Asymptotics of the Hypergraph Bipartite Turán Problem
For positive integers s , t , r , let K s , t ( r ) denote the r -uniform hypergraph whose vertex set is the union of pairwise disjoint sets X , Y 1 , ⋯ , Y t , where | X | = s and | Y 1 | = ⋯ = | Y t | = r - 1 , and whose edge set is { { x } ∪ Y i : x ∈ X , 1 ≤ i ≤ t } . The study of the Turán fu...
Saved in:
Published in | Combinatorica (Budapest. 1981) Vol. 43; no. 3; pp. 429 - 446 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0209-9683 1439-6912 |
DOI | 10.1007/s00493-023-00019-6 |
Cover
Abstract | For positive integers
s
,
t
,
r
, let
K
s
,
t
(
r
)
denote the
r
-uniform hypergraph whose vertex set is the union of pairwise disjoint sets
X
,
Y
1
,
⋯
,
Y
t
, where
|
X
|
=
s
and
|
Y
1
|
=
⋯
=
|
Y
t
|
=
r
-
1
, and whose edge set is
{
{
x
}
∪
Y
i
:
x
∈
X
,
1
≤
i
≤
t
}
. The study of the Turán function of
K
s
,
t
(
r
)
received considerable interest in recent years. Our main results are as follows. First, we show that
1
ex
n
,
K
s
,
t
(
r
)
=
O
s
,
r
t
1
s
-
1
n
r
-
1
s
-
1
for all
s
,
t
≥
2
and
r
≥
3
, improving the power of
n
in the previously best bound and resolving a question of Mubayi and Verstraëte about the dependence of
ex
(
n
,
K
2
,
t
(
3
)
)
on
t
. Second, we show that (
1
) is tight when
r
is even and
t
≫
s
. This disproves a conjecture of Xu, Zhang and Ge. Third, we show that (
1
) is
not
tight for
r
=
3
, namely that
ex
(
n
,
K
s
,
t
(
3
)
)
=
O
s
,
t
(
n
3
-
1
s
-
1
-
ε
s
)
(for all
s
≥
3
). This indicates that the behaviour of
ex
(
n
,
K
s
,
t
(
r
)
)
might depend on the parity of
r
. Lastly, we prove a conjecture of Ergemlidze, Jiang and Methuku on the hypergraph analogue of the bipartite Turán problem for graphs with bounded degrees on one side. Our tools include a novel twist on the dependent random choice method as well as a variant of the celebrated norm graphs constructed by Kollár, Rónyai and Szabó. |
---|---|
AbstractList | For positive integers
s
,
t
,
r
, let
K
s
,
t
(
r
)
denote the
r
-uniform hypergraph whose vertex set is the union of pairwise disjoint sets
X
,
Y
1
,
⋯
,
Y
t
, where
|
X
|
=
s
and
|
Y
1
|
=
⋯
=
|
Y
t
|
=
r
-
1
, and whose edge set is
{
{
x
}
∪
Y
i
:
x
∈
X
,
1
≤
i
≤
t
}
. The study of the Turán function of
K
s
,
t
(
r
)
received considerable interest in recent years. Our main results are as follows. First, we show that
1
ex
n
,
K
s
,
t
(
r
)
=
O
s
,
r
t
1
s
-
1
n
r
-
1
s
-
1
for all
s
,
t
≥
2
and
r
≥
3
, improving the power of
n
in the previously best bound and resolving a question of Mubayi and Verstraëte about the dependence of
ex
(
n
,
K
2
,
t
(
3
)
)
on
t
. Second, we show that (
1
) is tight when
r
is even and
t
≫
s
. This disproves a conjecture of Xu, Zhang and Ge. Third, we show that (
1
) is
not
tight for
r
=
3
, namely that
ex
(
n
,
K
s
,
t
(
3
)
)
=
O
s
,
t
(
n
3
-
1
s
-
1
-
ε
s
)
(for all
s
≥
3
). This indicates that the behaviour of
ex
(
n
,
K
s
,
t
(
r
)
)
might depend on the parity of
r
. Lastly, we prove a conjecture of Ergemlidze, Jiang and Methuku on the hypergraph analogue of the bipartite Turán problem for graphs with bounded degrees on one side. Our tools include a novel twist on the dependent random choice method as well as a variant of the celebrated norm graphs constructed by Kollár, Rónyai and Szabó. For positive integers s , t , r , let $$K_{s,t}^{(r)}$$ K s , t ( r ) denote the r -uniform hypergraph whose vertex set is the union of pairwise disjoint sets $$X,Y_1,\dots ,Y_t$$ X , Y 1 , ⋯ , Y t , where $$|X| = s$$ | X | = s and $$|Y_1| = \dots = |Y_t| = r-1$$ | Y 1 | = ⋯ = | Y t | = r - 1 , and whose edge set is $$\{\{x\} \cup Y_i: x \in X, 1\le i\le t\}$$ { { x } ∪ Y i : x ∈ X , 1 ≤ i ≤ t } . The study of the Turán function of $$K_{s,t}^{(r)}$$ K s , t ( r ) received considerable interest in recent years. Our main results are as follows. First, we show that $$\begin{aligned} \textrm{ex}\left( n,K_{s,t}^{(r)}\right) = O_{s,r}\left( t^{\frac{1}{s-1}}n^{r - \frac{1}{s-1}}\right) \end{aligned}$$ ex n , K s , t ( r ) = O s , r t 1 s - 1 n r - 1 s - 1 for all $$s,t\ge 2$$ s , t ≥ 2 and $$r\ge 3$$ r ≥ 3 , improving the power of n in the previously best bound and resolving a question of Mubayi and Verstraëte about the dependence of $$\textrm{ex}(n,K_{2,t}^{(3)})$$ ex ( n , K 2 , t ( 3 ) ) on t . Second, we show that (1) is tight when r is even and $$t \gg s$$ t ≫ s . This disproves a conjecture of Xu, Zhang and Ge. Third, we show that (1) is not tight for $$r = 3$$ r = 3 , namely that $$\textrm{ex}(n,K_{s,t}^{(3)}) = O_{s,t}(n^{3 - \frac{1}{s-1} - \varepsilon _s})$$ ex ( n , K s , t ( 3 ) ) = O s , t ( n 3 - 1 s - 1 - ε s ) (for all $$s\ge 3$$ s ≥ 3 ). This indicates that the behaviour of $$\textrm{ex}(n,K_{s,t}^{(r)})$$ ex ( n , K s , t ( r ) ) might depend on the parity of r . Lastly, we prove a conjecture of Ergemlidze, Jiang and Methuku on the hypergraph analogue of the bipartite Turán problem for graphs with bounded degrees on one side. Our tools include a novel twist on the dependent random choice method as well as a variant of the celebrated norm graphs constructed by Kollár, Rónyai and Szabó. For positive integers s, t, r, let Ks,t(r) denote the r-uniform hypergraph whose vertex set is the union of pairwise disjoint sets X,Y1,⋯,Yt, where |X|=s and |Y1|=⋯=|Yt|=r-1, and whose edge set is {{x}∪Yi:x∈X,1≤i≤t}. The study of the Turán function of Ks,t(r) received considerable interest in recent years. Our main results are as follows. First, we show that 1exn,Ks,t(r)=Os,rt1s-1nr-1s-1for all s,t≥2 and r≥3, improving the power of n in the previously best bound and resolving a question of Mubayi and Verstraëte about the dependence of ex(n,K2,t(3)) on t. Second, we show that (1) is tight when r is even and t≫s. This disproves a conjecture of Xu, Zhang and Ge. Third, we show that (1) is not tight for r=3, namely that ex(n,Ks,t(3))=Os,t(n3-1s-1-εs) (for all s≥3). This indicates that the behaviour of ex(n,Ks,t(r)) might depend on the parity of r. Lastly, we prove a conjecture of Ergemlidze, Jiang and Methuku on the hypergraph analogue of the bipartite Turán problem for graphs with bounded degrees on one side. Our tools include a novel twist on the dependent random choice method as well as a variant of the celebrated norm graphs constructed by Kollár, Rónyai and Szabó. |
Author | Gishboliner, Lior Sudakov, Benny Bradač, Domagoj Janzer, Oliver |
Author_xml | – sequence: 1 givenname: Domagoj surname: Bradač fullname: Bradač, Domagoj organization: Department of Mathematics, ETH – sequence: 2 givenname: Lior surname: Gishboliner fullname: Gishboliner, Lior organization: Department of Mathematics, ETH – sequence: 3 givenname: Oliver surname: Janzer fullname: Janzer, Oliver email: oj224@cam.ac.uk organization: Department of Mathematics, ETH, Department of Pure Mathematics and Mathematical Statistics, University of Cambridge – sequence: 4 givenname: Benny surname: Sudakov fullname: Sudakov, Benny organization: Department of Mathematics, ETH |
BookMark | eNp9kL9OwzAQhy1UJNrCCzBFYg6c_8RxxlIBRaoEQ5ktN7FbV20cbHfI4_AsvBiGICExdDjdDb_v7vRN0Kh1rUboGsMtBijvAgCraA4kFQCucn6GxpjRNFSYjNAYCFR5xQW9QJMQdikkKC7GiM9Cf-iii7YOmTNZ3Ops0Xfab7zqttm97ZSPNupsdfSfH2326t16rw-X6NyofdBXv32K3h4fVvNFvnx5ep7PlnlNOY05w1zVCrAgwMtCMELXjTGladaMFKIAzmpgquFUVZQzxsuybAxhRcM1NQwMnaKbYW_n3ftRhyh37ujbdFISUVAoKAecUmJI1d6F4LWRtY0qWtdGr-xeYpDfluRgSSZL8seS5Akl_9DO24Py_WmIDlBI4Xaj_d9XJ6gvIx96sQ |
CitedBy_id | crossref_primary_10_1137_22M1543318 crossref_primary_10_1112_blms_12721 |
Cites_doi | 10.1016/j.jcta.2008.09.002 10.1007/BF02124681 10.1007/BF01787573 10.1007/BF02579216 10.1007/s00493-005-0042-2 10.1007/BF01261323 10.1016/j.ejc.2020.103161 10.1006/jctb.1999.1906 10.1016/j.jcta.2020.105299 10.1016/j.jctb.2005.06.013 10.1016/j.jcta.2004.02.002 10.1002/rsa.20344 10.1007/s11425-020-1892-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00493-023-00019-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1439-6912 |
EndPage | 446 |
ExternalDocumentID | 10_1007_s00493_023_00019_6 |
GroupedDBID | -52 -5D -5G -BR -EM -ET -Y2 -~C -~X .86 .DC 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9R PF- PKN PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-416aca018206758423bdff7fdb42585064c04ad63a936446777df245d6e3f40f3 |
IEDL.DBID | AGYKE |
ISSN | 0209-9683 |
IngestDate | Fri Jul 25 11:01:34 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Tue Jul 01 04:31:26 EDT 2025 Fri Feb 21 02:43:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 05C65 Turan problem bipartite graphs hypergraphs 05C35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-416aca018206758423bdff7fdb42585064c04ad63a936446777df245d6e3f40f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00493-023-00019-6 |
PQID | 2853053601 |
PQPubID | 2043757 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2853053601 crossref_citationtrail_10_1007_s00493_023_00019_6 crossref_primary_10_1007_s00493_023_00019_6 springer_journals_10_1007_s00493_023_00019_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Combinatorica (Budapest. 1981) |
PublicationTitleAbbrev | Combinatorica |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Pikhurko (CR13) 2005; 103 CR3 Pikhurko, Verstraëte (CR14) 2009; 116 Fox, Sudakov (CR5) 2011; 38 Füredi (CR7) 1984; 4 Keevash, Chapman (CR8) 2011 Mubayi, Verstraëte (CR12) 2004; 106 Xu, Zhang, Ge (CR16) 2020; 89 CR17 Bukh (CR2) 2015; 47 Mubayi (CR11) 2006; 96 Ergemlidze, Jiang, Methuku (CR4) 2020; 176 Keevash, Sudakov (CR9) 2005; 25 Frankl (CR6) 1990; 6 Kollár, Rónyai, Szabó (CR10) 1996; 16 Sidorenko (CR15) 1989; 9 Alon, Rónyai, Szabó (CR1) 1999; 76 Z Füredi (19_CR7) 1984; 4 19_CR3 19_CR17 Z Xu (19_CR16) 2020; 89 B Bukh (19_CR2) 2015; 47 J Kollár (19_CR10) 1996; 16 D Mubayi (19_CR12) 2004; 106 D Mubayi (19_CR11) 2006; 96 P Frankl (19_CR6) 1990; 6 P Keevash (19_CR9) 2005; 25 AF Sidorenko (19_CR15) 1989; 9 O Pikhurko (19_CR13) 2005; 103 O Pikhurko (19_CR14) 2009; 116 B Ergemlidze (19_CR4) 2020; 176 J Fox (19_CR5) 2011; 38 N Alon (19_CR1) 1999; 76 P Keevash (19_CR8) 2011 |
References_xml | – volume: 116 start-page: 637 issue: 3 year: 2009 end-page: 649 ident: CR14 article-title: The maximum size of hypergraphs without generalized 4-cycles publication-title: J. Comb. Theory Series A doi: 10.1016/j.jcta.2008.09.002 – start-page: 83 year: 2011 end-page: 140 ident: CR8 article-title: Hypergraph Turán problems publication-title: Surveys in Combinatorics – volume: 9 start-page: 207 issue: 2 year: 1989 end-page: 215 ident: CR15 article-title: Asymptotic solution for a new class of forbidden -graphs publication-title: Combinatorica doi: 10.1007/BF02124681 – volume: 47 start-page: 939 year: 2015 end-page: 945 ident: CR2 article-title: Random algebraic construction of extremal graphs publication-title: Bull. Lond. Math. Soc. – ident: CR3 – volume: 6 start-page: 223 year: 1990 end-page: 227 ident: CR6 article-title: Asymptotic solution of a Turán-type problem publication-title: Graphs Comb. doi: 10.1007/BF01787573 – volume: 4 start-page: 161 issue: 2 year: 1984 end-page: 168 ident: CR7 article-title: Hypergraphs in which all disjoint pairs have distinct unions publication-title: Combinatorica doi: 10.1007/BF02579216 – ident: CR17 – volume: 25 start-page: 673 issue: 6 year: 2005 end-page: 706 ident: CR9 article-title: On a hypergraph Turán problem of Frankl publication-title: Combinatorica doi: 10.1007/s00493-005-0042-2 – volume: 16 start-page: 399 issue: 3 year: 1996 end-page: 406 ident: CR10 article-title: Norm-graphs and bipartite Turán numbers publication-title: Combinatorica doi: 10.1007/BF01261323 – volume: 89 year: 2020 ident: CR16 article-title: Some tight lower bounds for Turán problems via constructions of multi-hypergraphs publication-title: Eur. J. Comb. doi: 10.1016/j.ejc.2020.103161 – volume: 76 start-page: 280 issue: 2 year: 1999 end-page: 290 ident: CR1 article-title: Norm-graphs: variations and applications publication-title: J. Comb. Theory Series B doi: 10.1006/jctb.1999.1906 – volume: 176 year: 2020 ident: CR4 article-title: New bounds for a hypergraph bipartite Turán problem publication-title: J. Comb. Theory Series A doi: 10.1016/j.jcta.2020.105299 – volume: 96 start-page: 122 issue: 1 year: 2006 end-page: 134 ident: CR11 article-title: A hypergraph extension of Turán’s theorem publication-title: J. Comb. Theory Series B doi: 10.1016/j.jctb.2005.06.013 – volume: 106 start-page: 237 issue: 2 year: 2004 end-page: 253 ident: CR12 article-title: A hypergraph extension of the bipartite Turán problem publication-title: J. Comb. Theory Series A doi: 10.1016/j.jcta.2004.02.002 – volume: 103 start-page: 11 year: 2005 ident: CR13 article-title: Exact computation of the hypergraph Turán function for expanded complete 2-graphs publication-title: J. Comb. Theory Series B – volume: 38 start-page: 68 year: 2011 end-page: 99 ident: CR5 article-title: Dependent random choice publication-title: Random Struct. Algorithms doi: 10.1002/rsa.20344 – volume: 25 start-page: 673 issue: 6 year: 2005 ident: 19_CR9 publication-title: Combinatorica doi: 10.1007/s00493-005-0042-2 – volume: 38 start-page: 68 year: 2011 ident: 19_CR5 publication-title: Random Struct. Algorithms doi: 10.1002/rsa.20344 – volume: 9 start-page: 207 issue: 2 year: 1989 ident: 19_CR15 publication-title: Combinatorica doi: 10.1007/BF02124681 – volume: 89 year: 2020 ident: 19_CR16 publication-title: Eur. J. Comb. doi: 10.1016/j.ejc.2020.103161 – volume: 76 start-page: 280 issue: 2 year: 1999 ident: 19_CR1 publication-title: J. Comb. Theory Series B doi: 10.1006/jctb.1999.1906 – volume: 103 start-page: 11 year: 2005 ident: 19_CR13 publication-title: J. Comb. Theory Series B – start-page: 83 volume-title: Surveys in Combinatorics year: 2011 ident: 19_CR8 – volume: 47 start-page: 939 year: 2015 ident: 19_CR2 publication-title: Bull. Lond. Math. Soc. – ident: 19_CR17 doi: 10.1007/s11425-020-1892-4 – volume: 116 start-page: 637 issue: 3 year: 2009 ident: 19_CR14 publication-title: J. Comb. Theory Series A doi: 10.1016/j.jcta.2008.09.002 – ident: 19_CR3 – volume: 176 year: 2020 ident: 19_CR4 publication-title: J. Comb. Theory Series A doi: 10.1016/j.jcta.2020.105299 – volume: 6 start-page: 223 year: 1990 ident: 19_CR6 publication-title: Graphs Comb. doi: 10.1007/BF01787573 – volume: 16 start-page: 399 issue: 3 year: 1996 ident: 19_CR10 publication-title: Combinatorica doi: 10.1007/BF01261323 – volume: 4 start-page: 161 issue: 2 year: 1984 ident: 19_CR7 publication-title: Combinatorica doi: 10.1007/BF02579216 – volume: 96 start-page: 122 issue: 1 year: 2006 ident: 19_CR11 publication-title: J. Comb. Theory Series B doi: 10.1016/j.jctb.2005.06.013 – volume: 106 start-page: 237 issue: 2 year: 2004 ident: 19_CR12 publication-title: J. Comb. Theory Series A doi: 10.1016/j.jcta.2004.02.002 |
SSID | ssj0008315 |
Score | 2.3283234 |
Snippet | For positive integers
s
,
t
,
r
, let
K
s
,
t
(
r
)
denote the
r
-uniform hypergraph whose vertex set is the union of pairwise disjoint sets
X
,
Y
1
,
⋯
,
Y... For positive integers s , t , r , let $$K_{s,t}^{(r)}$$ K s , t ( r ) denote the r -uniform hypergraph whose vertex set is the union of pairwise disjoint... For positive integers s, t, r, let Ks,t(r) denote the r-uniform hypergraph whose vertex set is the union of pairwise disjoint sets X,Y1,⋯,Yt, where |X|=s and... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 429 |
SubjectTerms | Combinatorics Graph theory Graphs Mathematics Mathematics and Statistics Original Paper Vertex sets |
Title | Asymptotics of the Hypergraph Bipartite Turán Problem |
URI | https://link.springer.com/article/10.1007/s00493-023-00019-6 https://www.proquest.com/docview/2853053601 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PT8IwFH8RuOjB_0YUyQ7edGRbt647DgISDcQDS_C0dGubGBUIGwf9Nn4Wv5jt_hGJmnBZtvSt2fpe21_7-n4P4JpgU7gGt3UHRbFuc4fqxCFU9njOuM0IFVTtQ47GeBjY91NnWgSFJeVp99IlmY3UVbCbArPK54j0DJjouAYNxyQeqUPDv3t66FcjMCkyF1iGYp8kqAiW-b2WnxPSGmVuOEaz-WZwAEH5pfkxk5fOKo068ccGieO2v3II-wUA1fzcYo5gh8-OYW9UsbcmJ4D95P1tkc7VkzYXmizShnK9uszYrbXu80LZW8q1yWr59TnTHvOkNKcQDPqT3lAv8ivoMcIo1SUWozE1cgp3CUQsFDEhXMEi2ZEzJrvYsCnDiHpIwibsui4Tlu0wzJGwDYHOoD6bz_g5aBbi2DFjjym6OIZNGlHPiEQkpam8Z00wy0YO44J8XOXAeA0r2uSsTULZJpk_3AtxE26qdxY59ca_0q1Sd2HRDZPQkmBEjjJy0dmE21IV6-K_a7vYTvwSdq1Mm2p3pgX1dLniVxKspFFb2uag2x23CxttQ62He_IaWP437KvgTQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BGYAB8SsKBTywgaUkTpxkLIgqQFsxtFK3yIltCQnSqEkHHodn4cWwnZ8KBEhsiXzxcLk7f_b5vgO4DKgtfUu42CNJil3hMRx4AVMeL7hwecAk0-eQozGNpu7DzJvVRWFFc9u9SUmaSN0Wu2kwq3OOBBtgguk6bCgwEOi-BVOn38bfoO5b4FiaezIgdanMz3N8XY5WGPNbWtSsNoNd2KlhIupX_3UP1kS2D9ujlmO1OADaL95e83Ku39BcIjWEIrWrXBgOanTznGurKAWaLBcf7xl6qlrHHMJ0cDe5jXDdBQGnhJISK8TEUmZVROsKLjgk4VL6kifK3QzfXGq5jFPCQqLADfV9n0vH9TgVRLqWJEfQyeaZOAbkEEE9Ow25JnXj1GYJC61EJkqaqWfeBbtRRpzWFOG6U8VL3JIbGwXGSoEmax3GtAtX7Td5RZDxp3Sv0XFcO0sROwoyqFigtoZduG70vhr-fbaT_4lfwGY0GQ3j4f348RS2HGMG-jylB51ysRRnCl6Uybmxpk9acsL7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMiKcoFMjABhZJ7DjJWApVebTq0ErdIie2JSRIozYd-Dn8Fv4YtvMoIEBiS-SLh8ud77PP9x3AeUAd6duCIA_HCSLCYyjwAqY8XnBBeMAk0-eQ_QHtjcn9xJt8quI3t92rlGRR06BZmtL8KuPyqi5808BW5x8xMiAF0VVYIzr06XQt7dRrcVD2MHBtzUMZ4LJs5uc5voamJd78liI1kae7DVslZLTaxT_egRWR7sJmv-Zbne8Bbc9fX7J8qt-sqbTUkNVTO8yZ4aO2rp8ybSG5sEaL2ftbag2LNjL7MO7ejjo9VHZEQAmmOEcKPbGE2QXpuoIOLo65lL7ksXI9wz2X2IRxilmIFdChvu9z6RKPU4ElsSU-gEY6TcUhWC4W1HOSkGuCN04dFrPQjmWspJl65k1wKmVESUkXrrtWPEc10bFRYKQUaDLYYUSbcFF_kxVkGX9KtyodR6XjzCNXwQe1LqhtYhMuK70vh3-f7eh_4mewPrzpRo93g4dj2HCNFeijlRY08tlCnCikkcenxpg-APemxyE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymptotics+of+the+Hypergraph+Bipartite+Tur%C3%A1n+Problem&rft.jtitle=Combinatorica+%28Budapest.+1981%29&rft.au=Brada%C4%8D%2C+Domagoj&rft.au=Gishboliner%2C+Lior&rft.au=Janzer%2C+Oliver&rft.au=Sudakov%2C+Benny&rft.date=2023-06-01&rft.issn=0209-9683&rft.eissn=1439-6912&rft.volume=43&rft.issue=3&rft.spage=429&rft.epage=446&rft_id=info:doi/10.1007%2Fs00493-023-00019-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00493_023_00019_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0209-9683&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0209-9683&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0209-9683&client=summon |