Comparing multi-index stochastic collocation and multi-fidelity stochastic radial basis functions for forward uncertainty quantification of ship resistance

This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/roll-off passenger ferry advancing in calm water...

Full description

Saved in:
Bibliographic Details
Published inEngineering with computers Vol. 39; no. 3; pp. 2209 - 2237
Main Authors Piazzola, Chiara, Tamellini, Lorenzo, Pellegrini, Riccardo, Broglia, Riccardo, Serani, Andrea, Diez, Matteo
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0177-0667
1435-5663
DOI10.1007/s00366-021-01588-0

Cover

Loading…
Abstract This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/roll-off passenger ferry advancing in calm water and subject to two operational uncertainties (ship speed and payload). The first four statistical moments (mean, variance, skewness, and kurtosis), and the probability density function for such quantity of interest (QoI) are computed with two multi-fidelity methods, i.e., the Multi-Index Stochastic Collocation (MISC) and an adaptive multi-fidelity Stochastic Radial Basis Functions (SRBF). The QoI is evaluated via computational fluid dynamics simulations, which are performed with the in-house unsteady Reynolds-Averaged Navier–Stokes (RANS) multi-grid solver χ navis. The different fidelities employed by both methods are obtained by stopping the RANS solver at different grid levels of the multi-grid cycle. The performance of both methods are presented and discussed: in a nutshell, the findings suggest that, at least for the current implementation of both methods, MISC could be preferred whenever a limited computational budget is available, whereas for a larger computational budget SRBF seems to be preferable, thanks to its robustness to the numerical noise in the evaluations of the QoI.
AbstractList This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/roll-off passenger ferry advancing in calm water and subject to two operational uncertainties (ship speed and payload). The first four statistical moments (mean, variance, skewness, and kurtosis), and the probability density function for such quantity of interest (QoI) are computed with two multi-fidelity methods, i.e., the Multi-Index Stochastic Collocation (MISC) and an adaptive multi-fidelity Stochastic Radial Basis Functions (SRBF). The QoI is evaluated via computational fluid dynamics simulations, which are performed with the in-house unsteady Reynolds-Averaged Navier–Stokes (RANS) multi-grid solver $$\chi$$ χ navis. The different fidelities employed by both methods are obtained by stopping the RANS solver at different grid levels of the multi-grid cycle. The performance of both methods are presented and discussed: in a nutshell, the findings suggest that, at least for the current implementation of both methods, MISC could be preferred whenever a limited computational budget is available, whereas for a larger computational budget SRBF seems to be preferable, thanks to its robustness to the numerical noise in the evaluations of the QoI.
This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/roll-off passenger ferry advancing in calm water and subject to two operational uncertainties (ship speed and payload). The first four statistical moments (mean, variance, skewness, and kurtosis), and the probability density function for such quantity of interest (QoI) are computed with two multi-fidelity methods, i.e., the Multi-Index Stochastic Collocation (MISC) and an adaptive multi-fidelity Stochastic Radial Basis Functions (SRBF). The QoI is evaluated via computational fluid dynamics simulations, which are performed with the in-house unsteady Reynolds-Averaged Navier–Stokes (RANS) multi-grid solver χ navis. The different fidelities employed by both methods are obtained by stopping the RANS solver at different grid levels of the multi-grid cycle. The performance of both methods are presented and discussed: in a nutshell, the findings suggest that, at least for the current implementation of both methods, MISC could be preferred whenever a limited computational budget is available, whereas for a larger computational budget SRBF seems to be preferable, thanks to its robustness to the numerical noise in the evaluations of the QoI.
This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/roll-off passenger ferry advancing in calm water and subject to two operational uncertainties (ship speed and payload). The first four statistical moments (mean, variance, skewness, and kurtosis), and the probability density function for such quantity of interest (QoI) are computed with two multi-fidelity methods, i.e., the Multi-Index Stochastic Collocation (MISC) and an adaptive multi-fidelity Stochastic Radial Basis Functions (SRBF). The QoI is evaluated via computational fluid dynamics simulations, which are performed with the in-house unsteady Reynolds-Averaged Navier–Stokes (RANS) multi-grid solver χnavis. The different fidelities employed by both methods are obtained by stopping the RANS solver at different grid levels of the multi-grid cycle. The performance of both methods are presented and discussed: in a nutshell, the findings suggest that, at least for the current implementation of both methods, MISC could be preferred whenever a limited computational budget is available, whereas for a larger computational budget SRBF seems to be preferable, thanks to its robustness to the numerical noise in the evaluations of the QoI.
Author Tamellini, Lorenzo
Piazzola, Chiara
Broglia, Riccardo
Pellegrini, Riccardo
Diez, Matteo
Serani, Andrea
Author_xml – sequence: 1
  givenname: Chiara
  orcidid: 0000-0001-6750-7111
  surname: Piazzola
  fullname: Piazzola, Chiara
  email: chiara.piazzola@imati.cnr.it
  organization: Consiglio Nazionale delle Ricerche-Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” (CNR-IMATI)
– sequence: 2
  givenname: Lorenzo
  orcidid: 0000-0002-8008-0359
  surname: Tamellini
  fullname: Tamellini, Lorenzo
  organization: Consiglio Nazionale delle Ricerche-Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” (CNR-IMATI)
– sequence: 3
  givenname: Riccardo
  orcidid: 0000-0003-4953-3038
  surname: Pellegrini
  fullname: Pellegrini, Riccardo
  organization: Consiglio Nazionale delle Ricerche-Istituto di Ingegneria del Mare (CNR-INM)
– sequence: 4
  givenname: Riccardo
  orcidid: 0000-0001-9371-7120
  surname: Broglia
  fullname: Broglia, Riccardo
  organization: Consiglio Nazionale delle Ricerche-Istituto di Ingegneria del Mare (CNR-INM)
– sequence: 5
  givenname: Andrea
  orcidid: 0000-0002-8814-1793
  surname: Serani
  fullname: Serani, Andrea
  organization: Consiglio Nazionale delle Ricerche-Istituto di Ingegneria del Mare (CNR-INM)
– sequence: 6
  givenname: Matteo
  orcidid: 0000-0001-6113-7893
  surname: Diez
  fullname: Diez, Matteo
  organization: Consiglio Nazionale delle Ricerche-Istituto di Ingegneria del Mare (CNR-INM)
BookMark eNp9kUFrHCEUx6Wk0E3aL9CT0LPtc9zRmWNZkiYQyCU9i6vPxjCrE3VI8lnyZeNmF1p6yEGePP6_p4_fKTmJKSIhXzl85wDqRwEQUjLoOAPeDwODD2TF16JnvZTihKyAK8VASvWJnJZyD8AFwLgiL5u0m00O8Q_dLVMNLESHT7TUZO9MqcFSm6YpWVNDitREd4z54HAK9fnfZDYumIluTQmF-iXaPdNuKe_Po8mOtibmakJs5MNiYg0-HGcnT8tdmGnGhlfTgp_JR2-mgl-O9Yz8vji_3Vyy65tfV5uf18wKKSoTONhe9Y6rbhwH6SwCdqB4jwqHtqj3o-y4lNtt71Aps1YjeIfcmtEplKM4I98Oc-ecHhYsVd-nJcf2pO6GjvP10I2qpbpDyuZUSkav5xx2Jj9rDnovQR8k6CZBv0nQ0KDhP8iG-rZvzSZM76PigJZ5rwfz31-9Q70CYwCimw
CitedBy_id crossref_primary_10_1016_j_jcp_2024_113542
crossref_primary_10_1016_j_asej_2024_103100
crossref_primary_10_1002_nme_6958
crossref_primary_10_3390_jmse11122232
crossref_primary_10_1002_nme_7624
crossref_primary_10_1002_nme_7542
crossref_primary_10_3390_jmse12111979
crossref_primary_10_1007_s10614_024_10587_4
crossref_primary_10_1007_s41965_024_00169_6
crossref_primary_10_1007_s44205_024_00079_w
crossref_primary_10_1145_3630023
Cites_doi 10.1007/s00773-008-0021-6
10.2514/6.2020-3161
10.1016/j.cma.2017.07.030
10.1137/060659831
10.1016/j.compfluid.2006.08.001
10.2514/6.2019-3555
10.1002/nme.6268
10.1007/s10208-016-9327-7
10.1214/aoms/1177728190
10.1109/HPCSim.2014.6903770
10.2514/1.J051354
10.1007/s10208-014-9237-5
10.1016/j.jcp.2020.109257
10.2514/6.2017-3329
10.1007/s00366-021-01375-x
10.1088/0266-5611/29/6/065011
10.1137/140969002
10.1016/j.cma.2016.03.029
10.1023/A:1011255519438
10.1016/j.compfluid.2015.10.004
10.2514/6.2019-0722
10.1007/978-3-319-19800-2_44
10.1016/j.paerosci.2008.11.001
10.1007/s00791-011-0160-x
10.2514/6.1992-439
10.1287/opre.1070.0496
10.1016/j.cma.2019.03.042
10.1137/16M1082469
10.1007/s00211-015-0734-5
10.1007/s10208-013-9154-z
10.1007/s00158-017-1704-6
10.1137/140966368
10.1016/j.oceaneng.2019.106685
10.1109/TIT.1982.1056489
10.1214/aoms/1177704472
10.1016/j.oceaneng.2021.109600
10.1051/m2an/2019045
10.1007/978-3-642-15337-2_3
10.1016/j.asoc.2016.08.028
10.2218/marine2021.6862
10.1007/s00773-013-0235-0
10.1016/j.ast.2012.01.006
10.2514/6.2017-1654
10.2514/6.2020-3158
10.1090/S0025-5718-68-99866-9
10.1016/j.oceaneng.2013.06.020
10.1214/aos/1176345866
10.1007/s00607-003-0015-5
10.1007/s00158-014-1128-5
10.1080/10618562.2019.1683164
10.1007/s00466-017-1505-1
10.1115/1.4041372
10.1007/978-3-319-28262-6_8
10.2514/6.2020-3160
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00366-021-01588-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Computer Science Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 2237
ExternalDocumentID 10_1007_s00366_021_01588_0
GrantInformation_xml – fundername: office of naval research
  grantid: N62909-18-1-2033
– fundername: cineca
  grantid: HP10CRM564
– fundername: istituto nazionale di alta matematica “francesco severi”
  funderid: http://dx.doi.org/10.13039/100009112
– fundername: ministero dell’istruzione, dell’università e della ricerca
  grantid: 201752HKH8
  funderid: http://dx.doi.org/10.13039/501100003407
– fundername: h2020 european research council
  grantid: 689074
  funderid: http://dx.doi.org/10.13039/100010663
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-3e8c575d1729986dce0e20715e7e8001ff962166bb5de77a4790fde1ca9d7e693
IEDL.DBID U2A
ISSN 0177-0667
IngestDate Wed Aug 13 04:20:00 EDT 2025
Tue Jul 01 04:18:18 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Fri Feb 21 02:43:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Uncertainty quantification
Multi-index stochastic collocation
Reynolds-averaged Navier–Stokes equations
Finite volumes
Computational fluid dynamics
Multi-fidelity stochastic radial basis functions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-3e8c575d1729986dce0e20715e7e8001ff962166bb5de77a4790fde1ca9d7e693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8008-0359
0000-0002-8814-1793
0000-0001-6113-7893
0000-0001-9371-7120
0000-0001-6750-7111
0000-0003-4953-3038
OpenAccessLink https://link.springer.com/10.1007/s00366-021-01588-0
PQID 2821148297
PQPubID 326339
PageCount 29
ParticipantIDs proquest_journals_2821148297
crossref_primary_10_1007_s00366_021_01588_0
crossref_citationtrail_10_1007_s00366_021_01588_0
springer_journals_10_1007_s00366_021_01588_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References CliffeKGilesMScheichlRTeckentrupAMultilevel Monte Carlo methods and applications to elliptic PDEs with random coefficientsComput Vis Sci2011141315283561210.1007/s00791-011-0160-x1241.65012
Wackers J, Visonneau M, Serani A, Pellegrini R, Broglia R, Diez M (2020) Multi-fidelity machine learning from adaptive- and multi-grid RANS simulations. In: Proceedings of the 33rd Symposium on Naval Hydrodynamics, Osaka, Japan
Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit, p. 439
Serani A, Pellegrini R, Broglia R, Wackers J, Visonneau M, Diez M (2019) An adaptive N-fidelity metamodel for design and operational-uncertainty space exploration of complex industrail problems. In: Proceedings of the 8th International Conference on Computational Methods in Marine Engineering (Marine 2019), pp. 177–188
GutmannHMA radial basis function method for global optimizationJ Glob Opt2001193201227183321710.1023/A:10112555194380972.90055
Beran PS, Bryson DE, Thelen AS, Diez M, Serani A (2020) Comparison of multi-fidelity approaches for military vehicle design, in: 21th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (MA&O), AVIATION 2020, Virtual Event, June 15-19
Haji-AliA-LNobileFTemponeRWolfersSMultilevel weighted least squares polynomial approximationESAIM: M2AN2020542649677407131510.1051/m2an/20190451439.41011
PisaroniMNobileFLeylandPA continuation multi level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamicsComput Methods Appl Mech Eng20173262050370918210.1016/j.cma.2017.07.0301439.76135
SeraniALeotardiCIemmaUCampanaEFFasanoGDiezMParameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problemsAppl Soft Comput20164931333410.1016/j.asoc.2016.08.028
DiezMHeWCampanaEFSternFUncertainty quantification of delft catamaran resistance, sinkage and trim for variable froude number and geometry using metamodels, quadrature and Karhunen-Loève expansionJ Mar Sci Technol201419214316910.1007/s00773-013-0235-0
Di MascioABrogliaRMuscariROn the application of the single-phase level set method to naval hydrodynamic flowsComput Fluids200736586888610.1016/j.compfluid.2006.08.0011194.76201
VolpiSDiezMGaulNJSongHIemmaUChoiKKCampanaEFSternFDevelopment and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantificationStruct Multidiscip Opt201551234736810.1007/s00158-014-1128-5
Stern F, Volpi S, Gaul NJ, Choi K, Diez M, Broglia R, Durante D, Campana EF , Iemma U(2017) Development and assessment of uncertainty quantification methods for ship hydrodynamics. In: 55th AIAA aerospace sciences meeting, p. 1654
DiezMBrogliaRDuranteDOlivieriACampanaEFSternFStatistical assessment and validation of experimental and computational ship response in irregular wavesJ Verif Valid Uncertain Quantif20183202100410.1115/1.4041372
ParzenEOn estimation of a probability density function and modeAnn Math Stat19623331065107614328210.1214/aoms/11777044720116.11302
SeraniAPellegriniRWackersJJeansonC-JQueuteyPVisonneauMDiezMAdaptive multi-fidelity sampling for CFD-based optimization via radial basis functions metamodelInt J Comput Fluid Dyn2019336–723725510.1080/10618562.2019.168316407474493
Haji-Ali A-L, Nobile F, Tempone R (2015) Multi-index Monte Carlo: when sparsity meets sampling. Numerische Mathematik 1–40
Pellegrini R, Serani A, Diez M, Visonneau M, Wackers J (2021) Towards automatic parameter selection for multi-fidelity surrogate-based optimization. In: 9th Conference on computational methods in marine engineering (Marine 2021), Virtual conference, 2–4 June
BeckJTamelliniLTemponeRIGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domainsComput Methods Appl Mech Eng2019351330350393887910.1016/j.cma.2019.03.0421441.65092
KuoFYSchwabCSloanIMulti-level Quasi-Monte carlo finite element methods for a class of elliptic PDEs with random coefficientsFound Comput Math2015152411449332093010.1007/s10208-014-9237-51318.65006
Haji-AliANobileFTamelliniLTemponeRMulti-index stochastic collocation for random PDEsComput Methods Appl Mech Eng201630695122350256110.1016/j.cma.2016.03.0291436.65196
Serani A, Stern F, Campana EF, Diez M (2021) Hull-form stochastic optimization via computational-cost reduction methods. Eng Comput 1–25
HanZ-HGörtzSHierarchical kriging model for variable-fidelity surrogate modelingAIAA J20125091885189610.2514/1.J051354
Pisaroni M, Nobile F, Leyland P (2017) A multilevel Monte Carlo evolutionary algorithm for robust aerodynamic shape design, in: 18th AIAA/ISSMO multidisciplinary analysis and optimization conference. Denver, Colorado
Bäck J, Nobile F, Tamellini L, Tempone R (2011) Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Hesthaven J, Ronquist E (Eds.), Spectral and high order methods for partial differential equations, vol. 76 of lecture notes in computational science and engineering, Springer, pp. 43–62, selected papers from the ICOSAHOM ’09 conference, June 22-26, Trondheim, Norway
RosenblattMRemarks on some nonparametric estimates of a density functionAnn Math Stat19562738328377987310.1214/aoms/11777281900073.14602
JakemanJDEldredMGeraciGGorodetskyAAdaptive multi-index collocation for uncertainty quantification and sensitivity analysisInt J Numer Methods Eng2020121613141343407251610.1002/nme.6268
Geraci G, Eldred MS, Gorodetsky A, Jakeman J (2019) Recent advancements in Multilevel-Multifidelity techniques for forward UQ in the DARPA sequoia project, in: 57th AIAA Aerospace Sciences Meeting, SciTech 2019, p. 0722
TrefethenLNIs Gauss quadrature better than Clenshaw-Curtis?SIAM Rev20085016787240305810.1137/0606598311141.65018
Broglia R, Zaghi S, Muscari R, Salvadore F (2014) Enabling hydrodynamics solver for efficient parallel simulations. In: 2014 International conference on high performance computing and simulation (HPCS), IEEE, pp. 803–810
GorodetskyAGeraciGEldredMSJakemanJA generalized approximate control variate framework for multifidelity uncertainty quantificationJ Comput Phys2020408109257407897810.1016/j.jcp.2020.10925707505605
ChkifaACohenASchwabCHigh-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEsFound Comput Math2014144601633323001010.1007/s10208-013-9154-z1298.65022
BaarJdRobertsSDwightRMallolBUncertainty quantification for a sailing yacht hull, using multi-fidelity krigingComput Fluids2015123185201341981310.1016/j.compfluid.2015.10.0041390.76040
HanZ-HGörtzSZimmermannRImproving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge functionAerosp Sci Technol201325117718910.1016/j.ast.2012.01.006
SchillingsCSchwabCSparse, adaptive Smolyak quadratures for Bayesian inverse problemsInverse Probl2013296065011305608410.1088/0266-5611/29/6/0650111278.65008
Patterson TNL (1968) The optimum addition of points to quadrature formulae. Math Comput 22: 847–856; addendum, ibid. 22 (104) C1–C11
DuranteDBrogliaRDiezMOlivieriACampanaESternFAccurate experimental benchmark study of a catamaran in regular and irregular head waves including uncertainty quantificationOcean Eng202019510668510.1016/j.oceaneng.2019.106685
HeWDiezMZouZCampanaEFSternFURANS study of Delft catamaran total/added resistance, motions and slamming loads in head sea including irregular wave and uncertainty quantification for variable regular wave and geometryOcean Eng20137418921710.1016/j.oceaneng.2013.06.020
DykstraRLRobertsonTAn algorithm for isotonic regression for two or more independent variablesAnn Stat198210370871666342710.1214/aos/11763458660485.65099
GerstnerTGriebelMDimension-adaptive tensor-product quadratureComputing20037116587200965110.1007/s00607-003-0015-51030.65015
Nobile F, Tamellini L, Tempone R (2015) Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs. In: Kirby RM, Berzins M, Hesthaven JS (Eds.), Spectral and high order methods for partial differential equations-ICOSAHOM ’14, Vol. 106 of lecture notes in computational science and engineering, Springer International Publishing, pp. 475–482
GilesMBMultilevel Monte Carlo path simulationOper Res2008563607617243685610.1287/opre.1070.04961167.65316
Haji-AliA-LNobileFTamelliniLTemponeRMulti-index Stochastic Collocation convergence rates for random PDEs with parametric regularityFound Comput Math201616615551605357971710.1007/s10208-016-9327-71371.65009
Wackers J, Visonneau M, Pellegrini R, Ficini S, Serani A, Diez M (2020) Adaptive N-fidelity metamodels for noisy CFD data. In: 21th AIAA/ISSMO multidisciplinary analysis and optimization conference (MA&O), AVIATION 2020, Virtual Event, June 15–19
TeckentrupALJantschPWebsterCGGunzburgerMA multilevel stochastic collocation method for partial differential equations with random input dataSIAM/ASA J Uncertain Quantif20153110461074341613610.1137/1409690021327.65014
LiXGaoWGuLGongCJingZSuHA cooperative radial basis function method for variable-fidelity surrogate modelingStruct Multidiscip Opt20175651077109210.1007/s00158-017-1704-6
BrogliaRDuranteDAccurate prediction of complex free surface flow around a high speed craft using a single-phase level set methodComput Mech2018623421437384094810.1007/s00466-017-1505-11462.76063
Di MascioABrogliaRMuscariRPrediction of hydrodynamic coefficients of ship hulls by high-order godunov-type methodsJ Mar Sci Technol2009141192910.1007/s00773-008-0021-6
LloydSLeast squares quantization in PCMIEEE Trans Inf theory198228212913765180710.1109/TIT.1982.10564890504.94015
Quagliarella D, Serani A, Diez M, Pisaroni M, Leyland P, Montagliani L, Iemma U, Gaul NJ, Shin J, Wunsch D, Hirsch C, Choi K, Stern F (2019) Benchmarking uncertainty quantification methods using the NACA 2412 airfoil with geometrical and operational uncertainties. In: 57th AIAA Aerospace Sciences Meeting, SciTech 2019, p 3555
NarayanAJakemanJDAdaptive leja sparse grid constructions
A-L Haji-Ali (1588_CR18) 2016; 16
K Cliffe (1588_CR11) 2011; 14
FY Kuo (1588_CR13) 2015; 15
J Beck (1588_CR15) 2019; 351
S Lloyd (1588_CR47) 1982; 28
1588_CR49
LN Trefethen (1588_CR36) 2008; 50
1588_CR1
A-L Haji-Ali (1588_CR19) 2020; 54
1588_CR42
1588_CR8
1588_CR9
1588_CR3
RL Dykstra (1588_CR56) 1982; 10
C Schillings (1588_CR41) 2013; 29
A Serani (1588_CR51) 2016; 49
HM Gutmann (1588_CR44) 2001; 19
M Pisaroni (1588_CR28) 2017; 326
A Chkifa (1588_CR40) 2014; 14
1588_CR39
AIJ Forrester (1588_CR45) 2009; 45
X Li (1588_CR48) 2017; 56
Jd Baar (1588_CR21) 2015; 123
1588_CR38
1588_CR33
R Broglia (1588_CR32) 2018; 62
JD Jakeman (1588_CR16) 2020; 121
A Haji-Ali (1588_CR17) 2016; 306
T Gerstner (1588_CR43) 2003; 71
E Parzen (1588_CR35) 1962; 33
A Gorodetsky (1588_CR26) 2020; 408
S Volpi (1588_CR46) 2015; 51
M Rosenblatt (1588_CR34) 1956; 27
B Peherstorfer (1588_CR25) 2018; 60
MB Giles (1588_CR10) 2008; 56
A Serani (1588_CR23) 2019; 33
Z-H Han (1588_CR24) 2013; 25
1588_CR29
1588_CR27
1588_CR22
Z-H Han (1588_CR20) 2012; 50
A Di Mascio (1588_CR31) 2009; 14
A Narayan (1588_CR37) 2014; 36
AL Teckentrup (1588_CR14) 2015; 3
D Durante (1588_CR7) 2020; 195
A Di Mascio (1588_CR30) 2007; 36
W He (1588_CR5) 2013; 74
M Diez (1588_CR4) 2014; 19
1588_CR55
A Serani (1588_CR2) 2021; 237
1588_CR12
1588_CR53
1588_CR54
1588_CR52
1588_CR50
M Diez (1588_CR6) 2018; 3
References_xml – reference: BeckJTamelliniLTemponeRIGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domainsComput Methods Appl Mech Eng2019351330350393887910.1016/j.cma.2019.03.0421441.65092
– reference: SchillingsCSchwabCSparse, adaptive Smolyak quadratures for Bayesian inverse problemsInverse Probl2013296065011305608410.1088/0266-5611/29/6/0650111278.65008
– reference: DykstraRLRobertsonTAn algorithm for isotonic regression for two or more independent variablesAnn Stat198210370871666342710.1214/aos/11763458660485.65099
– reference: Pellegrini R, Serani A, Diez M, Visonneau M, Wackers J (2021) Towards automatic parameter selection for multi-fidelity surrogate-based optimization. In: 9th Conference on computational methods in marine engineering (Marine 2021), Virtual conference, 2–4 June,
– reference: GilesMBMultilevel Monte Carlo path simulationOper Res2008563607617243685610.1287/opre.1070.04961167.65316
– reference: ParzenEOn estimation of a probability density function and modeAnn Math Stat19623331065107614328210.1214/aoms/11777044720116.11302
– reference: Serani A, Pellegrini R, Broglia R, Wackers J, Visonneau M, Diez M (2019) An adaptive N-fidelity metamodel for design and operational-uncertainty space exploration of complex industrail problems. In: Proceedings of the 8th International Conference on Computational Methods in Marine Engineering (Marine 2019), pp. 177–188
– reference: DuranteDBrogliaRDiezMOlivieriACampanaESternFAccurate experimental benchmark study of a catamaran in regular and irregular head waves including uncertainty quantificationOcean Eng202019510668510.1016/j.oceaneng.2019.106685
– reference: Di MascioABrogliaRMuscariROn the application of the single-phase level set method to naval hydrodynamic flowsComput Fluids200736586888610.1016/j.compfluid.2006.08.0011194.76201
– reference: DiezMBrogliaRDuranteDOlivieriACampanaEFSternFStatistical assessment and validation of experimental and computational ship response in irregular wavesJ Verif Valid Uncertain Quantif20183202100410.1115/1.4041372
– reference: Broglia R, Zaghi S, Muscari R, Salvadore F (2014) Enabling hydrodynamics solver for efficient parallel simulations. In: 2014 International conference on high performance computing and simulation (HPCS), IEEE, pp. 803–810
– reference: SeraniADiezMvan WalreeFSternFURANS analysis of a free-running destroyer sailing in irregular stern-quartering waves at sea state 7Ocean Eng202123710960010.1016/j.oceaneng.2021.109600
– reference: PisaroniMNobileFLeylandPA continuation multi level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamicsComput Methods Appl Mech Eng20173262050370918210.1016/j.cma.2017.07.0301439.76135
– reference: Haji-AliA-LNobileFTamelliniLTemponeRMulti-index Stochastic Collocation convergence rates for random PDEs with parametric regularityFound Comput Math201616615551605357971710.1007/s10208-016-9327-71371.65009
– reference: Pisaroni M, Nobile F, Leyland P (2017) A multilevel Monte Carlo evolutionary algorithm for robust aerodynamic shape design, in: 18th AIAA/ISSMO multidisciplinary analysis and optimization conference. Denver, Colorado
– reference: Nobile F, Tamellini L, Tesei F, Tempone R (2016) An adaptive sparse grid algorithm for elliptic PDEs with lognormal diffusion coefficient. In: Garcke J, Pflüger D (Eds.) Sparse grids and applications– Stuttgart 2014, Vol. 109 of Lecture Notes in Computational Science and Engineering, Springer International Publishing Switzerland, pp. 191–220
– reference: Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit, p. 439
– reference: Wackers J, Visonneau M, Pellegrini R, Ficini S, Serani A, Diez M (2020) Adaptive N-fidelity metamodels for noisy CFD data. In: 21th AIAA/ISSMO multidisciplinary analysis and optimization conference (MA&O), AVIATION 2020, Virtual Event, June 15–19,
– reference: TeckentrupALJantschPWebsterCGGunzburgerMA multilevel stochastic collocation method for partial differential equations with random input dataSIAM/ASA J Uncertain Quantif20153110461074341613610.1137/1409690021327.65014
– reference: BaarJdRobertsSDwightRMallolBUncertainty quantification for a sailing yacht hull, using multi-fidelity krigingComput Fluids2015123185201341981310.1016/j.compfluid.2015.10.0041390.76040
– reference: LiXGaoWGuLGongCJingZSuHA cooperative radial basis function method for variable-fidelity surrogate modelingStruct Multidiscip Opt20175651077109210.1007/s00158-017-1704-6
– reference: Wackers J, Visonneau M, Serani A, Pellegrini R, Broglia R, Diez M (2020) Multi-fidelity machine learning from adaptive- and multi-grid RANS simulations. In: Proceedings of the 33rd Symposium on Naval Hydrodynamics, Osaka, Japan,
– reference: JakemanJDEldredMGeraciGGorodetskyAAdaptive multi-index collocation for uncertainty quantification and sensitivity analysisInt J Numer Methods Eng2020121613141343407251610.1002/nme.6268
– reference: Geraci G, Eldred MS, Gorodetsky A, Jakeman J (2019) Recent advancements in Multilevel-Multifidelity techniques for forward UQ in the DARPA sequoia project, in: 57th AIAA Aerospace Sciences Meeting, SciTech 2019, p. 0722
– reference: DiezMHeWCampanaEFSternFUncertainty quantification of delft catamaran resistance, sinkage and trim for variable froude number and geometry using metamodels, quadrature and Karhunen-Loève expansionJ Mar Sci Technol201419214316910.1007/s00773-013-0235-0
– reference: Haji-Ali A-L, Nobile F, Tempone R (2015) Multi-index Monte Carlo: when sparsity meets sampling. Numerische Mathematik 1–40
– reference: Patterson TNL (1968) The optimum addition of points to quadrature formulae. Math Comput 22: 847–856; addendum, ibid. 22 (104) C1–C11
– reference: GutmannHMA radial basis function method for global optimizationJ Glob Opt2001193201227183321710.1023/A:10112555194380972.90055
– reference: LloydSLeast squares quantization in PCMIEEE Trans Inf theory198228212913765180710.1109/TIT.1982.10564890504.94015
– reference: HeWDiezMZouZCampanaEFSternFURANS study of Delft catamaran total/added resistance, motions and slamming loads in head sea including irregular wave and uncertainty quantification for variable regular wave and geometryOcean Eng20137418921710.1016/j.oceaneng.2013.06.020
– reference: PeherstorferBWillcoxKGunzburgerMSurvey of multifidelity methods in uncertainty propagation, inference, and optimizationSIAM Review2018603550591384115710.1137/16M10824691458.65003
– reference: Beran PS, Bryson DE, Thelen AS, Diez M, Serani A (2020) Comparison of multi-fidelity approaches for military vehicle design, in: 21th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (MA&O), AVIATION 2020, Virtual Event, June 15-19,
– reference: CliffeKGilesMScheichlRTeckentrupAMultilevel Monte Carlo methods and applications to elliptic PDEs with random coefficientsComput Vis Sci2011141315283561210.1007/s00791-011-0160-x1241.65012
– reference: HanZ-HGörtzSZimmermannRImproving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge functionAerosp Sci Technol201325117718910.1016/j.ast.2012.01.006
– reference: Serani A, Stern F, Campana EF, Diez M (2021) Hull-form stochastic optimization via computational-cost reduction methods. Eng Comput 1–25
– reference: Haji-AliA-LNobileFTemponeRWolfersSMultilevel weighted least squares polynomial approximationESAIM: M2AN2020542649677407131510.1051/m2an/20190451439.41011
– reference: HanZ-HGörtzSHierarchical kriging model for variable-fidelity surrogate modelingAIAA J20125091885189610.2514/1.J051354
– reference: GorodetskyAGeraciGEldredMSJakemanJA generalized approximate control variate framework for multifidelity uncertainty quantificationJ Comput Phys2020408109257407897810.1016/j.jcp.2020.10925707505605
– reference: Nobile F, Tamellini L, Tempone R (2015) Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs. In: Kirby RM, Berzins M, Hesthaven JS (Eds.), Spectral and high order methods for partial differential equations-ICOSAHOM ’14, Vol. 106 of lecture notes in computational science and engineering, Springer International Publishing, pp. 475–482
– reference: SeraniAPellegriniRWackersJJeansonC-JQueuteyPVisonneauMDiezMAdaptive multi-fidelity sampling for CFD-based optimization via radial basis functions metamodelInt J Comput Fluid Dyn2019336–723725510.1080/10618562.2019.168316407474493
– reference: Piazzola C, Tamellini L, Pellegrini R, Broglia R, Serani A, Diez M (2020) Uncertainty quantification of ship resistance via multi-index stochastic collocation and radial basis function surrogates: A comparison, in: 21th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (MA&O), AVIATION 2020, Virtual Event, June 15-19,
– reference: Haji-AliANobileFTamelliniLTemponeRMulti-index stochastic collocation for random PDEsComput Methods Appl Mech Eng201630695122350256110.1016/j.cma.2016.03.0291436.65196
– reference: Quagliarella D, Serani A, Diez M, Pisaroni M, Leyland P, Montagliani L, Iemma U, Gaul NJ, Shin J, Wunsch D, Hirsch C, Choi K, Stern F (2019) Benchmarking uncertainty quantification methods using the NACA 2412 airfoil with geometrical and operational uncertainties. In: 57th AIAA Aerospace Sciences Meeting, SciTech 2019, p 3555
– reference: VolpiSDiezMGaulNJSongHIemmaUChoiKKCampanaEFSternFDevelopment and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantificationStruct Multidiscip Opt201551234736810.1007/s00158-014-1128-5
– reference: Di MascioABrogliaRMuscariRPrediction of hydrodynamic coefficients of ship hulls by high-order godunov-type methodsJ Mar Sci Technol2009141192910.1007/s00773-008-0021-6
– reference: BrogliaRDuranteDAccurate prediction of complex free surface flow around a high speed craft using a single-phase level set methodComput Mech2018623421437384094810.1007/s00466-017-1505-11462.76063
– reference: KuoFYSchwabCSloanIMulti-level Quasi-Monte carlo finite element methods for a class of elliptic PDEs with random coefficientsFound Comput Math2015152411449332093010.1007/s10208-014-9237-51318.65006
– reference: TrefethenLNIs Gauss quadrature better than Clenshaw-Curtis?SIAM Rev20085016787240305810.1137/0606598311141.65018
– reference: GerstnerTGriebelMDimension-adaptive tensor-product quadratureComputing20037116587200965110.1007/s00607-003-0015-51030.65015
– reference: ChkifaACohenASchwabCHigh-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEsFound Comput Math2014144601633323001010.1007/s10208-013-9154-z1298.65022
– reference: RosenblattMRemarks on some nonparametric estimates of a density functionAnn Math Stat19562738328377987310.1214/aoms/11777281900073.14602
– reference: ForresterAIJKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451–3507910.1016/j.paerosci.2008.11.001
– reference: Bäck J, Nobile F, Tamellini L, Tempone R (2011) Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Hesthaven J, Ronquist E (Eds.), Spectral and high order methods for partial differential equations, vol. 76 of lecture notes in computational science and engineering, Springer, pp. 43–62, selected papers from the ICOSAHOM ’09 conference, June 22-26, Trondheim, Norway
– reference: NarayanAJakemanJDAdaptive leja sparse grid constructions for stochastic collocation and high-dimensional approximationSIAM J Sci Comput2014366A2952A2983349907110.1137/1409663681316.65018
– reference: SeraniALeotardiCIemmaUCampanaEFFasanoGDiezMParameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problemsAppl Soft Comput20164931333410.1016/j.asoc.2016.08.028
– reference: Stern F, Volpi S, Gaul NJ, Choi K, Diez M, Broglia R, Durante D, Campana EF , Iemma U(2017) Development and assessment of uncertainty quantification methods for ship hydrodynamics. In: 55th AIAA aerospace sciences meeting, p. 1654
– volume: 14
  start-page: 19
  issue: 1
  year: 2009
  ident: 1588_CR31
  publication-title: J Mar Sci Technol
  doi: 10.1007/s00773-008-0021-6
– ident: 1588_CR22
  doi: 10.2514/6.2020-3161
– volume: 326
  start-page: 20
  year: 2017
  ident: 1588_CR28
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.07.030
– volume: 50
  start-page: 67
  issue: 1
  year: 2008
  ident: 1588_CR36
  publication-title: SIAM Rev
  doi: 10.1137/060659831
– volume: 36
  start-page: 868
  issue: 5
  year: 2007
  ident: 1588_CR30
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2006.08.001
– ident: 1588_CR8
  doi: 10.2514/6.2019-3555
– volume: 121
  start-page: 1314
  issue: 6
  year: 2020
  ident: 1588_CR16
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.6268
– volume: 16
  start-page: 1555
  issue: 6
  year: 2016
  ident: 1588_CR18
  publication-title: Found Comput Math
  doi: 10.1007/s10208-016-9327-7
– volume: 27
  start-page: 832
  issue: 3
  year: 1956
  ident: 1588_CR34
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177728190
– ident: 1588_CR53
  doi: 10.1109/HPCSim.2014.6903770
– volume: 50
  start-page: 1885
  issue: 9
  year: 2012
  ident: 1588_CR20
  publication-title: AIAA J
  doi: 10.2514/1.J051354
– volume: 15
  start-page: 411
  issue: 2
  year: 2015
  ident: 1588_CR13
  publication-title: Found Comput Math
  doi: 10.1007/s10208-014-9237-5
– volume: 408
  start-page: 109257
  year: 2020
  ident: 1588_CR26
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109257
– ident: 1588_CR27
  doi: 10.2514/6.2017-3329
– ident: 1588_CR1
  doi: 10.1007/s00366-021-01375-x
– volume: 29
  start-page: 065011
  issue: 6
  year: 2013
  ident: 1588_CR41
  publication-title: Inverse Probl
  doi: 10.1088/0266-5611/29/6/065011
– volume: 3
  start-page: 1046
  issue: 1
  year: 2015
  ident: 1588_CR14
  publication-title: SIAM/ASA J Uncertain Quantif
  doi: 10.1137/140969002
– volume: 306
  start-page: 95
  year: 2016
  ident: 1588_CR17
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.03.029
– volume: 19
  start-page: 201
  issue: 3
  year: 2001
  ident: 1588_CR44
  publication-title: J Glob Opt
  doi: 10.1023/A:1011255519438
– volume: 123
  start-page: 185
  year: 2015
  ident: 1588_CR21
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2015.10.004
– ident: 1588_CR29
  doi: 10.2514/6.2019-0722
– ident: 1588_CR38
  doi: 10.1007/978-3-319-19800-2_44
– volume: 45
  start-page: 50
  issue: 1–3
  year: 2009
  ident: 1588_CR45
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 14
  start-page: 3
  issue: 1
  year: 2011
  ident: 1588_CR11
  publication-title: Comput Vis Sci
  doi: 10.1007/s00791-011-0160-x
– ident: 1588_CR49
– ident: 1588_CR54
  doi: 10.2514/6.1992-439
– volume: 56
  start-page: 607
  issue: 3
  year: 2008
  ident: 1588_CR10
  publication-title: Oper Res
  doi: 10.1287/opre.1070.0496
– volume: 351
  start-page: 330
  year: 2019
  ident: 1588_CR15
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.03.042
– volume: 60
  start-page: 550
  issue: 3
  year: 2018
  ident: 1588_CR25
  publication-title: SIAM Review
  doi: 10.1137/16M1082469
– ident: 1588_CR12
  doi: 10.1007/s00211-015-0734-5
– volume: 14
  start-page: 601
  issue: 4
  year: 2014
  ident: 1588_CR40
  publication-title: Found Comput Math
  doi: 10.1007/s10208-013-9154-z
– volume: 56
  start-page: 1077
  issue: 5
  year: 2017
  ident: 1588_CR48
  publication-title: Struct Multidiscip Opt
  doi: 10.1007/s00158-017-1704-6
– volume: 36
  start-page: A2952
  issue: 6
  year: 2014
  ident: 1588_CR37
  publication-title: SIAM J Sci Comput
  doi: 10.1137/140966368
– volume: 195
  start-page: 106685
  year: 2020
  ident: 1588_CR7
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.106685
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 1588_CR47
  publication-title: IEEE Trans Inf theory
  doi: 10.1109/TIT.1982.1056489
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  ident: 1588_CR35
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177704472
– volume: 237
  start-page: 109600
  year: 2021
  ident: 1588_CR2
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.109600
– volume: 54
  start-page: 649
  issue: 2
  year: 2020
  ident: 1588_CR19
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an/2019045
– ident: 1588_CR52
  doi: 10.1007/978-3-642-15337-2_3
– volume: 49
  start-page: 313
  year: 2016
  ident: 1588_CR51
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.08.028
– ident: 1588_CR55
  doi: 10.2218/marine2021.6862
– volume: 19
  start-page: 143
  issue: 2
  year: 2014
  ident: 1588_CR4
  publication-title: J Mar Sci Technol
  doi: 10.1007/s00773-013-0235-0
– volume: 25
  start-page: 177
  issue: 1
  year: 2013
  ident: 1588_CR24
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2012.01.006
– ident: 1588_CR3
  doi: 10.2514/6.2017-1654
– ident: 1588_CR9
  doi: 10.2514/6.2020-3158
– ident: 1588_CR39
  doi: 10.1090/S0025-5718-68-99866-9
– volume: 74
  start-page: 189
  year: 2013
  ident: 1588_CR5
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2013.06.020
– volume: 10
  start-page: 708
  issue: 3
  year: 1982
  ident: 1588_CR56
  publication-title: Ann Stat
  doi: 10.1214/aos/1176345866
– volume: 71
  start-page: 65
  issue: 1
  year: 2003
  ident: 1588_CR43
  publication-title: Computing
  doi: 10.1007/s00607-003-0015-5
– volume: 51
  start-page: 347
  issue: 2
  year: 2015
  ident: 1588_CR46
  publication-title: Struct Multidiscip Opt
  doi: 10.1007/s00158-014-1128-5
– volume: 33
  start-page: 237
  issue: 6–7
  year: 2019
  ident: 1588_CR23
  publication-title: Int J Comput Fluid Dyn
  doi: 10.1080/10618562.2019.1683164
– volume: 62
  start-page: 421
  issue: 3
  year: 2018
  ident: 1588_CR32
  publication-title: Comput Mech
  doi: 10.1007/s00466-017-1505-1
– volume: 3
  start-page: 021004
  issue: 2
  year: 2018
  ident: 1588_CR6
  publication-title: J Verif Valid Uncertain Quantif
  doi: 10.1115/1.4041372
– ident: 1588_CR42
  doi: 10.1007/978-3-319-28262-6_8
– ident: 1588_CR33
  doi: 10.2514/6.2020-3160
– ident: 1588_CR50
SSID ssj0013009
Score 2.407481
Snippet This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2209
SubjectTerms Accuracy
Approximation
Budgets
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Collocation
Computational fluid dynamics
Computer Science
Computer-Aided Engineering (CAD
Control
Design of experiments
Engineering
Expected values
Ferries
Fluid dynamics
Kurtosis
Math. Applications in Chemistry
Mathematical and Computational Engineering
Multigrid methods
Naval engineering
Optimization
Original Article
Probability density functions
Radial basis function
Reynolds averaged Navier-Stokes method
Robustness (mathematics)
Skewness
Solvers
Statistical analysis
Systems Theory
Uncertainty
SummonAdditionalLinks – databaseName: ProQuest Central (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgvcCBpYAoFOQDN4jI4tjJCUHVqkKiQohKvUWJ7QBSlS5pv4afZSZ2F5DoIZdk4suMPW_s5zeE3MRcMcFCqE4inToMAK4Tu4F0Iu1LnaUSogQLxZc-7w3Y8zAc2g230tIql2titVCrscQ98nsoDRC6-7F4mEwd7BqFp6u2hcYuqcMSHEHxVX_q9F_f1ucIriF5eAJJXlzYazPV5TmUYkECLpbTIcSL-zs1rfHmnyPSKvN0j8iBhYz00fj4mOzookEOLXykdnKWDbK_oS14Qr7bpsNg8UEr0qBT6SJSwHryM0VxZoohMDY7djQtlDXLUfcKoPmm5QwFDEYUMt5XSTETVsFKAe_ig7xbCi8NuQD-nC5SQ0EyY49zipQwCoU9glUwPCWDbue93XNsJwZHBjyYO4GOJOA6BWgHyjOupHa1D-Ak1EID4vTyPOa-x3mWhUoLkTIRu7nSnkxjJTSPgzNSK8aFPic0ywTTsa84AB8WySgFc98XypNMSI_JJvGWTkiklSnHbhmjZCWwXDkuAcclleMSt0luV_9MjEjHVuvW0reJnbBlsg6vJrlb-nv9-f_RLraPdkn2sEG9IZe1SG0-W-grgDHz7NrG6g-i9vFc
  priority: 102
  providerName: ProQuest
Title Comparing multi-index stochastic collocation and multi-fidelity stochastic radial basis functions for forward uncertainty quantification of ship resistance
URI https://link.springer.com/article/10.1007/s00366-021-01588-0
https://www.proquest.com/docview/2821148297
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xXODAjihL5QM3iJTFsZNjqVoQCIQQleAUJbYDSFUKtHwNP8tM7LSAAIlDVMmZ-DKT-r34-Q3AYSo0lzxGdpKY3OMIcL3Uj5SXmFCZIldYJUQUL6_E2YCf38V37lDYuFG7N1uS9T_19LAbWaeQYJbob4z5RaK-GBN3xyoehJ3Z3oFvhR2BJGGXkO6ozM9zfF2OZhjz27Zovdr012DFwUTWsXldhzlTbcCqg4zMvZBjHGq6MjRjG7D8yWJwE967ttFg9cBq7aBX2yMyhHzqMSePZkaVMLIf7lheaRdWkv0VIvTPka_kYzBkuPA9jRktiHXNMoS9dJH8luGg1Rjgky9vuVUi2blHJSNlGEN-T5gVA7dg0O_dds8815DBU5GIJl5kEoXwTiPoQZYmtDK-CRGjxEYaBJ5BWaYiDIQoilgbKXMuU7_UJlB5qqURabQNC9WoMjvAikJyk4ZaIP7hiUpyDA9DqQPFpQq4akHQ5CVTzq2cmmYMs6nPcp3LDHOZ1bnM_BYcTZ95tl4df0bvN-nO3Hs7zpCAEkEMU9mC46YEZrd_n233f-F7sER9663mbB8WJq9v5gDRzaRow3zSP23DYuf0_qKHvye9q-sbHO2Kbrsu9A-YtvgQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V5VA4QFtALLTUBzhBROI4dnKoECosW_pxaqXeQmJPClKVbTdbIX4L_4Hf2Bk76Rak9tbDXrITX2Y88yZ-fgPwptBOGZVRd5JjFSkCuFERpzbKUVqsK0tRwo3iwaGeHKtvJ9nJEvwd7sIwrXLIiT5Ru6nlb-QfqDVg6C4L8_H8IuKpUXy6OozQCGGxh79_UcvWbe9-Jv--lXL85WhnEvVTBSKb6nQepZhbwiiOKje1GtpZjFFSoc3QIKGnpGkKLROt6zpzaEylTBE3DhNbFc6gZvElSvkPVJoWvKPy8dfFqUUcKCWJYUqZNv0lHX9Vj4VfmO7LzXtG0Rn_WwgX6Pa_A1lf58ar8LgHqOJTiKg1WMJ2HZ70YFX0qaBbh0c3lAyfwp-dMM-wPRWeohh5FUZByNL-qFgKWnDATcP3QVG1rjdrWGWLGoGbljOWSzgTVF9_doLrrt8agtA1_5jlK-hhoDLQmxeXVSA8hbWnjWACmphhx9CYDJ_B8b146Dkst9MWX4Coa6OwkE4TzFK5zSsyl9K4xCpjE2VHkAxOKG0vis6zOc7Kazln77iSHFd6x5XxCN5dv3MeJEHutN4YfFv26aErF8E8gveDvxd_377ay7tX24KVydHBfrm_e7j3Ch5KAmSB1rYBy_PZJW4SgJrXr33UCvh-39vkCg4oLJU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9RAEJ6QIzH6IIoaTkH3QZ-0od3b7rYPxCBwAdELMZLwVtvdqZqQHlyPEH-L_4Rf50x3y6GJvPFwL73pvszszDfdb78BeJ1rp4xKqTvJsIwUAdwoj0c2ylBarEpLUcKN4ueJ3j9WH0_SkyW46u_CMK2yz4ldonZTy9_IN6k1YOguc7NZB1rE0e74_dl5xBOk-KS1H6fhQ-QQf11S-9ZuHeySr99IOd77urMfhQkDkR3p0TwaYWYJrziq4tR2aGcxRklFN0WDhKSSus61TLSuqtShMaUyeVw7TGyZO4OahZgo_S8b6oriASx_2JscfVmcYcSeYJIYJphpE67sdBf3WAaGyb_cyqcUq_HfZXGBdf85nu2q3vgRPAxwVWz7-HoMS9iswkqAriIkhnYVHtzQNXwCv3f8dMPmu-gIi1GnySgIZ9ofJQtDCw6_qf9aKMrGBbOaNbeoLbhpOWPxhFNB1fZnK7gKdxtFENbmH3N-BT30xAZ68_yi9PQnv_a0FkxHEzNsGSiT4VM4vhMfPYNBM21wDURVGYW5dJpAl8psVpK5lMYlVhmbKDuEpHdCYYNEOk_qOC2uxZ07xxXkuKJzXBEP4e31O2deIORW6_Xet0VIFm2xCO0hvOv9vfj7_6s9v321V3CPtkjx6WBy-ALuS0JnnuO2DoP57AI3CE3Nq5chbAV8u-ud8gcF1jIn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+multi-index+stochastic+collocation+and+multi-fidelity+stochastic+radial+basis+functions+for+forward+uncertainty+quantification+of+ship+resistance&rft.jtitle=Engineering+with+computers&rft.au=Piazzola%2C+Chiara&rft.au=Tamellini%2C+Lorenzo&rft.au=Pellegrini%2C+Riccardo&rft.au=Broglia%2C+Riccardo&rft.date=2023-06-01&rft.pub=Springer+London&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=39&rft.issue=3&rft.spage=2209&rft.epage=2237&rft_id=info:doi/10.1007%2Fs00366-021-01588-0&rft.externalDocID=10_1007_s00366_021_01588_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon