D-modules of pure Gaussian type and enhanced ind-sheaves
Differential systems of pure Gaussian type are examples of D-modules on the complex projective line with an irregular singularity at infinity, and as such are subject to the Stokes phenomenon. We employ the theory of enhanced ind-sheaves and the Riemann–Hilbert correspondence for holonomic D-modules...
Saved in:
Published in | Manuscripta mathematica Vol. 167; no. 3-4; pp. 435 - 467 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0025-2611 1432-1785 |
DOI | 10.1007/s00229-021-01281-y |
Cover
Abstract | Differential systems of pure Gaussian type are examples of D-modules on the complex projective line with an irregular singularity at infinity, and as such are subject to the Stokes phenomenon. We employ the theory of enhanced ind-sheaves and the Riemann–Hilbert correspondence for holonomic D-modules of D’Agnolo and Kashiwara to describe the Stokes phenomenon topologically. Using this description, we perform a topological computation of the Fourier–Laplace transform of a D-module of pure Gaussian type in this framework, recovering and generalizing a result of Sabbah. |
---|---|
AbstractList | Differential systems of pure Gaussian type are examples of D-modules on the complex projective line with an irregular singularity at infinity, and as such are subject to the Stokes phenomenon. We employ the theory of enhanced ind-sheaves and the Riemann–Hilbert correspondence for holonomic D-modules of D’Agnolo and Kashiwara to describe the Stokes phenomenon topologically. Using this description, we perform a topological computation of the Fourier–Laplace transform of a D-module of pure Gaussian type in this framework, recovering and generalizing a result of Sabbah. |
Author | Hohl, Andreas |
Author_xml | – sequence: 1 givenname: Andreas orcidid: 0000-0002-9335-067X surname: Hohl fullname: Hohl, Andreas email: andreas.hohl@mathematik.tu-chemnitz.de organization: Fakultät für Mathematik, Technische Universität Chemnitz |
BookMark | eNp9kLFOwzAQhi1UJNrCCzBFYjbY5yR2RlSgIFVigdly7AtN1TrBTpDy9oQGCYmh0w3__92dvgWZ-cYjIdec3XLG5F1kDKCgDDhlHBSnwxmZ81QA5VJlMzIf84xCzvkFWcS4Y2wMpZgT9UAPjev3GJOmSto-YLI2fYy18Uk3tJgY7xL0W-MtuqT2jsYtmi-Ml-S8MvuIV79zSd6fHt9Wz3Tzun5Z3W-oFbnoqEhBgcyq0rgyq4pKqqIwhVAIVjmRlarI0xTKMi-FkyxXVlUO0GJaWpBMCrEkN9PeNjSfPcZO75o--PGkhlwAV1IBH1tqatnQxBiw0rbuTFc3vgum3mvO9I8nPXnSoyd99KSHEYV_aBvqgwnDaUhMUBzL_gPD31cnqG_3pXwJ |
CitedBy_id | crossref_primary_10_1093_imrn_rnac095 crossref_primary_10_2748_tmj_20210506 |
Cites_doi | 10.4171/RSMUP/134-4 10.1016/j.aim.2018.09.022 10.1007/978-94-017-0717-6 10.1070/IM8308 10.2140/gt.2015.19.3467 10.1007/978-3-642-31695-1 10.1007/978-3-662-12492-5 10.1007/s00029-015-0185-y 10.2977/prims/1195181610 10.1515/crelle-2016-0062 10.1007/978-0-8176-4523-6 10.1090/conm/474/09262 10.1007/s10240-015-0076-y 10.1007/s11537-016-1564-7 10.1016/j.aim.2020.107093 10.1017/CBO9781316675625 10.1007/s10240-012-0044-8 10.5802/aif.3323 10.1007/BF02698808 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. corrected publication 2021 The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021. corrected publication 2021 – notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00229-021-01281-y |
DatabaseName | SpringerOpen CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-1785 |
EndPage | 467 |
ExternalDocumentID | 10_1007_s00229_021_01281_y |
GrantInformation_xml | – fundername: Studienstiftung des Deutschen Volkes funderid: http://dx.doi.org/10.13039/501100004350 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF- PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR YQT Z45 Z7U ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-3428275fbadb5f9f7899a938e2c8d35b896442bb6b3d7068c8fd2ece4bc270733 |
IEDL.DBID | C6C |
ISSN | 0025-2611 |
IngestDate | Tue Sep 16 16:20:54 EDT 2025 Tue Jul 01 04:28:37 EDT 2025 Thu Apr 24 23:11:41 EDT 2025 Fri Feb 21 02:47:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | 44A10 34M40 32C38 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-3428275fbadb5f9f7899a938e2c8d35b896442bb6b3d7068c8fd2ece4bc270733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9335-067X |
OpenAccessLink | https://doi.org/10.1007/s00229-021-01281-y |
PQID | 2632187821 |
PQPubID | 2043619 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2632187821 crossref_citationtrail_10_1007_s00229_021_01281_y crossref_primary_10_1007_s00229_021_01281_y springer_journals_10_1007_s00229_021_01281_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Manuscripta mathematica |
PublicationTitleAbbrev | manuscripta math |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | BoalchPGlobal Weyl groups and a new theory of multiplicative quiver varietiesGeom. Topol.20151934673536344710810.2140/gt.2015.19.3467 KashiwaraMSchapiraPCategories and Sheaves, Grundlehren der mathematischen Wissenschaften2006BerlinSpringer1118.18001 Kashiwara, M., Schapira, P.: Ind-sheaves. Astérisque 271, (2001) D’AgnoloAKashiwaraMEnhanced perversitiesJ. Reine Angew. Math.2019751185241395669410.1515/crelle-2016-0062 Deligne, P.: Lettre à B. Malgrange du 19/4/1978. In: Singularités irrégulières, Correspondance et documents, Documents mathématiques 5, Société Mathématique de France, Paris, pp. 25–26 (2007) HienMSabbahCThe local Laplace transform of an elementary irregular meromorphic connectionRend. Sem. Mat. Univ. Padova2015134133196342841710.4171/RSMUP/134-4 HottaRTakeuchiKTanisakiTD-Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics2008BostonBirkhäuser10.1007/978-0-8176-4523-6 MalgrangeBÉquations différentielles à coefficients polynomiaux, Progress in Mathematics1991BostonBirkhëuser0764.32001 KashiwaraMD-Modules and Microlocal Calculus, Translations of Mathematical Monographs2003ProvidenceAmerican Mathematical Society KatzNMLaumonGTransformation de Fourier et majoration de sommes exponentiellesPubl. Math. Inst. Hautes Études Sci.19856214520210.1007/BF02698808 MochizukiTNote on the Stokes structure of Fourier transformActa Math. Vietnam.20103510715826421661201.32016 D’AgnoloAHienMMorandoGSabbahCTopological computation of some Stokes phenomena on the affine lineAnn. Inst. Fourier202070739808410595010.5802/aif.3323 KashiwaraMSchapiraPSheaves on Manifolds, Grundlehren der mathematischen Wissenschaften1990BerlinSpringer SabbahCDifferential systems of pure Gaussian typeIzv. Math.201680189220346268010.1070/IM8308 KashiwaraMThe Riemann-Hilbert problem for holonomic systemsPubl. Res. Inst. Math. Sci.19842031936574338210.2977/prims/1195181610 KashiwaraMSchapiraPIrregular holonomic kernels and Laplace transformSel. Math. New Ser.20162255109343783310.1007/s00029-015-0185-y KashiwaraMSchapiraPRegular and Irregular Holonomic D-modules, London Mathematical Society Lecture Note Series2016CambridgeCambridge University Press10.1017/CBO9781316675625 GelfandSIManinYIMethods of Homological Algebra20032BerlinSpringer Monographs in Mathematics. Springer10.1007/978-3-662-12492-5 BoalchPSimply-laced isomonodromy systemsPubl. Math. Inst. Hautes Études Sci.2012116168309025410.1007/s10240-012-0044-8 ItoYTakeuchiKOn irregularities of Fourier transforms of regular holonomic D-modulesAdv. Math.2020366407279710.1016/j.aim.2020.107093 D’AgnoloAKashiwaraMA microlocal approach to the enhanced Fourier-Sato transform in dimension oneAdv. Math.2018339159386689310.1016/j.aim.2018.09.022 Mochizuki, T.: Curve test for enhanced ind-sheaves and holonomic D-modules. arXiv:1610.08572v3 (2018) Mochizuki, T.: Holonomic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-modules with Betti structure. Mém. Soc. Math. Fr. (N.S.) 138–139, Soc. Math. France, Paris (2014) KashiwaraMRiemann-Hilbert correspondence for irregular holonomic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-modulesJpn. J. Math.201611113149351068110.1007/s11537-016-1564-7 Mochizuki, T.: Stokes shells and Fourier transforms. arXiv:1808.01037v1 (2018) SabbahCAn explicit stationary phase formula for the local formal Fourier-Laplace transformContemp. Math.2008474309330245435410.1090/conm/474/09262 Sabbah, C.: Introduction to Stokes Structures. Lecture Notes in Mathematics, vol. 2060. Springer, Berlin (2013) D’AgnoloAKashiwaraMRiemann-Hilbert correspondence for holonomic D-modulesPubl. Math. Inst. Hautes Études Sci.201612369197350209710.1007/s10240-015-0076-y BjörkJ-EAnalytic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-Modules and Applications, Mathematics and Its Applications1993DordrechtKluwer Academic Publishers10.1007/978-94-017-0717-6 Hohl, A.: D-Modules of Pure Gaussian Type from the Viewpoint of Enhanced Ind-Sheaves. Universität Augsburg. https://opus.bibliothek.uni-augsburg.de/opus4/79690 (2020). Accessed 20 October 2020 T Mochizuki (1281_CR24) 2010; 35 M Kashiwara (1281_CR14) 1984; 20 R Hotta (1281_CR12) 2008 P Boalch (1281_CR2) 2012; 116 Y Ito (1281_CR13) 2020; 366 1281_CR26 1281_CR27 C Sabbah (1281_CR28) 2008; 474 1281_CR29 J-E Björk (1281_CR1) 1993 B Malgrange (1281_CR23) 1991 A D’Agnolo (1281_CR5) 2016; 123 NM Katz (1281_CR22) 1985; 62 M Kashiwara (1281_CR15) 2003 A D’Agnolo (1281_CR7) 2019; 751 1281_CR25 M Kashiwara (1281_CR17) 1990 M Kashiwara (1281_CR21) 2016; 22 SI Gelfand (1281_CR9) 2003 M Kashiwara (1281_CR16) 2016; 11 P Boalch (1281_CR3) 2015; 19 A D’Agnolo (1281_CR4) 2020; 70 1281_CR18 M Kashiwara (1281_CR20) 2016 1281_CR8 M Kashiwara (1281_CR19) 2006 C Sabbah (1281_CR30) 2016; 80 M Hien (1281_CR10) 2015; 134 1281_CR11 A D’Agnolo (1281_CR6) 2018; 339 |
References_xml | – reference: HienMSabbahCThe local Laplace transform of an elementary irregular meromorphic connectionRend. Sem. Mat. Univ. Padova2015134133196342841710.4171/RSMUP/134-4 – reference: Mochizuki, T.: Holonomic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-modules with Betti structure. Mém. Soc. Math. Fr. (N.S.) 138–139, Soc. Math. France, Paris (2014) – reference: KatzNMLaumonGTransformation de Fourier et majoration de sommes exponentiellesPubl. Math. Inst. Hautes Études Sci.19856214520210.1007/BF02698808 – reference: Hohl, A.: D-Modules of Pure Gaussian Type from the Viewpoint of Enhanced Ind-Sheaves. Universität Augsburg. https://opus.bibliothek.uni-augsburg.de/opus4/79690 (2020). Accessed 20 October 2020 – reference: Mochizuki, T.: Stokes shells and Fourier transforms. arXiv:1808.01037v1 (2018) – reference: MalgrangeBÉquations différentielles à coefficients polynomiaux, Progress in Mathematics1991BostonBirkhëuser0764.32001 – reference: HottaRTakeuchiKTanisakiTD-Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics2008BostonBirkhäuser10.1007/978-0-8176-4523-6 – reference: KashiwaraMSchapiraPIrregular holonomic kernels and Laplace transformSel. Math. New Ser.20162255109343783310.1007/s00029-015-0185-y – reference: GelfandSIManinYIMethods of Homological Algebra20032BerlinSpringer Monographs in Mathematics. Springer10.1007/978-3-662-12492-5 – reference: KashiwaraMSchapiraPCategories and Sheaves, Grundlehren der mathematischen Wissenschaften2006BerlinSpringer1118.18001 – reference: KashiwaraMRiemann-Hilbert correspondence for irregular holonomic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-modulesJpn. J. Math.201611113149351068110.1007/s11537-016-1564-7 – reference: KashiwaraMSchapiraPRegular and Irregular Holonomic D-modules, London Mathematical Society Lecture Note Series2016CambridgeCambridge University Press10.1017/CBO9781316675625 – reference: BoalchPGlobal Weyl groups and a new theory of multiplicative quiver varietiesGeom. Topol.20151934673536344710810.2140/gt.2015.19.3467 – reference: Deligne, P.: Lettre à B. Malgrange du 19/4/1978. In: Singularités irrégulières, Correspondance et documents, Documents mathématiques 5, Société Mathématique de France, Paris, pp. 25–26 (2007) – reference: KashiwaraMD-Modules and Microlocal Calculus, Translations of Mathematical Monographs2003ProvidenceAmerican Mathematical Society – reference: D’AgnoloAHienMMorandoGSabbahCTopological computation of some Stokes phenomena on the affine lineAnn. Inst. Fourier202070739808410595010.5802/aif.3323 – reference: SabbahCAn explicit stationary phase formula for the local formal Fourier-Laplace transformContemp. Math.2008474309330245435410.1090/conm/474/09262 – reference: D’AgnoloAKashiwaraMEnhanced perversitiesJ. Reine Angew. Math.2019751185241395669410.1515/crelle-2016-0062 – reference: BoalchPSimply-laced isomonodromy systemsPubl. Math. Inst. Hautes Études Sci.2012116168309025410.1007/s10240-012-0044-8 – reference: MochizukiTNote on the Stokes structure of Fourier transformActa Math. Vietnam.20103510715826421661201.32016 – reference: BjörkJ-EAnalytic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal{D}}$$\end{document}-Modules and Applications, Mathematics and Its Applications1993DordrechtKluwer Academic Publishers10.1007/978-94-017-0717-6 – reference: KashiwaraMSchapiraPSheaves on Manifolds, Grundlehren der mathematischen Wissenschaften1990BerlinSpringer – reference: Mochizuki, T.: Curve test for enhanced ind-sheaves and holonomic D-modules. arXiv:1610.08572v3 (2018) – reference: SabbahCDifferential systems of pure Gaussian typeIzv. Math.201680189220346268010.1070/IM8308 – reference: ItoYTakeuchiKOn irregularities of Fourier transforms of regular holonomic D-modulesAdv. Math.2020366407279710.1016/j.aim.2020.107093 – reference: D’AgnoloAKashiwaraMA microlocal approach to the enhanced Fourier-Sato transform in dimension oneAdv. Math.2018339159386689310.1016/j.aim.2018.09.022 – reference: Kashiwara, M., Schapira, P.: Ind-sheaves. Astérisque 271, (2001) – reference: KashiwaraMThe Riemann-Hilbert problem for holonomic systemsPubl. Res. Inst. Math. Sci.19842031936574338210.2977/prims/1195181610 – reference: D’AgnoloAKashiwaraMRiemann-Hilbert correspondence for holonomic D-modulesPubl. Math. Inst. Hautes Études Sci.201612369197350209710.1007/s10240-015-0076-y – reference: Sabbah, C.: Introduction to Stokes Structures. Lecture Notes in Mathematics, vol. 2060. Springer, Berlin (2013) – ident: 1281_CR11 – volume: 134 start-page: 133 year: 2015 ident: 1281_CR10 publication-title: Rend. Sem. Mat. Univ. Padova doi: 10.4171/RSMUP/134-4 – volume: 339 start-page: 1 year: 2018 ident: 1281_CR6 publication-title: Adv. Math. doi: 10.1016/j.aim.2018.09.022 – volume-title: D-Modules and Microlocal Calculus, Translations of Mathematical Monographs year: 2003 ident: 1281_CR15 – volume-title: Analytic $${\cal{D}}$$-Modules and Applications, Mathematics and Its Applications year: 1993 ident: 1281_CR1 doi: 10.1007/978-94-017-0717-6 – volume: 35 start-page: 107 year: 2010 ident: 1281_CR24 publication-title: Acta Math. Vietnam. – ident: 1281_CR26 – volume: 80 start-page: 189 year: 2016 ident: 1281_CR30 publication-title: Izv. Math. doi: 10.1070/IM8308 – volume-title: Sheaves on Manifolds, Grundlehren der mathematischen Wissenschaften year: 1990 ident: 1281_CR17 – volume: 19 start-page: 3467 year: 2015 ident: 1281_CR3 publication-title: Geom. Topol. doi: 10.2140/gt.2015.19.3467 – ident: 1281_CR29 doi: 10.1007/978-3-642-31695-1 – volume-title: Methods of Homological Algebra year: 2003 ident: 1281_CR9 doi: 10.1007/978-3-662-12492-5 – ident: 1281_CR18 – volume: 22 start-page: 55 year: 2016 ident: 1281_CR21 publication-title: Sel. Math. New Ser. doi: 10.1007/s00029-015-0185-y – volume: 20 start-page: 319 year: 1984 ident: 1281_CR14 publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/1195181610 – volume: 751 start-page: 185 year: 2019 ident: 1281_CR7 publication-title: J. Reine Angew. Math. doi: 10.1515/crelle-2016-0062 – ident: 1281_CR25 – volume-title: D-Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics year: 2008 ident: 1281_CR12 doi: 10.1007/978-0-8176-4523-6 – volume: 474 start-page: 309 year: 2008 ident: 1281_CR28 publication-title: Contemp. Math. doi: 10.1090/conm/474/09262 – ident: 1281_CR27 – volume: 123 start-page: 69 year: 2016 ident: 1281_CR5 publication-title: Publ. Math. Inst. Hautes Études Sci. doi: 10.1007/s10240-015-0076-y – volume-title: Équations différentielles à coefficients polynomiaux, Progress in Mathematics year: 1991 ident: 1281_CR23 – volume: 11 start-page: 113 year: 2016 ident: 1281_CR16 publication-title: Jpn. J. Math. doi: 10.1007/s11537-016-1564-7 – volume-title: Categories and Sheaves, Grundlehren der mathematischen Wissenschaften year: 2006 ident: 1281_CR19 – ident: 1281_CR8 – volume: 366 year: 2020 ident: 1281_CR13 publication-title: Adv. Math. doi: 10.1016/j.aim.2020.107093 – volume-title: Regular and Irregular Holonomic D-modules, London Mathematical Society Lecture Note Series year: 2016 ident: 1281_CR20 doi: 10.1017/CBO9781316675625 – volume: 116 start-page: 1 year: 2012 ident: 1281_CR2 publication-title: Publ. Math. Inst. Hautes Études Sci. doi: 10.1007/s10240-012-0044-8 – volume: 70 start-page: 739 year: 2020 ident: 1281_CR4 publication-title: Ann. Inst. Fourier doi: 10.5802/aif.3323 – volume: 62 start-page: 145 year: 1985 ident: 1281_CR22 publication-title: Publ. Math. Inst. Hautes Études Sci. doi: 10.1007/BF02698808 |
SSID | ssj0014373 |
Score | 2.2941568 |
Snippet | Differential systems of pure Gaussian type are examples of D-modules on the complex projective line with an irregular singularity at infinity, and as such are... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 435 |
SubjectTerms | Algebraic Geometry Calculus of Variations and Optimal Control; Optimization Geometry Laplace transforms Lie Groups Mathematics Mathematics and Statistics Modules Number Theory Sheaves Topological Groups |
Title | D-modules of pure Gaussian type and enhanced ind-sheaves |
URI | https://link.springer.com/article/10.1007/s00229-021-01281-y https://www.proquest.com/docview/2632187821 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4ULnowfkYUSQ_etAlt99EdAfmIBk6S4Gnp1-IBB2HMhH9vW7YRiZp42Q7rmuzZur5Pn77PC8C9mYMToTFBkRISedwniEtGkYcVxTIhbe289MaTYDT1nmf-rLDJsbkwe_q9NfskJEJ2I4ETfdDmENR9TAMnzAa9SjGwFj1leVbDCnCRIPNzH98noV1kuSeGujlmcApOiuAQdrZv8wwc6PQcHI8rZ9XsArAn9LFQ-VxncJHAZb7ScMjzzKZCQrucCnmqoE7fnbAPDeFGmfndfursEkwH_dfeCBXVD5A0T7dG1BADEvqJ4Er4SZSEhhnxiDJNJFPUFywyoQwRIhBUhe2ASZYooqX2hCShLcV4BWrpItXXACqPURH4ygy4yDrSc64jQ1RkOzT0kFPSALiEI5aFNbitUDGPK1NjB2FsIIwdhPGmAR6qe5ZbY4w_WzdLlONikGSxtYrHzIQouAEeS-R3l3_v7eZ_zW_BEbFJC27nWBPU1qtc35lQYi1aoN4ZdLsTex6-vfRb7psyxynpfAFRmMBB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BewAO7IhCAR-4gVFjZ3GOFUvLUk5UKqfIW4QEpKhpkMrXY6dJKipA6jmOZY-XmeeZeQNwanRwLLRDcKiExC73COaSUew6ijoyJi2dc-n1Hv1u370beIMiKSwto91Ll2R-U1fJblbdhNiGFOTuHzxZhrprMHirBvV25_n-uvIeWLqeslSrQQhOkSzzey8_FdLMypxzjOb65mYD-uVIp2EmrxfZWFzIrzkSx0WnsgnrhQGK2tMdswVLOtmGtV7F3pruALvC70OVvekUDWP0kY006vAstemWyD7ZIp4opJOXPHgAGVCPU3Olf-p0F_o310-XXVxUWMCS-nSMqQEfJPBiwZXw4jAODPriIWWaSKaoJ1hozCUihC-oClo-kyxWREvtCkkCW-5xD2rJMNH7gJTLqPA9ZQ51aFnvOdehAUOyFRgIyilpgFOKOZIF_bitgvEWVcTJuVQiI5Uol0o0acBZ9c_HlHzj39bNcvWi4iCmkaWjd5gxg5wGnJeLMfv8d28HizU_gZXuU-8herh9vD-EVWKTJPJItSbUxqNMHxnTZSyOi536DSC_4IM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFUUCvjADaw2dhbniFpKWVpxoFJvlreIQ0mrJkXq32O7SQoIkDjH8WESZ-blzXsDwKXJwYnQHkaxEhL5PMCIS0qQ7yniyQS3tPPS6w_C3tB_GAWjTyp-1-1eUpJLTYN1aUrz5lQlzUr4ZlNPjGx7gaOC0GIdbPg29Vm6NmxXPII17imHthqs4BWymZ_3-JqaVvXmN4rUZZ7uLtgpSkZ4s3zGe2BNp_tgu1_5rWYHgHbQ20TNxzqDkwRO5zMN7_g8swJJaH-yQp4qqNNXR_dDA8NRZj7C7zo7BMPu7Uu7h4qZCEiSkOSIGLiAoyARXIkgiZPI4CUeE6qxpIoEgsamwMFChIKoqBVSSROFtdS-kDiyAxqPQC2dpPoYQOVTIsJAmWMYW596znVs4ItsRQY0coLrwCvDwWRhGG7nVoxZZXXsQshMCJkLIVvUwVV1z3Rpl_Hn6kYZZVYcnYxZA3mPmsLFq4PrMvKry7_vdvK_5Rdg87nTZU_3g8dTsIWtqsG1ljVALZ_N9ZmpNXJx7l6nD3kpx3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=D-modules+of+pure+Gaussian+type+and+enhanced+ind-sheaves&rft.jtitle=Manuscripta+mathematica&rft.au=Hohl%2C+Andreas&rft.date=2022-03-01&rft.issn=0025-2611&rft.eissn=1432-1785&rft.volume=167&rft.issue=3-4&rft.spage=435&rft.epage=467&rft_id=info:doi/10.1007%2Fs00229-021-01281-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00229_021_01281_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-2611&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-2611&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-2611&client=summon |