A mixed-ligand strategy regulates thorium-based MOFs
Two novel thorium-based organic frameworks (Th-IHEP-5 and Th-IHEP-6) were assembled from a hexanuclear thorium cluster, porphyrin derivative ligand and linear carboxylic acid ligands via a mixed-ligand strategy. As a stable heterogeneous catalyst, Th-IHEP-5 exhibited high photocatalytic activity for...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 49; no. 4; pp. 983 - 987 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
28.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two novel thorium-based organic frameworks (Th-IHEP-5 and Th-IHEP-6) were assembled from a hexanuclear thorium cluster, porphyrin derivative ligand and linear carboxylic acid ligands
via
a mixed-ligand strategy. As a stable heterogeneous catalyst, Th-IHEP-5 exhibited high photocatalytic activity for the oxidation of 2-chloroethyl ethyl sulfide (CEES) and the fixation of CO
2
. The good catalytic effect is attributed to the large conjugated system of porphyrin and the photosensitizer enhancing effects of bipyridine.
A thorium-based MOF formed
via
the synergistic construction of porphyrin and bipyridyl based on the mixed-ligand strategy has the effect of enhancing photocatalysis. |
---|---|
AbstractList | Two novel thorium-based organic frameworks (Th-IHEP-5 and Th-IHEP-6) were assembled from a hexanuclear thorium cluster, porphyrin derivative ligand and linear carboxylic acid ligands
via
a mixed-ligand strategy. As a stable heterogeneous catalyst, Th-IHEP-5 exhibited high photocatalytic activity for the oxidation of 2-chloroethyl ethyl sulfide (CEES) and the fixation of CO
2
. The good catalytic effect is attributed to the large conjugated system of porphyrin and the photosensitizer enhancing effects of bipyridine. Two novel thorium-based organic frameworks (Th-IHEP-5 and Th-IHEP-6) were assembled from a hexanuclear thorium cluster, porphyrin derivative ligand and linear carboxylic acid ligands via a mixed-ligand strategy. As a stable heterogeneous catalyst, Th-IHEP-5 exhibited high photocatalytic activity for the oxidation of 2-chloroethyl ethyl sulfide (CEES) and the fixation of CO2. The good catalytic effect is attributed to the large conjugated system of porphyrin and the photosensitizer enhancing effects of bipyridine.Two novel thorium-based organic frameworks (Th-IHEP-5 and Th-IHEP-6) were assembled from a hexanuclear thorium cluster, porphyrin derivative ligand and linear carboxylic acid ligands via a mixed-ligand strategy. As a stable heterogeneous catalyst, Th-IHEP-5 exhibited high photocatalytic activity for the oxidation of 2-chloroethyl ethyl sulfide (CEES) and the fixation of CO2. The good catalytic effect is attributed to the large conjugated system of porphyrin and the photosensitizer enhancing effects of bipyridine. Two novel thorium-based organic frameworks (Th-IHEP-5 and Th-IHEP-6) were assembled from a hexanuclear thorium cluster, porphyrin derivative ligand and linear carboxylic acid ligands via a mixed-ligand strategy. As a stable heterogeneous catalyst, Th-IHEP-5 exhibited high photocatalytic activity for the oxidation of 2-chloroethyl ethyl sulfide (CEES) and the fixation of CO2. The good catalytic effect is attributed to the large conjugated system of porphyrin and the photosensitizer enhancing effects of bipyridine. Two novel thorium-based organic frameworks (Th-IHEP-5 and Th-IHEP-6) were assembled from a hexanuclear thorium cluster, porphyrin derivative ligand and linear carboxylic acid ligands via a mixed-ligand strategy. As a stable heterogeneous catalyst, Th-IHEP-5 exhibited high photocatalytic activity for the oxidation of 2-chloroethyl ethyl sulfide (CEES) and the fixation of CO 2 . The good catalytic effect is attributed to the large conjugated system of porphyrin and the photosensitizer enhancing effects of bipyridine. A thorium-based MOF formed via the synergistic construction of porphyrin and bipyridyl based on the mixed-ligand strategy has the effect of enhancing photocatalysis. |
Author | Yu, Ji-pan Hu, Kong-qiu Mei, Lei Zeng, Li-wen Liu, Kang Huang, Zhi-wei Kong, Xiang-he Chai, Zhi-Fang Shi, Wei-Qun |
AuthorAffiliation | Ningbo Institute of Industrial Technology Chinese Academy of Sciences Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics Engineering Laboratory of Advanced Energy Materials |
AuthorAffiliation_xml | – name: Chinese Academy of Sciences – name: Engineering Laboratory of Advanced Energy Materials – name: Laboratory of Nuclear Energy Chemistry. Institute of High Energy Physics – name: Ningbo Institute of Industrial Technology |
Author_xml | – sequence: 1 givenname: Zhi-wei surname: Huang fullname: Huang, Zhi-wei – sequence: 2 givenname: Kong-qiu surname: Hu fullname: Hu, Kong-qiu – sequence: 3 givenname: Lei surname: Mei fullname: Mei, Lei – sequence: 4 givenname: Xiang-he surname: Kong fullname: Kong, Xiang-he – sequence: 5 givenname: Ji-pan surname: Yu fullname: Yu, Ji-pan – sequence: 6 givenname: Kang surname: Liu fullname: Liu, Kang – sequence: 7 givenname: Li-wen surname: Zeng fullname: Zeng, Li-wen – sequence: 8 givenname: Zhi-Fang surname: Chai fullname: Chai, Zhi-Fang – sequence: 9 givenname: Wei-Qun surname: Shi fullname: Shi, Wei-Qun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31904068$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtLAzEQB_AgFWurF-_KihcRVpNM9nUs1apQ6aWel2weNWUfNdkF--2NtlYo4ikD85sh_GeAenVTK4TOCL4lGLI7kckWMxKl4gAdE5YkYUaB9XY1jfto4NwSY0pxRI9QH0iGGY7TY8RGQWU-lAxLs-C1DFxreasW68CqRVf60gXtW2NNV4UFd0oGL7OJO0GHmpdOnW7fIXqdPMzHT-F09vg8Hk1DATG0IdCUkCKVcZJiFikpMSiiNZU8SeOIMqopISqKiC4S4FjpApJMFFpKEMBjAUN0vdm7ss17p1ybV8YJVZa8Vk3ncgoAGVDGUk-v9uiy6Wztf-cViwEYY5FXF1vVFZWS-cqaitt1_pOHBzcbIGzjnFV6RwjOv8LOx9n9_Dvsscd4DwvT8tY0tQ_RlH-PnG9GrBO71b_38_3L__r5Smr4BMFKk80 |
CitedBy_id | crossref_primary_10_1021_jacs_2c08258 crossref_primary_10_1016_j_ccr_2021_214011 crossref_primary_10_1021_acs_inorgchem_1c04033 crossref_primary_10_1002_adfm_202404126 crossref_primary_10_1002_aenm_202300086 crossref_primary_10_1039_D0CC02841J crossref_primary_10_1039_D1RA07767H crossref_primary_10_1039_D0CE01178A crossref_primary_10_1080_01496395_2020_1828461 crossref_primary_10_1002_chem_202500065 crossref_primary_10_1021_acssensors_3c00965 crossref_primary_10_1002_ejic_202100748 crossref_primary_10_1016_j_jssc_2020_121706 crossref_primary_10_1021_acs_inorgchem_0c02447 crossref_primary_10_1039_D2DT00265E crossref_primary_10_1039_D1TC04147A crossref_primary_10_1016_j_ccr_2020_213615 crossref_primary_10_1021_acs_inorgchem_0c02904 crossref_primary_10_1070_RCR5038 crossref_primary_10_1002_chem_202004344 crossref_primary_10_1039_D1DT03625D crossref_primary_10_1002_adma_202004414 crossref_primary_10_1016_j_ccr_2023_215611 crossref_primary_10_1515_ract_2022_0024 crossref_primary_10_1021_acs_inorgchem_2c00853 crossref_primary_10_1016_j_cclet_2022_03_026 crossref_primary_10_1016_j_jssc_2023_124476 crossref_primary_10_1016_j_apsusc_2020_146559 crossref_primary_10_1016_j_cclet_2024_109642 crossref_primary_10_1021_acs_inorgchem_3c02202 crossref_primary_10_1021_jacs_4c02327 crossref_primary_10_1039_D1CC02649F crossref_primary_10_1039_D1SC03709A crossref_primary_10_1039_D3GC02161K crossref_primary_10_1360_SSC_2024_0144 crossref_primary_10_1021_jacs_4c06088 crossref_primary_10_3390_molecules29020467 crossref_primary_10_1021_acs_inorgchem_0c03586 crossref_primary_10_1021_acs_inorgchem_0c02473 crossref_primary_10_1016_j_chemosphere_2024_142518 crossref_primary_10_1016_j_ica_2023_121759 crossref_primary_10_1021_jacs_3c07047 crossref_primary_10_1039_D1SC01827B |
Cites_doi | 10.1002/chem.201804284 10.1021/jacs.8b07113 10.1021/jacs.6b11027 10.1021/cr300212f 10.1039/C7DT03742B 10.1021/acs.inorgchem.8b03511 10.1021/acs.inorgchem.8b02523 10.1039/B313992A 10.1126/science.aam7851 10.1021/acs.inorgchem.9b02106 10.1021/jacs.5b08860 10.1107/S0567739476001551 10.1016/j.rser.2018.08.019 10.2113/gscanmin.43.6.1839 10.1016/j.ccr.2014.10.001 10.1039/C7DT00330G 10.1021/jacs.8b07411 10.1002/anie.201803262 10.1016/j.cej.2018.05.175 10.1002/chem.201704478 10.1039/C7CY02063E 10.1002/chem.201901610 10.1002/anie.201901786 10.1002/chem.201802671 10.1111/j.1751-1097.1999.tb03322.x 10.1021/jp402154q 10.1007/s10562-018-2586-y 10.1021/jacs.6b01663 10.1039/C8DT00502H 10.1021/acs.inorgchem.5b01179 10.1021/acsami.8b05792 10.1021/acssuschemeng.8b00755 10.1039/C8CC05122D 10.1002/anie.201510851 10.1021/ic202706s 10.1039/C8SC02809E 10.1002/adma.201605446 10.1021/acsami.7b15326 10.1021/jp048550x 10.1021/jacs.9b00122 10.1021/acs.inorgchem.9b00452 10.31635/ccschem.019.20190005 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c9dt04158c |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-9234 |
EndPage | 987 |
ExternalDocumentID | 31904068 10_1039_C9DT04158C c9dt04158c |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 29F 4.4 53G 5GY 70 70J 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3H J3I JG M4U O9- R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UPT VH6 VQA WH7 X --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF -JG NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c363t-32811b8d678045edd03e1ff2da7865242f211e551fb73a0efb379cbfdd3c3a6c3 |
ISSN | 1477-9226 1477-9234 |
IngestDate | Thu Jul 10 23:57:57 EDT 2025 Sun Jun 29 15:40:41 EDT 2025 Wed Feb 19 02:32:01 EST 2025 Thu Apr 24 22:51:53 EDT 2025 Tue Jul 01 03:01:42 EDT 2025 Sat Jan 08 04:36:18 EST 2022 Wed Nov 11 00:25:28 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c363t-32811b8d678045edd03e1ff2da7865242f211e551fb73a0efb379cbfdd3c3a6c3 |
Notes | For ESI and crystallographic data in CIF or other electronic format see DOI 2 1920125 and Electronic supplementary information (ESI) available: Methods of synthesis and characterization of MOFs, typical figures including PXRD, FT-IR spectrum, NMR spectra, TGA curves, N 10.1039/c9dt04158c 1920127 sorption/desorption isotherm and pore-size distribution, UV-vis spectrum and transient photocurrent responses are included. CCDC ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9929-9732 0000-0003-2660-3136 |
PMID | 31904068 |
PQID | 2346334445 |
PQPubID | 2047498 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2333932448 rsc_primary_c9dt04158c proquest_journals_2346334445 pubmed_primary_31904068 crossref_primary_10_1039_C9DT04158C crossref_citationtrail_10_1039_C9DT04158C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-28 |
PublicationDateYYYYMMDD | 2020-01-28 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Dalton transactions : an international journal of inorganic chemistry |
PublicationTitleAlternate | Dalton Trans |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liu (C9DT04158C-(cit41)/*[position()=1]) 2013; 117 Kurisingal (C9DT04158C-(cit45)/*[position()=1]) 2018; 8 Xu (C9DT04158C-(cit23)/*[position()=1]) 2019; 58 Pang (C9DT04158C-(cit29)/*[position()=1]) 2018; 140 Zhao (C9DT04158C-(cit21)/*[position()=1]) 2019; 58 Wu (C9DT04158C-(cit36)/*[position()=1]) 2017; 29 Mehdoui (C9DT04158C-(cit10)/*[position()=1]) 2004 Buru (C9DT04158C-(cit34)/*[position()=1]) 2018; 10 Monreal (C9DT04158C-(cit8)/*[position()=1]) 2016; 55 Guillaumont (C9DT04158C-(cit9)/*[position()=1]) 2004; 108 Liu (C9DT04158C-(cit24)/*[position()=1]) 2018; 47 Jiao (C9DT04158C-(cit26)/*[position()=1]) 2018; 57 Hu (C9DT04158C-(cit7)/*[position()=1]) 2018; 24 Knope (C9DT04158C-(cit12)/*[position()=1]) 2013; 113 Carter (C9DT04158C-(cit14)/*[position()=1]) 2019; 25 Figueiredo (C9DT04158C-(cit35)/*[position()=1]) 1999; 69 Choi (C9DT04158C-(cit42)/*[position()=1]) 2017; 139 Mei (C9DT04158C-(cit3)/*[position()=1]) 2018; 54 Humphrey (C9DT04158C-(cit11)/*[position()=1]) 2018; 97 Yu (C9DT04158C-(cit40)/*[position()=1]) 2018; 350 Li (C9DT04158C-(cit19)/*[position()=1]) 2019; 58 Chen (C9DT04158C-(cit43)/*[position()=1]) 2018; 9 Hu (C9DT04158C-(cit2)/*[position()=1]) 2017; 23 Pennenvan (C9DT04158C-(cit5)/*[position()=1]) 1973 Wu (C9DT04158C-(cit32)/*[position()=1]) 2018; 57 Knope (C9DT04158C-(cit18)/*[position()=1]) 2012; 51 Ladomenou (C9DT04158C-(cit37)/*[position()=1]) 2015; 304 Yu (C9DT04158C-(cit4)/*[position()=1]) 2019; 1 Liu (C9DT04158C-(cit25)/*[position()=1]) 2017; 46 Li (C9DT04158C-(cit17)/*[position()=1]) 2017; 356 Lin (C9DT04158C-(cit44)/*[position()=1]) 2019; 149 Shannon (C9DT04158C-(cit6)/*[position()=1]) 1976; 32 Su (C9DT04158C-(cit1)/*[position()=1]) 2014 Burns (C9DT04158C-(cit13)/*[position()=1]) 2005; 43 Wang (C9DT04158C-(cit15)/*[position()=1]) 2016; 138 Zhang (C9DT04158C-(cit30)/*[position()=1]) 2018; 10 Falaise (C9DT04158C-(cit20)/*[position()=1]) 2018; 24 Andreo (C9DT04158C-(cit22)/*[position()=1]) 2018; 140 Wang (C9DT04158C-(cit28)/*[position()=1]) 2019; 141 Dermitzaki (C9DT04158C-(cit33)/*[position()=1]) 2015; 54 Zeng (C9DT04158C-(cit27)/*[position()=1]) 2019; 58 Tian (C9DT04158C-(cit38)/*[position()=1]) 2018; 47 Prajapati (C9DT04158C-(cit39)/*[position()=1]) 2018; 6 Deria (C9DT04158C-(cit16)/*[position()=1]) 2015; 137 An (C9DT04158C-(cit31)/*[position()=1]) 2019; 58 |
References_xml | – issn: 1973 end-page: 1-52 publication-title: Rare Earths doi: Pennenvan Ryan Rosenzweig – issn: 2014 end-page: 265-295 publication-title: Lanthanide Metal-Organic Frameworks doi: Su Chen – volume: 24 start-page: 16766 year: 2018 ident: C9DT04158C-(cit7)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201804284 – volume: 140 start-page: 14144 year: 2018 ident: C9DT04158C-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07113 – volume: 139 start-page: 356 year: 2017 ident: C9DT04158C-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11027 – volume: 113 start-page: 944 year: 2013 ident: C9DT04158C-(cit12)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr300212f – volume: 47 start-page: 675 year: 2018 ident: C9DT04158C-(cit38)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT03742B – volume: 58 start-page: 3586 year: 2019 ident: C9DT04158C-(cit19)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b03511 – volume: 57 start-page: 14772 year: 2018 ident: C9DT04158C-(cit32)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b02523 – start-page: 579 year: 2004 ident: C9DT04158C-(cit10)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/B313992A – volume: 356 start-page: 624 year: 2017 ident: C9DT04158C-(cit17)/*[position()=1] publication-title: Science doi: 10.1126/science.aam7851 – volume: 58 start-page: 14075 year: 2019 ident: C9DT04158C-(cit27)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b02106 – volume: 137 start-page: 13183 year: 2015 ident: C9DT04158C-(cit16)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08860 – volume: 32 start-page: 751 year: 1976 ident: C9DT04158C-(cit6)/*[position()=1] publication-title: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. doi: 10.1107/S0567739476001551 – volume-title: Rare Earths year: 1973 ident: C9DT04158C-(cit5)/*[position()=1] – volume: 97 start-page: 259 year: 2018 ident: C9DT04158C-(cit11)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2018.08.019 – volume: 43 start-page: 1839 year: 2005 ident: C9DT04158C-(cit13)/*[position()=1] publication-title: Can. Mineral. doi: 10.2113/gscanmin.43.6.1839 – volume: 304 start-page: 38 year: 2015 ident: C9DT04158C-(cit37)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2014.10.001 – volume: 46 start-page: 4893 year: 2017 ident: C9DT04158C-(cit25)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT00330G – volume: 140 start-page: 12328 year: 2018 ident: C9DT04158C-(cit29)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07411 – volume: 57 start-page: 8525 year: 2018 ident: C9DT04158C-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803262 – volume: 350 start-page: 867 year: 2018 ident: C9DT04158C-(cit40)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.175 – volume: 23 start-page: 18074 year: 2017 ident: C9DT04158C-(cit2)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201704478 – volume: 8 start-page: 591 year: 2018 ident: C9DT04158C-(cit45)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY02063E – volume: 25 start-page: 7114 year: 2019 ident: C9DT04158C-(cit14)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201901610 – volume: 58 start-page: 6022 year: 2019 ident: C9DT04158C-(cit21)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901786 – volume: 24 start-page: 14226 year: 2018 ident: C9DT04158C-(cit20)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201802671 – volume: 69 start-page: 517 year: 1999 ident: C9DT04158C-(cit35)/*[position()=1] publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1999.tb03322.x – volume: 117 start-page: 11302 year: 2013 ident: C9DT04158C-(cit41)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp402154q – volume: 149 start-page: 25 year: 2019 ident: C9DT04158C-(cit44)/*[position()=1] publication-title: Catal. Lett. doi: 10.1007/s10562-018-2586-y – volume: 138 start-page: 6204 year: 2016 ident: C9DT04158C-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01663 – volume: 47 start-page: 5298 year: 2018 ident: C9DT04158C-(cit24)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C8DT00502H – volume: 54 start-page: 7555 year: 2015 ident: C9DT04158C-(cit33)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01179 – volume: 10 start-page: 23802 year: 2018 ident: C9DT04158C-(cit34)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05792 – volume: 6 start-page: 7799 year: 2018 ident: C9DT04158C-(cit39)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b00755 – volume: 54 start-page: 8645 year: 2018 ident: C9DT04158C-(cit3)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC05122D – volume: 55 start-page: 3631 year: 2016 ident: C9DT04158C-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510851 – volume: 51 start-page: 4239 year: 2012 ident: C9DT04158C-(cit18)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic202706s – volume: 9 start-page: 8890 year: 2018 ident: C9DT04158C-(cit43)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC02809E – volume: 29 start-page: 1605446 year: 2017 ident: C9DT04158C-(cit36)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605446 – volume: 10 start-page: 635 year: 2018 ident: C9DT04158C-(cit30)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15326 – volume: 58 start-page: 6022 year: 2019 ident: C9DT04158C-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901786 – volume: 108 start-page: 6893 year: 2004 ident: C9DT04158C-(cit9)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp048550x – volume: 141 start-page: 6967 year: 2019 ident: C9DT04158C-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b00122 – volume: 58 start-page: 6934 year: 2019 ident: C9DT04158C-(cit31)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b00452 – volume: 1 start-page: 286 year: 2019 ident: C9DT04158C-(cit4)/*[position()=1] publication-title: CCS Chem. doi: 10.31635/ccschem.019.20190005 – volume-title: Lanthanide Metal-Organic Frameworks year: 2014 ident: C9DT04158C-(cit1)/*[position()=1] |
SSID | ssj0022052 |
Score | 2.501359 |
Snippet | Two novel thorium-based organic frameworks (Th-IHEP-5 and Th-IHEP-6) were assembled from a hexanuclear thorium cluster, porphyrin derivative ligand and linear... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 983 |
SubjectTerms | Carboxylic acids Catalytic activity Crystallography Ligands Metal-organic frameworks NMR Nuclear magnetic resonance Oxidation Photocatalysis Photoelectric effect Photoelectric emission Size distribution Thorium |
Title | A mixed-ligand strategy regulates thorium-based MOFs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31904068 https://www.proquest.com/docview/2346334445 https://www.proquest.com/docview/2333932448 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGLWge4AXNC6DbgMFwQuqDE3sJM5j1W0al8FLJ1W8RL62kbZ0tKm4_Ho-x07SakUCXqLKdprI58jfJfb5EHoNRkylIjM4pKnAEH9lmAsSYyGkiSRnYPVtQv_ic3J-ST9M42m33bY-XVKJt_LXznMl_4MqtAGu9pTsPyDb_ik0wG_AF66AMFz_CuPR4Lr4oRW-KmZ1_tspzf4cLF2BeaveMF8si_U1tsZKDS6-nK02vdETbmtK2zIRTc3wVZ0i4GUtI9FlCrf0JVwhKDmQTa24jho--fx1XuDvuuja6-VkUc7wt2LdQqzdwexu3Ee_PXgKlJ3hud7MSER2Y1tzwtstotR-Fo4iL3G92eYTl37ldWKlnmF0YxnNXHEbb5EzZ5JvLfZDYrVSZaYqqzPAZGfS2o2GXeddtBdBJBH10N7odPL-UxuVR8O6LFP70o2GLcnedXdvey23QhFwTJZNwZjaMZnsowc-oghGjh4P0R1dPkL3xg04jxEdBZs0CRqaBC1Ngi2aBJYmT9Dl2elkfI59sQwsSUIqTCIWhoKpxCpKxVqpIdGhMZHiKUticMQMhPoa_GMjUsKH2giSZlIYpYgkPJHkAPXKRamfoYBzwxhnRMkE_HlDhWJxwpJQilBKIlgfvWkmI5deSd4WNLnK6x0NJMvH2cmknrhxH71qx944_ZSdo46bOc09o1c5kCUhhFIa99HLthvmzn7S4qVerO0YQiACoRRe6qnDon0MGBewUAn0HAA4bXMHah8d7u7Ib5Q5_NNdR-h-R_pj1KuWa_0cHNNKvPDU-g01do4o |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mixed-ligand+strategy+regulates+thorium-based+MOFs&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=Huang%2C+Zhi-wei&rft.au=Hu%2C+Kong-qiu&rft.au=Mei%2C+Lei&rft.au=Kong%2C+Xiang-he&rft.date=2020-01-28&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=49&rft.issue=4&rft.spage=983&rft.epage=987&rft_id=info:doi/10.1039%2Fc9dt04158c&rft.externalDocID=c9dt04158c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon |