D-modules of pure Gaussian type and enhanced ind-sheaves

Differential systems of pure Gaussian type are examples of D-modules on the complex projective line with an irregular singularity at infinity, and as such are subject to the Stokes phenomenon. We employ the theory of enhanced ind-sheaves and the Riemann–Hilbert correspondence for holonomic D-modules...

Full description

Saved in:
Bibliographic Details
Published inManuscripta mathematica Vol. 167; no. 3-4; pp. 435 - 467
Main Author Hohl, Andreas
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-2611
1432-1785
DOI10.1007/s00229-021-01281-y

Cover

Abstract Differential systems of pure Gaussian type are examples of D-modules on the complex projective line with an irregular singularity at infinity, and as such are subject to the Stokes phenomenon. We employ the theory of enhanced ind-sheaves and the Riemann–Hilbert correspondence for holonomic D-modules of D’Agnolo and Kashiwara to describe the Stokes phenomenon topologically. Using this description, we perform a topological computation of the Fourier–Laplace transform of a D-module of pure Gaussian type in this framework, recovering and generalizing a result of Sabbah.
AbstractList Differential systems of pure Gaussian type are examples of D-modules on the complex projective line with an irregular singularity at infinity, and as such are subject to the Stokes phenomenon. We employ the theory of enhanced ind-sheaves and the Riemann–Hilbert correspondence for holonomic D-modules of D’Agnolo and Kashiwara to describe the Stokes phenomenon topologically. Using this description, we perform a topological computation of the Fourier–Laplace transform of a D-module of pure Gaussian type in this framework, recovering and generalizing a result of Sabbah.
Author Hohl, Andreas
Author_xml – sequence: 1
  givenname: Andreas
  orcidid: 0000-0002-9335-067X
  surname: Hohl
  fullname: Hohl, Andreas
  email: andreas.hohl@mathematik.tu-chemnitz.de
  organization: Fakultät für Mathematik, Technische Universität Chemnitz
BookMark eNp9kLFOwzAQhi1UJNrCCzBFYjbY5yR2RlSgIFVigdly7AtN1TrBTpDy9oQGCYmh0w3__92dvgWZ-cYjIdec3XLG5F1kDKCgDDhlHBSnwxmZ81QA5VJlMzIf84xCzvkFWcS4Y2wMpZgT9UAPjev3GJOmSto-YLI2fYy18Uk3tJgY7xL0W-MtuqT2jsYtmi-Ml-S8MvuIV79zSd6fHt9Wz3Tzun5Z3W-oFbnoqEhBgcyq0rgyq4pKqqIwhVAIVjmRlarI0xTKMi-FkyxXVlUO0GJaWpBMCrEkN9PeNjSfPcZO75o--PGkhlwAV1IBH1tqatnQxBiw0rbuTFc3vgum3mvO9I8nPXnSoyd99KSHEYV_aBvqgwnDaUhMUBzL_gPD31cnqG_3pXwJ
CitedBy_id crossref_primary_10_1093_imrn_rnac095
crossref_primary_10_2748_tmj_20210506
Cites_doi 10.4171/RSMUP/134-4
10.1016/j.aim.2018.09.022
10.1007/978-94-017-0717-6
10.1070/IM8308
10.2140/gt.2015.19.3467
10.1007/978-3-642-31695-1
10.1007/978-3-662-12492-5
10.1007/s00029-015-0185-y
10.2977/prims/1195181610
10.1515/crelle-2016-0062
10.1007/978-0-8176-4523-6
10.1090/conm/474/09262
10.1007/s10240-015-0076-y
10.1007/s11537-016-1564-7
10.1016/j.aim.2020.107093
10.1017/CBO9781316675625
10.1007/s10240-012-0044-8
10.5802/aif.3323
10.1007/BF02698808
ContentType Journal Article
Copyright The Author(s) 2021. corrected publication 2021
The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021. corrected publication 2021
– notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00229-021-01281-y
DatabaseName SpringerOpen
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-1785
EndPage 467
ExternalDocumentID 10_1007_s00229_021_01281_y
GrantInformation_xml – fundername: Studienstiftung des Deutschen Volkes
  funderid: http://dx.doi.org/10.13039/501100004350
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
692
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
YQT
Z45
Z7U
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-3428275fbadb5f9f7899a938e2c8d35b896442bb6b3d7068c8fd2ece4bc270733
IEDL.DBID C6C
ISSN 0025-2611
IngestDate Tue Sep 16 16:20:54 EDT 2025
Tue Jul 01 04:28:37 EDT 2025
Thu Apr 24 23:11:41 EDT 2025
Fri Feb 21 02:47:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords 44A10
34M40
32C38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-3428275fbadb5f9f7899a938e2c8d35b896442bb6b3d7068c8fd2ece4bc270733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9335-067X
OpenAccessLink https://doi.org/10.1007/s00229-021-01281-y
PQID 2632187821
PQPubID 2043619
PageCount 33
ParticipantIDs proquest_journals_2632187821
crossref_citationtrail_10_1007_s00229_021_01281_y
crossref_primary_10_1007_s00229_021_01281_y
springer_journals_10_1007_s00229_021_01281_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Manuscripta mathematica
PublicationTitleAbbrev manuscripta math
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BoalchPGlobal Weyl groups and a new theory of multiplicative quiver varietiesGeom. Topol.20151934673536344710810.2140/gt.2015.19.3467
KashiwaraMSchapiraPCategories and Sheaves, Grundlehren der mathematischen Wissenschaften2006BerlinSpringer1118.18001
Kashiwara, M., Schapira, P.: Ind-sheaves. Astérisque 271, (2001)
D’AgnoloAKashiwaraMEnhanced perversitiesJ. Reine Angew. Math.2019751185241395669410.1515/crelle-2016-0062
Deligne, P.: Lettre à B. Malgrange du 19/4/1978. In: Singularités irrégulières, Correspondance et documents, Documents mathématiques 5, Société Mathématique de France, Paris, pp. 25–26 (2007)
HienMSabbahCThe local Laplace transform of an elementary irregular meromorphic connectionRend. Sem. Mat. Univ. Padova2015134133196342841710.4171/RSMUP/134-4
HottaRTakeuchiKTanisakiTD-Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics2008BostonBirkhäuser10.1007/978-0-8176-4523-6
MalgrangeBÉquations différentielles à coefficients polynomiaux, Progress in Mathematics1991BostonBirkhëuser0764.32001
KashiwaraMD-Modules and Microlocal Calculus, Translations of Mathematical Monographs2003ProvidenceAmerican Mathematical Society
KatzNMLaumonGTransformation de Fourier et majoration de sommes exponentiellesPubl. Math. Inst. Hautes Études Sci.19856214520210.1007/BF02698808
MochizukiTNote on the Stokes structure of Fourier transformActa Math. Vietnam.20103510715826421661201.32016
D’AgnoloAHienMMorandoGSabbahCTopological computation of some Stokes phenomena on the affine lineAnn. Inst. Fourier202070739808410595010.5802/aif.3323
KashiwaraMSchapiraPSheaves on Manifolds, Grundlehren der mathematischen Wissenschaften1990BerlinSpringer
SabbahCDifferential systems of pure Gaussian typeIzv. Math.201680189220346268010.1070/IM8308
KashiwaraMThe Riemann-Hilbert problem for holonomic systemsPubl. Res. Inst. Math. Sci.19842031936574338210.2977/prims/1195181610
KashiwaraMSchapiraPIrregular holonomic kernels and Laplace transformSel. Math. New Ser.20162255109343783310.1007/s00029-015-0185-y
KashiwaraMSchapiraPRegular and Irregular Holonomic D-modules, London Mathematical Society Lecture Note Series2016CambridgeCambridge University Press10.1017/CBO9781316675625
GelfandSIManinYIMethods of Homological Algebra20032BerlinSpringer Monographs in Mathematics. Springer10.1007/978-3-662-12492-5
BoalchPSimply-laced isomonodromy systemsPubl. Math. Inst. Hautes Études Sci.2012116168309025410.1007/s10240-012-0044-8
ItoYTakeuchiKOn irregularities of Fourier transforms of regular holonomic D-modulesAdv. Math.2020366407279710.1016/j.aim.2020.107093
D’AgnoloAKashiwaraMA microlocal approach to the enhanced Fourier-Sato transform in dimension oneAdv. Math.2018339159386689310.1016/j.aim.2018.09.022
Mochizuki, T.: Curve test for enhanced ind-sheaves and holonomic D-modules. arXiv:1610.08572v3 (2018)
Mochizuki, T.: Holonomic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-modules with Betti structure. Mém. Soc. Math. Fr. (N.S.) 138–139, Soc. Math. France, Paris (2014)
KashiwaraMRiemann-Hilbert correspondence for irregular holonomic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-modulesJpn. J. Math.201611113149351068110.1007/s11537-016-1564-7
Mochizuki, T.: Stokes shells and Fourier transforms. arXiv:1808.01037v1 (2018)
SabbahCAn explicit stationary phase formula for the local formal Fourier-Laplace transformContemp. Math.2008474309330245435410.1090/conm/474/09262
Sabbah, C.: Introduction to Stokes Structures. Lecture Notes in Mathematics, vol. 2060. Springer, Berlin (2013)
D’AgnoloAKashiwaraMRiemann-Hilbert correspondence for holonomic D-modulesPubl. Math. Inst. Hautes Études Sci.201612369197350209710.1007/s10240-015-0076-y
BjörkJ-EAnalytic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-Modules and Applications, Mathematics and Its Applications1993DordrechtKluwer Academic Publishers10.1007/978-94-017-0717-6
Hohl, A.: D-Modules of Pure Gaussian Type from the Viewpoint of Enhanced Ind-Sheaves. Universität Augsburg. https://opus.bibliothek.uni-augsburg.de/opus4/79690 (2020). Accessed 20 October 2020
T Mochizuki (1281_CR24) 2010; 35
M Kashiwara (1281_CR14) 1984; 20
R Hotta (1281_CR12) 2008
P Boalch (1281_CR2) 2012; 116
Y Ito (1281_CR13) 2020; 366
1281_CR26
1281_CR27
C Sabbah (1281_CR28) 2008; 474
1281_CR29
J-E Björk (1281_CR1) 1993
B Malgrange (1281_CR23) 1991
A D’Agnolo (1281_CR5) 2016; 123
NM Katz (1281_CR22) 1985; 62
M Kashiwara (1281_CR15) 2003
A D’Agnolo (1281_CR7) 2019; 751
1281_CR25
M Kashiwara (1281_CR17) 1990
M Kashiwara (1281_CR21) 2016; 22
SI Gelfand (1281_CR9) 2003
M Kashiwara (1281_CR16) 2016; 11
P Boalch (1281_CR3) 2015; 19
A D’Agnolo (1281_CR4) 2020; 70
1281_CR18
M Kashiwara (1281_CR20) 2016
1281_CR8
M Kashiwara (1281_CR19) 2006
C Sabbah (1281_CR30) 2016; 80
M Hien (1281_CR10) 2015; 134
1281_CR11
A D’Agnolo (1281_CR6) 2018; 339
References_xml – reference: HienMSabbahCThe local Laplace transform of an elementary irregular meromorphic connectionRend. Sem. Mat. Univ. Padova2015134133196342841710.4171/RSMUP/134-4
– reference: Mochizuki, T.: Holonomic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-modules with Betti structure. Mém. Soc. Math. Fr. (N.S.) 138–139, Soc. Math. France, Paris (2014)
– reference: KatzNMLaumonGTransformation de Fourier et majoration de sommes exponentiellesPubl. Math. Inst. Hautes Études Sci.19856214520210.1007/BF02698808
– reference: Hohl, A.: D-Modules of Pure Gaussian Type from the Viewpoint of Enhanced Ind-Sheaves. Universität Augsburg. https://opus.bibliothek.uni-augsburg.de/opus4/79690 (2020). Accessed 20 October 2020
– reference: Mochizuki, T.: Stokes shells and Fourier transforms. arXiv:1808.01037v1 (2018)
– reference: MalgrangeBÉquations différentielles à coefficients polynomiaux, Progress in Mathematics1991BostonBirkhëuser0764.32001
– reference: HottaRTakeuchiKTanisakiTD-Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics2008BostonBirkhäuser10.1007/978-0-8176-4523-6
– reference: KashiwaraMSchapiraPIrregular holonomic kernels and Laplace transformSel. Math. New Ser.20162255109343783310.1007/s00029-015-0185-y
– reference: GelfandSIManinYIMethods of Homological Algebra20032BerlinSpringer Monographs in Mathematics. Springer10.1007/978-3-662-12492-5
– reference: KashiwaraMSchapiraPCategories and Sheaves, Grundlehren der mathematischen Wissenschaften2006BerlinSpringer1118.18001
– reference: KashiwaraMRiemann-Hilbert correspondence for irregular holonomic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-modulesJpn. J. Math.201611113149351068110.1007/s11537-016-1564-7
– reference: KashiwaraMSchapiraPRegular and Irregular Holonomic D-modules, London Mathematical Society Lecture Note Series2016CambridgeCambridge University Press10.1017/CBO9781316675625
– reference: BoalchPGlobal Weyl groups and a new theory of multiplicative quiver varietiesGeom. Topol.20151934673536344710810.2140/gt.2015.19.3467
– reference: Deligne, P.: Lettre à B. Malgrange du 19/4/1978. In: Singularités irrégulières, Correspondance et documents, Documents mathématiques 5, Société Mathématique de France, Paris, pp. 25–26 (2007)
– reference: KashiwaraMD-Modules and Microlocal Calculus, Translations of Mathematical Monographs2003ProvidenceAmerican Mathematical Society
– reference: D’AgnoloAHienMMorandoGSabbahCTopological computation of some Stokes phenomena on the affine lineAnn. Inst. Fourier202070739808410595010.5802/aif.3323
– reference: SabbahCAn explicit stationary phase formula for the local formal Fourier-Laplace transformContemp. Math.2008474309330245435410.1090/conm/474/09262
– reference: D’AgnoloAKashiwaraMEnhanced perversitiesJ. Reine Angew. Math.2019751185241395669410.1515/crelle-2016-0062
– reference: BoalchPSimply-laced isomonodromy systemsPubl. Math. Inst. Hautes Études Sci.2012116168309025410.1007/s10240-012-0044-8
– reference: MochizukiTNote on the Stokes structure of Fourier transformActa Math. Vietnam.20103510715826421661201.32016
– reference: BjörkJ-EAnalytic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-Modules and Applications, Mathematics and Its Applications1993DordrechtKluwer Academic Publishers10.1007/978-94-017-0717-6
– reference: KashiwaraMSchapiraPSheaves on Manifolds, Grundlehren der mathematischen Wissenschaften1990BerlinSpringer
– reference: Mochizuki, T.: Curve test for enhanced ind-sheaves and holonomic D-modules. arXiv:1610.08572v3 (2018)
– reference: SabbahCDifferential systems of pure Gaussian typeIzv. Math.201680189220346268010.1070/IM8308
– reference: ItoYTakeuchiKOn irregularities of Fourier transforms of regular holonomic D-modulesAdv. Math.2020366407279710.1016/j.aim.2020.107093
– reference: D’AgnoloAKashiwaraMA microlocal approach to the enhanced Fourier-Sato transform in dimension oneAdv. Math.2018339159386689310.1016/j.aim.2018.09.022
– reference: Kashiwara, M., Schapira, P.: Ind-sheaves. Astérisque 271, (2001)
– reference: KashiwaraMThe Riemann-Hilbert problem for holonomic systemsPubl. Res. Inst. Math. Sci.19842031936574338210.2977/prims/1195181610
– reference: D’AgnoloAKashiwaraMRiemann-Hilbert correspondence for holonomic D-modulesPubl. Math. Inst. Hautes Études Sci.201612369197350209710.1007/s10240-015-0076-y
– reference: Sabbah, C.: Introduction to Stokes Structures. Lecture Notes in Mathematics, vol. 2060. Springer, Berlin (2013)
– ident: 1281_CR11
– volume: 134
  start-page: 133
  year: 2015
  ident: 1281_CR10
  publication-title: Rend. Sem. Mat. Univ. Padova
  doi: 10.4171/RSMUP/134-4
– volume: 339
  start-page: 1
  year: 2018
  ident: 1281_CR6
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2018.09.022
– volume-title: D-Modules and Microlocal Calculus, Translations of Mathematical Monographs
  year: 2003
  ident: 1281_CR15
– volume-title: Analytic $${\cal{D}}$$-Modules and Applications, Mathematics and Its Applications
  year: 1993
  ident: 1281_CR1
  doi: 10.1007/978-94-017-0717-6
– volume: 35
  start-page: 107
  year: 2010
  ident: 1281_CR24
  publication-title: Acta Math. Vietnam.
– ident: 1281_CR26
– volume: 80
  start-page: 189
  year: 2016
  ident: 1281_CR30
  publication-title: Izv. Math.
  doi: 10.1070/IM8308
– volume-title: Sheaves on Manifolds, Grundlehren der mathematischen Wissenschaften
  year: 1990
  ident: 1281_CR17
– volume: 19
  start-page: 3467
  year: 2015
  ident: 1281_CR3
  publication-title: Geom. Topol.
  doi: 10.2140/gt.2015.19.3467
– ident: 1281_CR29
  doi: 10.1007/978-3-642-31695-1
– volume-title: Methods of Homological Algebra
  year: 2003
  ident: 1281_CR9
  doi: 10.1007/978-3-662-12492-5
– ident: 1281_CR18
– volume: 22
  start-page: 55
  year: 2016
  ident: 1281_CR21
  publication-title: Sel. Math. New Ser.
  doi: 10.1007/s00029-015-0185-y
– volume: 20
  start-page: 319
  year: 1984
  ident: 1281_CR14
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1195181610
– volume: 751
  start-page: 185
  year: 2019
  ident: 1281_CR7
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crelle-2016-0062
– ident: 1281_CR25
– volume-title: D-Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics
  year: 2008
  ident: 1281_CR12
  doi: 10.1007/978-0-8176-4523-6
– volume: 474
  start-page: 309
  year: 2008
  ident: 1281_CR28
  publication-title: Contemp. Math.
  doi: 10.1090/conm/474/09262
– ident: 1281_CR27
– volume: 123
  start-page: 69
  year: 2016
  ident: 1281_CR5
  publication-title: Publ. Math. Inst. Hautes Études Sci.
  doi: 10.1007/s10240-015-0076-y
– volume-title: Équations différentielles à coefficients polynomiaux, Progress in Mathematics
  year: 1991
  ident: 1281_CR23
– volume: 11
  start-page: 113
  year: 2016
  ident: 1281_CR16
  publication-title: Jpn. J. Math.
  doi: 10.1007/s11537-016-1564-7
– volume-title: Categories and Sheaves, Grundlehren der mathematischen Wissenschaften
  year: 2006
  ident: 1281_CR19
– ident: 1281_CR8
– volume: 366
  year: 2020
  ident: 1281_CR13
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2020.107093
– volume-title: Regular and Irregular Holonomic D-modules, London Mathematical Society Lecture Note Series
  year: 2016
  ident: 1281_CR20
  doi: 10.1017/CBO9781316675625
– volume: 116
  start-page: 1
  year: 2012
  ident: 1281_CR2
  publication-title: Publ. Math. Inst. Hautes Études Sci.
  doi: 10.1007/s10240-012-0044-8
– volume: 70
  start-page: 739
  year: 2020
  ident: 1281_CR4
  publication-title: Ann. Inst. Fourier
  doi: 10.5802/aif.3323
– volume: 62
  start-page: 145
  year: 1985
  ident: 1281_CR22
  publication-title: Publ. Math. Inst. Hautes Études Sci.
  doi: 10.1007/BF02698808
SSID ssj0014373
Score 2.2941568
Snippet Differential systems of pure Gaussian type are examples of D-modules on the complex projective line with an irregular singularity at infinity, and as such are...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 435
SubjectTerms Algebraic Geometry
Calculus of Variations and Optimal Control; Optimization
Geometry
Laplace transforms
Lie Groups
Mathematics
Mathematics and Statistics
Modules
Number Theory
Sheaves
Topological Groups
Title D-modules of pure Gaussian type and enhanced ind-sheaves
URI https://link.springer.com/article/10.1007/s00229-021-01281-y
https://www.proquest.com/docview/2632187821
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4ULnowfkYUSQ_etAlt99EdAfmIBk6S4Gnp1-IBB2HMhH9vW7YRiZp42Q7rmuzZur5Pn77PC8C9mYMToTFBkRISedwniEtGkYcVxTIhbe289MaTYDT1nmf-rLDJsbkwe_q9NfskJEJ2I4ETfdDmENR9TAMnzAa9SjGwFj1leVbDCnCRIPNzH98noV1kuSeGujlmcApOiuAQdrZv8wwc6PQcHI8rZ9XsArAn9LFQ-VxncJHAZb7ScMjzzKZCQrucCnmqoE7fnbAPDeFGmfndfursEkwH_dfeCBXVD5A0T7dG1BADEvqJ4Er4SZSEhhnxiDJNJFPUFywyoQwRIhBUhe2ASZYooqX2hCShLcV4BWrpItXXACqPURH4ygy4yDrSc64jQ1RkOzT0kFPSALiEI5aFNbitUDGPK1NjB2FsIIwdhPGmAR6qe5ZbY4w_WzdLlONikGSxtYrHzIQouAEeS-R3l3_v7eZ_zW_BEbFJC27nWBPU1qtc35lQYi1aoN4ZdLsTex6-vfRb7psyxynpfAFRmMBB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BewAO7IhCAR-4gVFjZ3GOFUvLUk5UKqfIW4QEpKhpkMrXY6dJKipA6jmOZY-XmeeZeQNwanRwLLRDcKiExC73COaSUew6ijoyJi2dc-n1Hv1u370beIMiKSwto91Ll2R-U1fJblbdhNiGFOTuHzxZhrprMHirBvV25_n-uvIeWLqeslSrQQhOkSzzey8_FdLMypxzjOb65mYD-uVIp2EmrxfZWFzIrzkSx0WnsgnrhQGK2tMdswVLOtmGtV7F3pruALvC70OVvekUDWP0kY006vAstemWyD7ZIp4opJOXPHgAGVCPU3Olf-p0F_o310-XXVxUWMCS-nSMqQEfJPBiwZXw4jAODPriIWWaSKaoJ1hozCUihC-oClo-kyxWREvtCkkCW-5xD2rJMNH7gJTLqPA9ZQ51aFnvOdehAUOyFRgIyilpgFOKOZIF_bitgvEWVcTJuVQiI5Uol0o0acBZ9c_HlHzj39bNcvWi4iCmkaWjd5gxg5wGnJeLMfv8d28HizU_gZXuU-8herh9vD-EVWKTJPJItSbUxqNMHxnTZSyOi536DSC_4IM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjADaw2dhbniFpKWVpxoFJvlreIQ0mrJkXq32O7SQoIkDjH8WESZ-blzXsDwKXJwYnQHkaxEhL5PMCIS0qQ7yniyQS3tPPS6w_C3tB_GAWjTyp-1-1eUpJLTYN1aUrz5lQlzUr4ZlNPjGx7gaOC0GIdbPg29Vm6NmxXPII17imHthqs4BWymZ_3-JqaVvXmN4rUZZ7uLtgpSkZ4s3zGe2BNp_tgu1_5rWYHgHbQ20TNxzqDkwRO5zMN7_g8swJJaH-yQp4qqNNXR_dDA8NRZj7C7zo7BMPu7Uu7h4qZCEiSkOSIGLiAoyARXIkgiZPI4CUeE6qxpIoEgsamwMFChIKoqBVSSROFtdS-kDiyAxqPQC2dpPoYQOVTIsJAmWMYW596znVs4ItsRQY0coLrwCvDwWRhGG7nVoxZZXXsQshMCJkLIVvUwVV1z3Rpl_Hn6kYZZVYcnYxZA3mPmsLFq4PrMvKry7_vdvK_5Rdg87nTZU_3g8dTsIWtqsG1ljVALZ_N9ZmpNXJx7l6nD3kpx3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D-modules+of+pure+Gaussian+type+and+enhanced+ind-sheaves&rft.jtitle=Manuscripta+mathematica&rft.au=Hohl%2C+Andreas&rft.date=2022-03-01&rft.issn=0025-2611&rft.eissn=1432-1785&rft.volume=167&rft.issue=3-4&rft.spage=435&rft.epage=467&rft_id=info:doi/10.1007%2Fs00229-021-01281-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00229_021_01281_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-2611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-2611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-2611&client=summon