Synergistic role of electron-trapped oxygen vacancy and exposed TiO2 [001] facets toward electrochemical p-nitrophenol reduction: Characterization, performance and mechanism
[Display omitted] •Electron-trapped oxygen vacancy was introduced in Ti/TiO2-001 by H2 reduction.•Increasing electron-trapped oxygen vacancy in Ti/TiO2-001 enhanced its reduction activity.•The synergistic role between electron-trapped oxygen vacancy and [001] facets was proposed.•Electron-trapped ox...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 411; p. 128485 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Electron-trapped oxygen vacancy was introduced in Ti/TiO2-001 by H2 reduction.•Increasing electron-trapped oxygen vacancy in Ti/TiO2-001 enhanced its reduction activity.•The synergistic role between electron-trapped oxygen vacancy and [001] facets was proposed.•Electron-trapped oxygen vacancy on TiO2 acted as adsorption site and reactivity sites.
Despite the fact that electron-trapped oxygen vacancy and [001] facets fundamentally affect the reactivity of TiO2, their synergistic role in the electrochemical activity of TiO2 toward p-nitrophenol (p-NP) reduction is still unknown. In this study, defective and [001] facets engineered TiO2 cathode, i.e. Ti/TiO2−x-001, was prepared for p-NP reduction. In comparison to defective Ti/TiO2 cathode with [101] facets (Ti/TiO2−x-101), the combination of the electron-trapped oxygen vacancy and [001] facets exhibited a synergistic effect to improve the electrochemical reduction efficiency of TiO2. Density functional theory calculations verified that the introduction of [001] facets and electron-trapped oxygen vacancy on TiO2 was beneficial to facilitate electron transfer and improve the indirect reduction efficiency for p-NP electrochemical reduction. Moreover, the electron-trapped oxygen vacancy extent of Ti/TiO2−x-001 was modulated by adjusting reduction temperature (250–650 °C). The maximum electron-trapped oxygen vacancy amount of Ti/TiO2−x-001 was attained at the reduction temperature of 350 °C, which resulted in the highest p-NP reduction efficiency of 99.3%, accompanying the p-AP selectivity of 89.5%. In this case, the abundant active and adsorption sites were provided on the surface of Ti/TiO2−x-001 prepared at 350 °C, in which p-NP adsorption coefficient and electrochemical surface area increased to 1.01 L mg−1 and 25 cm2, respectively. Generally, this work provides a paradigm for the design of efficient non-metallic catalyst for nitroaromatic chemicals reduction. |
---|---|
AbstractList | [Display omitted]
•Electron-trapped oxygen vacancy was introduced in Ti/TiO2-001 by H2 reduction.•Increasing electron-trapped oxygen vacancy in Ti/TiO2-001 enhanced its reduction activity.•The synergistic role between electron-trapped oxygen vacancy and [001] facets was proposed.•Electron-trapped oxygen vacancy on TiO2 acted as adsorption site and reactivity sites.
Despite the fact that electron-trapped oxygen vacancy and [001] facets fundamentally affect the reactivity of TiO2, their synergistic role in the electrochemical activity of TiO2 toward p-nitrophenol (p-NP) reduction is still unknown. In this study, defective and [001] facets engineered TiO2 cathode, i.e. Ti/TiO2−x-001, was prepared for p-NP reduction. In comparison to defective Ti/TiO2 cathode with [101] facets (Ti/TiO2−x-101), the combination of the electron-trapped oxygen vacancy and [001] facets exhibited a synergistic effect to improve the electrochemical reduction efficiency of TiO2. Density functional theory calculations verified that the introduction of [001] facets and electron-trapped oxygen vacancy on TiO2 was beneficial to facilitate electron transfer and improve the indirect reduction efficiency for p-NP electrochemical reduction. Moreover, the electron-trapped oxygen vacancy extent of Ti/TiO2−x-001 was modulated by adjusting reduction temperature (250–650 °C). The maximum electron-trapped oxygen vacancy amount of Ti/TiO2−x-001 was attained at the reduction temperature of 350 °C, which resulted in the highest p-NP reduction efficiency of 99.3%, accompanying the p-AP selectivity of 89.5%. In this case, the abundant active and adsorption sites were provided on the surface of Ti/TiO2−x-001 prepared at 350 °C, in which p-NP adsorption coefficient and electrochemical surface area increased to 1.01 L mg−1 and 25 cm2, respectively. Generally, this work provides a paradigm for the design of efficient non-metallic catalyst for nitroaromatic chemicals reduction. |
ArticleNumber | 128485 |
Author | Liu, Shuliang Meng, Xianzhe Li, Yifan Ni, Congcong Guan, Jing Jiang, Bo Luo, Siyi |
Author_xml | – sequence: 1 givenname: Congcong surname: Ni fullname: Ni, Congcong – sequence: 2 givenname: Yifan surname: Li fullname: Li, Yifan – sequence: 3 givenname: Xianzhe surname: Meng fullname: Meng, Xianzhe – sequence: 4 givenname: Shuliang surname: Liu fullname: Liu, Shuliang – sequence: 5 givenname: Siyi surname: Luo fullname: Luo, Siyi – sequence: 6 givenname: Jing surname: Guan fullname: Guan, Jing – sequence: 7 givenname: Bo surname: Jiang fullname: Jiang, Bo email: bjiang86upc@163.com |
BookMark | eNp9kMFu1DAQhi1UJNrCA3DzA5DFjjdxAie0AopUqQfKCSFrGI-7XiV2ZJu2yzvxjvV24cKhJ9tjffPPfGfsJMRAjL2WYiWF7N_uVki7VStauZLtsB66Z-xUDlo1qpXtSb2roWuGca1fsLOcd0KIfpTjKfvzdR8o3fhcPPIUJ-LRcZoIS4qhKQmWhSyP9_sbCvwWEALuOQTL6X6JuX5d-6uWfxdC_uAOkErmJd5Bsv-a4JZmjzDxpQm-vpcthTjxRPYXFh_DO77ZQgIslPxvOFTe8IWSi2muWfSYNRNuIfg8v2TPHUyZXv09z9m3Tx-vNxfN5dXnL5sPlw2qXpVGObfGodcDWN2DW7tOdqNDTZ0YQGDXaiIBfSfpp9JdL0Zrq6pW2V5LckjqnOljX0wx50TOoC-Pw1UjfjJSmIN1szPVujlYN0frlZT_kUvyM6T9k8z7I0N1pVtPyWT0VJe3PlWHxkb_BP0AiRehRw |
CitedBy_id | crossref_primary_10_1016_j_jcis_2021_12_118 crossref_primary_10_1016_j_jorganchem_2024_123492 crossref_primary_10_1016_j_colsurfa_2021_127058 crossref_primary_10_1016_j_scitotenv_2021_145751 crossref_primary_10_1016_j_ccr_2022_214811 crossref_primary_10_1016_j_cej_2023_143448 crossref_primary_10_1016_j_jcis_2023_04_085 crossref_primary_10_1021_acs_est_0c08552 crossref_primary_10_3390_bios12080592 crossref_primary_10_1021_acs_langmuir_2c02111 crossref_primary_10_1007_s13399_022_03652_1 crossref_primary_10_1016_j_mcat_2021_111609 crossref_primary_10_1016_j_mtcomm_2022_105187 crossref_primary_10_1016_j_cclet_2024_110514 crossref_primary_10_1016_j_jcis_2022_07_173 crossref_primary_10_1021_acsaem_2c03553 crossref_primary_10_1016_j_jece_2021_105524 crossref_primary_10_1002_smtd_202301307 crossref_primary_10_1002_cctc_202301647 crossref_primary_10_1021_acsnano_1c08428 crossref_primary_10_1039_D1CY01717A crossref_primary_10_1149_1945_7111_ac0017 crossref_primary_10_1016_j_ijhydene_2021_10_209 crossref_primary_10_1021_accountsmr_4c00377 crossref_primary_10_1016_j_apcatb_2021_119950 crossref_primary_10_1016_j_apsusc_2023_158780 crossref_primary_10_1002_adem_202400122 crossref_primary_10_1021_acsaem_1c01412 crossref_primary_10_1039_D1NJ01591E crossref_primary_10_1016_j_nanoen_2021_106386 crossref_primary_10_1016_j_envres_2023_116867 crossref_primary_10_1016_j_jallcom_2023_171193 crossref_primary_10_1002_smll_202104507 crossref_primary_10_1016_j_apsusc_2023_157587 crossref_primary_10_1016_j_jallcom_2023_169915 crossref_primary_10_1016_j_seppur_2021_119378 crossref_primary_10_1016_j_mtsust_2023_100547 crossref_primary_10_1016_j_chemosphere_2022_135400 crossref_primary_10_1002_celc_202300789 crossref_primary_10_1016_j_cej_2024_153751 crossref_primary_10_1021_acssuschemeng_1c04708 crossref_primary_10_1016_j_seppur_2024_130087 crossref_primary_10_1039_D3RA02891G crossref_primary_10_1016_j_ijhydene_2024_11_338 crossref_primary_10_1016_j_seppur_2021_118895 crossref_primary_10_1002_cssc_202101218 crossref_primary_10_1016_j_cej_2021_130474 crossref_primary_10_1016_j_jtice_2021_06_039 crossref_primary_10_1016_j_jece_2022_108882 crossref_primary_10_1016_j_jpowsour_2022_232169 crossref_primary_10_1016_j_colsurfa_2022_129470 crossref_primary_10_1039_D0DT03966G crossref_primary_10_1021_acsaem_1c03978 |
Cites_doi | 10.1021/acscatal.9b05260 10.1002/ange.202009757 10.1063/1.1329672 10.1016/j.cej.2019.123495 10.1016/j.chemosphere.2014.03.122 10.1021/acs.est.9b01449 10.1016/j.jcat.2012.10.014 10.1021/cr0500535 10.1080/00268976.2017.1371801 10.1016/j.jelechem.2016.10.047 10.1016/j.cej.2009.09.042 10.1016/j.watres.2014.08.001 10.1016/j.cej.2019.123034 10.1016/j.cej.2018.11.099 10.1016/S0045-6535(02)00486-1 10.1002/ange.202009155 10.1016/j.cej.2016.04.029 10.1016/j.jssc.2003.11.027 10.1093/nsr/nwz146 10.1016/j.apcatb.2020.119364 10.1002/adfm.201002535 10.1016/j.apcatb.2019.118229 10.1103/PhysRevLett.87.266105 10.1021/acsenergylett.7b00219 10.1103/PhysRevB.13.5188 10.1016/j.apcatb.2019.05.016 10.1021/acs.jpcc.5b02430 10.1016/j.apcatb.2019.117902 10.1016/j.colsurfa.2015.11.053 10.1021/am302631b 10.1039/C9CC09296J 10.1038/s41467-019-10888-5 10.1021/acscatal.5b02098 10.1021/acs.est.6b00730 10.1002/cphc.200300835 10.1039/c3nr00476g 10.1016/j.scitotenv.2020.136982 10.1021/acssuschemeng.8b05332 10.1021/acscatal.5b02614 10.1016/j.apcatb.2017.01.025 10.1021/acscatal.0c01783 10.1149/1945-7111/abc30b 10.1021/cr400624r 10.1038/nmat2241 10.1021/am5085447 10.1021/acscatal.7b04340 10.1016/j.jcis.2020.04.092 10.1002/anie.200503068 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.128485 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_128485 S138589472100084X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c363t-3ff4c8678ad76af4f5159fc7e508a0c527ee0a651eb375609dd87323d671efce3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 04:27:17 EDT 2025 Thu Apr 24 23:05:49 EDT 2025 Fri Feb 23 02:42:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrochemical reduction p-Nitrophenol Facets Electron-trapped oxygen vacancy TiO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-3ff4c8678ad76af4f5159fc7e508a0c527ee0a651eb375609dd87323d671efce3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2021_128485 crossref_primary_10_1016_j_cej_2021_128485 elsevier_sciencedirect_doi_10_1016_j_cej_2021_128485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lim, Yang, Hoffmann (b0200) 2019; 53 Wang, Jia, Pan, Xu, Liu, Cui, Guo, Sun (b0060) 2018; 7 Polarz, Strunk, Ischenko, Van den Berg, Hinrichsen, Muhler, Driess (b0110) 2006; 45 Liu, Meng, Li, Gong, Wang, Jiang (b0145) 2020; 167 Liu, Han, Li, Chong, Zhang (b0230) 2020; 132 Cao, Chen, Zang, Xu, Zhong, Luo, Xu, Zheng (b0185) 2019; 10 Han, Yan (b0035) 2014; 66 Jia, Wang, Wang, Ling, Yu, Zhang (b0065) 2020; 10 Wang, Fan (b0125) 2018; 116 Henkelman, Uberuaga, Jónsson (b0165) 2000; 113 Liu, Zhang, Pei, Yu (b0070) 2016; 50 Xu, Ouyang, Li, Kako, Ye (b0100) 2013; 5 Chen, Li, Liu, Tu, Zhang, Han, Wang (b0005) 2014; 113 Ji, Kim, Park, Kim, Choi (b0135) 2020; 10 Qi, Guo, Xu, Gao, Yue, Jiang, Qian, Wang, Zhang (b0030) 2020; 715 Jiang, Niu, Li, Oturan, Oturan (b0190) 2020; 119002 Hasan, Cho, Chon, Yoon, Song (b0215) 2016; 298 Gao, Jiang, Ni, Qi, Zhang, Oturan, Oturan (b0020) 2019; 254 Xing, Fang, Nasir, Ma, Zhang, Anpo (b0175) 2013; 297 Zhang, Li, Jin, Yang, Zhang, Du, Zhang (b0205) 2004; 177 Zhao, Liu, Wang, Chong, Zhang (b0045) 2020 Gao, Jiang, Ni, Qi, Bi (b0140) 2020; 382 Yang, Kao, Liu, Sun, Yu, Guo, Liou, Hoffmann (b0210) 2018; 8 Pradhan, Gogate (b0010) 2010; 156 Chen, Yang, Cai, Wang, Miao, Zhang, Chen, Liu (b0130) 2017; 2 Zhang, Tang, Zhao (b0055) 2020; 279 Niu, Gu, Li, Zhang, Zhao (b0080) 2020; 261 Liu, Jiang, Zhao, Chen, Cheng, Yang, Li (b0095) 2016; 6 Liu, Wu, Wang, Yu, Jiang, Chen (b0250) 2016; 490 Chen, Mao (b0050) 2007; 107 Ma, Li, Feng, Hu, Wang, Liu (b0085) 2016; 782 Swaminathan, Subbiah, Singaram (b0225) 2016; 6 Pan, Yang, Fu, Zhang, Xu (b0120) 2013; 5 Liu, Chen (b0220) 2014; 114 Wu, Liu, Wang, Lu, Zhang (b0235) 2020; 132 Yang, Chen, Cui, Luo, Liang, Yang, Liu, Wang, Luo (b0025) 2019; 359 Chong, Liu, Huang, Huang, Zhang (b0040) 2020; 7 Selloni (b0090) 2008; 7 Cai, Zhou, Pan, Du, Lu (b0170) 2019; 257 Ni, Wang, Guan, Jiang, Meng, Luo, Guo, Wang (b0195) 2020; 391 Han, Niu, Qin, Gu, Zhang, Zhao (b0015) 2020; 56 Liu, Sun, Su, Tang, Xu, Akram, Jiang (b0075) 2020; 575 Pacchioni (b0105) 2003; 4 Su, Yang, Na, Fan, Li, Wei, Yang, Cao (b0245) 2015; 7 Monkhorst, Pack (b0150) 1976; 13 Li, Zhang, Guan, Li, He, Yang (b0240) 2017; 206 Li, Guo, Robertson (b0160) 2015; 119 Liu, Ma, Li, Li, Wu, Bao (b0115) 2003; 50 Zhou, Sun, Pan, Tian, Jiang, Ren, Tian, Fu (b0180) 2011; 21 Lazzeri, Selloni (b0155) 2001; 87 Yang (10.1016/j.cej.2021.128485_b0210) 2018; 8 Monkhorst (10.1016/j.cej.2021.128485_b0150) 1976; 13 Xu (10.1016/j.cej.2021.128485_b0100) 2013; 5 Liu (10.1016/j.cej.2021.128485_b0075) 2020; 575 Su (10.1016/j.cej.2021.128485_b0245) 2015; 7 Li (10.1016/j.cej.2021.128485_b0160) 2015; 119 Wang (10.1016/j.cej.2021.128485_b0060) 2018; 7 Polarz (10.1016/j.cej.2021.128485_b0110) 2006; 45 Pan (10.1016/j.cej.2021.128485_b0120) 2013; 5 Chen (10.1016/j.cej.2021.128485_b0130) 2017; 2 Gao (10.1016/j.cej.2021.128485_b0140) 2020; 382 Liu (10.1016/j.cej.2021.128485_b0095) 2016; 6 Han (10.1016/j.cej.2021.128485_b0035) 2014; 66 Ji (10.1016/j.cej.2021.128485_b0135) 2020; 10 Jia (10.1016/j.cej.2021.128485_b0065) 2020; 10 Liu (10.1016/j.cej.2021.128485_b0230) 2020; 132 Cai (10.1016/j.cej.2021.128485_b0170) 2019; 257 Qi (10.1016/j.cej.2021.128485_b0030) 2020; 715 Selloni (10.1016/j.cej.2021.128485_b0090) 2008; 7 Liu (10.1016/j.cej.2021.128485_b0220) 2014; 114 Wu (10.1016/j.cej.2021.128485_b0235) 2020; 132 Liu (10.1016/j.cej.2021.128485_b0250) 2016; 490 Zhao (10.1016/j.cej.2021.128485_b0045) 2020 Pradhan (10.1016/j.cej.2021.128485_b0010) 2010; 156 Gao (10.1016/j.cej.2021.128485_b0020) 2019; 254 Henkelman (10.1016/j.cej.2021.128485_b0165) 2000; 113 Ni (10.1016/j.cej.2021.128485_b0195) 2020; 391 Niu (10.1016/j.cej.2021.128485_b0080) 2020; 261 Wang (10.1016/j.cej.2021.128485_b0125) 2018; 116 Liu (10.1016/j.cej.2021.128485_b0070) 2016; 50 Pacchioni (10.1016/j.cej.2021.128485_b0105) 2003; 4 Zhang (10.1016/j.cej.2021.128485_b0055) 2020; 279 Zhou (10.1016/j.cej.2021.128485_b0180) 2011; 21 Zhang (10.1016/j.cej.2021.128485_b0205) 2004; 177 Yang (10.1016/j.cej.2021.128485_b0025) 2019; 359 Ma (10.1016/j.cej.2021.128485_b0085) 2016; 782 Lim (10.1016/j.cej.2021.128485_b0200) 2019; 53 Chong (10.1016/j.cej.2021.128485_b0040) 2020; 7 Jiang (10.1016/j.cej.2021.128485_b0190) 2020; 119002 Li (10.1016/j.cej.2021.128485_b0240) 2017; 206 Han (10.1016/j.cej.2021.128485_b0015) 2020; 56 Liu (10.1016/j.cej.2021.128485_b0145) 2020; 167 Hasan (10.1016/j.cej.2021.128485_b0215) 2016; 298 Xing (10.1016/j.cej.2021.128485_b0175) 2013; 297 Cao (10.1016/j.cej.2021.128485_b0185) 2019; 10 Chen (10.1016/j.cej.2021.128485_b0005) 2014; 113 Swaminathan (10.1016/j.cej.2021.128485_b0225) 2016; 6 Liu (10.1016/j.cej.2021.128485_b0115) 2003; 50 Lazzeri (10.1016/j.cej.2021.128485_b0155) 2001; 87 Chen (10.1016/j.cej.2021.128485_b0050) 2007; 107 |
References_xml | – volume: 6 start-page: 2222 year: 2016 end-page: 2229 ident: b0225 article-title: Defect-rich metallic titania (TiO publication-title: ACS Catal. – volume: 8 start-page: 4278 year: 2018 end-page: 4287 ident: b0210 article-title: Cobalt-doped black TiO publication-title: ACS Catal. – volume: 50 start-page: 5234 year: 2016 end-page: 5242 ident: b0070 article-title: Efficient electrochemical reduction of nitrobenzene by defect-engineered TiO publication-title: Environ. Sci. Technol. – volume: 257 year: 2019 ident: b0170 article-title: Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO publication-title: Appl. Catal. B: Environ. – volume: 7 start-page: 117 year: 2018 end-page: 122 ident: b0060 article-title: Boron-doped TiO publication-title: ACS Sustain. Chem. Eng. – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: b0165 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. – volume: 5 start-page: 3601 year: 2013 end-page: 3614 ident: b0120 article-title: Defective TiO publication-title: Nanoscale – volume: 490 start-page: 207 year: 2016 end-page: 214 ident: b0250 article-title: Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol publication-title: Colloid Surf. A – volume: 359 start-page: 894 year: 2019 end-page: 901 ident: b0025 article-title: Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol publication-title: Chem. Eng. J. – volume: 87 year: 2001 ident: b0155 article-title: Stress-driven reconstruction of an oxide surface: the anatase TiO publication-title: Phys. Rev. Lett. – volume: 10 start-page: 10773 year: 2020 end-page: 10783 ident: b0135 article-title: Underestimation of platinum electrocatalysis induced by carbon monoxide evolved from graphite counter electrodes publication-title: ACS Catal. – volume: 119 start-page: 18160 year: 2015 end-page: 18166 ident: b0160 article-title: Calculation of TiO publication-title: J. Phys. Chem. C – volume: 66 start-page: 149 year: 2014 end-page: 159 ident: b0035 article-title: Bimetallic nickel-iron nanoparticles for groundwater decontamination: effect of groundwater constituents on surface deactivation publication-title: Water Res. – volume: 132 start-page: 21356 year: 2020 end-page: 21361 ident: b0235 article-title: Selective transfer semihydrogenation of alkynes with H publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1097 year: 2016 end-page: 1108 ident: b0095 article-title: Engineering coexposed 0°0°1 and 1°0°1 facets in oxygen-deficient TiO publication-title: ACS Catal. – volume: 177 start-page: 1365 year: 2004 end-page: 1371 ident: b0205 article-title: Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid publication-title: J. Solid State Chem. – start-page: 507 year: 2020 end-page: 515 ident: b0045 article-title: Sulfur vacancy-promoted highly selective electrosynthesis of functionalizedaminoarenes via transfer hydrogenation of nitroarenes with H publication-title: CCS Chem. – volume: 261 year: 2020 ident: b0080 article-title: 3D CQDs-{0°0°1} TiO publication-title: Appl. Catal. B: Environ. – volume: 107 start-page: 2891 year: 2007 end-page: 2959 ident: b0050 article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications publication-title: Chem. Rev. – volume: 254 start-page: 391 year: 2019 end-page: 402 ident: b0020 article-title: Non-precious Co publication-title: Appl. Catal. B: Environ. – volume: 114 start-page: 9890 year: 2014 end-page: 9918 ident: b0220 article-title: Titanium dioxide nanomaterials: self-structural modifications publication-title: Chem. Rev. – volume: 298 start-page: 183 year: 2016 end-page: 190 ident: b0215 article-title: Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks publication-title: Chem. Eng. J. – volume: 116 start-page: 171 year: 2018 end-page: 178 ident: b0125 article-title: The location of excess electrons on H publication-title: Mol. Phys. – volume: 7 start-page: 3754 year: 2015 end-page: 3763 ident: b0245 article-title: An insight into the role of oxygen vacancy in hydrogenated TiO publication-title: ACS Appl. Mater. Interfaces – volume: 782 start-page: 270 year: 2016 end-page: 277 ident: b0085 article-title: Development and reaction mechanism of efficient nano titanium electrode: reconstructed nanostructure and enhanced nitrate removal efficiency publication-title: J. Electroanal. Chem. – volume: 391 year: 2020 ident: b0195 article-title: Self-powered peroxi-coagulation for the efficient removal of p-arsanilic acid: pH-dependent shift in the contributions of peroxidation and electrocoagulation publication-title: Chem. Eng. J. – volume: 382 year: 2020 ident: b0140 article-title: Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co publication-title: Chem. Eng. J. – volume: 10 start-page: 3533 year: 2020 end-page: 3540 ident: b0065 article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO publication-title: ACS Catal. – volume: 50 start-page: 39 year: 2003 end-page: 46 ident: b0115 article-title: The enhancement of TiO publication-title: Chemosphere – volume: 575 start-page: 254 year: 2020 end-page: 264 ident: b0075 article-title: Highly efficient and mild electrochemical degradation of bentazon by nano-diamond doped PbO publication-title: J. Colloid Interfaces Sci. – volume: 7 start-page: 613 year: 2008 end-page: 615 ident: b0090 article-title: Anatase shows its reactive side publication-title: Nat. Mater. – volume: 21 start-page: 1922 year: 2011 end-page: 1930 ident: b0180 article-title: Well-ordered large-pore mesoporous anatase TiO publication-title: Adv. Funct. Mater. – volume: 56 start-page: 1337 year: 2020 end-page: 1340 ident: b0015 article-title: In situ growth of M-{0°0°1} TiO publication-title: Chem. Commun. – volume: 715 year: 2020 ident: b0030 article-title: Co/Fe and Co/Al layered double oxides ozone catalyst for the deep degradation of aniline: preparation, characterization and kinetic model publication-title: Sci. Total Environ. – volume: 5 start-page: 1348 year: 2013 end-page: 1354 ident: b0100 article-title: High-active anatase TiO publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 6972 year: 2019 end-page: 6980 ident: b0200 article-title: Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO publication-title: Environ. Sci. Technol. – volume: 206 start-page: 300 year: 2017 end-page: 307 ident: b0240 article-title: Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO publication-title: Appl. Catal. B: Environ. – volume: 4 start-page: 1041 year: 2003 end-page: 1047 ident: b0105 article-title: Oxygen vacancy: the invisible agent on oxide surfaces publication-title: ChemPhysChem – volume: 119002 year: 2020 ident: b0190 article-title: Outstanding performance of electro-Fenton process for efficient decontamination of Cr (III) complexes via alkaline precipitation with no accumulation of Cr (VI): Important roles of iron species publication-title: Appl. Catal. B: Environ. – volume: 13 start-page: 5188 year: 1976 ident: b0150 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 113 start-page: 48 year: 2014 end-page: 55 ident: b0005 article-title: Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO publication-title: Chemosphere – volume: 167 year: 2020 ident: b0145 article-title: Electrochemical degradation of pharmaceuticals using Ti/SnO publication-title: J. Electrochem. Soc. – volume: 279 year: 2020 ident: b0055 article-title: Selective photoelectrocatalytic removal of dimethyl phthalate on high-quality expressed molecular imprints decorated specific facet of single crystalline TiO publication-title: Appl. Catal. B: Environ. – volume: 132 start-page: 18685 year: 2020 end-page: 18689 ident: b0230 article-title: Electrocatalytic deuteration of halides with D publication-title: Angew. Chem. Int. Ed. – volume: 297 start-page: 236 year: 2013 end-page: 243 ident: b0175 article-title: Self-doped Ti publication-title: J. Catal. – volume: 45 start-page: 2965 year: 2006 end-page: 2969 ident: b0110 article-title: On the role of oxygen defects in the catalytic performance of zinc oxide publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 1 year: 2019 end-page: 12 ident: b0185 article-title: Doping strain induced bi-Ti publication-title: Nat. Commun. – volume: 156 start-page: 77 year: 2010 end-page: 82 ident: b0010 article-title: Removal of p-nitrophenol using hydrodynamic cavitation and Fenton chemistry at pilot scale operation publication-title: Chem. Eng. J. – volume: 7 start-page: 285 year: 2020 end-page: 295 ident: b0040 article-title: Potential-tuned selective electrosynthesis of azoxy-, azo-and amino-aromatics over a CoP nanosheet cathode publication-title: Natl. Sci. Rev. – volume: 2 start-page: 1070 year: 2017 end-page: 1075 ident: b0130 article-title: Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction publication-title: ACS Energy Lett. – volume: 10 start-page: 3533 year: 2020 ident: 10.1016/j.cej.2021.128485_b0065 article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05260 – volume: 132 start-page: 21356 year: 2020 ident: 10.1016/j.cej.2021.128485_b0235 article-title: Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P athode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202009757 – volume: 113 start-page: 9901 year: 2000 ident: 10.1016/j.cej.2021.128485_b0165 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 391 year: 2020 ident: 10.1016/j.cej.2021.128485_b0195 article-title: Self-powered peroxi-coagulation for the efficient removal of p-arsanilic acid: pH-dependent shift in the contributions of peroxidation and electrocoagulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123495 – volume: 113 start-page: 48 year: 2014 ident: 10.1016/j.cej.2021.128485_b0005 article-title: Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.03.122 – volume: 53 start-page: 6972 year: 2019 ident: 10.1016/j.cej.2021.128485_b0200 article-title: Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO2 nanotubes for the removal of organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01449 – volume: 297 start-page: 236 year: 2013 ident: 10.1016/j.cej.2021.128485_b0175 article-title: Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis publication-title: J. Catal. doi: 10.1016/j.jcat.2012.10.014 – volume: 107 start-page: 2891 year: 2007 ident: 10.1016/j.cej.2021.128485_b0050 article-title: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications publication-title: Chem. Rev. doi: 10.1021/cr0500535 – volume: 116 start-page: 171 year: 2018 ident: 10.1016/j.cej.2021.128485_b0125 article-title: The location of excess electrons on H2O/TiO2 (1°1°0) surface and its role in the surface reactions publication-title: Mol. Phys. doi: 10.1080/00268976.2017.1371801 – volume: 782 start-page: 270 year: 2016 ident: 10.1016/j.cej.2021.128485_b0085 article-title: Development and reaction mechanism of efficient nano titanium electrode: reconstructed nanostructure and enhanced nitrate removal efficiency publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.10.047 – volume: 156 start-page: 77 year: 2010 ident: 10.1016/j.cej.2021.128485_b0010 article-title: Removal of p-nitrophenol using hydrodynamic cavitation and Fenton chemistry at pilot scale operation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.09.042 – volume: 119002 year: 2020 ident: 10.1016/j.cej.2021.128485_b0190 article-title: Outstanding performance of electro-Fenton process for efficient decontamination of Cr (III) complexes via alkaline precipitation with no accumulation of Cr (VI): Important roles of iron species publication-title: Appl. Catal. B: Environ. – volume: 66 start-page: 149 year: 2014 ident: 10.1016/j.cej.2021.128485_b0035 article-title: Bimetallic nickel-iron nanoparticles for groundwater decontamination: effect of groundwater constituents on surface deactivation publication-title: Water Res. doi: 10.1016/j.watres.2014.08.001 – volume: 382 year: 2020 ident: 10.1016/j.cej.2021.128485_b0140 article-title: Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123034 – volume: 359 start-page: 894 year: 2019 ident: 10.1016/j.cej.2021.128485_b0025 article-title: Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.099 – volume: 50 start-page: 39 year: 2003 ident: 10.1016/j.cej.2021.128485_b0115 article-title: The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00486-1 – volume: 132 start-page: 18685 year: 2020 ident: 10.1016/j.cej.2021.128485_b0230 article-title: Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202009155 – volume: 298 start-page: 183 year: 2016 ident: 10.1016/j.cej.2021.128485_b0215 article-title: Reduction of p-nitrophenol by magnetic Co-carbon composites derived from metal organic frameworks publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.029 – volume: 177 start-page: 1365 year: 2004 ident: 10.1016/j.cej.2021.128485_b0205 article-title: Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2003.11.027 – volume: 7 start-page: 285 year: 2020 ident: 10.1016/j.cej.2021.128485_b0040 article-title: Potential-tuned selective electrosynthesis of azoxy-, azo-and amino-aromatics over a CoP nanosheet cathode publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwz146 – volume: 279 year: 2020 ident: 10.1016/j.cej.2021.128485_b0055 article-title: Selective photoelectrocatalytic removal of dimethyl phthalate on high-quality expressed molecular imprints decorated specific facet of single crystalline TiO2 photoanode publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119364 – volume: 21 start-page: 1922 year: 2011 ident: 10.1016/j.cej.2021.128485_b0180 article-title: Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: preparation, characterization, and photocatalytic performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002535 – volume: 261 year: 2020 ident: 10.1016/j.cej.2021.128485_b0080 article-title: 3D CQDs-{0°0°1} TiO2/Ti photoelectrode with dominant 0°0°1 facets: efficient visible-light-driven photoelectrocatalytic oxidation of organic pollutants and mechanism insight publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.118229 – volume: 87 year: 2001 ident: 10.1016/j.cej.2021.128485_b0155 article-title: Stress-driven reconstruction of an oxide surface: the anatase TiO2 (0°0°1)-(1 × 4) surface publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.266105 – volume: 2 start-page: 1070 year: 2017 ident: 10.1016/j.cej.2021.128485_b0130 article-title: Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00219 – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.cej.2021.128485_b0150 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – start-page: 507 year: 2020 ident: 10.1016/j.cej.2021.128485_b0045 article-title: Sulfur vacancy-promoted highly selective electrosynthesis of functionalizedaminoarenes via transfer hydrogenation of nitroarenes with H2O over a Co3S4−x nanosheet cathode publication-title: CCS Chem. – volume: 254 start-page: 391 year: 2019 ident: 10.1016/j.cej.2021.128485_b0020 article-title: Non-precious Co3O4-TiO2/Ti cathode based electrocatalytic nitrate reduction: preparation, performance and mechanism publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.05.016 – volume: 119 start-page: 18160 year: 2015 ident: 10.1016/j.cej.2021.128485_b0160 article-title: Calculation of TiO2 surface and subsurface oxygen vacancy by the screened exchange functional publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b02430 – volume: 257 year: 2019 ident: 10.1016/j.cej.2021.128485_b0170 article-title: Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.117902 – volume: 490 start-page: 207 year: 2016 ident: 10.1016/j.cej.2021.128485_b0250 article-title: Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol publication-title: Colloid Surf. A doi: 10.1016/j.colsurfa.2015.11.053 – volume: 5 start-page: 1348 year: 2013 ident: 10.1016/j.cej.2021.128485_b0100 article-title: High-active anatase TiO2 nanosheets exposed with 95% 1°0°0 facets toward efficient H2 evolution and CO2 photoreduction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302631b – volume: 56 start-page: 1337 year: 2020 ident: 10.1016/j.cej.2021.128485_b0015 article-title: In situ growth of M-{0°0°1} TiO2/Ti photoelectrodes: synergetic dominant 0°0°1 facets and ratio-optimal surface junctions for the effective oxidation of environmental pollutants publication-title: Chem. Commun. doi: 10.1039/C9CC09296J – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.cej.2021.128485_b0185 article-title: Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation publication-title: Nat. Commun. doi: 10.1038/s41467-019-10888-5 – volume: 6 start-page: 1097 year: 2016 ident: 10.1016/j.cej.2021.128485_b0095 article-title: Engineering coexposed 0°0°1 and 1°0°1 facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light publication-title: ACS Catal. doi: 10.1021/acscatal.5b02098 – volume: 50 start-page: 5234 year: 2016 ident: 10.1016/j.cej.2021.128485_b0070 article-title: Efficient electrochemical reduction of nitrobenzene by defect-engineered TiO2–x single crystals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00730 – volume: 4 start-page: 1041 year: 2003 ident: 10.1016/j.cej.2021.128485_b0105 article-title: Oxygen vacancy: the invisible agent on oxide surfaces publication-title: ChemPhysChem doi: 10.1002/cphc.200300835 – volume: 5 start-page: 3601 year: 2013 ident: 10.1016/j.cej.2021.128485_b0120 article-title: Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications publication-title: Nanoscale doi: 10.1039/c3nr00476g – volume: 715 year: 2020 ident: 10.1016/j.cej.2021.128485_b0030 article-title: Co/Fe and Co/Al layered double oxides ozone catalyst for the deep degradation of aniline: preparation, characterization and kinetic model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136982 – volume: 7 start-page: 117 year: 2018 ident: 10.1016/j.cej.2021.128485_b0060 article-title: Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b05332 – volume: 6 start-page: 2222 year: 2016 ident: 10.1016/j.cej.2021.128485_b0225 article-title: Defect-rich metallic titania (TiO1.23) – an efficient hydrogen evolution catalyst for electrochemical water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.5b02614 – volume: 206 start-page: 300 year: 2017 ident: 10.1016/j.cej.2021.128485_b0240 article-title: Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.01.025 – volume: 10 start-page: 10773 year: 2020 ident: 10.1016/j.cej.2021.128485_b0135 article-title: Underestimation of platinum electrocatalysis induced by carbon monoxide evolved from graphite counter electrodes publication-title: ACS Catal. doi: 10.1021/acscatal.0c01783 – volume: 167 year: 2020 ident: 10.1016/j.cej.2021.128485_b0145 article-title: Electrochemical degradation of pharmaceuticals using Ti/SnO2-Sb2O5-IrO2-RuO2 anode: electrode properties, performance and contributions of diverse reactive species publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abc30b – volume: 114 start-page: 9890 year: 2014 ident: 10.1016/j.cej.2021.128485_b0220 article-title: Titanium dioxide nanomaterials: self-structural modifications publication-title: Chem. Rev. doi: 10.1021/cr400624r – volume: 7 start-page: 613 year: 2008 ident: 10.1016/j.cej.2021.128485_b0090 article-title: Anatase shows its reactive side publication-title: Nat. Mater. doi: 10.1038/nmat2241 – volume: 7 start-page: 3754 year: 2015 ident: 10.1016/j.cej.2021.128485_b0245 article-title: An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cell publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5085447 – volume: 8 start-page: 4278 year: 2018 ident: 10.1016/j.cej.2021.128485_b0210 article-title: Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment publication-title: ACS Catal. doi: 10.1021/acscatal.7b04340 – volume: 575 start-page: 254 year: 2020 ident: 10.1016/j.cej.2021.128485_b0075 article-title: Highly efficient and mild electrochemical degradation of bentazon by nano-diamond doped PbO2 anode with reduced Ti nanotube as the interlayer publication-title: J. Colloid Interfaces Sci. doi: 10.1016/j.jcis.2020.04.092 – volume: 45 start-page: 2965 year: 2006 ident: 10.1016/j.cej.2021.128485_b0110 article-title: On the role of oxygen defects in the catalytic performance of zinc oxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503068 |
SSID | ssj0006919 |
Score | 2.5466754 |
Snippet | [Display omitted]
•Electron-trapped oxygen vacancy was introduced in Ti/TiO2-001 by H2 reduction.•Increasing electron-trapped oxygen vacancy in Ti/TiO2-001... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 128485 |
SubjectTerms | Electrochemical reduction Electron-trapped oxygen vacancy Facets p-Nitrophenol TiO2 |
Title | Synergistic role of electron-trapped oxygen vacancy and exposed TiO2 [001] facets toward electrochemical p-nitrophenol reduction: Characterization, performance and mechanism |
URI | https://dx.doi.org/10.1016/j.cej.2021.128485 |
Volume | 411 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvcChglJUoKx86AnV7Cb2xklvaNXVtiuBxEOshFDktcfSIkii3bSCC_-I_9iZPHhI0AOnKImdRJ7JPORvvmHsGzgFQRx54XshCCWnRky1dCKIY4f-OpHOVWiLw2h0pn5P-pMlNmhrYQhW2dj-2qZX1rq50m1Ws1vMZt2TgPa0EoUpDDkyNaEKdqVJy_fvn2AeUVI196DBgka3O5sVxsvCFaaIYbBPVpraKb_mm575m-Ea-9gEivyg_pZ1tgTZJ7b6jD5wgz2c3FHlXkW1zAkmyHPP2742opybogDH89s7VBL-11gypNxkjsNtkS_w1unsKOQX6EIuuTcWygUvKxRt-xDbsAnwQuCfPycKgiy_5nOieyWB_uCDR77nupzzOy-eKhGqd90A1RbPFjef2dnw5-lgJJr2C8LKSJZCeq9sjM7MOB0ZrzyFPt5qwJjO9Gw_1AA9E_UDzMc1Bk6Jc7GWoXSRDsBbkJtsOcsz-MJ4EqBC6NiihbCYkcXGa3w4OIhC0NYGW6zXLnxqG25yapFxnbYgtKsUZZWSrNJaVlts73FKURNz_G-waqWZvtCuFB3H29O23zdth63QWQ2L_MqWy_kf2MXQpZx2Kt3ssA8Hv8ajQzqOj8_H_wA_zPMm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LDtMKx7oN2j1WGnYVpiy7Hs3YpgRfpYdmgKBBgGQ5EoIEVrG4k3tD9q_3GkH1kHtD30aomyIdL8KIj8CPABXYRBEnvpByHKSM2NnGvlZJAkjvA6Vc7V2RaTeHwWHc2Gsw0YdbUwnFbZ-v7Gp9feun3Sb3ezXy4W_dOA77TSiI4wDGTR7BFsMjvVsAeb-4fH48naIcdp3d-D50sW6C436zQvi-d0SgyDz-youaPybfB0A3IOnsOzNlYU-83nbMEG5i_g6Q0GwZfw5_Sai_dqtmXBmYKi8KJrbSOrpSlLdKK4uiY7Eb-NZV8qTO4EXpXFioami--h-EEo8lN4Y7FaiapOpO0WsS2hgCgl_fxLZiHIiwuxZMZX1ukXMVpTPjcVnZ9E-a8YoX7XJXJ58WJ1-QrODr5OR2PZdmCQVsWqksr7yCaEZ8bp2PjIc_TjrUYK68zADkONODDxMKAjuabYKXUu0SpULtYBeovqNfTyIsdtEGlANqETS07C0qEsMV7T4ugwDlFbG-zAoNv4zLb05Nwl4yLr8tDOM9JVxrrKGl3twMe1SNlwc9w3Oeq0mf1nYBlhx91ibx4mtgePx9NvJ9nJ4eT4LTzhkSZL8h30quUvfE-RTDXfbS31L-7B9DQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+role+of+electron-trapped+oxygen+vacancy+and+exposed+TiO2+%5B0+0+1%5D+facets+toward+electrochemical+p-nitrophenol+reduction%3A+Characterization%2C+performance+and+mechanism&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Ni%2C+Congcong&rft.au=Li%2C+Yifan&rft.au=Meng%2C+Xianzhe&rft.au=Liu%2C+Shuliang&rft.date=2021-05-01&rft.issn=1385-8947&rft.volume=411&rft.spage=128485&rft_id=info:doi/10.1016%2Fj.cej.2021.128485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2021_128485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |