Synergistic role of electron-trapped oxygen vacancy and exposed TiO2 [001] facets toward electrochemical p-nitrophenol reduction: Characterization, performance and mechanism

[Display omitted] •Electron-trapped oxygen vacancy was introduced in Ti/TiO2-001 by H2 reduction.•Increasing electron-trapped oxygen vacancy in Ti/TiO2-001 enhanced its reduction activity.•The synergistic role between electron-trapped oxygen vacancy and [001] facets was proposed.•Electron-trapped ox...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 411; p. 128485
Main Authors Ni, Congcong, Li, Yifan, Meng, Xianzhe, Liu, Shuliang, Luo, Siyi, Guan, Jing, Jiang, Bo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Electron-trapped oxygen vacancy was introduced in Ti/TiO2-001 by H2 reduction.•Increasing electron-trapped oxygen vacancy in Ti/TiO2-001 enhanced its reduction activity.•The synergistic role between electron-trapped oxygen vacancy and [001] facets was proposed.•Electron-trapped oxygen vacancy on TiO2 acted as adsorption site and reactivity sites. Despite the fact that electron-trapped oxygen vacancy and [001] facets fundamentally affect the reactivity of TiO2, their synergistic role in the electrochemical activity of TiO2 toward p-nitrophenol (p-NP) reduction is still unknown. In this study, defective and [001] facets engineered TiO2 cathode, i.e. Ti/TiO2−x-001, was prepared for p-NP reduction. In comparison to defective Ti/TiO2 cathode with [101] facets (Ti/TiO2−x-101), the combination of the electron-trapped oxygen vacancy and [001] facets exhibited a synergistic effect to improve the electrochemical reduction efficiency of TiO2. Density functional theory calculations verified that the introduction of [001] facets and electron-trapped oxygen vacancy on TiO2 was beneficial to facilitate electron transfer and improve the indirect reduction efficiency for p-NP electrochemical reduction. Moreover, the electron-trapped oxygen vacancy extent of Ti/TiO2−x-001 was modulated by adjusting reduction temperature (250–650 °C). The maximum electron-trapped oxygen vacancy amount of Ti/TiO2−x-001 was attained at the reduction temperature of 350 °C, which resulted in the highest p-NP reduction efficiency of 99.3%, accompanying the p-AP selectivity of 89.5%. In this case, the abundant active and adsorption sites were provided on the surface of Ti/TiO2−x-001 prepared at 350 °C, in which p-NP adsorption coefficient and electrochemical surface area increased to 1.01 L mg−1 and 25 cm2, respectively. Generally, this work provides a paradigm for the design of efficient non-metallic catalyst for nitroaromatic chemicals reduction.
AbstractList [Display omitted] •Electron-trapped oxygen vacancy was introduced in Ti/TiO2-001 by H2 reduction.•Increasing electron-trapped oxygen vacancy in Ti/TiO2-001 enhanced its reduction activity.•The synergistic role between electron-trapped oxygen vacancy and [001] facets was proposed.•Electron-trapped oxygen vacancy on TiO2 acted as adsorption site and reactivity sites. Despite the fact that electron-trapped oxygen vacancy and [001] facets fundamentally affect the reactivity of TiO2, their synergistic role in the electrochemical activity of TiO2 toward p-nitrophenol (p-NP) reduction is still unknown. In this study, defective and [001] facets engineered TiO2 cathode, i.e. Ti/TiO2−x-001, was prepared for p-NP reduction. In comparison to defective Ti/TiO2 cathode with [101] facets (Ti/TiO2−x-101), the combination of the electron-trapped oxygen vacancy and [001] facets exhibited a synergistic effect to improve the electrochemical reduction efficiency of TiO2. Density functional theory calculations verified that the introduction of [001] facets and electron-trapped oxygen vacancy on TiO2 was beneficial to facilitate electron transfer and improve the indirect reduction efficiency for p-NP electrochemical reduction. Moreover, the electron-trapped oxygen vacancy extent of Ti/TiO2−x-001 was modulated by adjusting reduction temperature (250–650 °C). The maximum electron-trapped oxygen vacancy amount of Ti/TiO2−x-001 was attained at the reduction temperature of 350 °C, which resulted in the highest p-NP reduction efficiency of 99.3%, accompanying the p-AP selectivity of 89.5%. In this case, the abundant active and adsorption sites were provided on the surface of Ti/TiO2−x-001 prepared at 350 °C, in which p-NP adsorption coefficient and electrochemical surface area increased to 1.01 L mg−1 and 25 cm2, respectively. Generally, this work provides a paradigm for the design of efficient non-metallic catalyst for nitroaromatic chemicals reduction.
ArticleNumber 128485
Author Liu, Shuliang
Meng, Xianzhe
Li, Yifan
Ni, Congcong
Guan, Jing
Jiang, Bo
Luo, Siyi
Author_xml – sequence: 1
  givenname: Congcong
  surname: Ni
  fullname: Ni, Congcong
– sequence: 2
  givenname: Yifan
  surname: Li
  fullname: Li, Yifan
– sequence: 3
  givenname: Xianzhe
  surname: Meng
  fullname: Meng, Xianzhe
– sequence: 4
  givenname: Shuliang
  surname: Liu
  fullname: Liu, Shuliang
– sequence: 5
  givenname: Siyi
  surname: Luo
  fullname: Luo, Siyi
– sequence: 6
  givenname: Jing
  surname: Guan
  fullname: Guan, Jing
– sequence: 7
  givenname: Bo
  surname: Jiang
  fullname: Jiang, Bo
  email: bjiang86upc@163.com
BookMark eNp9kMFu1DAQhi1UJNrCA3DzA5DFjjdxAie0AopUqQfKCSFrGI-7XiV2ZJu2yzvxjvV24cKhJ9tjffPPfGfsJMRAjL2WYiWF7N_uVki7VStauZLtsB66Z-xUDlo1qpXtSb2roWuGca1fsLOcd0KIfpTjKfvzdR8o3fhcPPIUJ-LRcZoIS4qhKQmWhSyP9_sbCvwWEALuOQTL6X6JuX5d-6uWfxdC_uAOkErmJd5Bsv-a4JZmjzDxpQm-vpcthTjxRPYXFh_DO77ZQgIslPxvOFTe8IWSi2muWfSYNRNuIfg8v2TPHUyZXv09z9m3Tx-vNxfN5dXnL5sPlw2qXpVGObfGodcDWN2DW7tOdqNDTZ0YQGDXaiIBfSfpp9JdL0Zrq6pW2V5LckjqnOljX0wx50TOoC-Pw1UjfjJSmIN1szPVujlYN0frlZT_kUvyM6T9k8z7I0N1pVtPyWT0VJe3PlWHxkb_BP0AiRehRw
CitedBy_id crossref_primary_10_1016_j_jcis_2021_12_118
crossref_primary_10_1016_j_jorganchem_2024_123492
crossref_primary_10_1016_j_colsurfa_2021_127058
crossref_primary_10_1016_j_scitotenv_2021_145751
crossref_primary_10_1016_j_ccr_2022_214811
crossref_primary_10_1016_j_cej_2023_143448
crossref_primary_10_1016_j_jcis_2023_04_085
crossref_primary_10_1021_acs_est_0c08552
crossref_primary_10_3390_bios12080592
crossref_primary_10_1021_acs_langmuir_2c02111
crossref_primary_10_1007_s13399_022_03652_1
crossref_primary_10_1016_j_mcat_2021_111609
crossref_primary_10_1016_j_mtcomm_2022_105187
crossref_primary_10_1016_j_cclet_2024_110514
crossref_primary_10_1016_j_jcis_2022_07_173
crossref_primary_10_1021_acsaem_2c03553
crossref_primary_10_1016_j_jece_2021_105524
crossref_primary_10_1002_smtd_202301307
crossref_primary_10_1002_cctc_202301647
crossref_primary_10_1021_acsnano_1c08428
crossref_primary_10_1039_D1CY01717A
crossref_primary_10_1149_1945_7111_ac0017
crossref_primary_10_1016_j_ijhydene_2021_10_209
crossref_primary_10_1021_accountsmr_4c00377
crossref_primary_10_1016_j_apcatb_2021_119950
crossref_primary_10_1016_j_apsusc_2023_158780
crossref_primary_10_1002_adem_202400122
crossref_primary_10_1021_acsaem_1c01412
crossref_primary_10_1039_D1NJ01591E
crossref_primary_10_1016_j_nanoen_2021_106386
crossref_primary_10_1016_j_envres_2023_116867
crossref_primary_10_1016_j_jallcom_2023_171193
crossref_primary_10_1002_smll_202104507
crossref_primary_10_1016_j_apsusc_2023_157587
crossref_primary_10_1016_j_jallcom_2023_169915
crossref_primary_10_1016_j_seppur_2021_119378
crossref_primary_10_1016_j_mtsust_2023_100547
crossref_primary_10_1016_j_chemosphere_2022_135400
crossref_primary_10_1002_celc_202300789
crossref_primary_10_1016_j_cej_2024_153751
crossref_primary_10_1021_acssuschemeng_1c04708
crossref_primary_10_1016_j_seppur_2024_130087
crossref_primary_10_1039_D3RA02891G
crossref_primary_10_1016_j_ijhydene_2024_11_338
crossref_primary_10_1016_j_seppur_2021_118895
crossref_primary_10_1002_cssc_202101218
crossref_primary_10_1016_j_cej_2021_130474
crossref_primary_10_1016_j_jtice_2021_06_039
crossref_primary_10_1016_j_jece_2022_108882
crossref_primary_10_1016_j_jpowsour_2022_232169
crossref_primary_10_1016_j_colsurfa_2022_129470
crossref_primary_10_1039_D0DT03966G
crossref_primary_10_1021_acsaem_1c03978
Cites_doi 10.1021/acscatal.9b05260
10.1002/ange.202009757
10.1063/1.1329672
10.1016/j.cej.2019.123495
10.1016/j.chemosphere.2014.03.122
10.1021/acs.est.9b01449
10.1016/j.jcat.2012.10.014
10.1021/cr0500535
10.1080/00268976.2017.1371801
10.1016/j.jelechem.2016.10.047
10.1016/j.cej.2009.09.042
10.1016/j.watres.2014.08.001
10.1016/j.cej.2019.123034
10.1016/j.cej.2018.11.099
10.1016/S0045-6535(02)00486-1
10.1002/ange.202009155
10.1016/j.cej.2016.04.029
10.1016/j.jssc.2003.11.027
10.1093/nsr/nwz146
10.1016/j.apcatb.2020.119364
10.1002/adfm.201002535
10.1016/j.apcatb.2019.118229
10.1103/PhysRevLett.87.266105
10.1021/acsenergylett.7b00219
10.1103/PhysRevB.13.5188
10.1016/j.apcatb.2019.05.016
10.1021/acs.jpcc.5b02430
10.1016/j.apcatb.2019.117902
10.1016/j.colsurfa.2015.11.053
10.1021/am302631b
10.1039/C9CC09296J
10.1038/s41467-019-10888-5
10.1021/acscatal.5b02098
10.1021/acs.est.6b00730
10.1002/cphc.200300835
10.1039/c3nr00476g
10.1016/j.scitotenv.2020.136982
10.1021/acssuschemeng.8b05332
10.1021/acscatal.5b02614
10.1016/j.apcatb.2017.01.025
10.1021/acscatal.0c01783
10.1149/1945-7111/abc30b
10.1021/cr400624r
10.1038/nmat2241
10.1021/am5085447
10.1021/acscatal.7b04340
10.1016/j.jcis.2020.04.092
10.1002/anie.200503068
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.128485
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_128485
S138589472100084X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c363t-3ff4c8678ad76af4f5159fc7e508a0c527ee0a651eb375609dd87323d671efce3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 04:27:17 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Fri Feb 23 02:42:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrochemical reduction
p-Nitrophenol
Facets
Electron-trapped oxygen vacancy
TiO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-3ff4c8678ad76af4f5159fc7e508a0c527ee0a651eb375609dd87323d671efce3
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2021_128485
crossref_primary_10_1016_j_cej_2021_128485
elsevier_sciencedirect_doi_10_1016_j_cej_2021_128485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lim, Yang, Hoffmann (b0200) 2019; 53
Wang, Jia, Pan, Xu, Liu, Cui, Guo, Sun (b0060) 2018; 7
Polarz, Strunk, Ischenko, Van den Berg, Hinrichsen, Muhler, Driess (b0110) 2006; 45
Liu, Meng, Li, Gong, Wang, Jiang (b0145) 2020; 167
Liu, Han, Li, Chong, Zhang (b0230) 2020; 132
Cao, Chen, Zang, Xu, Zhong, Luo, Xu, Zheng (b0185) 2019; 10
Han, Yan (b0035) 2014; 66
Jia, Wang, Wang, Ling, Yu, Zhang (b0065) 2020; 10
Wang, Fan (b0125) 2018; 116
Henkelman, Uberuaga, Jónsson (b0165) 2000; 113
Liu, Zhang, Pei, Yu (b0070) 2016; 50
Xu, Ouyang, Li, Kako, Ye (b0100) 2013; 5
Chen, Li, Liu, Tu, Zhang, Han, Wang (b0005) 2014; 113
Ji, Kim, Park, Kim, Choi (b0135) 2020; 10
Qi, Guo, Xu, Gao, Yue, Jiang, Qian, Wang, Zhang (b0030) 2020; 715
Jiang, Niu, Li, Oturan, Oturan (b0190) 2020; 119002
Hasan, Cho, Chon, Yoon, Song (b0215) 2016; 298
Gao, Jiang, Ni, Qi, Zhang, Oturan, Oturan (b0020) 2019; 254
Xing, Fang, Nasir, Ma, Zhang, Anpo (b0175) 2013; 297
Zhang, Li, Jin, Yang, Zhang, Du, Zhang (b0205) 2004; 177
Zhao, Liu, Wang, Chong, Zhang (b0045) 2020
Gao, Jiang, Ni, Qi, Bi (b0140) 2020; 382
Yang, Kao, Liu, Sun, Yu, Guo, Liou, Hoffmann (b0210) 2018; 8
Pradhan, Gogate (b0010) 2010; 156
Chen, Yang, Cai, Wang, Miao, Zhang, Chen, Liu (b0130) 2017; 2
Zhang, Tang, Zhao (b0055) 2020; 279
Niu, Gu, Li, Zhang, Zhao (b0080) 2020; 261
Liu, Jiang, Zhao, Chen, Cheng, Yang, Li (b0095) 2016; 6
Liu, Wu, Wang, Yu, Jiang, Chen (b0250) 2016; 490
Chen, Mao (b0050) 2007; 107
Ma, Li, Feng, Hu, Wang, Liu (b0085) 2016; 782
Swaminathan, Subbiah, Singaram (b0225) 2016; 6
Pan, Yang, Fu, Zhang, Xu (b0120) 2013; 5
Liu, Chen (b0220) 2014; 114
Wu, Liu, Wang, Lu, Zhang (b0235) 2020; 132
Yang, Chen, Cui, Luo, Liang, Yang, Liu, Wang, Luo (b0025) 2019; 359
Chong, Liu, Huang, Huang, Zhang (b0040) 2020; 7
Selloni (b0090) 2008; 7
Cai, Zhou, Pan, Du, Lu (b0170) 2019; 257
Ni, Wang, Guan, Jiang, Meng, Luo, Guo, Wang (b0195) 2020; 391
Han, Niu, Qin, Gu, Zhang, Zhao (b0015) 2020; 56
Liu, Sun, Su, Tang, Xu, Akram, Jiang (b0075) 2020; 575
Pacchioni (b0105) 2003; 4
Su, Yang, Na, Fan, Li, Wei, Yang, Cao (b0245) 2015; 7
Monkhorst, Pack (b0150) 1976; 13
Li, Zhang, Guan, Li, He, Yang (b0240) 2017; 206
Li, Guo, Robertson (b0160) 2015; 119
Liu, Ma, Li, Li, Wu, Bao (b0115) 2003; 50
Zhou, Sun, Pan, Tian, Jiang, Ren, Tian, Fu (b0180) 2011; 21
Lazzeri, Selloni (b0155) 2001; 87
Yang (10.1016/j.cej.2021.128485_b0210) 2018; 8
Monkhorst (10.1016/j.cej.2021.128485_b0150) 1976; 13
Xu (10.1016/j.cej.2021.128485_b0100) 2013; 5
Liu (10.1016/j.cej.2021.128485_b0075) 2020; 575
Su (10.1016/j.cej.2021.128485_b0245) 2015; 7
Li (10.1016/j.cej.2021.128485_b0160) 2015; 119
Wang (10.1016/j.cej.2021.128485_b0060) 2018; 7
Polarz (10.1016/j.cej.2021.128485_b0110) 2006; 45
Pan (10.1016/j.cej.2021.128485_b0120) 2013; 5
Chen (10.1016/j.cej.2021.128485_b0130) 2017; 2
Gao (10.1016/j.cej.2021.128485_b0140) 2020; 382
Liu (10.1016/j.cej.2021.128485_b0095) 2016; 6
Han (10.1016/j.cej.2021.128485_b0035) 2014; 66
Ji (10.1016/j.cej.2021.128485_b0135) 2020; 10
Jia (10.1016/j.cej.2021.128485_b0065) 2020; 10
Liu (10.1016/j.cej.2021.128485_b0230) 2020; 132
Cai (10.1016/j.cej.2021.128485_b0170) 2019; 257
Qi (10.1016/j.cej.2021.128485_b0030) 2020; 715
Selloni (10.1016/j.cej.2021.128485_b0090) 2008; 7
Liu (10.1016/j.cej.2021.128485_b0220) 2014; 114
Wu (10.1016/j.cej.2021.128485_b0235) 2020; 132
Liu (10.1016/j.cej.2021.128485_b0250) 2016; 490
Zhao (10.1016/j.cej.2021.128485_b0045) 2020
Pradhan (10.1016/j.cej.2021.128485_b0010) 2010; 156
Gao (10.1016/j.cej.2021.128485_b0020) 2019; 254
Henkelman (10.1016/j.cej.2021.128485_b0165) 2000; 113
Ni (10.1016/j.cej.2021.128485_b0195) 2020; 391
Niu (10.1016/j.cej.2021.128485_b0080) 2020; 261
Wang (10.1016/j.cej.2021.128485_b0125) 2018; 116
Liu (10.1016/j.cej.2021.128485_b0070) 2016; 50
Pacchioni (10.1016/j.cej.2021.128485_b0105) 2003; 4
Zhang (10.1016/j.cej.2021.128485_b0055) 2020; 279
Zhou (10.1016/j.cej.2021.128485_b0180) 2011; 21
Zhang (10.1016/j.cej.2021.128485_b0205) 2004; 177
Yang (10.1016/j.cej.2021.128485_b0025) 2019; 359
Ma (10.1016/j.cej.2021.128485_b0085) 2016; 782
Lim (10.1016/j.cej.2021.128485_b0200) 2019; 53
Chong (10.1016/j.cej.2021.128485_b0040) 2020; 7
Jiang (10.1016/j.cej.2021.128485_b0190) 2020; 119002
Li (10.1016/j.cej.2021.128485_b0240) 2017; 206
Han (10.1016/j.cej.2021.128485_b0015) 2020; 56
Liu (10.1016/j.cej.2021.128485_b0145) 2020; 167
Hasan (10.1016/j.cej.2021.128485_b0215) 2016; 298
Xing (10.1016/j.cej.2021.128485_b0175) 2013; 297
Cao (10.1016/j.cej.2021.128485_b0185) 2019; 10
Chen (10.1016/j.cej.2021.128485_b0005) 2014; 113
Swaminathan (10.1016/j.cej.2021.128485_b0225) 2016; 6
Liu (10.1016/j.cej.2021.128485_b0115) 2003; 50
Lazzeri (10.1016/j.cej.2021.128485_b0155) 2001; 87
Chen (10.1016/j.cej.2021.128485_b0050) 2007; 107
References_xml – volume: 6
  start-page: 2222
  year: 2016
  end-page: 2229
  ident: b0225
  article-title: Defect-rich metallic titania (TiO
  publication-title: ACS Catal.
– volume: 8
  start-page: 4278
  year: 2018
  end-page: 4287
  ident: b0210
  article-title: Cobalt-doped black TiO
  publication-title: ACS Catal.
– volume: 50
  start-page: 5234
  year: 2016
  end-page: 5242
  ident: b0070
  article-title: Efficient electrochemical reduction of nitrobenzene by defect-engineered TiO
  publication-title: Environ. Sci. Technol.
– volume: 257
  year: 2019
  ident: b0170
  article-title: Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 7
  start-page: 117
  year: 2018
  end-page: 122
  ident: b0060
  article-title: Boron-doped TiO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: b0165
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
– volume: 5
  start-page: 3601
  year: 2013
  end-page: 3614
  ident: b0120
  article-title: Defective TiO
  publication-title: Nanoscale
– volume: 490
  start-page: 207
  year: 2016
  end-page: 214
  ident: b0250
  article-title: Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol
  publication-title: Colloid Surf. A
– volume: 359
  start-page: 894
  year: 2019
  end-page: 901
  ident: b0025
  article-title: Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol
  publication-title: Chem. Eng. J.
– volume: 87
  year: 2001
  ident: b0155
  article-title: Stress-driven reconstruction of an oxide surface: the anatase TiO
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 10773
  year: 2020
  end-page: 10783
  ident: b0135
  article-title: Underestimation of platinum electrocatalysis induced by carbon monoxide evolved from graphite counter electrodes
  publication-title: ACS Catal.
– volume: 119
  start-page: 18160
  year: 2015
  end-page: 18166
  ident: b0160
  article-title: Calculation of TiO
  publication-title: J. Phys. Chem. C
– volume: 66
  start-page: 149
  year: 2014
  end-page: 159
  ident: b0035
  article-title: Bimetallic nickel-iron nanoparticles for groundwater decontamination: effect of groundwater constituents on surface deactivation
  publication-title: Water Res.
– volume: 132
  start-page: 21356
  year: 2020
  end-page: 21361
  ident: b0235
  article-title: Selective transfer semihydrogenation of alkynes with H
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 1097
  year: 2016
  end-page: 1108
  ident: b0095
  article-title: Engineering coexposed 0°0°1 and 1°0°1 facets in oxygen-deficient TiO
  publication-title: ACS Catal.
– volume: 177
  start-page: 1365
  year: 2004
  end-page: 1371
  ident: b0205
  article-title: Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid
  publication-title: J. Solid State Chem.
– start-page: 507
  year: 2020
  end-page: 515
  ident: b0045
  article-title: Sulfur vacancy-promoted highly selective electrosynthesis of functionalizedaminoarenes via transfer hydrogenation of nitroarenes with H
  publication-title: CCS Chem.
– volume: 261
  year: 2020
  ident: b0080
  article-title: 3D CQDs-{0°0°1} TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 107
  start-page: 2891
  year: 2007
  end-page: 2959
  ident: b0050
  article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications
  publication-title: Chem. Rev.
– volume: 254
  start-page: 391
  year: 2019
  end-page: 402
  ident: b0020
  article-title: Non-precious Co
  publication-title: Appl. Catal. B: Environ.
– volume: 114
  start-page: 9890
  year: 2014
  end-page: 9918
  ident: b0220
  article-title: Titanium dioxide nanomaterials: self-structural modifications
  publication-title: Chem. Rev.
– volume: 298
  start-page: 183
  year: 2016
  end-page: 190
  ident: b0215
  article-title: Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks
  publication-title: Chem. Eng. J.
– volume: 116
  start-page: 171
  year: 2018
  end-page: 178
  ident: b0125
  article-title: The location of excess electrons on H
  publication-title: Mol. Phys.
– volume: 7
  start-page: 3754
  year: 2015
  end-page: 3763
  ident: b0245
  article-title: An insight into the role of oxygen vacancy in hydrogenated TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 782
  start-page: 270
  year: 2016
  end-page: 277
  ident: b0085
  article-title: Development and reaction mechanism of efficient nano titanium electrode: reconstructed nanostructure and enhanced nitrate removal efficiency
  publication-title: J. Electroanal. Chem.
– volume: 391
  year: 2020
  ident: b0195
  article-title: Self-powered peroxi-coagulation for the efficient removal of p-arsanilic acid: pH-dependent shift in the contributions of peroxidation and electrocoagulation
  publication-title: Chem. Eng. J.
– volume: 382
  year: 2020
  ident: b0140
  article-title: Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 3533
  year: 2020
  end-page: 3540
  ident: b0065
  article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO
  publication-title: ACS Catal.
– volume: 50
  start-page: 39
  year: 2003
  end-page: 46
  ident: b0115
  article-title: The enhancement of TiO
  publication-title: Chemosphere
– volume: 575
  start-page: 254
  year: 2020
  end-page: 264
  ident: b0075
  article-title: Highly efficient and mild electrochemical degradation of bentazon by nano-diamond doped PbO
  publication-title: J. Colloid Interfaces Sci.
– volume: 7
  start-page: 613
  year: 2008
  end-page: 615
  ident: b0090
  article-title: Anatase shows its reactive side
  publication-title: Nat. Mater.
– volume: 21
  start-page: 1922
  year: 2011
  end-page: 1930
  ident: b0180
  article-title: Well-ordered large-pore mesoporous anatase TiO
  publication-title: Adv. Funct. Mater.
– volume: 56
  start-page: 1337
  year: 2020
  end-page: 1340
  ident: b0015
  article-title: In situ growth of M-{0°0°1} TiO
  publication-title: Chem. Commun.
– volume: 715
  year: 2020
  ident: b0030
  article-title: Co/Fe and Co/Al layered double oxides ozone catalyst for the deep degradation of aniline: preparation, characterization and kinetic model
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 1348
  year: 2013
  end-page: 1354
  ident: b0100
  article-title: High-active anatase TiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 6972
  year: 2019
  end-page: 6980
  ident: b0200
  article-title: Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO
  publication-title: Environ. Sci. Technol.
– volume: 206
  start-page: 300
  year: 2017
  end-page: 307
  ident: b0240
  article-title: Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 4
  start-page: 1041
  year: 2003
  end-page: 1047
  ident: b0105
  article-title: Oxygen vacancy: the invisible agent on oxide surfaces
  publication-title: ChemPhysChem
– volume: 119002
  year: 2020
  ident: b0190
  article-title: Outstanding performance of electro-Fenton process for efficient decontamination of Cr (III) complexes via alkaline precipitation with no accumulation of Cr (VI): Important roles of iron species
  publication-title: Appl. Catal. B: Environ.
– volume: 13
  start-page: 5188
  year: 1976
  ident: b0150
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 113
  start-page: 48
  year: 2014
  end-page: 55
  ident: b0005
  article-title: Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO
  publication-title: Chemosphere
– volume: 167
  year: 2020
  ident: b0145
  article-title: Electrochemical degradation of pharmaceuticals using Ti/SnO
  publication-title: J. Electrochem. Soc.
– volume: 279
  year: 2020
  ident: b0055
  article-title: Selective photoelectrocatalytic removal of dimethyl phthalate on high-quality expressed molecular imprints decorated specific facet of single crystalline TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 132
  start-page: 18685
  year: 2020
  end-page: 18689
  ident: b0230
  article-title: Electrocatalytic deuteration of halides with D
  publication-title: Angew. Chem. Int. Ed.
– volume: 297
  start-page: 236
  year: 2013
  end-page: 243
  ident: b0175
  article-title: Self-doped Ti
  publication-title: J. Catal.
– volume: 45
  start-page: 2965
  year: 2006
  end-page: 2969
  ident: b0110
  article-title: On the role of oxygen defects in the catalytic performance of zinc oxide
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0185
  article-title: Doping strain induced bi-Ti
  publication-title: Nat. Commun.
– volume: 156
  start-page: 77
  year: 2010
  end-page: 82
  ident: b0010
  article-title: Removal of p-nitrophenol using hydrodynamic cavitation and Fenton chemistry at pilot scale operation
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 285
  year: 2020
  end-page: 295
  ident: b0040
  article-title: Potential-tuned selective electrosynthesis of azoxy-, azo-and amino-aromatics over a CoP nanosheet cathode
  publication-title: Natl. Sci. Rev.
– volume: 2
  start-page: 1070
  year: 2017
  end-page: 1075
  ident: b0130
  article-title: Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 3533
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0065
  article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05260
– volume: 132
  start-page: 21356
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0235
  article-title: Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P athode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202009757
– volume: 113
  start-page: 9901
  year: 2000
  ident: 10.1016/j.cej.2021.128485_b0165
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 391
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0195
  article-title: Self-powered peroxi-coagulation for the efficient removal of p-arsanilic acid: pH-dependent shift in the contributions of peroxidation and electrocoagulation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123495
– volume: 113
  start-page: 48
  year: 2014
  ident: 10.1016/j.cej.2021.128485_b0005
  article-title: Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.03.122
– volume: 53
  start-page: 6972
  year: 2019
  ident: 10.1016/j.cej.2021.128485_b0200
  article-title: Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO2 nanotubes for the removal of organic pollutants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01449
– volume: 297
  start-page: 236
  year: 2013
  ident: 10.1016/j.cej.2021.128485_b0175
  article-title: Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.10.014
– volume: 107
  start-page: 2891
  year: 2007
  ident: 10.1016/j.cej.2021.128485_b0050
  article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr0500535
– volume: 116
  start-page: 171
  year: 2018
  ident: 10.1016/j.cej.2021.128485_b0125
  article-title: The location of excess electrons on H2O/TiO2 (1°1°0) surface and its role in the surface reactions
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2017.1371801
– volume: 782
  start-page: 270
  year: 2016
  ident: 10.1016/j.cej.2021.128485_b0085
  article-title: Development and reaction mechanism of efficient nano titanium electrode: reconstructed nanostructure and enhanced nitrate removal efficiency
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.10.047
– volume: 156
  start-page: 77
  year: 2010
  ident: 10.1016/j.cej.2021.128485_b0010
  article-title: Removal of p-nitrophenol using hydrodynamic cavitation and Fenton chemistry at pilot scale operation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.09.042
– volume: 119002
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0190
  article-title: Outstanding performance of electro-Fenton process for efficient decontamination of Cr (III) complexes via alkaline precipitation with no accumulation of Cr (VI): Important roles of iron species
  publication-title: Appl. Catal. B: Environ.
– volume: 66
  start-page: 149
  year: 2014
  ident: 10.1016/j.cej.2021.128485_b0035
  article-title: Bimetallic nickel-iron nanoparticles for groundwater decontamination: effect of groundwater constituents on surface deactivation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.08.001
– volume: 382
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0140
  article-title: Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123034
– volume: 359
  start-page: 894
  year: 2019
  ident: 10.1016/j.cej.2021.128485_b0025
  article-title: Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.099
– volume: 50
  start-page: 39
  year: 2003
  ident: 10.1016/j.cej.2021.128485_b0115
  article-title: The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(02)00486-1
– volume: 132
  start-page: 18685
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0230
  article-title: Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202009155
– volume: 298
  start-page: 183
  year: 2016
  ident: 10.1016/j.cej.2021.128485_b0215
  article-title: Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.04.029
– volume: 177
  start-page: 1365
  year: 2004
  ident: 10.1016/j.cej.2021.128485_b0205
  article-title: Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2003.11.027
– volume: 7
  start-page: 285
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0040
  article-title: Potential-tuned selective electrosynthesis of azoxy-, azo-and amino-aromatics over a CoP nanosheet cathode
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz146
– volume: 279
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0055
  article-title: Selective photoelectrocatalytic removal of dimethyl phthalate on high-quality expressed molecular imprints decorated specific facet of single crystalline TiO2 photoanode
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119364
– volume: 21
  start-page: 1922
  year: 2011
  ident: 10.1016/j.cej.2021.128485_b0180
  article-title: Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002535
– volume: 261
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0080
  article-title: 3D CQDs-{0°0°1} TiO2/Ti photoelectrode with dominant 0°0°1 facets: efficient visible-light-driven photoelectrocatalytic oxidation of organic pollutants and mechanism insight
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.118229
– volume: 87
  year: 2001
  ident: 10.1016/j.cej.2021.128485_b0155
  article-title: Stress-driven reconstruction of an oxide surface: the anatase TiO2 (0°0°1)-(1 × 4) surface
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.266105
– volume: 2
  start-page: 1070
  year: 2017
  ident: 10.1016/j.cej.2021.128485_b0130
  article-title: Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00219
– volume: 13
  start-page: 5188
  year: 1976
  ident: 10.1016/j.cej.2021.128485_b0150
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– start-page: 507
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0045
  article-title: Sulfur vacancy-promoted highly selective electrosynthesis of functionalizedaminoarenes via transfer hydrogenation of nitroarenes with H2O over a Co3S4−x nanosheet cathode
  publication-title: CCS Chem.
– volume: 254
  start-page: 391
  year: 2019
  ident: 10.1016/j.cej.2021.128485_b0020
  article-title: Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: preparation, performance and mechanism
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.05.016
– volume: 119
  start-page: 18160
  year: 2015
  ident: 10.1016/j.cej.2021.128485_b0160
  article-title: Calculation of TiO2 surface and subsurface oxygen vacancy by the screened exchange functional
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b02430
– volume: 257
  year: 2019
  ident: 10.1016/j.cej.2021.128485_b0170
  article-title: Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.117902
– volume: 490
  start-page: 207
  year: 2016
  ident: 10.1016/j.cej.2021.128485_b0250
  article-title: Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol
  publication-title: Colloid Surf. A
  doi: 10.1016/j.colsurfa.2015.11.053
– volume: 5
  start-page: 1348
  year: 2013
  ident: 10.1016/j.cej.2021.128485_b0100
  article-title: High-active anatase TiO2 nanosheets exposed with 95% 1°0°0 facets toward efficient H2 evolution and CO2 photoreduction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302631b
– volume: 56
  start-page: 1337
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0015
  article-title: In situ growth of M-{0°0°1} TiO2/Ti photoelectrodes: synergetic dominant 0°0°1 facets and ratio-optimal surface junctions for the effective oxidation of environmental pollutants
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC09296J
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.cej.2021.128485_b0185
  article-title: Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10888-5
– volume: 6
  start-page: 1097
  year: 2016
  ident: 10.1016/j.cej.2021.128485_b0095
  article-title: Engineering coexposed 0°0°1 and 1°0°1 facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02098
– volume: 50
  start-page: 5234
  year: 2016
  ident: 10.1016/j.cej.2021.128485_b0070
  article-title: Efficient electrochemical reduction of nitrobenzene by defect-engineered TiO2–x single crystals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00730
– volume: 4
  start-page: 1041
  year: 2003
  ident: 10.1016/j.cej.2021.128485_b0105
  article-title: Oxygen vacancy: the invisible agent on oxide surfaces
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200300835
– volume: 5
  start-page: 3601
  year: 2013
  ident: 10.1016/j.cej.2021.128485_b0120
  article-title: Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications
  publication-title: Nanoscale
  doi: 10.1039/c3nr00476g
– volume: 715
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0030
  article-title: Co/Fe and Co/Al layered double oxides ozone catalyst for the deep degradation of aniline: preparation, characterization and kinetic model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136982
– volume: 7
  start-page: 117
  year: 2018
  ident: 10.1016/j.cej.2021.128485_b0060
  article-title: Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05332
– volume: 6
  start-page: 2222
  year: 2016
  ident: 10.1016/j.cej.2021.128485_b0225
  article-title: Defect-rich metallic titania (TiO1.23) – an efficient hydrogen evolution catalyst for electrochemical water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02614
– volume: 206
  start-page: 300
  year: 2017
  ident: 10.1016/j.cej.2021.128485_b0240
  article-title: Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.01.025
– volume: 10
  start-page: 10773
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0135
  article-title: Underestimation of platinum electrocatalysis induced by carbon monoxide evolved from graphite counter electrodes
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01783
– volume: 167
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0145
  article-title: Electrochemical degradation of pharmaceuticals using Ti/SnO2-Sb2O5-IrO2-RuO2 anode: electrode properties, performance and contributions of diverse reactive species
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abc30b
– volume: 114
  start-page: 9890
  year: 2014
  ident: 10.1016/j.cej.2021.128485_b0220
  article-title: Titanium dioxide nanomaterials: self-structural modifications
  publication-title: Chem. Rev.
  doi: 10.1021/cr400624r
– volume: 7
  start-page: 613
  year: 2008
  ident: 10.1016/j.cej.2021.128485_b0090
  article-title: Anatase shows its reactive side
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2241
– volume: 7
  start-page: 3754
  year: 2015
  ident: 10.1016/j.cej.2021.128485_b0245
  article-title: An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cell
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5085447
– volume: 8
  start-page: 4278
  year: 2018
  ident: 10.1016/j.cej.2021.128485_b0210
  article-title: Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04340
– volume: 575
  start-page: 254
  year: 2020
  ident: 10.1016/j.cej.2021.128485_b0075
  article-title: Highly efficient and mild electrochemical degradation of bentazon by nano-diamond doped PbO2 anode with reduced Ti nanotube as the interlayer
  publication-title: J. Colloid Interfaces Sci.
  doi: 10.1016/j.jcis.2020.04.092
– volume: 45
  start-page: 2965
  year: 2006
  ident: 10.1016/j.cej.2021.128485_b0110
  article-title: On the role of oxygen defects in the catalytic performance of zinc oxide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503068
SSID ssj0006919
Score 2.5466754
Snippet [Display omitted] •Electron-trapped oxygen vacancy was introduced in Ti/TiO2-001 by H2 reduction.•Increasing electron-trapped oxygen vacancy in Ti/TiO2-001...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 128485
SubjectTerms Electrochemical reduction
Electron-trapped oxygen vacancy
Facets
p-Nitrophenol
TiO2
Title Synergistic role of electron-trapped oxygen vacancy and exposed TiO2 [001] facets toward electrochemical p-nitrophenol reduction: Characterization, performance and mechanism
URI https://dx.doi.org/10.1016/j.cej.2021.128485
Volume 411
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvcChglJUoKx86AnV7Cb2xklvaNXVtiuBxEOshFDktcfSIkii3bSCC_-I_9iZPHhI0AOnKImdRJ7JPORvvmHsGzgFQRx54XshCCWnRky1dCKIY4f-OpHOVWiLw2h0pn5P-pMlNmhrYQhW2dj-2qZX1rq50m1Ws1vMZt2TgPa0EoUpDDkyNaEKdqVJy_fvn2AeUVI196DBgka3O5sVxsvCFaaIYbBPVpraKb_mm575m-Ea-9gEivyg_pZ1tgTZJ7b6jD5wgz2c3FHlXkW1zAkmyHPP2742opybogDH89s7VBL-11gypNxkjsNtkS_w1unsKOQX6EIuuTcWygUvKxRt-xDbsAnwQuCfPycKgiy_5nOieyWB_uCDR77nupzzOy-eKhGqd90A1RbPFjef2dnw5-lgJJr2C8LKSJZCeq9sjM7MOB0ZrzyFPt5qwJjO9Gw_1AA9E_UDzMc1Bk6Jc7GWoXSRDsBbkJtsOcsz-MJ4EqBC6NiihbCYkcXGa3w4OIhC0NYGW6zXLnxqG25yapFxnbYgtKsUZZWSrNJaVlts73FKURNz_G-waqWZvtCuFB3H29O23zdth63QWQ2L_MqWy_kf2MXQpZx2Kt3ssA8Hv8ajQzqOj8_H_wA_zPMm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LDtMKx7oN2j1WGnYVpiy7Hs3YpgRfpYdmgKBBgGQ5EoIEVrG4k3tD9q_3GkH1kHtD30aomyIdL8KIj8CPABXYRBEnvpByHKSM2NnGvlZJAkjvA6Vc7V2RaTeHwWHc2Gsw0YdbUwnFbZ-v7Gp9feun3Sb3ezXy4W_dOA77TSiI4wDGTR7BFsMjvVsAeb-4fH48naIcdp3d-D50sW6C436zQvi-d0SgyDz-youaPybfB0A3IOnsOzNlYU-83nbMEG5i_g6Q0GwZfw5_Sai_dqtmXBmYKi8KJrbSOrpSlLdKK4uiY7Eb-NZV8qTO4EXpXFioami--h-EEo8lN4Y7FaiapOpO0WsS2hgCgl_fxLZiHIiwuxZMZX1ukXMVpTPjcVnZ9E-a8YoX7XJXJ58WJ1-QrODr5OR2PZdmCQVsWqksr7yCaEZ8bp2PjIc_TjrUYK68zADkONODDxMKAjuabYKXUu0SpULtYBeovqNfTyIsdtEGlANqETS07C0qEsMV7T4ugwDlFbG-zAoNv4zLb05Nwl4yLr8tDOM9JVxrrKGl3twMe1SNlwc9w3Oeq0mf1nYBlhx91ibx4mtgePx9NvJ9nJ4eT4LTzhkSZL8h30quUvfE-RTDXfbS31L-7B9DQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+role+of+electron-trapped+oxygen+vacancy+and+exposed+TiO2+%5B0+0+1%5D+facets+toward+electrochemical+p-nitrophenol+reduction%3A+Characterization%2C+performance+and+mechanism&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Ni%2C+Congcong&rft.au=Li%2C+Yifan&rft.au=Meng%2C+Xianzhe&rft.au=Liu%2C+Shuliang&rft.date=2021-05-01&rft.issn=1385-8947&rft.volume=411&rft.spage=128485&rft_id=info:doi/10.1016%2Fj.cej.2021.128485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2021_128485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon