Malicious code detection in android: the role of sequence characteristics and disassembling methods
The acceptance and widespread use of the Android operating system drew the attention of both legitimate developers and malware authors, which resulted in a significant number of benign and malicious applications available on various online markets. Since the signature-based methods fall short for de...
Saved in:
Published in | International journal of information security Vol. 22; no. 1; pp. 107 - 118 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1615-5262 1615-5270 |
DOI | 10.1007/s10207-022-00626-2 |
Cover
Abstract | The acceptance and widespread use of the Android operating system drew the attention of both legitimate developers and malware authors, which resulted in a significant number of benign and malicious applications available on various online markets. Since the signature-based methods fall short for detecting malicious software effectively considering the vast number of applications, machine learning techniques in this field have also become widespread. In this context, stating the acquired accuracy values in the contingency tables in malware detection studies has become a popular and efficient method and enabled researchers to evaluate their methodologies comparatively. In this study, we wanted to investigate and emphasize the factors that may affect the accuracy values of the models managed by researchers, particularly the disassembly method and the input data characteristics. Firstly, we developed a model that tackles the malware detection problem from a Natural Language Processing (NLP) perspective using Long Short-Term Memory (LSTM). Then, we experimented with different base units (instruction, basic block, method, and class) and representations of source code obtained from three commonly used disassembling tools (JEB, IDA, and Apktool) and examined the results. Our findings exhibit that the disassembly method and different input representations affect the model results. More specifically, the datasets collected by the Apktool achieved better results compared to the other two disassemblers. |
---|---|
AbstractList | The acceptance and widespread use of the Android operating system drew the attention of both legitimate developers and malware authors, which resulted in a significant number of benign and malicious applications available on various online markets. Since the signature-based methods fall short for detecting malicious software effectively considering the vast number of applications, machine learning techniques in this field have also become widespread. In this context, stating the acquired accuracy values in the contingency tables in malware detection studies has become a popular and efficient method and enabled researchers to evaluate their methodologies comparatively. In this study, we wanted to investigate and emphasize the factors that may affect the accuracy values of the models managed by researchers, particularly the disassembly method and the input data characteristics. Firstly, we developed a model that tackles the malware detection problem from a Natural Language Processing (NLP) perspective using Long Short-Term Memory (LSTM). Then, we experimented with different base units (instruction, basic block, method, and class) and representations of source code obtained from three commonly used disassembling tools (JEB, IDA, and Apktool) and examined the results. Our findings exhibit that the disassembly method and different input representations affect the model results. More specifically, the datasets collected by the Apktool achieved better results compared to the other two disassemblers. |
Author | Ulukapi, Bulut Balikcioglu, Pinar G. A. Kucuk, Ozge Sirlanci, Melih Turkmen, Ramazan K. Acarturk, Cengiz |
Author_xml | – sequence: 1 givenname: Pinar G. surname: Balikcioglu fullname: Balikcioglu, Pinar G. organization: Cyber Security Department, Middle East Technical University – sequence: 2 givenname: Melih surname: Sirlanci fullname: Sirlanci, Melih organization: Cyber Security Department, Middle East Technical University, Computer Science and Engineering Department, Ohio State University – sequence: 3 givenname: Ozge surname: A. Kucuk fullname: A. Kucuk, Ozge organization: Cyber Security Department, Middle East Technical University – sequence: 4 givenname: Bulut surname: Ulukapi fullname: Ulukapi, Bulut organization: Cyber Security Department, Middle East Technical University – sequence: 5 givenname: Ramazan K. surname: Turkmen fullname: Turkmen, Ramazan K. organization: Cyber Security Department, Middle East Technical University – sequence: 6 givenname: Cengiz orcidid: 0000-0002-5443-6868 surname: Acarturk fullname: Acarturk, Cengiz email: cengiz.acarturk@uj.edu.pl organization: Cyber Security Department, Middle East Technical University, Cognitive Science Department, Jagiellonian University |
BookMark | eNp9kLlOAzEQhi0UJJLAC1BZol7wsevd0KGISwqigdryMU4cbexgOwVvz4YgkChSzRTfN8c_QaMQAyB0Sck1JaS9yZQw0laEsYoQwUTFTtCYCtpUDWvJ6LcX7AxNcl4TwiiZ0TEyL6r3xsddxiZawBYKmOJjwD5gFWyK3t7isgKcYg84OpzhYwfBADYrlZQpkHwu3uQ9ja3PKmfY6N6HJd5AWUWbz9GpU32Gi586Re8P92_zp2rx-vg8v1tUhgteKs65qLtOQ-dqA5QI0tS6EYrN1Iw54jh3Wum61YYZqrWzbdM4q9pONxYsU3yKrg5ztykON-Yi13GXwrBSslaIpq07TgeqO1AmxZwTOGl8UfuXS1K-l5TIfaTyEKkcIpXfkUo2qOyfuk1-o9LncYkfpDzAYQnp76oj1heteIyr |
CitedBy_id | crossref_primary_10_1016_j_iot_2024_101320 crossref_primary_10_1109_ACCESS_2024_3401627 crossref_primary_10_1007_s10586_024_04865_x crossref_primary_10_1016_j_neucom_2024_128010 crossref_primary_10_1111_exsy_13488 crossref_primary_10_3389_fphy_2024_1349463 crossref_primary_10_1007_s10922_025_09906_3 crossref_primary_10_21822_2073_6185_2024_51_1_79_86 |
Cites_doi | 10.1016/j.neucom.2018.09.102 10.1007/s00521-017-2914-y 10.1016/j.cose.2018.10.001 10.1109/MALWARE.2018.8659372 10.1016/j.cosrev.2021.100373 10.1109/Ubi-Media.2019.00012 10.1145/3029806.3029823 10.1049/iet-ifs.2015.0211 10.1109/INFOCT.2019.8711179 10.1155/2018/4157156 10.1145/3403746.3403914 10.1155/2018/5249190 10.1109/SSIC.2018.8556755 10.1016/j.diin.2018.01.007 10.1109/EuroSP.2018.00040 10.1162/neco.1997.9.8.1735 10.1109/TIFS.2018.2806891 10.1016/j.future.2019.07.070 10.1016/j.future.2020.03.052 10.1007/978-3-030-29407-6_4 10.1002/cpe.5308 10.5220/0007617606570663 10.1109/ACCESS.2021.3049200 10.1109/ACCESS.2018.2792941 10.1145/3331453.3361306 10.1109/TIFS.2018.2879302 10.1109/TETCI.2017.2699220 10.1109/ACCESS.2020.3002842 10.1145/3313391 10.1109/CompComm.2017.8322742 10.3233/JIFS-169424 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 0-V 3V. 7SC 7WY 7WZ 7XB 87Z 88F 8AL 8AM 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ BGRYB CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- K7. L.- L7M L~C L~D M0C M0N M0O M1Q P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U |
DOI | 10.1007/s10207-022-00626-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Military Database (Alumni Edition) Computing Database (Alumni Edition) Criminal Justice Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Criminology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Criminal Justice (Alumni) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Criminal Justice Database Military Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection Criminology Collection Criminal Justice Periodicals (Alumni Edition) ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Criminal Justice ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Criminal Justice (Alumni) ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1615-5270 |
EndPage | 118 |
ExternalDocumentID | 10_1007_s10207_022_00626_2 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 0-V 06D 0R~ 0VY 1N0 1SB 203 29J 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6KP 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BGRYB BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EIS EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV LAS LLZTM M0C M0N M0O M1Q M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 Q2X QOS QWB R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z81 Z83 Z88 ZL0 ZMTXR ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 K7. L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PRQQA Q9U |
ID | FETCH-LOGICAL-c363t-3336488be8f4ce106054b56a29a92f0f33fbab47bc2c1bbfd755fda78b5ded2a3 |
IEDL.DBID | U2A |
ISSN | 1615-5262 |
IngestDate | Sat Aug 23 14:14:50 EDT 2025 Tue Jul 01 01:44:04 EDT 2025 Thu Apr 24 22:59:02 EDT 2025 Fri Feb 21 02:45:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Malware detection Natural language processing LSTM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-3336488be8f4ce106054b56a29a92f0f33fbab47bc2c1bbfd755fda78b5ded2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5443-6868 |
OpenAccessLink | https://link.springer.com/10.1007/s10207-022-00626-2 |
PQID | 2766574831 |
PQPubID | 43999 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2766574831 crossref_citationtrail_10_1007_s10207_022_00626_2 crossref_primary_10_1007_s10207_022_00626_2 springer_journals_10_1007_s10207_022_00626_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230200 2023-02-00 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of information security |
PublicationTitleAbbrev | Int. J. Inf. Secur |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | AcarturkCSirlanciMBalikciogluPGDemirciDSahinNKucukOAMalicious code detection: run trace output analysis by LSTMIEEE Access202199625963510.1109/ACCESS.2021.3049200 Xie, W., Xu, S., Zou, S., Xi, J.: A system-call behavior language system for malware detection using a sensitivity-based LSTM model. In: Proceedings of the 2020 3rd international conference on computer science and software engineering (pp. 112-118). Association for Computing Machinery, (2020), https://doi.org/10.1145/3403746.3403914 YanJQiYRaoQLSTM-based hierarchical denoising network for android malware detectionSecur. Commun. Netw.201810.1155/2018/5249190 UNB University of New Brunswich. [Online]. Available: https://www.unb.ca/cic/datasets/andmal2020.html, Accessed on: June (2022) Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., Stringhini, G.: MaMaDroid: detecting android malware by building Markov chains of behavioral models. In: Proc. Netw. Distrib. Syst. Secur.Symp., (2017), pp. 1-34, https://doi.org/10.1145/3313391 SharmaTRattanDMalicious application detection in android–a systematic literature reviewComput. Sci. Rev.202110.1016/j.cosrev.2021.100373 Lou, S., Cheng, S., Huang, J., Jiang, F.: TFDroid: android malware detection by topics and sensitive data flows using machine learning techniques. In: Proceedings IEEE 2nd international conference information computer technology (ICICT), Kahului, HI, USA, Mar. (2019), pp. 30-36, https://doi.org/10.1109/INFOCT.2019.8711179 MatelessRoniRejabekDanielMargalitOdedMoskovitchRobertDecompiled APK based malicious code classificationFuture Gener. Comput. Syst.202011013514710.1016/j.future.2020.03.052 Xu, K., Li, Y., Deng, R., Chen, K.: DeepRefiner: multi-layer android malware detection system applying deep neural networks. In: IEEE European symposium on security and privacy (EuroS P) (pp. 473-487), (2018), https://doi.org/10.1109/EuroSP.2018.00040 Hota, A., Irolla, P.: Deep neural networks for android malware detection. In Proceedings of the 5th international conference on information systems security and privacy, ICISSP 2019, Prague, Czech Republic, February 23-25, (2019) (pp. 657-663). SciTePress Statcounter GlobalStats. [Online]. Available: https://gs.statcounter.com/os-market-share/mobile/worldwide/2020, Accessed on: Aug (2021) FanMLiuJLuoXChenKTianZZhengQLiuTAndroid malware familial classification and representative sample selection via frequent subgraph analysisIEEE Trans. Inf. Forensics Secur.20181381890190510.1109/TIFS.2018.2806891 Zhang, P., Cheng, S., Lou, S., Jiang, F.: A novel Android malware detection approach using operand sequences. In: Proceedings of 3rd international conference security smart cities, industrial control system communication (SSIC), Oct. (2018), pp. 1–5, https://doi.org/10.1109/SSIC.2018.8556755 McLaughlin, N., Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., Joon Ahn, G.: Deep android malware detection. In: Proceedings of the Seventh ACM on conference on data and application security and privacy, (pp. 301-308), (2017), Association for Computing Machinery, https://doi.org/10.1145/3029806.3029823 Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980, [Online]. Available: https://arxiv.org/abs/1412.6980, (2014) Ma, Z., Ge, H., Wang, Z., Liu, Y., Liu, X: Droidetec: android malware detection and malicious code localization through deep learning. In arXiv:2002.03594 (2020). Corpus ID: 211069601 HochreiterSSchmidhuberJLong short-term memoryNeural Comput.1997981735178010.1162/neco.1997.9.8.1735 SecureList. [Online]. Available: https://securelist.com/mobile-malware-evolution-2020/101029/, Accessed on: Aug (2021) PNF Software. [Online]. Available: https://www.pnfsoftware.com/jeb/, Accessed on: Aug (2021) Xiao, Wang, Z., Li, Q., Xia, S., Jiang, Y.: Back-propagation neural network on Markov chains from system call sequences: a new approach for detecting Android malware with system call sequences. In: IET Inf Secur, vol. 11, no. 1, pp. 8-15, Jan. (2017). https://doi.org/10.1049/iet-ifs.2015.0211 UNB University of New Brunswich. [Online]. Available: https://www.unb.ca/cic/datasets/andmal2017.html, Accessed on: Aug (2021) Hex-Rays (IDA Pro). [Online]. Available: https://hex-rays.com/ida-pro/, Accessed on: Aug (2021) VirusShare. [Online]. Available: https://virusshare.com, Accessed on: Aug (2021) Ravi, V., Kp, S., Poornachandran, P., Kumar S, S.: Detecting android malware using Long Short-term memory (LSTM). J Intell Fuzzy Syst (2018), 34: 1277-1288. https://doi.org/10.3233/JIFS-169424 Li, Y., Ma, Y., Chen, M., Dai, Z.: A detecting method for malicious mobile application based on incremental SVM. In: Proceedings 3rd IEEE international conference computer communication (ICCC), Dec. (2017), pp. 1246–1250. https://doi.org/10.1109/CompComm.2017.8322742 PektaşAbdurrahmanAcarmanTankutLearning to detect Android malware via opcode sequencesNeurocomputing202039659960810.1016/j.neucom.2018.09.102 ZhangLThingVLLChengYA scalable and extensible framework for android malware detection and family attributionComput. Secur.20198012013310.1016/j.cose.2018.10.001 Sikder, K., Aksu, H., Uluagac, A. S.: 6thSense: a context-aware sensor-based attack detector for smart devices. In: 26th USENIX Secur. Symp., Vancouver, BC, Canada, Aug. (2017), isbn:978-1-931971-40-9 CaiHMengNRyderBYaoDDroidCat: effective Android malware detection and categorization via app-level profilingIEEE Trans. Inf. Forensics Secur.20191461455147010.1109/TIFS.2018.2879302 PanYGeXFangCFanYA systematic literature review of android malware detection using static analysisIEEE Access2020811636311637910.1109/ACCESS.2020.3002842 Parker, C., McDonald, J., Johnsten, T., Benton, R.: Android malware detection using step-size based multi-layered vector space models. In: 2018 13th international conference on malicious and unwanted software (MALWARE), (pp. 1-10), (2018), https://doi.org/10.1109/MALWARE.2018.8659372 Wu, Z., Chen, X., Lee, S.U.J.: Identifying latent android malware from application’s description using LSTM. In: Proceedings of international conference on information, system and convergence applications (2019) (pp. 40-42) Wang, Li, G., Chi, Y., Zhang, J., Yang, T., Liu, Q.: Android malware detection based on convolutional neural networks. In: Proceedings 3rd international conference computer science applied engineering. (CSAE), 2019, https://doi.org/10.1145/3331453.3361306 Apktool. [Online]. Available: https://ibotpeaches.github.io/Apktool/, Accessed on: Aug (2021) Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: SAMADroid: a novel 3-level hybrid malware detection model for android operating system. IEEE Access, 6 (2018) 4321-4339, https://doi.org/10.1109/ACCESS.2018.2792941 ChenTMaoQYangYLvMZhuJTinyDroid: a lightweight and efficient model for Android malware detection and classificationMob. Inf. Syst.201810.1155/2018/4157156 Mantoo, B.A., Khurana, S.S.: Static, Dynamic and intrinsic features based android malware detection using machine learning. In: Proceedings of ICRIC, 2019, Springer, (2020), pp. 31-45, https://doi.org/10.1007/978-3-030-29407-6_4 Smali. [Online]. Available: https://github.com/JesusFreke/smali, Accessed on: Aug (2021) Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer: automatic framework for android malware detection using deep learning. Digit Investig, (2018), 24: S48-S59. https://doi.org/10.1016/j.diin.2018.01.007 NarayananAChandramohanMChenLLiuYContext-aware, adaptive, and scalable Android malware detection through online learningIEEE Trans. Emerg. Top. Comput. Intell.20171315717510.1109/TETCI.2017.2699220 Chen, Y., Hsu, C., Kuo Chung, K.: A novel preprocessing method for solving long sequence problem in android malware detection. In: Twelfth international conference on Ubi-media computing (Ubi-Media), (pp. 12-17), (2019) Amin, M., Tanveer, T., Tehseen, M., Khan, M., Khan, F., Anwar, S.: Static malware detection and attribution in android bytecode through an end-to-end deep system. Future Gener. Comput. Syst. (2019), https://doi.org/10.1016/j.future.2019.07.070 AndroGuard. [Online]. Available: https://github.com/androguard/androguard, Accessed on: Aug (2021) ZhuH-JJiangT-HMaBYouZ-HShiW-LChengLHEMD: a highly efficient random forest-based malware detection framework for AndroidNeural Comput. Appl.201830113353336110.1007/s00521-017-2914-y LiDZhaoLChengQLuNShiWOpcode sequence analysis of Android malware by a convolutional neural networkConcurr. Comput. Practice Exp.201910.1002/cpe.5308 626_CR14 626_CR36 626_CR35 626_CR12 626_CR34 H-J Zhu (626_CR13) 2018; 30 T Sharma (626_CR7) 2021 626_CR10 626_CR32 626_CR31 Y Pan (626_CR8) 2020; 8 C Acarturk (626_CR37) 2021; 9 Abdurrahman Pektaş (626_CR33) 2020; 396 T Chen (626_CR11) 2018 626_CR19 Roni Mateless (626_CR28) 2020; 110 626_CR18 J Yan (626_CR30) 2018 626_CR17 626_CR39 626_CR38 A Narayanan (626_CR16) 2017; 1 626_CR2 626_CR1 L Zhang (626_CR41) 2019; 80 626_CR25 H Cai (626_CR15) 2019; 14 626_CR24 626_CR9 626_CR23 626_CR45 626_CR44 626_CR21 626_CR43 626_CR6 626_CR20 626_CR42 626_CR5 626_CR4 626_CR29 626_CR27 626_CR26 S Hochreiter (626_CR3) 1997; 9 D Li (626_CR22) 2019 M Fan (626_CR40) 2018; 13 |
References_xml | – reference: LiDZhaoLChengQLuNShiWOpcode sequence analysis of Android malware by a convolutional neural networkConcurr. Comput. Practice Exp.201910.1002/cpe.5308 – reference: Mantoo, B.A., Khurana, S.S.: Static, Dynamic and intrinsic features based android malware detection using machine learning. In: Proceedings of ICRIC, 2019, Springer, (2020), pp. 31-45, https://doi.org/10.1007/978-3-030-29407-6_4 – reference: NarayananAChandramohanMChenLLiuYContext-aware, adaptive, and scalable Android malware detection through online learningIEEE Trans. Emerg. Top. Comput. Intell.20171315717510.1109/TETCI.2017.2699220 – reference: Chen, Y., Hsu, C., Kuo Chung, K.: A novel preprocessing method for solving long sequence problem in android malware detection. In: Twelfth international conference on Ubi-media computing (Ubi-Media), (pp. 12-17), (2019) – reference: Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: SAMADroid: a novel 3-level hybrid malware detection model for android operating system. IEEE Access, 6 (2018) 4321-4339, https://doi.org/10.1109/ACCESS.2018.2792941 – reference: ZhuH-JJiangT-HMaBYouZ-HShiW-LChengLHEMD: a highly efficient random forest-based malware detection framework for AndroidNeural Comput. Appl.201830113353336110.1007/s00521-017-2914-y – reference: McLaughlin, N., Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., Joon Ahn, G.: Deep android malware detection. In: Proceedings of the Seventh ACM on conference on data and application security and privacy, (pp. 301-308), (2017), Association for Computing Machinery, https://doi.org/10.1145/3029806.3029823 – reference: PNF Software. [Online]. Available: https://www.pnfsoftware.com/jeb/, Accessed on: Aug (2021) – reference: Zhang, P., Cheng, S., Lou, S., Jiang, F.: A novel Android malware detection approach using operand sequences. In: Proceedings of 3rd international conference security smart cities, industrial control system communication (SSIC), Oct. (2018), pp. 1–5, https://doi.org/10.1109/SSIC.2018.8556755 – reference: PanYGeXFangCFanYA systematic literature review of android malware detection using static analysisIEEE Access2020811636311637910.1109/ACCESS.2020.3002842 – reference: Parker, C., McDonald, J., Johnsten, T., Benton, R.: Android malware detection using step-size based multi-layered vector space models. In: 2018 13th international conference on malicious and unwanted software (MALWARE), (pp. 1-10), (2018), https://doi.org/10.1109/MALWARE.2018.8659372 – reference: Sikder, K., Aksu, H., Uluagac, A. S.: 6thSense: a context-aware sensor-based attack detector for smart devices. In: 26th USENIX Secur. Symp., Vancouver, BC, Canada, Aug. (2017), isbn:978-1-931971-40-9 – reference: Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: MalDozer: automatic framework for android malware detection using deep learning. Digit Investig, (2018), 24: S48-S59. https://doi.org/10.1016/j.diin.2018.01.007 – reference: ChenTMaoQYangYLvMZhuJTinyDroid: a lightweight and efficient model for Android malware detection and classificationMob. Inf. Syst.201810.1155/2018/4157156 – reference: FanMLiuJLuoXChenKTianZZhengQLiuTAndroid malware familial classification and representative sample selection via frequent subgraph analysisIEEE Trans. Inf. Forensics Secur.20181381890190510.1109/TIFS.2018.2806891 – reference: Mariconti, E., Onwuzurike, L., Andriotis, P., De Cristofaro, E., Ross, G., Stringhini, G.: MaMaDroid: detecting android malware by building Markov chains of behavioral models. In: Proc. Netw. Distrib. Syst. Secur.Symp., (2017), pp. 1-34, https://doi.org/10.1145/3313391 – reference: PektaşAbdurrahmanAcarmanTankutLearning to detect Android malware via opcode sequencesNeurocomputing202039659960810.1016/j.neucom.2018.09.102 – reference: AcarturkCSirlanciMBalikciogluPGDemirciDSahinNKucukOAMalicious code detection: run trace output analysis by LSTMIEEE Access202199625963510.1109/ACCESS.2021.3049200 – reference: AndroGuard. [Online]. Available: https://github.com/androguard/androguard, Accessed on: Aug (2021) – reference: Ravi, V., Kp, S., Poornachandran, P., Kumar S, S.: Detecting android malware using Long Short-term memory (LSTM). J Intell Fuzzy Syst (2018), 34: 1277-1288. https://doi.org/10.3233/JIFS-169424 – reference: Xu, K., Li, Y., Deng, R., Chen, K.: DeepRefiner: multi-layer android malware detection system applying deep neural networks. In: IEEE European symposium on security and privacy (EuroS P) (pp. 473-487), (2018), https://doi.org/10.1109/EuroSP.2018.00040 – reference: Lou, S., Cheng, S., Huang, J., Jiang, F.: TFDroid: android malware detection by topics and sensitive data flows using machine learning techniques. In: Proceedings IEEE 2nd international conference information computer technology (ICICT), Kahului, HI, USA, Mar. (2019), pp. 30-36, https://doi.org/10.1109/INFOCT.2019.8711179 – reference: Hota, A., Irolla, P.: Deep neural networks for android malware detection. In Proceedings of the 5th international conference on information systems security and privacy, ICISSP 2019, Prague, Czech Republic, February 23-25, (2019) (pp. 657-663). SciTePress – reference: Smali. [Online]. Available: https://github.com/JesusFreke/smali, Accessed on: Aug (2021) – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput.1997981735178010.1162/neco.1997.9.8.1735 – reference: Statcounter GlobalStats. [Online]. Available: https://gs.statcounter.com/os-market-share/mobile/worldwide/2020, Accessed on: Aug (2021) – reference: MatelessRoniRejabekDanielMargalitOdedMoskovitchRobertDecompiled APK based malicious code classificationFuture Gener. Comput. Syst.202011013514710.1016/j.future.2020.03.052 – reference: ZhangLThingVLLChengYA scalable and extensible framework for android malware detection and family attributionComput. Secur.20198012013310.1016/j.cose.2018.10.001 – reference: Ma, Z., Ge, H., Wang, Z., Liu, Y., Liu, X: Droidetec: android malware detection and malicious code localization through deep learning. In arXiv:2002.03594 (2020). Corpus ID: 211069601 – reference: SharmaTRattanDMalicious application detection in android–a systematic literature reviewComput. Sci. Rev.202110.1016/j.cosrev.2021.100373 – reference: Hex-Rays (IDA Pro). [Online]. Available: https://hex-rays.com/ida-pro/, Accessed on: Aug (2021) – reference: Li, Y., Ma, Y., Chen, M., Dai, Z.: A detecting method for malicious mobile application based on incremental SVM. In: Proceedings 3rd IEEE international conference computer communication (ICCC), Dec. (2017), pp. 1246–1250. https://doi.org/10.1109/CompComm.2017.8322742 – reference: Xiao, Wang, Z., Li, Q., Xia, S., Jiang, Y.: Back-propagation neural network on Markov chains from system call sequences: a new approach for detecting Android malware with system call sequences. In: IET Inf Secur, vol. 11, no. 1, pp. 8-15, Jan. (2017). https://doi.org/10.1049/iet-ifs.2015.0211 – reference: Wang, Li, G., Chi, Y., Zhang, J., Yang, T., Liu, Q.: Android malware detection based on convolutional neural networks. In: Proceedings 3rd international conference computer science applied engineering. (CSAE), 2019, https://doi.org/10.1145/3331453.3361306 – reference: YanJQiYRaoQLSTM-based hierarchical denoising network for android malware detectionSecur. Commun. Netw.201810.1155/2018/5249190 – reference: SecureList. [Online]. Available: https://securelist.com/mobile-malware-evolution-2020/101029/, Accessed on: Aug (2021) – reference: Wu, Z., Chen, X., Lee, S.U.J.: Identifying latent android malware from application’s description using LSTM. In: Proceedings of international conference on information, system and convergence applications (2019) (pp. 40-42) – reference: UNB University of New Brunswich. [Online]. Available: https://www.unb.ca/cic/datasets/andmal2020.html, Accessed on: June (2022) – reference: Xie, W., Xu, S., Zou, S., Xi, J.: A system-call behavior language system for malware detection using a sensitivity-based LSTM model. In: Proceedings of the 2020 3rd international conference on computer science and software engineering (pp. 112-118). Association for Computing Machinery, (2020), https://doi.org/10.1145/3403746.3403914 – reference: UNB University of New Brunswich. [Online]. Available: https://www.unb.ca/cic/datasets/andmal2017.html, Accessed on: Aug (2021) – reference: VirusShare. [Online]. Available: https://virusshare.com, Accessed on: Aug (2021) – reference: Amin, M., Tanveer, T., Tehseen, M., Khan, M., Khan, F., Anwar, S.: Static malware detection and attribution in android bytecode through an end-to-end deep system. Future Gener. Comput. Syst. (2019), https://doi.org/10.1016/j.future.2019.07.070 – reference: Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980, [Online]. Available: https://arxiv.org/abs/1412.6980, (2014) – reference: CaiHMengNRyderBYaoDDroidCat: effective Android malware detection and categorization via app-level profilingIEEE Trans. Inf. Forensics Secur.20191461455147010.1109/TIFS.2018.2879302 – reference: Apktool. [Online]. Available: https://ibotpeaches.github.io/Apktool/, Accessed on: Aug (2021) – volume: 396 start-page: 599 year: 2020 ident: 626_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.102 – ident: 626_CR35 – volume: 30 start-page: 3353 issue: 11 year: 2018 ident: 626_CR13 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2914-y – volume: 80 start-page: 120 year: 2019 ident: 626_CR41 publication-title: Comput. Secur. doi: 10.1016/j.cose.2018.10.001 – ident: 626_CR2 – ident: 626_CR21 doi: 10.1109/MALWARE.2018.8659372 – year: 2021 ident: 626_CR7 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2021.100373 – ident: 626_CR31 doi: 10.1109/Ubi-Media.2019.00012 – ident: 626_CR20 doi: 10.1145/3029806.3029823 – ident: 626_CR14 doi: 10.1049/iet-ifs.2015.0211 – ident: 626_CR25 – ident: 626_CR18 doi: 10.1109/INFOCT.2019.8711179 – year: 2018 ident: 626_CR11 publication-title: Mob. Inf. Syst. doi: 10.1155/2018/4157156 – ident: 626_CR5 – ident: 626_CR27 doi: 10.1145/3403746.3403914 – year: 2018 ident: 626_CR30 publication-title: Secur. Commun. Netw. doi: 10.1155/2018/5249190 – ident: 626_CR9 doi: 10.1109/SSIC.2018.8556755 – ident: 626_CR44 – ident: 626_CR24 doi: 10.1016/j.diin.2018.01.007 – ident: 626_CR29 doi: 10.1109/EuroSP.2018.00040 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 626_CR3 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 626_CR38 – ident: 626_CR36 – volume: 13 start-page: 1890 issue: 8 year: 2018 ident: 626_CR40 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2806891 – ident: 626_CR34 doi: 10.1016/j.future.2019.07.070 – ident: 626_CR1 – volume: 110 start-page: 135 year: 2020 ident: 626_CR28 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.052 – ident: 626_CR42 doi: 10.1007/978-3-030-29407-6_4 – year: 2019 ident: 626_CR22 publication-title: Concurr. Comput. Practice Exp. doi: 10.1002/cpe.5308 – ident: 626_CR17 – ident: 626_CR32 doi: 10.5220/0007617606570663 – volume: 9 start-page: 9625 year: 2021 ident: 626_CR37 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049200 – ident: 626_CR39 doi: 10.1109/ACCESS.2018.2792941 – ident: 626_CR6 – ident: 626_CR26 – ident: 626_CR12 doi: 10.1145/3331453.3361306 – ident: 626_CR4 – volume: 14 start-page: 1455 issue: 6 year: 2019 ident: 626_CR15 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2879302 – ident: 626_CR43 – volume: 1 start-page: 157 issue: 3 year: 2017 ident: 626_CR16 publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2017.2699220 – volume: 8 start-page: 116363 year: 2020 ident: 626_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002842 – ident: 626_CR45 – ident: 626_CR19 doi: 10.1145/3313391 – ident: 626_CR10 doi: 10.1109/CompComm.2017.8322742 – ident: 626_CR23 doi: 10.3233/JIFS-169424 |
SSID | ssj0021091 |
Score | 2.3536334 |
Snippet | The acceptance and widespread use of the Android operating system drew the attention of both legitimate developers and malware authors, which resulted in a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107 |
SubjectTerms | Accuracy Coding and Information Theory Communications Engineering Computer Communication Networks Computer Science Contingency Cryptology Cybersecurity Dismantling Machine learning Malware Management of Computing and Information Systems Mobile operating systems Natural language processing Networks Operating Systems Regular Contribution Representations Source code |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA61vXjxLVar5OBNF90k-xJEVFqK0CJiobclTyjottr1_zuzzbZUsOfN5jBJZr5JZr6PkEtwcFxIxwIRMgcJirRBplIZQDIUstgkWWiwOXkwjPsj8TKOxg0yrHthsKyy9omVozZTjXfkNyzBNwIBUzzMvgJUjcLX1VpCQ3ppBXNfUYxtkRa45BT2feupO3x9W6ZgSIOJKRjEcUjBYubbaHwzHcNrO0jOsLEwDth6qFrhzz9PplUk6u2RHQ8h6eNizfdJwxYHZLeWZ6D-tB4SPQCMrbHGlWLjOjW2rOquCjopqESigom5owAAKZYY0qmjdV011es0zjiamskcgLb9VNjAThfK0_MjMup135_7gddUCDSPeRlwzmM4s8qmTmgL-SBANhXFkmUyY-7Wce6UVCJRmulQKWeSKHJGJqmKjDVM8mPSLKaFPSFUMA140ULEZ1ykkI0mqcikkTBSIGtzm4S1-XLtCcdR9-IjX1Elo8lzMHlemTxnbXK1_Ge2oNvYOLpTr0ruj948X22UNrmuV2r1-f_ZTjfPdka2UWp-UbHdIc3y-8eeAyAp1YXfZb9AOdvT priority: 102 providerName: ProQuest |
Title | Malicious code detection in android: the role of sequence characteristics and disassembling methods |
URI | https://link.springer.com/article/10.1007/s10207-022-00626-2 https://www.proquest.com/docview/2766574831 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXrz4Fqu15OBNF9wk-_LWlj5QWkQs1NOSJxR0K279_85sd1srKnjKIbM5TDKZ79vMg5BLuOC4kI55wmcOCIq0XqJi6QEZ8lloosQ3mJw8GofDibibBtMyKSyvot2rJ8nipv6S7MbwtxqQJ0z8Cz24eOsBcHc0xwlrr2gWlrpEmgW-GmhWyMpUmZ_X2HRHa4z57Vm08Db9fbJbwkTaXu7rAdmy2SHZq1ow0NIij4geAY7WGMdKMTmdGrsoYqsyOsuoxGIEM3NLAeRRDCOkc0er2GmqN0s1ozQ1sxzAtH1VmKROl92l82My6feeukOv7JvgaR7yhcc5D8EulY2d0BY4H8AyFYSSJTJh7sZx7pRUIlKaaV8pZ6IgcEZGsQqMNUzyE1LL5pk9JVQwDZjQgldnXMTAOKNYJNJIkBRYmblB_Ep9qS6LimNvi5d0XQ4ZVZ6CytNC5SlrkKvVN2_Lkhp_SjerXUlL88pTFuGDkYDz1CDX1U6tp39f7ex_4udkB9vLL6O0m6S2eP-wFwBCFqpFtuP-oEXq7X6nM8Zx8Hzfg7HTGz88wmw37LaKc_kJGmLYZg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RcGgvvFrU8Ch7gBNYxbvrFxJCbQGFRyJUgcTN3acUqThAghB_jt_GjLMmAglunL2ew-x49vu8880ArGOCE1J5HsmYeyQoykWFzlWEZCjmqc2K2JI4udtLOxfy-DK5nILHRgtDZZVNTqwTtR0Y-kf-k2d0RyDRxN71TURTo-h2tRmhocJoBbtbtxgLwo4T93CPFG64e7SP-73B-eHB-Z9OFKYMREakYhQJIVKMYu1yL41DhoQgRiep4oUquN_2QnittMy04SbW2tssSbxVWa4T6yxXAu1-gmlJCtcWTP8-6J39faZ81HaTKB_iBqR8KQ-ynSDe4_SbEMkgCRnTiL88Gid499UVbX3yHc7BTICs7Nc4xuZhylULMNuMg2AhO3wF00VMb6imlpFQnlk3quu8KtavmKLGCH27wxBwMippZAPPmjpuZl62jabVzPaHCOzdlSbBPBtPuh5-g4sP8e4itKpB5b4Dk9wgPnWIMLiQObLfLJeFsgpXSuoS3Ya4cV9pQoNzmrPxv5y0ZiaXl-jysnZ5yduw-fzO9bi9x7urV5pdKcOnPiwngdmGrWanJo_ftrb0vrU1-Nw5756Wp0e9k2X4QmPux9XiK9Aa3d65VQRDI_0jRByDfx8d5E8A9Rpj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC7MCiEXjVFxfcQ-mJMZdLp7XoJIoi4a4yKi4G3sJyzorLor4l_0V1k12-OioDfP01OH6prq75uu-gpgDROckMrzSMbcI0FRLip0riIkQzFPbVbElpqTj7vpwbn8d5FcTMBT0wtDZZVNTqwTte0b-ke-wTO6I5BoYsOHsoiTvc7OzW1EE6ToprUZp6HCmAW7XcuNhSaPI_f4gHRusH24h3v_i_PO_tnuQRQmDkRGpGIYCSFSjGjtci-NQ7aEgEYnqeKFKrjf9EJ4rbTMtOEm1trbLEm8VVmuE-ssVwLtfoHJDE9J2YLJv_vdk9MX-kcSnET_EEMg_Ut5aOEJjXycfhkiMaSmxjTir4_JMfZ9c11bn4Kd7zAV4Cv7M4q3GZhw1Q-YbkZDsJApZsEcI743VF_LqGmeWTesa74q1quYIpGEnt1iCD4ZlTeyvmdNTTczryWkaTWzvQGCfHetqXmejaZeD-bg_FO8Ow-tql-5BWCSG8SqDtEGFzJHJpzlslBW4UpJitFtiBv3lSaIndPMjatyLNNMLi_R5WXt8pK3Yf3lnZuR1MeHq5ebXSnDZz8ox0Haht_NTo0fv29t8WNrq_AVg738f9g9WoJvNPF-VDi-DK3h3b1bQVw01D9DwDG4_OwYfwb5zB6P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malicious+code+detection+in+android%3A+the+role+of+sequence+characteristics+and+disassembling+methods&rft.jtitle=International+journal+of+information+security&rft.au=Balikcioglu%2C+Pinar+G.&rft.au=Sirlanci%2C+Melih&rft.au=A.+Kucuk%2C+Ozge&rft.au=Ulukapi%2C+Bulut&rft.date=2023-02-01&rft.issn=1615-5262&rft.eissn=1615-5270&rft.volume=22&rft.issue=1&rft.spage=107&rft.epage=118&rft_id=info:doi/10.1007%2Fs10207-022-00626-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10207_022_00626_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-5262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-5262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-5262&client=summon |