Malicious code detection in android: the role of sequence characteristics and disassembling methods

The acceptance and widespread use of the Android operating system drew the attention of both legitimate developers and malware authors, which resulted in a significant number of benign and malicious applications available on various online markets. Since the signature-based methods fall short for de...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of information security Vol. 22; no. 1; pp. 107 - 118
Main Authors Balikcioglu, Pinar G., Sirlanci, Melih, A. Kucuk, Ozge, Ulukapi, Bulut, Turkmen, Ramazan K., Acarturk, Cengiz
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-5262
1615-5270
DOI10.1007/s10207-022-00626-2

Cover

Abstract The acceptance and widespread use of the Android operating system drew the attention of both legitimate developers and malware authors, which resulted in a significant number of benign and malicious applications available on various online markets. Since the signature-based methods fall short for detecting malicious software effectively considering the vast number of applications, machine learning techniques in this field have also become widespread. In this context, stating the acquired accuracy values in the contingency tables in malware detection studies has become a popular and efficient method and enabled researchers to evaluate their methodologies comparatively. In this study, we wanted to investigate and emphasize the factors that may affect the accuracy values of the models managed by researchers, particularly the disassembly method and the input data characteristics. Firstly, we developed a model that tackles the malware detection problem from a Natural Language Processing (NLP) perspective using Long Short-Term Memory (LSTM). Then, we experimented with different base units (instruction, basic block, method, and class) and representations of source code obtained from three commonly used disassembling tools (JEB, IDA, and Apktool) and examined the results. Our findings exhibit that the disassembly method and different input representations affect the model results. More specifically, the datasets collected by the Apktool achieved better results compared to the other two disassemblers.
AbstractList The acceptance and widespread use of the Android operating system drew the attention of both legitimate developers and malware authors, which resulted in a significant number of benign and malicious applications available on various online markets. Since the signature-based methods fall short for detecting malicious software effectively considering the vast number of applications, machine learning techniques in this field have also become widespread. In this context, stating the acquired accuracy values in the contingency tables in malware detection studies has become a popular and efficient method and enabled researchers to evaluate their methodologies comparatively. In this study, we wanted to investigate and emphasize the factors that may affect the accuracy values of the models managed by researchers, particularly the disassembly method and the input data characteristics. Firstly, we developed a model that tackles the malware detection problem from a Natural Language Processing (NLP) perspective using Long Short-Term Memory (LSTM). Then, we experimented with different base units (instruction, basic block, method, and class) and representations of source code obtained from three commonly used disassembling tools (JEB, IDA, and Apktool) and examined the results. Our findings exhibit that the disassembly method and different input representations affect the model results. More specifically, the datasets collected by the Apktool achieved better results compared to the other two disassemblers.
Author Ulukapi, Bulut
Balikcioglu, Pinar G.
A. Kucuk, Ozge
Sirlanci, Melih
Turkmen, Ramazan K.
Acarturk, Cengiz
Author_xml – sequence: 1
  givenname: Pinar G.
  surname: Balikcioglu
  fullname: Balikcioglu, Pinar G.
  organization: Cyber Security Department, Middle East Technical University
– sequence: 2
  givenname: Melih
  surname: Sirlanci
  fullname: Sirlanci, Melih
  organization: Cyber Security Department, Middle East Technical University, Computer Science and Engineering Department, Ohio State University
– sequence: 3
  givenname: Ozge
  surname: A. Kucuk
  fullname: A. Kucuk, Ozge
  organization: Cyber Security Department, Middle East Technical University
– sequence: 4
  givenname: Bulut
  surname: Ulukapi
  fullname: Ulukapi, Bulut
  organization: Cyber Security Department, Middle East Technical University
– sequence: 5
  givenname: Ramazan K.
  surname: Turkmen
  fullname: Turkmen, Ramazan K.
  organization: Cyber Security Department, Middle East Technical University
– sequence: 6
  givenname: Cengiz
  orcidid: 0000-0002-5443-6868
  surname: Acarturk
  fullname: Acarturk, Cengiz
  email: cengiz.acarturk@uj.edu.pl
  organization: Cyber Security Department, Middle East Technical University, Cognitive Science Department, Jagiellonian University
BookMark eNp9kLlOAzEQhi0UJJLAC1BZol7wsevd0KGISwqigdryMU4cbexgOwVvz4YgkChSzRTfN8c_QaMQAyB0Sck1JaS9yZQw0laEsYoQwUTFTtCYCtpUDWvJ6LcX7AxNcl4TwiiZ0TEyL6r3xsddxiZawBYKmOJjwD5gFWyK3t7isgKcYg84OpzhYwfBADYrlZQpkHwu3uQ9ja3PKmfY6N6HJd5AWUWbz9GpU32Gi586Re8P92_zp2rx-vg8v1tUhgteKs65qLtOQ-dqA5QI0tS6EYrN1Iw54jh3Wum61YYZqrWzbdM4q9pONxYsU3yKrg5ztykON-Yi13GXwrBSslaIpq07TgeqO1AmxZwTOGl8UfuXS1K-l5TIfaTyEKkcIpXfkUo2qOyfuk1-o9LncYkfpDzAYQnp76oj1heteIyr
CitedBy_id crossref_primary_10_1016_j_iot_2024_101320
crossref_primary_10_1109_ACCESS_2024_3401627
crossref_primary_10_1007_s10586_024_04865_x
crossref_primary_10_1016_j_neucom_2024_128010
crossref_primary_10_1111_exsy_13488
crossref_primary_10_3389_fphy_2024_1349463
crossref_primary_10_1007_s10922_025_09906_3
crossref_primary_10_21822_2073_6185_2024_51_1_79_86
Cites_doi 10.1016/j.neucom.2018.09.102
10.1007/s00521-017-2914-y
10.1016/j.cose.2018.10.001
10.1109/MALWARE.2018.8659372
10.1016/j.cosrev.2021.100373
10.1109/Ubi-Media.2019.00012
10.1145/3029806.3029823
10.1049/iet-ifs.2015.0211
10.1109/INFOCT.2019.8711179
10.1155/2018/4157156
10.1145/3403746.3403914
10.1155/2018/5249190
10.1109/SSIC.2018.8556755
10.1016/j.diin.2018.01.007
10.1109/EuroSP.2018.00040
10.1162/neco.1997.9.8.1735
10.1109/TIFS.2018.2806891
10.1016/j.future.2019.07.070
10.1016/j.future.2020.03.052
10.1007/978-3-030-29407-6_4
10.1002/cpe.5308
10.5220/0007617606570663
10.1109/ACCESS.2021.3049200
10.1109/ACCESS.2018.2792941
10.1145/3331453.3361306
10.1109/TIFS.2018.2879302
10.1109/TETCI.2017.2699220
10.1109/ACCESS.2020.3002842
10.1145/3313391
10.1109/CompComm.2017.8322742
10.3233/JIFS-169424
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
0-V
3V.
7SC
7WY
7WZ
7XB
87Z
88F
8AL
8AM
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
BGRYB
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K7.
L.-
L7M
L~C
L~D
M0C
M0N
M0O
M1Q
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOI 10.1007/s10207-022-00626-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Military Database (Alumni Edition)
Computing Database (Alumni Edition)
Criminal Justice Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
Criminology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection‎ (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Criminal Justice (Alumni)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Criminal Justice Database
Military Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
Criminology Collection
Criminal Justice Periodicals (Alumni Edition)
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Criminal Justice
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Criminal Justice (Alumni)
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1615-5270
EndPage 118
ExternalDocumentID 10_1007_s10207_022_00626_2
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
0-V
06D
0R~
0VY
1N0
1SB
203
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BGRYB
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EIS
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M0O
M1Q
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
Q2X
QOS
QWB
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z81
Z83
Z88
ZL0
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
K7.
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PRQQA
Q9U
ID FETCH-LOGICAL-c363t-3336488be8f4ce106054b56a29a92f0f33fbab47bc2c1bbfd755fda78b5ded2a3
IEDL.DBID U2A
ISSN 1615-5262
IngestDate Sat Aug 23 14:14:50 EDT 2025
Tue Jul 01 01:44:04 EDT 2025
Thu Apr 24 22:59:02 EDT 2025
Fri Feb 21 02:45:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Malware detection
Natural language processing
LSTM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-3336488be8f4ce106054b56a29a92f0f33fbab47bc2c1bbfd755fda78b5ded2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5443-6868
OpenAccessLink https://link.springer.com/10.1007/s10207-022-00626-2
PQID 2766574831
PQPubID 43999
PageCount 12
ParticipantIDs proquest_journals_2766574831
crossref_citationtrail_10_1007_s10207_022_00626_2
crossref_primary_10_1007_s10207_022_00626_2
springer_journals_10_1007_s10207_022_00626_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of information security
PublicationTitleAbbrev Int. J. Inf. Secur
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AcarturkCSirlanciMBalikciogluPGDemirciDSahinNKucukOAMalicious code detection: run trace output analysis by LSTMIEEE Access202199625963510.1109/ACCESS.2021.3049200
Xie, W., Xu, S., Zou, S., Xi, J.: A system-call behavior language system for malware detection using a sensitivity-based LSTM model. In: Proceedings of the 2020 3rd international conference on computer science and software engineering (pp. 112-118). Association for Computing Machinery, (2020), https://doi.org/10.1145/3403746.3403914
YanJQiYRaoQLSTM-based hierarchical denoising network for android malware detectionSecur. Commun. Netw.201810.1155/2018/5249190
UNB University of New Brunswich. [Online]. Available: https://www.unb.ca/cic/datasets/andmal2020.html, Accessed on: June (2022)
Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., Stringhini, G.: MaMaDroid: detecting android malware by building Markov chains of behavioral models. In: Proc. Netw. Distrib. Syst. Secur.Symp., (2017), pp. 1-34, https://doi.org/10.1145/3313391
SharmaTRattanDMalicious application detection in android–a systematic literature reviewComput. Sci. Rev.202110.1016/j.cosrev.2021.100373
Lou, S., Cheng, S., Huang, J., Jiang, F.: TFDroid: android malware detection by topics and sensitive data flows using machine learning techniques. In: Proceedings IEEE 2nd international conference information computer technology (ICICT), Kahului, HI, USA, Mar. (2019), pp. 30-36, https://doi.org/10.1109/INFOCT.2019.8711179
MatelessRoniRejabekDanielMargalitOdedMoskovitchRobertDecompiled APK based malicious code classificationFuture Gener. Comput. Syst.202011013514710.1016/j.future.2020.03.052
Xu, K., Li, Y., Deng, R., Chen, K.: DeepRefiner: multi-layer android malware detection system applying deep neural networks. In: IEEE European symposium on security and privacy (EuroS P) (pp. 473-487), (2018), https://doi.org/10.1109/EuroSP.2018.00040
Hota, A., Irolla, P.: Deep neural networks for android malware detection. In Proceedings of the 5th international conference on information systems security and privacy, ICISSP 2019, Prague, Czech Republic, February 23-25, (2019) (pp. 657-663). SciTePress
Statcounter GlobalStats. [Online]. Available: https://gs.statcounter.com/os-market-share/mobile/worldwide/2020, Accessed on: Aug (2021)
FanMLiuJLuoXChenKTianZZhengQLiuTAndroid malware familial classification and representative sample selection via frequent subgraph analysisIEEE Trans. Inf. Forensics Secur.20181381890190510.1109/TIFS.2018.2806891
Zhang, P., Cheng, S., Lou, S., Jiang, F.: A novel Android malware detection approach using operand sequences. In: Proceedings of 3rd international conference security smart cities, industrial control system communication (SSIC), Oct. (2018), pp. 1–5, https://doi.org/10.1109/SSIC.2018.8556755
McLaughlin, N., Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., Joon Ahn, G.: Deep android malware detection. In: Proceedings of the Seventh ACM on conference on data and application security and privacy, (pp. 301-308), (2017), Association for Computing Machinery, https://doi.org/10.1145/3029806.3029823
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980, [Online]. Available: https://arxiv.org/abs/1412.6980, (2014)
Ma, Z., Ge, H., Wang, Z., Liu, Y., Liu, X: Droidetec: android malware detection and malicious code localization through deep learning. In arXiv:2002.03594 (2020). Corpus ID: 211069601
HochreiterSSchmidhuberJLong short-term memoryNeural Comput.1997981735178010.1162/neco.1997.9.8.1735
SecureList. [Online]. Available: https://securelist.com/mobile-malware-evolution-2020/101029/, Accessed on: Aug (2021)
PNF Software. [Online]. Available: https://www.pnfsoftware.com/jeb/, Accessed on: Aug (2021)
Xiao, Wang, Z., Li, Q., Xia, S., Jiang, Y.: Back-propagation neural network on Markov chains from system call sequences: a new approach for detecting Android malware with system call sequences. In: IET Inf Secur, vol. 11, no. 1, pp. 8-15, Jan. (2017). https://doi.org/10.1049/iet-ifs.2015.0211
UNB University of New Brunswich. [Online]. Available: https://www.unb.ca/cic/datasets/andmal2017.html, Accessed on: Aug (2021)
Hex-Rays (IDA Pro). [Online]. Available: https://hex-rays.com/ida-pro/, Accessed on: Aug (2021)
VirusShare. [Online]. Available: https://virusshare.com, Accessed on: Aug (2021)
Ravi, V., Kp, S., Poornachandran, P., Kumar S, S.: Detecting android malware using Long Short-term memory (LSTM). J Intell Fuzzy Syst (2018), 34: 1277-1288. https://doi.org/10.3233/JIFS-169424
Li, Y., Ma, Y., Chen, M., Dai, Z.: A detecting method for malicious mobile application based on incremental SVM. In: Proceedings 3rd IEEE international conference computer communication (ICCC), Dec. (2017), pp. 1246–1250. https://doi.org/10.1109/CompComm.2017.8322742
PektaşAbdurrahmanAcarmanTankutLearning to detect Android malware via opcode sequencesNeurocomputing202039659960810.1016/j.neucom.2018.09.102
ZhangLThingVLLChengYA scalable and extensible framework for android malware detection and family attributionComput. Secur.20198012013310.1016/j.cose.2018.10.001
Sikder, K., Aksu, H., Uluagac, A. S.: 6thSense: a context-aware sensor-based attack detector for smart devices. In: 26th USENIX Secur. Symp., Vancouver, BC, Canada, Aug. (2017), isbn:978-1-931971-40-9
CaiHMengNRyderBYaoDDroidCat: effective Android malware detection and categorization via app-level profilingIEEE Trans. Inf. Forensics Secur.20191461455147010.1109/TIFS.2018.2879302
PanYGeXFangCFanYA systematic literature review of android malware detection using static analysisIEEE Access2020811636311637910.1109/ACCESS.2020.3002842
Parker, C., McDonald, J., Johnsten, T., Benton, R.: Android malware detection using step-size based multi-layered vector space models. In: 2018 13th international conference on malicious and unwanted software (MALWARE), (pp. 1-10), (2018), https://doi.org/10.1109/MALWARE.2018.8659372
Wu, Z., Chen, X., Lee, S.U.J.: Identifying latent android malware from application’s description using LSTM. In: Proceedings of international conference on information, system and convergence applications (2019) (pp. 40-42)
Wang, Li, G., Chi, Y., Zhang, J., Yang, T., Liu, Q.: Android malware detection based on convolutional neural networks. In: Proceedings 3rd international conference computer science applied engineering. (CSAE), 2019, https://doi.org/10.1145/3331453.3361306
Apktool. [Online]. Available: https://ibotpeaches.github.io/Apktool/, Accessed on: Aug (2021)
Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: SAMADroid: a novel 3-level hybrid malware detection model for android operating system. IEEE Access, 6 (2018) 4321-4339, https://doi.org/10.1109/ACCESS.2018.2792941
ChenTMaoQYangYLvMZhuJTinyDroid: a lightweight and efficient model for Android malware detection and classificationMob. Inf. Syst.201810.1155/2018/4157156
Mantoo, B.A., Khurana, S.S.: Static, Dynamic and intrinsic features based android malware detection using machine learning. In: Proceedings of ICRIC, 2019, Springer, (2020), pp. 31-45, https://doi.org/10.1007/978-3-030-29407-6_4
Smali. [Online]. Available: https://github.com/JesusFreke/smali, Accessed on: Aug (2021)
Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer: automatic framework for android malware detection using deep learning. Digit Investig, (2018), 24: S48-S59. https://doi.org/10.1016/j.diin.2018.01.007
NarayananAChandramohanMChenLLiuYContext-aware, adaptive, and scalable Android malware detection through online learningIEEE Trans. Emerg. Top. Comput. Intell.20171315717510.1109/TETCI.2017.2699220
Chen, Y., Hsu, C., Kuo Chung, K.: A novel preprocessing method for solving long sequence problem in android malware detection. In: Twelfth international conference on Ubi-media computing (Ubi-Media), (pp. 12-17), (2019)
Amin, M., Tanveer, T., Tehseen, M., Khan, M., Khan, F., Anwar, S.: Static malware detection and attribution in android bytecode through an end-to-end deep system. Future Gener. Comput. Syst. (2019), https://doi.org/10.1016/j.future.2019.07.070
AndroGuard. [Online]. Available: https://github.com/androguard/androguard, Accessed on: Aug (2021)
ZhuH-JJiangT-HMaBYouZ-HShiW-LChengLHEMD: a highly efficient random forest-based malware detection framework for AndroidNeural Comput. Appl.201830113353336110.1007/s00521-017-2914-y
LiDZhaoLChengQLuNShiWOpcode sequence analysis of Android malware by a convolutional neural networkConcurr. Comput. Practice Exp.201910.1002/cpe.5308
626_CR14
626_CR36
626_CR35
626_CR12
626_CR34
H-J Zhu (626_CR13) 2018; 30
T Sharma (626_CR7) 2021
626_CR10
626_CR32
626_CR31
Y Pan (626_CR8) 2020; 8
C Acarturk (626_CR37) 2021; 9
Abdurrahman Pektaş (626_CR33) 2020; 396
T Chen (626_CR11) 2018
626_CR19
Roni Mateless (626_CR28) 2020; 110
626_CR18
J Yan (626_CR30) 2018
626_CR17
626_CR39
626_CR38
A Narayanan (626_CR16) 2017; 1
626_CR2
626_CR1
L Zhang (626_CR41) 2019; 80
626_CR25
H Cai (626_CR15) 2019; 14
626_CR24
626_CR9
626_CR23
626_CR45
626_CR44
626_CR21
626_CR43
626_CR6
626_CR20
626_CR42
626_CR5
626_CR4
626_CR29
626_CR27
626_CR26
S Hochreiter (626_CR3) 1997; 9
D Li (626_CR22) 2019
M Fan (626_CR40) 2018; 13
References_xml – reference: LiDZhaoLChengQLuNShiWOpcode sequence analysis of Android malware by a convolutional neural networkConcurr. Comput. Practice Exp.201910.1002/cpe.5308
– reference: Mantoo, B.A., Khurana, S.S.: Static, Dynamic and intrinsic features based android malware detection using machine learning. In: Proceedings of ICRIC, 2019, Springer, (2020), pp. 31-45, https://doi.org/10.1007/978-3-030-29407-6_4
– reference: NarayananAChandramohanMChenLLiuYContext-aware, adaptive, and scalable Android malware detection through online learningIEEE Trans. Emerg. Top. Comput. Intell.20171315717510.1109/TETCI.2017.2699220
– reference: Chen, Y., Hsu, C., Kuo Chung, K.: A novel preprocessing method for solving long sequence problem in android malware detection. In: Twelfth international conference on Ubi-media computing (Ubi-Media), (pp. 12-17), (2019)
– reference: Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: SAMADroid: a novel 3-level hybrid malware detection model for android operating system. IEEE Access, 6 (2018) 4321-4339, https://doi.org/10.1109/ACCESS.2018.2792941
– reference: ZhuH-JJiangT-HMaBYouZ-HShiW-LChengLHEMD: a highly efficient random forest-based malware detection framework for AndroidNeural Comput. Appl.201830113353336110.1007/s00521-017-2914-y
– reference: McLaughlin, N., Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., Joon Ahn, G.: Deep android malware detection. In: Proceedings of the Seventh ACM on conference on data and application security and privacy, (pp. 301-308), (2017), Association for Computing Machinery, https://doi.org/10.1145/3029806.3029823
– reference: PNF Software. [Online]. Available: https://www.pnfsoftware.com/jeb/, Accessed on: Aug (2021)
– reference: Zhang, P., Cheng, S., Lou, S., Jiang, F.: A novel Android malware detection approach using operand sequences. In: Proceedings of 3rd international conference security smart cities, industrial control system communication (SSIC), Oct. (2018), pp. 1–5, https://doi.org/10.1109/SSIC.2018.8556755
– reference: PanYGeXFangCFanYA systematic literature review of android malware detection using static analysisIEEE Access2020811636311637910.1109/ACCESS.2020.3002842
– reference: Parker, C., McDonald, J., Johnsten, T., Benton, R.: Android malware detection using step-size based multi-layered vector space models. In: 2018 13th international conference on malicious and unwanted software (MALWARE), (pp. 1-10), (2018), https://doi.org/10.1109/MALWARE.2018.8659372
– reference: Sikder, K., Aksu, H., Uluagac, A. S.: 6thSense: a context-aware sensor-based attack detector for smart devices. In: 26th USENIX Secur. Symp., Vancouver, BC, Canada, Aug. (2017), isbn:978-1-931971-40-9
– reference: Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer: automatic framework for android malware detection using deep learning. Digit Investig, (2018), 24: S48-S59. https://doi.org/10.1016/j.diin.2018.01.007
– reference: ChenTMaoQYangYLvMZhuJTinyDroid: a lightweight and efficient model for Android malware detection and classificationMob. Inf. Syst.201810.1155/2018/4157156
– reference: FanMLiuJLuoXChenKTianZZhengQLiuTAndroid malware familial classification and representative sample selection via frequent subgraph analysisIEEE Trans. Inf. Forensics Secur.20181381890190510.1109/TIFS.2018.2806891
– reference: Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., Stringhini, G.: MaMaDroid: detecting android malware by building Markov chains of behavioral models. In: Proc. Netw. Distrib. Syst. Secur.Symp., (2017), pp. 1-34, https://doi.org/10.1145/3313391
– reference: PektaşAbdurrahmanAcarmanTankutLearning to detect Android malware via opcode sequencesNeurocomputing202039659960810.1016/j.neucom.2018.09.102
– reference: AcarturkCSirlanciMBalikciogluPGDemirciDSahinNKucukOAMalicious code detection: run trace output analysis by LSTMIEEE Access202199625963510.1109/ACCESS.2021.3049200
– reference: AndroGuard. [Online]. Available: https://github.com/androguard/androguard, Accessed on: Aug (2021)
– reference: Ravi, V., Kp, S., Poornachandran, P., Kumar S, S.: Detecting android malware using Long Short-term memory (LSTM). J Intell Fuzzy Syst (2018), 34: 1277-1288. https://doi.org/10.3233/JIFS-169424
– reference: Xu, K., Li, Y., Deng, R., Chen, K.: DeepRefiner: multi-layer android malware detection system applying deep neural networks. In: IEEE European symposium on security and privacy (EuroS P) (pp. 473-487), (2018), https://doi.org/10.1109/EuroSP.2018.00040
– reference: Lou, S., Cheng, S., Huang, J., Jiang, F.: TFDroid: android malware detection by topics and sensitive data flows using machine learning techniques. In: Proceedings IEEE 2nd international conference information computer technology (ICICT), Kahului, HI, USA, Mar. (2019), pp. 30-36, https://doi.org/10.1109/INFOCT.2019.8711179
– reference: Hota, A., Irolla, P.: Deep neural networks for android malware detection. In Proceedings of the 5th international conference on information systems security and privacy, ICISSP 2019, Prague, Czech Republic, February 23-25, (2019) (pp. 657-663). SciTePress
– reference: Smali. [Online]. Available: https://github.com/JesusFreke/smali, Accessed on: Aug (2021)
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput.1997981735178010.1162/neco.1997.9.8.1735
– reference: Statcounter GlobalStats. [Online]. Available: https://gs.statcounter.com/os-market-share/mobile/worldwide/2020, Accessed on: Aug (2021)
– reference: MatelessRoniRejabekDanielMargalitOdedMoskovitchRobertDecompiled APK based malicious code classificationFuture Gener. Comput. Syst.202011013514710.1016/j.future.2020.03.052
– reference: ZhangLThingVLLChengYA scalable and extensible framework for android malware detection and family attributionComput. Secur.20198012013310.1016/j.cose.2018.10.001
– reference: Ma, Z., Ge, H., Wang, Z., Liu, Y., Liu, X: Droidetec: android malware detection and malicious code localization through deep learning. In arXiv:2002.03594 (2020). Corpus ID: 211069601
– reference: SharmaTRattanDMalicious application detection in android–a systematic literature reviewComput. Sci. Rev.202110.1016/j.cosrev.2021.100373
– reference: Hex-Rays (IDA Pro). [Online]. Available: https://hex-rays.com/ida-pro/, Accessed on: Aug (2021)
– reference: Li, Y., Ma, Y., Chen, M., Dai, Z.: A detecting method for malicious mobile application based on incremental SVM. In: Proceedings 3rd IEEE international conference computer communication (ICCC), Dec. (2017), pp. 1246–1250. https://doi.org/10.1109/CompComm.2017.8322742
– reference: Xiao, Wang, Z., Li, Q., Xia, S., Jiang, Y.: Back-propagation neural network on Markov chains from system call sequences: a new approach for detecting Android malware with system call sequences. In: IET Inf Secur, vol. 11, no. 1, pp. 8-15, Jan. (2017). https://doi.org/10.1049/iet-ifs.2015.0211
– reference: Wang, Li, G., Chi, Y., Zhang, J., Yang, T., Liu, Q.: Android malware detection based on convolutional neural networks. In: Proceedings 3rd international conference computer science applied engineering. (CSAE), 2019, https://doi.org/10.1145/3331453.3361306
– reference: YanJQiYRaoQLSTM-based hierarchical denoising network for android malware detectionSecur. Commun. Netw.201810.1155/2018/5249190
– reference: SecureList. [Online]. Available: https://securelist.com/mobile-malware-evolution-2020/101029/, Accessed on: Aug (2021)
– reference: Wu, Z., Chen, X., Lee, S.U.J.: Identifying latent android malware from application’s description using LSTM. In: Proceedings of international conference on information, system and convergence applications (2019) (pp. 40-42)
– reference: UNB University of New Brunswich. [Online]. Available: https://www.unb.ca/cic/datasets/andmal2020.html, Accessed on: June (2022)
– reference: Xie, W., Xu, S., Zou, S., Xi, J.: A system-call behavior language system for malware detection using a sensitivity-based LSTM model. In: Proceedings of the 2020 3rd international conference on computer science and software engineering (pp. 112-118). Association for Computing Machinery, (2020), https://doi.org/10.1145/3403746.3403914
– reference: UNB University of New Brunswich. [Online]. Available: https://www.unb.ca/cic/datasets/andmal2017.html, Accessed on: Aug (2021)
– reference: VirusShare. [Online]. Available: https://virusshare.com, Accessed on: Aug (2021)
– reference: Amin, M., Tanveer, T., Tehseen, M., Khan, M., Khan, F., Anwar, S.: Static malware detection and attribution in android bytecode through an end-to-end deep system. Future Gener. Comput. Syst. (2019), https://doi.org/10.1016/j.future.2019.07.070
– reference: Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980, [Online]. Available: https://arxiv.org/abs/1412.6980, (2014)
– reference: CaiHMengNRyderBYaoDDroidCat: effective Android malware detection and categorization via app-level profilingIEEE Trans. Inf. Forensics Secur.20191461455147010.1109/TIFS.2018.2879302
– reference: Apktool. [Online]. Available: https://ibotpeaches.github.io/Apktool/, Accessed on: Aug (2021)
– volume: 396
  start-page: 599
  year: 2020
  ident: 626_CR33
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.102
– ident: 626_CR35
– volume: 30
  start-page: 3353
  issue: 11
  year: 2018
  ident: 626_CR13
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2914-y
– volume: 80
  start-page: 120
  year: 2019
  ident: 626_CR41
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2018.10.001
– ident: 626_CR2
– ident: 626_CR21
  doi: 10.1109/MALWARE.2018.8659372
– year: 2021
  ident: 626_CR7
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100373
– ident: 626_CR31
  doi: 10.1109/Ubi-Media.2019.00012
– ident: 626_CR20
  doi: 10.1145/3029806.3029823
– ident: 626_CR14
  doi: 10.1049/iet-ifs.2015.0211
– ident: 626_CR25
– ident: 626_CR18
  doi: 10.1109/INFOCT.2019.8711179
– year: 2018
  ident: 626_CR11
  publication-title: Mob. Inf. Syst.
  doi: 10.1155/2018/4157156
– ident: 626_CR5
– ident: 626_CR27
  doi: 10.1145/3403746.3403914
– year: 2018
  ident: 626_CR30
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2018/5249190
– ident: 626_CR9
  doi: 10.1109/SSIC.2018.8556755
– ident: 626_CR44
– ident: 626_CR24
  doi: 10.1016/j.diin.2018.01.007
– ident: 626_CR29
  doi: 10.1109/EuroSP.2018.00040
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 626_CR3
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 626_CR38
– ident: 626_CR36
– volume: 13
  start-page: 1890
  issue: 8
  year: 2018
  ident: 626_CR40
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2806891
– ident: 626_CR34
  doi: 10.1016/j.future.2019.07.070
– ident: 626_CR1
– volume: 110
  start-page: 135
  year: 2020
  ident: 626_CR28
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.052
– ident: 626_CR42
  doi: 10.1007/978-3-030-29407-6_4
– year: 2019
  ident: 626_CR22
  publication-title: Concurr. Comput. Practice Exp.
  doi: 10.1002/cpe.5308
– ident: 626_CR17
– ident: 626_CR32
  doi: 10.5220/0007617606570663
– volume: 9
  start-page: 9625
  year: 2021
  ident: 626_CR37
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049200
– ident: 626_CR39
  doi: 10.1109/ACCESS.2018.2792941
– ident: 626_CR6
– ident: 626_CR26
– ident: 626_CR12
  doi: 10.1145/3331453.3361306
– ident: 626_CR4
– volume: 14
  start-page: 1455
  issue: 6
  year: 2019
  ident: 626_CR15
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2879302
– ident: 626_CR43
– volume: 1
  start-page: 157
  issue: 3
  year: 2017
  ident: 626_CR16
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2017.2699220
– volume: 8
  start-page: 116363
  year: 2020
  ident: 626_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002842
– ident: 626_CR45
– ident: 626_CR19
  doi: 10.1145/3313391
– ident: 626_CR10
  doi: 10.1109/CompComm.2017.8322742
– ident: 626_CR23
  doi: 10.3233/JIFS-169424
SSID ssj0021091
Score 2.3536334
Snippet The acceptance and widespread use of the Android operating system drew the attention of both legitimate developers and malware authors, which resulted in a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107
SubjectTerms Accuracy
Coding and Information Theory
Communications Engineering
Computer Communication Networks
Computer Science
Contingency
Cryptology
Cybersecurity
Dismantling
Machine learning
Malware
Management of Computing and Information Systems
Mobile operating systems
Natural language processing
Networks
Operating Systems
Regular Contribution
Representations
Source code
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA61vXjxLVar5OBNF90k-xJEVFqK0CJiobclTyjottr1_zuzzbZUsOfN5jBJZr5JZr6PkEtwcFxIxwIRMgcJirRBplIZQDIUstgkWWiwOXkwjPsj8TKOxg0yrHthsKyy9omVozZTjXfkNyzBNwIBUzzMvgJUjcLX1VpCQ3ppBXNfUYxtkRa45BT2feupO3x9W6ZgSIOJKRjEcUjBYubbaHwzHcNrO0jOsLEwDth6qFrhzz9PplUk6u2RHQ8h6eNizfdJwxYHZLeWZ6D-tB4SPQCMrbHGlWLjOjW2rOquCjopqESigom5owAAKZYY0qmjdV011es0zjiamskcgLb9VNjAThfK0_MjMup135_7gddUCDSPeRlwzmM4s8qmTmgL-SBANhXFkmUyY-7Wce6UVCJRmulQKWeSKHJGJqmKjDVM8mPSLKaFPSFUMA140ULEZ1ykkI0mqcikkTBSIGtzm4S1-XLtCcdR9-IjX1Elo8lzMHlemTxnbXK1_Ge2oNvYOLpTr0ruj948X22UNrmuV2r1-f_ZTjfPdka2UWp-UbHdIc3y-8eeAyAp1YXfZb9AOdvT
  priority: 102
  providerName: ProQuest
Title Malicious code detection in android: the role of sequence characteristics and disassembling methods
URI https://link.springer.com/article/10.1007/s10207-022-00626-2
https://www.proquest.com/docview/2766574831
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXrz4Fqu15OBNF9wk-_LWlj5QWkQs1NOSJxR0K279_85sd1srKnjKIbM5TDKZ79vMg5BLuOC4kI55wmcOCIq0XqJi6QEZ8lloosQ3mJw8GofDibibBtMyKSyvot2rJ8nipv6S7MbwtxqQJ0z8Cz24eOsBcHc0xwlrr2gWlrpEmgW-GmhWyMpUmZ_X2HRHa4z57Vm08Db9fbJbwkTaXu7rAdmy2SHZq1ow0NIij4geAY7WGMdKMTmdGrsoYqsyOsuoxGIEM3NLAeRRDCOkc0er2GmqN0s1ozQ1sxzAtH1VmKROl92l82My6feeukOv7JvgaR7yhcc5D8EulY2d0BY4H8AyFYSSJTJh7sZx7pRUIlKaaV8pZ6IgcEZGsQqMNUzyE1LL5pk9JVQwDZjQgldnXMTAOKNYJNJIkBRYmblB_Ep9qS6LimNvi5d0XQ4ZVZ6CytNC5SlrkKvVN2_Lkhp_SjerXUlL88pTFuGDkYDz1CDX1U6tp39f7ex_4udkB9vLL6O0m6S2eP-wFwBCFqpFtuP-oEXq7X6nM8Zx8Hzfg7HTGz88wmw37LaKc_kJGmLYZg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RcGgvvFrU8Ch7gBNYxbvrFxJCbQGFRyJUgcTN3acUqThAghB_jt_GjLMmAglunL2ew-x49vu8880ArGOCE1J5HsmYeyQoykWFzlWEZCjmqc2K2JI4udtLOxfy-DK5nILHRgtDZZVNTqwTtR0Y-kf-k2d0RyDRxN71TURTo-h2tRmhocJoBbtbtxgLwo4T93CPFG64e7SP-73B-eHB-Z9OFKYMREakYhQJIVKMYu1yL41DhoQgRiep4oUquN_2QnittMy04SbW2tssSbxVWa4T6yxXAu1-gmlJCtcWTP8-6J39faZ81HaTKB_iBqR8KQ-ynSDe4_SbEMkgCRnTiL88Gid499UVbX3yHc7BTICs7Nc4xuZhylULMNuMg2AhO3wF00VMb6imlpFQnlk3quu8KtavmKLGCH27wxBwMippZAPPmjpuZl62jabVzPaHCOzdlSbBPBtPuh5-g4sP8e4itKpB5b4Dk9wgPnWIMLiQObLfLJeFsgpXSuoS3Ya4cV9pQoNzmrPxv5y0ZiaXl-jysnZ5yduw-fzO9bi9x7urV5pdKcOnPiwngdmGrWanJo_ftrb0vrU1-Nw5756Wp0e9k2X4QmPux9XiK9Aa3d65VQRDI_0jRByDfx8d5E8A9Rpj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC7MCiEXjVFxfcQ-mJMZdLp7XoJIoi4a4yKi4G3sJyzorLor4l_0V1k12-OioDfP01OH6prq75uu-gpgDROckMrzSMbcI0FRLip0riIkQzFPbVbElpqTj7vpwbn8d5FcTMBT0wtDZZVNTqwTte0b-ke-wTO6I5BoYsOHsoiTvc7OzW1EE6ToprUZp6HCmAW7XcuNhSaPI_f4gHRusH24h3v_i_PO_tnuQRQmDkRGpGIYCSFSjGjtci-NQ7aEgEYnqeKFKrjf9EJ4rbTMtOEm1trbLEm8VVmuE-ssVwLtfoHJDE9J2YLJv_vdk9MX-kcSnET_EEMg_Ut5aOEJjXycfhkiMaSmxjTir4_JMfZ9c11bn4Kd7zAV4Cv7M4q3GZhw1Q-YbkZDsJApZsEcI743VF_LqGmeWTesa74q1quYIpGEnt1iCD4ZlTeyvmdNTTczryWkaTWzvQGCfHetqXmejaZeD-bg_FO8Ow-tql-5BWCSG8SqDtEGFzJHJpzlslBW4UpJitFtiBv3lSaIndPMjatyLNNMLi_R5WXt8pK3Yf3lnZuR1MeHq5ebXSnDZz8ox0Haht_NTo0fv29t8WNrq_AVg738f9g9WoJvNPF-VDi-DK3h3b1bQVw01D9DwDG4_OwYfwb5zB6P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malicious+code+detection+in+android%3A+the+role+of+sequence+characteristics+and+disassembling+methods&rft.jtitle=International+journal+of+information+security&rft.au=Balikcioglu%2C+Pinar+G.&rft.au=Sirlanci%2C+Melih&rft.au=A.+Kucuk%2C+Ozge&rft.au=Ulukapi%2C+Bulut&rft.date=2023-02-01&rft.issn=1615-5262&rft.eissn=1615-5270&rft.volume=22&rft.issue=1&rft.spage=107&rft.epage=118&rft_id=info:doi/10.1007%2Fs10207-022-00626-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10207_022_00626_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-5262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-5262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-5262&client=summon