47
  start-page: 939
  year: 2015
  ident: 19_CR2
  publication-title: Bull. Lond. Math. Soc.
– ident: 19_CR17
  doi: 10.1007/s11425-020-1892-4
– volume: 116
  start-page: 637
  issue: 3
  year: 2009
  ident: 19_CR14
  publication-title: J. Comb. Theory Series A
  doi: 10.1016/j.jcta.2008.09.002
– ident: 19_CR3
– volume: 176
  year: 2020
  ident: 19_CR4
  publication-title: J. Comb. Theory Series A
  doi: 10.1016/j.jcta.2020.105299
– volume: 6
  start-page: 223
  year: 1990
  ident: 19_CR6
  publication-title: Graphs Comb.
  doi: 10.1007/BF01787573
– volume: 16
  start-page: 399
  issue: 3
  year: 1996
  ident: 19_CR10
  publication-title: Combinatorica
  doi: 10.1007/BF01261323
– volume: 4
  start-page: 161
  issue: 2
  year: 1984
  ident: 19_CR7
  publication-title: Combinatorica
  doi: 10.1007/BF02579216
– volume: 96
  start-page: 122
  issue: 1
  year: 2006
  ident: 19_CR11
  publication-title: J. Comb. Theory Series B
  doi: 10.1016/j.jctb.2005.06.013
– volume: 106
  start-page: 237
  issue: 2
  year: 2004
  ident: 19_CR12
  publication-title: J. Comb. Theory Series A
  doi: 10.1016/j.jcta.2004.02.002
SSID ssj0008315
Score 2.3283234
Snippet For positive integers s ,  t ,  r , let K s , t ( r ) denote the r -uniform hypergraph whose vertex set is the union of pairwise disjoint sets X , Y 1 , ⋯ , Y...
For positive integers s ,  t ,  r , let $$K_{s,t}^{(r)}$$ K s , t ( r ) denote the r -uniform hypergraph whose vertex set is the union of pairwise disjoint...
For positive integers s, t, r, let Ks,t(r) denote the r-uniform hypergraph whose vertex set is the union of pairwise disjoint sets X,Y1,⋯,Yt, where |X|=s and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 429
SubjectTerms Combinatorics
Graph theory
Graphs
Mathematics
Mathematics and Statistics
Original Paper
Vertex sets
Title Asymptotics of the Hypergraph Bipartite Turán Problem
URI https://link.springer.com/article/10.1007/s00493-023-00019-6
https://www.proquest.com/docview/2853053601
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PT8IwFH8RuOjB_0YUyQ7edGRbt647DgISDcQDS_C0dGubGBUIGwf9Nn4Wv5jt_hGJmnBZtvSt2fpe21_7-n4P4JpgU7gGt3UHRbFuc4fqxCFU9njOuM0IFVTtQ47GeBjY91NnWgSFJeVp99IlmY3UVbCbArPK54j0DJjouAYNxyQeqUPDv3t66FcjMCkyF1iGYp8kqAiW-b2WnxPSGmVuOEaz-WZwAEH5pfkxk5fOKo068ccGieO2v3II-wUA1fzcYo5gh8-OYW9UsbcmJ4D95P1tkc7VkzYXmizShnK9uszYrbXu80LZW8q1yWr59TnTHvOkNKcQDPqT3lAv8ivoMcIo1SUWozE1cgp3CUQsFDEhXMEi2ZEzJrvYsCnDiHpIwibsui4Tlu0wzJGwDYHOoD6bz_g5aBbi2DFjjym6OIZNGlHPiEQkpam8Z00wy0YO44J8XOXAeA0r2uSsTULZJpk_3AtxE26qdxY59ca_0q1Sd2HRDZPQkmBEjjJy0dmE21IV6-K_a7vYTvwSdq1Mm2p3pgX1dLniVxKspFFb2uag2x23CxttQ62He_IaWP437KvgTQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BGYAB8SsKBTywgaUkTpxkLIgqQFsxtFK3yIltCQnSqEkHHodn4cWwnZ8KBEhsiXzxcLk7f_b5vgO4DKgtfUu42CNJil3hMRx4AVMeL7hwecAk0-eQozGNpu7DzJvVRWFFc9u9SUmaSN0Wu2kwq3OOBBtgguk6bCgwEOi-BVOn38bfoO5b4FiaezIgdanMz3N8XY5WGPNbWtSsNoNd2KlhIupX_3UP1kS2D9ujlmO1OADaL95e83Ku39BcIjWEIrWrXBgOanTznGurKAWaLBcf7xl6qlrHHMJ0cDe5jXDdBQGnhJISK8TEUmZVROsKLjgk4VL6kifK3QzfXGq5jFPCQqLADfV9n0vH9TgVRLqWJEfQyeaZOAbkEEE9Ow25JnXj1GYJC61EJkqaqWfeBbtRRpzWFOG6U8VL3JIbGwXGSoEmax3GtAtX7Td5RZDxp3Sv0XFcO0sROwoyqFigtoZduG70vhr-fbaT_4lfwGY0GQ3j4f348RS2HGMG-jylB51ysRRnCl6Uybmxpk9acsL7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMiKcoFMjABhZJ7DjJWApVebTq0ErdIie2JSRIozYd-Dn8Fv4YtvMoIEBiS-SLh8ud77PP9x3AeUAd6duCIA_HCSLCYyjwAqY8XnBBeMAk0-eQ_QHtjcn9xJt8quI3t92rlGRR06BZmtL8KuPyqi5808BW5x8xMiAF0VVYIzr06XQt7dRrcVD2MHBtzUMZ4LJs5uc5voamJd78liI1kae7DVslZLTaxT_egRWR7sJmv-Zbne8Bbc9fX7J8qt-sqbTUkNVTO8yZ4aO2rp8ybSG5sEaL2ftbag2LNjL7MO7ejjo9VHZEQAmmOEcKPbGE2QXpuoIOLo65lL7ksXI9wz2X2IRxilmIFdChvu9z6RKPU4ElsSU-gEY6TcUhWC4W1HOSkGuCN04dFrPQjmWspJl65k1wKmVESUkXrrtWPEc10bFRYKQUaDLYYUSbcFF_kxVkGX9KtyodR6XjzCNXwQe1LqhtYhMuK70vh3-f7eh_4mewPrzpRo93g4dj2HCNFeijlRY08tlCnCikkcenxpg-APemxyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotics+of+the+Hypergraph+Bipartite+Tur%C3%A1n+Problem&rft.jtitle=Combinatorica+%28Budapest.+1981%29&rft.au=Brada%C4%8D%2C+Domagoj&rft.au=Gishboliner%2C+Lior&rft.au=Janzer%2C+Oliver&rft.au=Sudakov%2C+Benny&rft.date=2023-06-01&rft.issn=0209-9683&rft.eissn=1439-6912&rft.volume=43&rft.issue=3&rft.spage=429&rft.epage=446&rft_id=info:doi/10.1007%2Fs00493-023-00019-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00493_023_00019_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0209-9683&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0209-9683&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0209-9683&client=summon