Comparing multi-index stochastic collocation and multi-fidelity stochastic radial basis functions for forward uncertainty quantification of ship resistance
This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/roll-off passenger ferry advancing in calm water...
Saved in:
Published in | Engineering with computers Vol. 39; no. 3; pp. 2209 - 2237 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0177-0667 1435-5663 |
DOI | 10.1007/s00366-021-01588-0 |
Cover
Loading…
Abstract | This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/roll-off passenger ferry advancing in calm water and subject to two operational uncertainties (ship speed and payload). The first four statistical moments (mean, variance, skewness, and kurtosis), and the probability density function for such quantity of interest (QoI) are computed with two multi-fidelity methods, i.e., the Multi-Index Stochastic Collocation (MISC) and an adaptive multi-fidelity Stochastic Radial Basis Functions (SRBF). The QoI is evaluated via computational fluid dynamics simulations, which are performed with the in-house unsteady Reynolds-Averaged Navier–Stokes (RANS) multi-grid solver
χ
navis. The different fidelities employed by both methods are obtained by stopping the RANS solver at different grid levels of the multi-grid cycle. The performance of both methods are presented and discussed: in a nutshell, the findings suggest that, at least for the current implementation of both methods, MISC could be preferred whenever a limited computational budget is available, whereas for a larger computational budget SRBF seems to be preferable, thanks to its robustness to the numerical noise in the evaluations of the QoI. |
---|---|
AbstractList | This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/roll-off passenger ferry advancing in calm water and subject to two operational uncertainties (ship speed and payload). The first four statistical moments (mean, variance, skewness, and kurtosis), and the probability density function for such quantity of interest (QoI) are computed with two multi-fidelity methods, i.e., the Multi-Index Stochastic Collocation (MISC) and an adaptive multi-fidelity Stochastic Radial Basis Functions (SRBF). The QoI is evaluated via computational fluid dynamics simulations, which are performed with the in-house unsteady Reynolds-Averaged Navier–Stokes (RANS) multi-grid solver
$$\chi$$
χ
navis. The different fidelities employed by both methods are obtained by stopping the RANS solver at different grid levels of the multi-grid cycle. The performance of both methods are presented and discussed: in a nutshell, the findings suggest that, at least for the current implementation of both methods, MISC could be preferred whenever a limited computational budget is available, whereas for a larger computational budget SRBF seems to be preferable, thanks to its robustness to the numerical noise in the evaluations of the QoI. This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/roll-off passenger ferry advancing in calm water and subject to two operational uncertainties (ship speed and payload). The first four statistical moments (mean, variance, skewness, and kurtosis), and the probability density function for such quantity of interest (QoI) are computed with two multi-fidelity methods, i.e., the Multi-Index Stochastic Collocation (MISC) and an adaptive multi-fidelity Stochastic Radial Basis Functions (SRBF). The QoI is evaluated via computational fluid dynamics simulations, which are performed with the in-house unsteady Reynolds-Averaged Navier–Stokes (RANS) multi-grid solver χ navis. The different fidelities employed by both methods are obtained by stopping the RANS solver at different grid levels of the multi-grid cycle. The performance of both methods are presented and discussed: in a nutshell, the findings suggest that, at least for the current implementation of both methods, MISC could be preferred whenever a limited computational budget is available, whereas for a larger computational budget SRBF seems to be preferable, thanks to its robustness to the numerical noise in the evaluations of the QoI. This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we consider the problem of quantifying the uncertainty of the hydrodynamic resistance of a roll-on/roll-off passenger ferry advancing in calm water and subject to two operational uncertainties (ship speed and payload). The first four statistical moments (mean, variance, skewness, and kurtosis), and the probability density function for such quantity of interest (QoI) are computed with two multi-fidelity methods, i.e., the Multi-Index Stochastic Collocation (MISC) and an adaptive multi-fidelity Stochastic Radial Basis Functions (SRBF). The QoI is evaluated via computational fluid dynamics simulations, which are performed with the in-house unsteady Reynolds-Averaged Navier–Stokes (RANS) multi-grid solver χnavis. The different fidelities employed by both methods are obtained by stopping the RANS solver at different grid levels of the multi-grid cycle. The performance of both methods are presented and discussed: in a nutshell, the findings suggest that, at least for the current implementation of both methods, MISC could be preferred whenever a limited computational budget is available, whereas for a larger computational budget SRBF seems to be preferable, thanks to its robustness to the numerical noise in the evaluations of the QoI. |
Author | Tamellini, Lorenzo Piazzola, Chiara Broglia, Riccardo Pellegrini, Riccardo Diez, Matteo Serani, Andrea |
Author_xml | – sequence: 1 givenname: Chiara orcidid: 0000-0001-6750-7111 surname: Piazzola fullname: Piazzola, Chiara email: chiara.piazzola@imati.cnr.it organization: Consiglio Nazionale delle Ricerche-Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” (CNR-IMATI) – sequence: 2 givenname: Lorenzo orcidid: 0000-0002-8008-0359 surname: Tamellini fullname: Tamellini, Lorenzo organization: Consiglio Nazionale delle Ricerche-Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” (CNR-IMATI) – sequence: 3 givenname: Riccardo orcidid: 0000-0003-4953-3038 surname: Pellegrini fullname: Pellegrini, Riccardo organization: Consiglio Nazionale delle Ricerche-Istituto di Ingegneria del Mare (CNR-INM) – sequence: 4 givenname: Riccardo orcidid: 0000-0001-9371-7120 surname: Broglia fullname: Broglia, Riccardo organization: Consiglio Nazionale delle Ricerche-Istituto di Ingegneria del Mare (CNR-INM) – sequence: 5 givenname: Andrea orcidid: 0000-0002-8814-1793 surname: Serani fullname: Serani, Andrea organization: Consiglio Nazionale delle Ricerche-Istituto di Ingegneria del Mare (CNR-INM) – sequence: 6 givenname: Matteo orcidid: 0000-0001-6113-7893 surname: Diez fullname: Diez, Matteo organization: Consiglio Nazionale delle Ricerche-Istituto di Ingegneria del Mare (CNR-INM) |
BookMark | eNp9kUFrHCEUx6Wk0E3aL9CT0LPtc9zRmWNZkiYQyCU9i6vPxjCrE3VI8lnyZeNmF1p6yEGePP6_p4_fKTmJKSIhXzl85wDqRwEQUjLoOAPeDwODD2TF16JnvZTihKyAK8VASvWJnJZyD8AFwLgiL5u0m00O8Q_dLVMNLESHT7TUZO9MqcFSm6YpWVNDitREd4z54HAK9fnfZDYumIluTQmF-iXaPdNuKe_Po8mOtibmakJs5MNiYg0-HGcnT8tdmGnGhlfTgp_JR2-mgl-O9Yz8vji_3Vyy65tfV5uf18wKKSoTONhe9Y6rbhwH6SwCdqB4jwqHtqj3o-y4lNtt71Aps1YjeIfcmtEplKM4I98Oc-ecHhYsVd-nJcf2pO6GjvP10I2qpbpDyuZUSkav5xx2Jj9rDnovQR8k6CZBv0nQ0KDhP8iG-rZvzSZM76PigJZ5rwfz31-9Q70CYwCimw |
CitedBy_id | crossref_primary_10_1016_j_jcp_2024_113542 crossref_primary_10_1016_j_asej_2024_103100 crossref_primary_10_1002_nme_6958 crossref_primary_10_3390_jmse11122232 crossref_primary_10_1002_nme_7624 crossref_primary_10_1002_nme_7542 crossref_primary_10_3390_jmse12111979 crossref_primary_10_1007_s10614_024_10587_4 crossref_primary_10_1007_s41965_024_00169_6 crossref_primary_10_1007_s44205_024_00079_w crossref_primary_10_1145_3630023 |
Cites_doi | 10.1007/s00773-008-0021-6 10.2514/6.2020-3161 10.1016/j.cma.2017.07.030 10.1137/060659831 10.1016/j.compfluid.2006.08.001 10.2514/6.2019-3555 10.1002/nme.6268 10.1007/s10208-016-9327-7 10.1214/aoms/1177728190 10.1109/HPCSim.2014.6903770 10.2514/1.J051354 10.1007/s10208-014-9237-5 10.1016/j.jcp.2020.109257 10.2514/6.2017-3329 10.1007/s00366-021-01375-x 10.1088/0266-5611/29/6/065011 10.1137/140969002 10.1016/j.cma.2016.03.029 10.1023/A:1011255519438 10.1016/j.compfluid.2015.10.004 10.2514/6.2019-0722 10.1007/978-3-319-19800-2_44 10.1016/j.paerosci.2008.11.001 10.1007/s00791-011-0160-x 10.2514/6.1992-439 10.1287/opre.1070.0496 10.1016/j.cma.2019.03.042 10.1137/16M1082469 10.1007/s00211-015-0734-5 10.1007/s10208-013-9154-z 10.1007/s00158-017-1704-6 10.1137/140966368 10.1016/j.oceaneng.2019.106685 10.1109/TIT.1982.1056489 10.1214/aoms/1177704472 10.1016/j.oceaneng.2021.109600 10.1051/m2an/2019045 10.1007/978-3-642-15337-2_3 10.1016/j.asoc.2016.08.028 10.2218/marine2021.6862 10.1007/s00773-013-0235-0 10.1016/j.ast.2012.01.006 10.2514/6.2017-1654 10.2514/6.2020-3158 10.1090/S0025-5718-68-99866-9 10.1016/j.oceaneng.2013.06.020 10.1214/aos/1176345866 10.1007/s00607-003-0015-5 10.1007/s00158-014-1128-5 10.1080/10618562.2019.1683164 10.1007/s00466-017-1505-1 10.1115/1.4041372 10.1007/978-3-319-28262-6_8 10.2514/6.2020-3160 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s00366-021-01588-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (ProQuest) Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1435-5663 |
EndPage | 2237 |
ExternalDocumentID | 10_1007_s00366_021_01588_0 |
GrantInformation_xml | – fundername: office of naval research grantid: N62909-18-1-2033 – fundername: cineca grantid: HP10CRM564 – fundername: istituto nazionale di alta matematica “francesco severi” funderid: http://dx.doi.org/10.13039/100009112 – fundername: ministero dell’istruzione, dell’università e della ricerca grantid: 201752HKH8 funderid: http://dx.doi.org/10.13039/501100003407 – fundername: h2020 european research council grantid: 689074 funderid: http://dx.doi.org/10.13039/100010663 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c363t-3e8c575d1729986dce0e20715e7e8001ff962166bb5de77a4790fde1ca9d7e693 |
IEDL.DBID | U2A |
ISSN | 0177-0667 |
IngestDate | Wed Aug 13 04:20:00 EDT 2025 Tue Jul 01 04:18:18 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 Fri Feb 21 02:43:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Uncertainty quantification Multi-index stochastic collocation Reynolds-averaged Navier–Stokes equations Finite volumes Computational fluid dynamics Multi-fidelity stochastic radial basis functions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-3e8c575d1729986dce0e20715e7e8001ff962166bb5de77a4790fde1ca9d7e693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8008-0359 0000-0002-8814-1793 0000-0001-6113-7893 0000-0001-9371-7120 0000-0001-6750-7111 0000-0003-4953-3038 |
OpenAccessLink | https://link.springer.com/10.1007/s00366-021-01588-0 |
PQID | 2821148297 |
PQPubID | 326339 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2821148297 crossref_primary_10_1007_s00366_021_01588_0 crossref_citationtrail_10_1007_s00366_021_01588_0 springer_journals_10_1007_s00366_021_01588_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230600 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationSubtitle | An International Journal for Simulation-Based Engineering |
PublicationTitle | Engineering with computers |
PublicationTitleAbbrev | Engineering with Computers |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | CliffeKGilesMScheichlRTeckentrupAMultilevel Monte Carlo methods and applications to elliptic PDEs with random coefficientsComput Vis Sci2011141315283561210.1007/s00791-011-0160-x1241.65012 Wackers J, Visonneau M, Serani A, Pellegrini R, Broglia R, Diez M (2020) Multi-fidelity machine learning from adaptive- and multi-grid RANS simulations. In: Proceedings of the 33rd Symposium on Naval Hydrodynamics, Osaka, Japan Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit, p. 439 Serani A, Pellegrini R, Broglia R, Wackers J, Visonneau M, Diez M (2019) An adaptive N-fidelity metamodel for design and operational-uncertainty space exploration of complex industrail problems. In: Proceedings of the 8th International Conference on Computational Methods in Marine Engineering (Marine 2019), pp. 177–188 GutmannHMA radial basis function method for global optimizationJ Glob Opt2001193201227183321710.1023/A:10112555194380972.90055 Beran PS, Bryson DE, Thelen AS, Diez M, Serani A (2020) Comparison of multi-fidelity approaches for military vehicle design, in: 21th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (MA&O), AVIATION 2020, Virtual Event, June 15-19 Haji-AliA-LNobileFTemponeRWolfersSMultilevel weighted least squares polynomial approximationESAIM: M2AN2020542649677407131510.1051/m2an/20190451439.41011 PisaroniMNobileFLeylandPA continuation multi level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamicsComput Methods Appl Mech Eng20173262050370918210.1016/j.cma.2017.07.0301439.76135 SeraniALeotardiCIemmaUCampanaEFFasanoGDiezMParameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problemsAppl Soft Comput20164931333410.1016/j.asoc.2016.08.028 DiezMHeWCampanaEFSternFUncertainty quantification of delft catamaran resistance, sinkage and trim for variable froude number and geometry using metamodels, quadrature and Karhunen-Loève expansionJ Mar Sci Technol201419214316910.1007/s00773-013-0235-0 Di MascioABrogliaRMuscariROn the application of the single-phase level set method to naval hydrodynamic flowsComput Fluids200736586888610.1016/j.compfluid.2006.08.0011194.76201 VolpiSDiezMGaulNJSongHIemmaUChoiKKCampanaEFSternFDevelopment and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantificationStruct Multidiscip Opt201551234736810.1007/s00158-014-1128-5 Stern F, Volpi S, Gaul NJ, Choi K, Diez M, Broglia R, Durante D, Campana EF , Iemma U(2017) Development and assessment of uncertainty quantification methods for ship hydrodynamics. In: 55th AIAA aerospace sciences meeting, p. 1654 DiezMBrogliaRDuranteDOlivieriACampanaEFSternFStatistical assessment and validation of experimental and computational ship response in irregular wavesJ Verif Valid Uncertain Quantif20183202100410.1115/1.4041372 ParzenEOn estimation of a probability density function and modeAnn Math Stat19623331065107614328210.1214/aoms/11777044720116.11302 SeraniAPellegriniRWackersJJeansonC-JQueuteyPVisonneauMDiezMAdaptive multi-fidelity sampling for CFD-based optimization via radial basis functions metamodelInt J Comput Fluid Dyn2019336–723725510.1080/10618562.2019.168316407474493 Haji-Ali A-L, Nobile F, Tempone R (2015) Multi-index Monte Carlo: when sparsity meets sampling. Numerische Mathematik 1–40 Pellegrini R, Serani A, Diez M, Visonneau M, Wackers J (2021) Towards automatic parameter selection for multi-fidelity surrogate-based optimization. In: 9th Conference on computational methods in marine engineering (Marine 2021), Virtual conference, 2–4 June BeckJTamelliniLTemponeRIGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domainsComput Methods Appl Mech Eng2019351330350393887910.1016/j.cma.2019.03.0421441.65092 KuoFYSchwabCSloanIMulti-level Quasi-Monte carlo finite element methods for a class of elliptic PDEs with random coefficientsFound Comput Math2015152411449332093010.1007/s10208-014-9237-51318.65006 Haji-AliANobileFTamelliniLTemponeRMulti-index stochastic collocation for random PDEsComput Methods Appl Mech Eng201630695122350256110.1016/j.cma.2016.03.0291436.65196 Serani A, Stern F, Campana EF, Diez M (2021) Hull-form stochastic optimization via computational-cost reduction methods. Eng Comput 1–25 HanZ-HGörtzSHierarchical kriging model for variable-fidelity surrogate modelingAIAA J20125091885189610.2514/1.J051354 Pisaroni M, Nobile F, Leyland P (2017) A multilevel Monte Carlo evolutionary algorithm for robust aerodynamic shape design, in: 18th AIAA/ISSMO multidisciplinary analysis and optimization conference. Denver, Colorado Bäck J, Nobile F, Tamellini L, Tempone R (2011) Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Hesthaven J, Ronquist E (Eds.), Spectral and high order methods for partial differential equations, vol. 76 of lecture notes in computational science and engineering, Springer, pp. 43–62, selected papers from the ICOSAHOM ’09 conference, June 22-26, Trondheim, Norway RosenblattMRemarks on some nonparametric estimates of a density functionAnn Math Stat19562738328377987310.1214/aoms/11777281900073.14602 JakemanJDEldredMGeraciGGorodetskyAAdaptive multi-index collocation for uncertainty quantification and sensitivity analysisInt J Numer Methods Eng2020121613141343407251610.1002/nme.6268 Geraci G, Eldred MS, Gorodetsky A, Jakeman J (2019) Recent advancements in Multilevel-Multifidelity techniques for forward UQ in the DARPA sequoia project, in: 57th AIAA Aerospace Sciences Meeting, SciTech 2019, p. 0722 TrefethenLNIs Gauss quadrature better than Clenshaw-Curtis?SIAM Rev20085016787240305810.1137/0606598311141.65018 Broglia R, Zaghi S, Muscari R, Salvadore F (2014) Enabling hydrodynamics solver for efficient parallel simulations. In: 2014 International conference on high performance computing and simulation (HPCS), IEEE, pp. 803–810 GorodetskyAGeraciGEldredMSJakemanJA generalized approximate control variate framework for multifidelity uncertainty quantificationJ Comput Phys2020408109257407897810.1016/j.jcp.2020.10925707505605 ChkifaACohenASchwabCHigh-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEsFound Comput Math2014144601633323001010.1007/s10208-013-9154-z1298.65022 BaarJdRobertsSDwightRMallolBUncertainty quantification for a sailing yacht hull, using multi-fidelity krigingComput Fluids2015123185201341981310.1016/j.compfluid.2015.10.0041390.76040 HanZ-HGörtzSZimmermannRImproving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge functionAerosp Sci Technol201325117718910.1016/j.ast.2012.01.006 SchillingsCSchwabCSparse, adaptive Smolyak quadratures for Bayesian inverse problemsInverse Probl2013296065011305608410.1088/0266-5611/29/6/0650111278.65008 Patterson TNL (1968) The optimum addition of points to quadrature formulae. Math Comput 22: 847–856; addendum, ibid. 22 (104) C1–C11 DuranteDBrogliaRDiezMOlivieriACampanaESternFAccurate experimental benchmark study of a catamaran in regular and irregular head waves including uncertainty quantificationOcean Eng202019510668510.1016/j.oceaneng.2019.106685 HeWDiezMZouZCampanaEFSternFURANS study of Delft catamaran total/added resistance, motions and slamming loads in head sea including irregular wave and uncertainty quantification for variable regular wave and geometryOcean Eng20137418921710.1016/j.oceaneng.2013.06.020 DykstraRLRobertsonTAn algorithm for isotonic regression for two or more independent variablesAnn Stat198210370871666342710.1214/aos/11763458660485.65099 GerstnerTGriebelMDimension-adaptive tensor-product quadratureComputing20037116587200965110.1007/s00607-003-0015-51030.65015 Nobile F, Tamellini L, Tempone R (2015) Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs. In: Kirby RM, Berzins M, Hesthaven JS (Eds.), Spectral and high order methods for partial differential equations-ICOSAHOM ’14, Vol. 106 of lecture notes in computational science and engineering, Springer International Publishing, pp. 475–482 GilesMBMultilevel Monte Carlo path simulationOper Res2008563607617243685610.1287/opre.1070.04961167.65316 Haji-AliA-LNobileFTamelliniLTemponeRMulti-index Stochastic Collocation convergence rates for random PDEs with parametric regularityFound Comput Math201616615551605357971710.1007/s10208-016-9327-71371.65009 Wackers J, Visonneau M, Pellegrini R, Ficini S, Serani A, Diez M (2020) Adaptive N-fidelity metamodels for noisy CFD data. In: 21th AIAA/ISSMO multidisciplinary analysis and optimization conference (MA&O), AVIATION 2020, Virtual Event, June 15–19 TeckentrupALJantschPWebsterCGGunzburgerMA multilevel stochastic collocation method for partial differential equations with random input dataSIAM/ASA J Uncertain Quantif20153110461074341613610.1137/1409690021327.65014 LiXGaoWGuLGongCJingZSuHA cooperative radial basis function method for variable-fidelity surrogate modelingStruct Multidiscip Opt20175651077109210.1007/s00158-017-1704-6 BrogliaRDuranteDAccurate prediction of complex free surface flow around a high speed craft using a single-phase level set methodComput Mech2018623421437384094810.1007/s00466-017-1505-11462.76063 Di MascioABrogliaRMuscariRPrediction of hydrodynamic coefficients of ship hulls by high-order godunov-type methodsJ Mar Sci Technol2009141192910.1007/s00773-008-0021-6 LloydSLeast squares quantization in PCMIEEE Trans Inf theory198228212913765180710.1109/TIT.1982.10564890504.94015 Quagliarella D, Serani A, Diez M, Pisaroni M, Leyland P, Montagliani L, Iemma U, Gaul NJ, Shin J, Wunsch D, Hirsch C, Choi K, Stern F (2019) Benchmarking uncertainty quantification methods using the NACA 2412 airfoil with geometrical and operational uncertainties. In: 57th AIAA Aerospace Sciences Meeting, SciTech 2019, p 3555 NarayanAJakemanJDAdaptive leja sparse grid constructions A-L Haji-Ali (1588_CR18) 2016; 16 K Cliffe (1588_CR11) 2011; 14 FY Kuo (1588_CR13) 2015; 15 J Beck (1588_CR15) 2019; 351 S Lloyd (1588_CR47) 1982; 28 1588_CR49 LN Trefethen (1588_CR36) 2008; 50 1588_CR1 A-L Haji-Ali (1588_CR19) 2020; 54 1588_CR42 1588_CR8 1588_CR9 1588_CR3 RL Dykstra (1588_CR56) 1982; 10 C Schillings (1588_CR41) 2013; 29 A Serani (1588_CR51) 2016; 49 HM Gutmann (1588_CR44) 2001; 19 M Pisaroni (1588_CR28) 2017; 326 A Chkifa (1588_CR40) 2014; 14 1588_CR39 AIJ Forrester (1588_CR45) 2009; 45 X Li (1588_CR48) 2017; 56 Jd Baar (1588_CR21) 2015; 123 1588_CR38 1588_CR33 R Broglia (1588_CR32) 2018; 62 JD Jakeman (1588_CR16) 2020; 121 A Haji-Ali (1588_CR17) 2016; 306 T Gerstner (1588_CR43) 2003; 71 E Parzen (1588_CR35) 1962; 33 A Gorodetsky (1588_CR26) 2020; 408 S Volpi (1588_CR46) 2015; 51 M Rosenblatt (1588_CR34) 1956; 27 B Peherstorfer (1588_CR25) 2018; 60 MB Giles (1588_CR10) 2008; 56 A Serani (1588_CR23) 2019; 33 Z-H Han (1588_CR24) 2013; 25 1588_CR29 1588_CR27 1588_CR22 Z-H Han (1588_CR20) 2012; 50 A Di Mascio (1588_CR31) 2009; 14 A Narayan (1588_CR37) 2014; 36 AL Teckentrup (1588_CR14) 2015; 3 D Durante (1588_CR7) 2020; 195 A Di Mascio (1588_CR30) 2007; 36 W He (1588_CR5) 2013; 74 M Diez (1588_CR4) 2014; 19 1588_CR55 A Serani (1588_CR2) 2021; 237 1588_CR12 1588_CR53 1588_CR54 1588_CR52 1588_CR50 M Diez (1588_CR6) 2018; 3 |
References_xml | – reference: BeckJTamelliniLTemponeRIGA-based Multi-Index Stochastic Collocation for random PDEs on arbitrary domainsComput Methods Appl Mech Eng2019351330350393887910.1016/j.cma.2019.03.0421441.65092 – reference: SchillingsCSchwabCSparse, adaptive Smolyak quadratures for Bayesian inverse problemsInverse Probl2013296065011305608410.1088/0266-5611/29/6/0650111278.65008 – reference: DykstraRLRobertsonTAn algorithm for isotonic regression for two or more independent variablesAnn Stat198210370871666342710.1214/aos/11763458660485.65099 – reference: Pellegrini R, Serani A, Diez M, Visonneau M, Wackers J (2021) Towards automatic parameter selection for multi-fidelity surrogate-based optimization. In: 9th Conference on computational methods in marine engineering (Marine 2021), Virtual conference, 2–4 June, – reference: GilesMBMultilevel Monte Carlo path simulationOper Res2008563607617243685610.1287/opre.1070.04961167.65316 – reference: ParzenEOn estimation of a probability density function and modeAnn Math Stat19623331065107614328210.1214/aoms/11777044720116.11302 – reference: Serani A, Pellegrini R, Broglia R, Wackers J, Visonneau M, Diez M (2019) An adaptive N-fidelity metamodel for design and operational-uncertainty space exploration of complex industrail problems. In: Proceedings of the 8th International Conference on Computational Methods in Marine Engineering (Marine 2019), pp. 177–188 – reference: DuranteDBrogliaRDiezMOlivieriACampanaESternFAccurate experimental benchmark study of a catamaran in regular and irregular head waves including uncertainty quantificationOcean Eng202019510668510.1016/j.oceaneng.2019.106685 – reference: Di MascioABrogliaRMuscariROn the application of the single-phase level set method to naval hydrodynamic flowsComput Fluids200736586888610.1016/j.compfluid.2006.08.0011194.76201 – reference: DiezMBrogliaRDuranteDOlivieriACampanaEFSternFStatistical assessment and validation of experimental and computational ship response in irregular wavesJ Verif Valid Uncertain Quantif20183202100410.1115/1.4041372 – reference: Broglia R, Zaghi S, Muscari R, Salvadore F (2014) Enabling hydrodynamics solver for efficient parallel simulations. In: 2014 International conference on high performance computing and simulation (HPCS), IEEE, pp. 803–810 – reference: SeraniADiezMvan WalreeFSternFURANS analysis of a free-running destroyer sailing in irregular stern-quartering waves at sea state 7Ocean Eng202123710960010.1016/j.oceaneng.2021.109600 – reference: PisaroniMNobileFLeylandPA continuation multi level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamicsComput Methods Appl Mech Eng20173262050370918210.1016/j.cma.2017.07.0301439.76135 – reference: Haji-AliA-LNobileFTamelliniLTemponeRMulti-index Stochastic Collocation convergence rates for random PDEs with parametric regularityFound Comput Math201616615551605357971710.1007/s10208-016-9327-71371.65009 – reference: Pisaroni M, Nobile F, Leyland P (2017) A multilevel Monte Carlo evolutionary algorithm for robust aerodynamic shape design, in: 18th AIAA/ISSMO multidisciplinary analysis and optimization conference. Denver, Colorado – reference: Nobile F, Tamellini L, Tesei F, Tempone R (2016) An adaptive sparse grid algorithm for elliptic PDEs with lognormal diffusion coefficient. In: Garcke J, Pflüger D (Eds.) Sparse grids and applications– Stuttgart 2014, Vol. 109 of Lecture Notes in Computational Science and Engineering, Springer International Publishing Switzerland, pp. 191–220 – reference: Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit, p. 439 – reference: Wackers J, Visonneau M, Pellegrini R, Ficini S, Serani A, Diez M (2020) Adaptive N-fidelity metamodels for noisy CFD data. In: 21th AIAA/ISSMO multidisciplinary analysis and optimization conference (MA&O), AVIATION 2020, Virtual Event, June 15–19, – reference: TeckentrupALJantschPWebsterCGGunzburgerMA multilevel stochastic collocation method for partial differential equations with random input dataSIAM/ASA J Uncertain Quantif20153110461074341613610.1137/1409690021327.65014 – reference: BaarJdRobertsSDwightRMallolBUncertainty quantification for a sailing yacht hull, using multi-fidelity krigingComput Fluids2015123185201341981310.1016/j.compfluid.2015.10.0041390.76040 – reference: LiXGaoWGuLGongCJingZSuHA cooperative radial basis function method for variable-fidelity surrogate modelingStruct Multidiscip Opt20175651077109210.1007/s00158-017-1704-6 – reference: Wackers J, Visonneau M, Serani A, Pellegrini R, Broglia R, Diez M (2020) Multi-fidelity machine learning from adaptive- and multi-grid RANS simulations. In: Proceedings of the 33rd Symposium on Naval Hydrodynamics, Osaka, Japan, – reference: JakemanJDEldredMGeraciGGorodetskyAAdaptive multi-index collocation for uncertainty quantification and sensitivity analysisInt J Numer Methods Eng2020121613141343407251610.1002/nme.6268 – reference: Geraci G, Eldred MS, Gorodetsky A, Jakeman J (2019) Recent advancements in Multilevel-Multifidelity techniques for forward UQ in the DARPA sequoia project, in: 57th AIAA Aerospace Sciences Meeting, SciTech 2019, p. 0722 – reference: DiezMHeWCampanaEFSternFUncertainty quantification of delft catamaran resistance, sinkage and trim for variable froude number and geometry using metamodels, quadrature and Karhunen-Loève expansionJ Mar Sci Technol201419214316910.1007/s00773-013-0235-0 – reference: Haji-Ali A-L, Nobile F, Tempone R (2015) Multi-index Monte Carlo: when sparsity meets sampling. Numerische Mathematik 1–40 – reference: Patterson TNL (1968) The optimum addition of points to quadrature formulae. Math Comput 22: 847–856; addendum, ibid. 22 (104) C1–C11 – reference: GutmannHMA radial basis function method for global optimizationJ Glob Opt2001193201227183321710.1023/A:10112555194380972.90055 – reference: LloydSLeast squares quantization in PCMIEEE Trans Inf theory198228212913765180710.1109/TIT.1982.10564890504.94015 – reference: HeWDiezMZouZCampanaEFSternFURANS study of Delft catamaran total/added resistance, motions and slamming loads in head sea including irregular wave and uncertainty quantification for variable regular wave and geometryOcean Eng20137418921710.1016/j.oceaneng.2013.06.020 – reference: PeherstorferBWillcoxKGunzburgerMSurvey of multifidelity methods in uncertainty propagation, inference, and optimizationSIAM Review2018603550591384115710.1137/16M10824691458.65003 – reference: Beran PS, Bryson DE, Thelen AS, Diez M, Serani A (2020) Comparison of multi-fidelity approaches for military vehicle design, in: 21th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (MA&O), AVIATION 2020, Virtual Event, June 15-19, – reference: CliffeKGilesMScheichlRTeckentrupAMultilevel Monte Carlo methods and applications to elliptic PDEs with random coefficientsComput Vis Sci2011141315283561210.1007/s00791-011-0160-x1241.65012 – reference: HanZ-HGörtzSZimmermannRImproving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge functionAerosp Sci Technol201325117718910.1016/j.ast.2012.01.006 – reference: Serani A, Stern F, Campana EF, Diez M (2021) Hull-form stochastic optimization via computational-cost reduction methods. Eng Comput 1–25 – reference: Haji-AliA-LNobileFTemponeRWolfersSMultilevel weighted least squares polynomial approximationESAIM: M2AN2020542649677407131510.1051/m2an/20190451439.41011 – reference: HanZ-HGörtzSHierarchical kriging model for variable-fidelity surrogate modelingAIAA J20125091885189610.2514/1.J051354 – reference: GorodetskyAGeraciGEldredMSJakemanJA generalized approximate control variate framework for multifidelity uncertainty quantificationJ Comput Phys2020408109257407897810.1016/j.jcp.2020.10925707505605 – reference: Nobile F, Tamellini L, Tempone R (2015) Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs. In: Kirby RM, Berzins M, Hesthaven JS (Eds.), Spectral and high order methods for partial differential equations-ICOSAHOM ’14, Vol. 106 of lecture notes in computational science and engineering, Springer International Publishing, pp. 475–482 – reference: SeraniAPellegriniRWackersJJeansonC-JQueuteyPVisonneauMDiezMAdaptive multi-fidelity sampling for CFD-based optimization via radial basis functions metamodelInt J Comput Fluid Dyn2019336–723725510.1080/10618562.2019.168316407474493 – reference: Piazzola C, Tamellini L, Pellegrini R, Broglia R, Serani A, Diez M (2020) Uncertainty quantification of ship resistance via multi-index stochastic collocation and radial basis function surrogates: A comparison, in: 21th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (MA&O), AVIATION 2020, Virtual Event, June 15-19, – reference: Haji-AliANobileFTamelliniLTemponeRMulti-index stochastic collocation for random PDEsComput Methods Appl Mech Eng201630695122350256110.1016/j.cma.2016.03.0291436.65196 – reference: Quagliarella D, Serani A, Diez M, Pisaroni M, Leyland P, Montagliani L, Iemma U, Gaul NJ, Shin J, Wunsch D, Hirsch C, Choi K, Stern F (2019) Benchmarking uncertainty quantification methods using the NACA 2412 airfoil with geometrical and operational uncertainties. In: 57th AIAA Aerospace Sciences Meeting, SciTech 2019, p 3555 – reference: VolpiSDiezMGaulNJSongHIemmaUChoiKKCampanaEFSternFDevelopment and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantificationStruct Multidiscip Opt201551234736810.1007/s00158-014-1128-5 – reference: Di MascioABrogliaRMuscariRPrediction of hydrodynamic coefficients of ship hulls by high-order godunov-type methodsJ Mar Sci Technol2009141192910.1007/s00773-008-0021-6 – reference: BrogliaRDuranteDAccurate prediction of complex free surface flow around a high speed craft using a single-phase level set methodComput Mech2018623421437384094810.1007/s00466-017-1505-11462.76063 – reference: KuoFYSchwabCSloanIMulti-level Quasi-Monte carlo finite element methods for a class of elliptic PDEs with random coefficientsFound Comput Math2015152411449332093010.1007/s10208-014-9237-51318.65006 – reference: TrefethenLNIs Gauss quadrature better than Clenshaw-Curtis?SIAM Rev20085016787240305810.1137/0606598311141.65018 – reference: GerstnerTGriebelMDimension-adaptive tensor-product quadratureComputing20037116587200965110.1007/s00607-003-0015-51030.65015 – reference: ChkifaACohenASchwabCHigh-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEsFound Comput Math2014144601633323001010.1007/s10208-013-9154-z1298.65022 – reference: RosenblattMRemarks on some nonparametric estimates of a density functionAnn Math Stat19562738328377987310.1214/aoms/11777281900073.14602 – reference: ForresterAIJKeaneAJRecent advances in surrogate-based optimizationProg Aerosp Sci2009451–3507910.1016/j.paerosci.2008.11.001 – reference: Bäck J, Nobile F, Tamellini L, Tempone R (2011) Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Hesthaven J, Ronquist E (Eds.), Spectral and high order methods for partial differential equations, vol. 76 of lecture notes in computational science and engineering, Springer, pp. 43–62, selected papers from the ICOSAHOM ’09 conference, June 22-26, Trondheim, Norway – reference: NarayanAJakemanJDAdaptive leja sparse grid constructions for stochastic collocation and high-dimensional approximationSIAM J Sci Comput2014366A2952A2983349907110.1137/1409663681316.65018 – reference: SeraniALeotardiCIemmaUCampanaEFFasanoGDiezMParameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problemsAppl Soft Comput20164931333410.1016/j.asoc.2016.08.028 – reference: Stern F, Volpi S, Gaul NJ, Choi K, Diez M, Broglia R, Durante D, Campana EF , Iemma U(2017) Development and assessment of uncertainty quantification methods for ship hydrodynamics. In: 55th AIAA aerospace sciences meeting, p. 1654 – volume: 14 start-page: 19 issue: 1 year: 2009 ident: 1588_CR31 publication-title: J Mar Sci Technol doi: 10.1007/s00773-008-0021-6 – ident: 1588_CR22 doi: 10.2514/6.2020-3161 – volume: 326 start-page: 20 year: 2017 ident: 1588_CR28 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.07.030 – volume: 50 start-page: 67 issue: 1 year: 2008 ident: 1588_CR36 publication-title: SIAM Rev doi: 10.1137/060659831 – volume: 36 start-page: 868 issue: 5 year: 2007 ident: 1588_CR30 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2006.08.001 – ident: 1588_CR8 doi: 10.2514/6.2019-3555 – volume: 121 start-page: 1314 issue: 6 year: 2020 ident: 1588_CR16 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.6268 – volume: 16 start-page: 1555 issue: 6 year: 2016 ident: 1588_CR18 publication-title: Found Comput Math doi: 10.1007/s10208-016-9327-7 – volume: 27 start-page: 832 issue: 3 year: 1956 ident: 1588_CR34 publication-title: Ann Math Stat doi: 10.1214/aoms/1177728190 – ident: 1588_CR53 doi: 10.1109/HPCSim.2014.6903770 – volume: 50 start-page: 1885 issue: 9 year: 2012 ident: 1588_CR20 publication-title: AIAA J doi: 10.2514/1.J051354 – volume: 15 start-page: 411 issue: 2 year: 2015 ident: 1588_CR13 publication-title: Found Comput Math doi: 10.1007/s10208-014-9237-5 – volume: 408 start-page: 109257 year: 2020 ident: 1588_CR26 publication-title: J Comput Phys doi: 10.1016/j.jcp.2020.109257 – ident: 1588_CR27 doi: 10.2514/6.2017-3329 – ident: 1588_CR1 doi: 10.1007/s00366-021-01375-x – volume: 29 start-page: 065011 issue: 6 year: 2013 ident: 1588_CR41 publication-title: Inverse Probl doi: 10.1088/0266-5611/29/6/065011 – volume: 3 start-page: 1046 issue: 1 year: 2015 ident: 1588_CR14 publication-title: SIAM/ASA J Uncertain Quantif doi: 10.1137/140969002 – volume: 306 start-page: 95 year: 2016 ident: 1588_CR17 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2016.03.029 – volume: 19 start-page: 201 issue: 3 year: 2001 ident: 1588_CR44 publication-title: J Glob Opt doi: 10.1023/A:1011255519438 – volume: 123 start-page: 185 year: 2015 ident: 1588_CR21 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2015.10.004 – ident: 1588_CR29 doi: 10.2514/6.2019-0722 – ident: 1588_CR38 doi: 10.1007/978-3-319-19800-2_44 – volume: 45 start-page: 50 issue: 1–3 year: 2009 ident: 1588_CR45 publication-title: Prog Aerosp Sci doi: 10.1016/j.paerosci.2008.11.001 – volume: 14 start-page: 3 issue: 1 year: 2011 ident: 1588_CR11 publication-title: Comput Vis Sci doi: 10.1007/s00791-011-0160-x – ident: 1588_CR49 – ident: 1588_CR54 doi: 10.2514/6.1992-439 – volume: 56 start-page: 607 issue: 3 year: 2008 ident: 1588_CR10 publication-title: Oper Res doi: 10.1287/opre.1070.0496 – volume: 351 start-page: 330 year: 2019 ident: 1588_CR15 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.03.042 – volume: 60 start-page: 550 issue: 3 year: 2018 ident: 1588_CR25 publication-title: SIAM Review doi: 10.1137/16M1082469 – ident: 1588_CR12 doi: 10.1007/s00211-015-0734-5 – volume: 14 start-page: 601 issue: 4 year: 2014 ident: 1588_CR40 publication-title: Found Comput Math doi: 10.1007/s10208-013-9154-z – volume: 56 start-page: 1077 issue: 5 year: 2017 ident: 1588_CR48 publication-title: Struct Multidiscip Opt doi: 10.1007/s00158-017-1704-6 – volume: 36 start-page: A2952 issue: 6 year: 2014 ident: 1588_CR37 publication-title: SIAM J Sci Comput doi: 10.1137/140966368 – volume: 195 start-page: 106685 year: 2020 ident: 1588_CR7 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2019.106685 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 1588_CR47 publication-title: IEEE Trans Inf theory doi: 10.1109/TIT.1982.1056489 – volume: 33 start-page: 1065 issue: 3 year: 1962 ident: 1588_CR35 publication-title: Ann Math Stat doi: 10.1214/aoms/1177704472 – volume: 237 start-page: 109600 year: 2021 ident: 1588_CR2 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.109600 – volume: 54 start-page: 649 issue: 2 year: 2020 ident: 1588_CR19 publication-title: ESAIM: M2AN doi: 10.1051/m2an/2019045 – ident: 1588_CR52 doi: 10.1007/978-3-642-15337-2_3 – volume: 49 start-page: 313 year: 2016 ident: 1588_CR51 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.08.028 – ident: 1588_CR55 doi: 10.2218/marine2021.6862 – volume: 19 start-page: 143 issue: 2 year: 2014 ident: 1588_CR4 publication-title: J Mar Sci Technol doi: 10.1007/s00773-013-0235-0 – volume: 25 start-page: 177 issue: 1 year: 2013 ident: 1588_CR24 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2012.01.006 – ident: 1588_CR3 doi: 10.2514/6.2017-1654 – ident: 1588_CR9 doi: 10.2514/6.2020-3158 – ident: 1588_CR39 doi: 10.1090/S0025-5718-68-99866-9 – volume: 74 start-page: 189 year: 2013 ident: 1588_CR5 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2013.06.020 – volume: 10 start-page: 708 issue: 3 year: 1982 ident: 1588_CR56 publication-title: Ann Stat doi: 10.1214/aos/1176345866 – volume: 71 start-page: 65 issue: 1 year: 2003 ident: 1588_CR43 publication-title: Computing doi: 10.1007/s00607-003-0015-5 – volume: 51 start-page: 347 issue: 2 year: 2015 ident: 1588_CR46 publication-title: Struct Multidiscip Opt doi: 10.1007/s00158-014-1128-5 – volume: 33 start-page: 237 issue: 6–7 year: 2019 ident: 1588_CR23 publication-title: Int J Comput Fluid Dyn doi: 10.1080/10618562.2019.1683164 – volume: 62 start-page: 421 issue: 3 year: 2018 ident: 1588_CR32 publication-title: Comput Mech doi: 10.1007/s00466-017-1505-1 – volume: 3 start-page: 021004 issue: 2 year: 2018 ident: 1588_CR6 publication-title: J Verif Valid Uncertain Quantif doi: 10.1115/1.4041372 – ident: 1588_CR42 doi: 10.1007/978-3-319-28262-6_8 – ident: 1588_CR33 doi: 10.2514/6.2020-3160 – ident: 1588_CR50 |
SSID | ssj0013009 |
Score | 2.407481 |
Snippet | This paper presents a comparison of two multi-fidelity methods for the forward uncertainty quantification of a naval engineering problem. Specifically, we... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2209 |
SubjectTerms | Accuracy Approximation Budgets CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Collocation Computational fluid dynamics Computer Science Computer-Aided Engineering (CAD Control Design of experiments Engineering Expected values Ferries Fluid dynamics Kurtosis Math. Applications in Chemistry Mathematical and Computational Engineering Multigrid methods Naval engineering Optimization Original Article Probability density functions Radial basis function Reynolds averaged Navier-Stokes method Robustness (mathematics) Skewness Solvers Statistical analysis Systems Theory Uncertainty |
SummonAdditionalLinks | – databaseName: ProQuest Central (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELWgvcCBpYAoFOQDN4jI4tjJCUHVqkKiQohKvUWJ7QBSlS5pv4afZSZ2F5DoIZdk4suMPW_s5zeE3MRcMcFCqE4inToMAK4Tu4F0Iu1LnaUSogQLxZc-7w3Y8zAc2g230tIql2titVCrscQ98nsoDRC6-7F4mEwd7BqFp6u2hcYuqcMSHEHxVX_q9F_f1ucIriF5eAJJXlzYazPV5TmUYkECLpbTIcSL-zs1rfHmnyPSKvN0j8iBhYz00fj4mOzookEOLXykdnKWDbK_oS14Qr7bpsNg8UEr0qBT6SJSwHryM0VxZoohMDY7djQtlDXLUfcKoPmm5QwFDEYUMt5XSTETVsFKAe_ig7xbCi8NuQD-nC5SQ0EyY49zipQwCoU9glUwPCWDbue93XNsJwZHBjyYO4GOJOA6BWgHyjOupHa1D-Ak1EID4vTyPOa-x3mWhUoLkTIRu7nSnkxjJTSPgzNSK8aFPic0ywTTsa84AB8WySgFc98XypNMSI_JJvGWTkiklSnHbhmjZCWwXDkuAcclleMSt0luV_9MjEjHVuvW0reJnbBlsg6vJrlb-nv9-f_RLraPdkn2sEG9IZe1SG0-W-grgDHz7NrG6g-i9vFc priority: 102 providerName: ProQuest |
Title | Comparing multi-index stochastic collocation and multi-fidelity stochastic radial basis functions for forward uncertainty quantification of ship resistance |
URI | https://link.springer.com/article/10.1007/s00366-021-01588-0 https://www.proquest.com/docview/2821148297 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xXODAjihL5QM3iJTFsZNjqVoQCIQQleAUJbYDSFUKtHwNP8tM7LSAAIlDVMmZ-DKT-r34-Q3AYSo0lzxGdpKY3OMIcL3Uj5SXmFCZIldYJUQUL6_E2YCf38V37lDYuFG7N1uS9T_19LAbWaeQYJbob4z5RaK-GBN3xyoehJ3Z3oFvhR2BJGGXkO6ozM9zfF2OZhjz27Zovdr012DFwUTWsXldhzlTbcCqg4zMvZBjHGq6MjRjG7D8yWJwE967ttFg9cBq7aBX2yMyhHzqMSePZkaVMLIf7lheaRdWkv0VIvTPka_kYzBkuPA9jRktiHXNMoS9dJH8luGg1Rjgky9vuVUi2blHJSNlGEN-T5gVA7dg0O_dds8815DBU5GIJl5kEoXwTiPoQZYmtDK-CRGjxEYaBJ5BWaYiDIQoilgbKXMuU7_UJlB5qqURabQNC9WoMjvAikJyk4ZaIP7hiUpyDA9DqQPFpQq4akHQ5CVTzq2cmmYMs6nPcp3LDHOZ1bnM_BYcTZ95tl4df0bvN-nO3Hs7zpCAEkEMU9mC46YEZrd_n233f-F7sER9663mbB8WJq9v5gDRzaRow3zSP23DYuf0_qKHvye9q-sbHO2Kbrsu9A-YtvgQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V5VA4QFtALLTUBzhBROI4dnKoECosW_pxaqXeQmJPClKVbTdbIX4L_4Hf2Bk76Rak9tbDXrITX2Y88yZ-fgPwptBOGZVRd5JjFSkCuFERpzbKUVqsK0tRwo3iwaGeHKtvJ9nJEvwd7sIwrXLIiT5Ru6nlb-QfqDVg6C4L8_H8IuKpUXy6OozQCGGxh79_UcvWbe9-Jv--lXL85WhnEvVTBSKb6nQepZhbwiiOKje1GtpZjFFSoc3QIKGnpGkKLROt6zpzaEylTBE3DhNbFc6gZvElSvkPVJoWvKPy8dfFqUUcKCWJYUqZNv0lHX9Vj4VfmO7LzXtG0Rn_WwgX6Pa_A1lf58ar8LgHqOJTiKg1WMJ2HZ70YFX0qaBbh0c3lAyfwp-dMM-wPRWeohh5FUZByNL-qFgKWnDATcP3QVG1rjdrWGWLGoGbljOWSzgTVF9_doLrrt8agtA1_5jlK-hhoDLQmxeXVSA8hbWnjWACmphhx9CYDJ_B8b146Dkst9MWX4Coa6OwkE4TzFK5zSsyl9K4xCpjE2VHkAxOKG0vis6zOc7Kazln77iSHFd6x5XxCN5dv3MeJEHutN4YfFv26aErF8E8gveDvxd_377ay7tX24KVydHBfrm_e7j3Ch5KAmSB1rYBy_PZJW4SgJrXr33UCvh-39vkCg4oLJU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9RAEJ6QIzH6IIoaTkH3QZ-0od3b7rYPxCBwAdELMZLwVtvdqZqQHlyPEH-L_4Rf50x3y6GJvPFwL73pvszszDfdb78BeJ1rp4xKqTvJsIwUAdwoj0c2ylBarEpLUcKN4ueJ3j9WH0_SkyW46u_CMK2yz4ldonZTy9_IN6k1YOguc7NZB1rE0e74_dl5xBOk-KS1H6fhQ-QQf11S-9ZuHeySr99IOd77urMfhQkDkR3p0TwaYWYJrziq4tR2aGcxRklFN0WDhKSSus61TLSuqtShMaUyeVw7TGyZO4OahZgo_S8b6oriASx_2JscfVmcYcSeYJIYJphpE67sdBf3WAaGyb_cyqcUq_HfZXGBdf85nu2q3vgRPAxwVWz7-HoMS9iswkqAriIkhnYVHtzQNXwCv3f8dMPmu-gIi1GnySgIZ9ofJQtDCw6_qf9aKMrGBbOaNbeoLbhpOWPxhFNB1fZnK7gKdxtFENbmH3N-BT30xAZ68_yi9PQnv_a0FkxHEzNsGSiT4VM4vhMfPYNBM21wDURVGYW5dJpAl8psVpK5lMYlVhmbKDuEpHdCYYNEOk_qOC2uxZ07xxXkuKJzXBEP4e31O2deIORW6_Xet0VIFm2xCO0hvOv9vfj7_6s9v321V3CPtkjx6WBy-ALuS0JnnuO2DoP57AI3CE3Nq5chbAV8u-ud8gcF1jIn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+multi-index+stochastic+collocation+and+multi-fidelity+stochastic+radial+basis+functions+for+forward+uncertainty+quantification+of+ship+resistance&rft.jtitle=Engineering+with+computers&rft.au=Piazzola%2C+Chiara&rft.au=Tamellini%2C+Lorenzo&rft.au=Pellegrini%2C+Riccardo&rft.au=Broglia%2C+Riccardo&rft.date=2023-06-01&rft.pub=Springer+London&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=39&rft.issue=3&rft.spage=2209&rft.epage=2237&rft_id=info:doi/10.1007%2Fs00366-021-01588-0&rft.externalDocID=10_1007_s00366_021_01588_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |