Crystal Facet and Architecture Engineering of Metal Oxide Nanonetwork Anodes for High-Performance Potassium Ion Batteries and Hybrid Capacitors

Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their abundance and high theoretic gravimetric capacity; however, due to the inherent insulating property of wide band gaps and deficient ion-transp...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 16; no. 1; pp. 1486 - 1501
Main Authors Chang, Chao-Hung, Chen, Kuan-Ting, Hsieh, Yi-Yen, Chang, Che-Bin, Tuan, Hsing-Yu
Format Journal Article
LanguageEnglish
Published United States 25.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their abundance and high theoretic gravimetric capacity; however, due to the inherent insulating property of wide band gaps and deficient ion-transport kinetics, metal oxide anodes exhibit poor K electrochemical performance. In this work, we report crystal facet and architecture engineering of metal oxides to achieve significantly enhanced K storage performance. A bismuth antimonate (BiSbO ) nanonetwork with an architecture of perpendicularly crossed single crystal nanorods of majorly exposed (001) planes are synthesized CTAB-mediated growth. (001) is found to be the preferential surface diffusion path for superior adsorption and K transport, and in addition, the interconnected nanorods gives rise to a robust matrix to enhance electrical conductivity and ion transport, as well as buffering dramatic volume change during insertion/extraction of K . Thanks to the synergistic effect of facet and structural engineering of BiSbO electrodes, a stable dual conversion-alloying mechanism based on reversible six-electron transfer per formula unit of ternary metal oxides is realized, proceeding by reversible coexistence of potassium peroxide conversion reactions (KO ↔K O) and Bi Sb alloying reactions (BiSb ↔ KBiSb ↔ K BiSb). As a result, BiSbO nanonetwork anodes show outstanding potassium ion storage in terms of capacity, cycling life, and rate capability. Finally, the implementation of a BiSbO nanonetwork anode in the full cell configuration of both PIBs and PIHCs shows satisfactory performance in a Ragone plot that sheds light on their practical applications for a wide range of K -based energy storage devices. We believe this study will propose a promising avenue to design advanced hierarchical nanostructures of ternary or binary conversion-type materials for PIBs, PIHCs, or even for extensive energy storage.
AbstractList Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their abundance and high theoretic gravimetric capacity; however, due to the inherent insulating property of wide band gaps and deficient ion-transport kinetics, metal oxide anodes exhibit poor K+ electrochemical performance. In this work, we report crystal facet and architecture engineering of metal oxides to achieve significantly enhanced K+ storage performance. A bismuth antimonate (BiSbO4) nanonetwork with an architecture of perpendicularly crossed single crystal nanorods of majorly exposed (001) planes are synthesized via CTAB-mediated growth. (001) is found to be the preferential surface diffusion path for superior adsorption and K+ transport, and in addition, the interconnected nanorods gives rise to a robust matrix to enhance electrical conductivity and ion transport, as well as buffering dramatic volume change during insertion/extraction of K+. Thanks to the synergistic effect of facet and structural engineering of BiSbO4 electrodes, a stable dual conversion-alloying mechanism based on reversible six-electron transfer per formula unit of ternary metal oxides is realized, proceeding by reversible coexistence of potassium peroxide conversion reactions (KO2↔K2O) and BixSby alloying reactions (BiSb ↔ KBiSb ↔ K3BiSb). As a result, BiSbO4 nanonetwork anodes show outstanding potassium ion storage in terms of capacity, cycling life, and rate capability. Finally, the implementation of a BiSbO4 nanonetwork anode in the state-of-the-art full cell configuration of both PIBs and PIHCs shows satisfactory performance in a Ragone plot that sheds light on their practical applications for a wide range of K+-based energy storage devices. We believe this study will propose a promising avenue to design advanced hierarchical nanostructures of ternary or binary conversion-type materials for PIBs, PIHCs, or even for extensive energy storage.Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their abundance and high theoretic gravimetric capacity; however, due to the inherent insulating property of wide band gaps and deficient ion-transport kinetics, metal oxide anodes exhibit poor K+ electrochemical performance. In this work, we report crystal facet and architecture engineering of metal oxides to achieve significantly enhanced K+ storage performance. A bismuth antimonate (BiSbO4) nanonetwork with an architecture of perpendicularly crossed single crystal nanorods of majorly exposed (001) planes are synthesized via CTAB-mediated growth. (001) is found to be the preferential surface diffusion path for superior adsorption and K+ transport, and in addition, the interconnected nanorods gives rise to a robust matrix to enhance electrical conductivity and ion transport, as well as buffering dramatic volume change during insertion/extraction of K+. Thanks to the synergistic effect of facet and structural engineering of BiSbO4 electrodes, a stable dual conversion-alloying mechanism based on reversible six-electron transfer per formula unit of ternary metal oxides is realized, proceeding by reversible coexistence of potassium peroxide conversion reactions (KO2↔K2O) and BixSby alloying reactions (BiSb ↔ KBiSb ↔ K3BiSb). As a result, BiSbO4 nanonetwork anodes show outstanding potassium ion storage in terms of capacity, cycling life, and rate capability. Finally, the implementation of a BiSbO4 nanonetwork anode in the state-of-the-art full cell configuration of both PIBs and PIHCs shows satisfactory performance in a Ragone plot that sheds light on their practical applications for a wide range of K+-based energy storage devices. We believe this study will propose a promising avenue to design advanced hierarchical nanostructures of ternary or binary conversion-type materials for PIBs, PIHCs, or even for extensive energy storage.
Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their abundance and high theoretic gravimetric capacity; however, due to the inherent insulating property of wide band gaps and deficient ion-transport kinetics, metal oxide anodes exhibit poor K electrochemical performance. In this work, we report crystal facet and architecture engineering of metal oxides to achieve significantly enhanced K storage performance. A bismuth antimonate (BiSbO ) nanonetwork with an architecture of perpendicularly crossed single crystal nanorods of majorly exposed (001) planes are synthesized CTAB-mediated growth. (001) is found to be the preferential surface diffusion path for superior adsorption and K transport, and in addition, the interconnected nanorods gives rise to a robust matrix to enhance electrical conductivity and ion transport, as well as buffering dramatic volume change during insertion/extraction of K . Thanks to the synergistic effect of facet and structural engineering of BiSbO electrodes, a stable dual conversion-alloying mechanism based on reversible six-electron transfer per formula unit of ternary metal oxides is realized, proceeding by reversible coexistence of potassium peroxide conversion reactions (KO ↔K O) and Bi Sb alloying reactions (BiSb ↔ KBiSb ↔ K BiSb). As a result, BiSbO nanonetwork anodes show outstanding potassium ion storage in terms of capacity, cycling life, and rate capability. Finally, the implementation of a BiSbO nanonetwork anode in the full cell configuration of both PIBs and PIHCs shows satisfactory performance in a Ragone plot that sheds light on their practical applications for a wide range of K -based energy storage devices. We believe this study will propose a promising avenue to design advanced hierarchical nanostructures of ternary or binary conversion-type materials for PIBs, PIHCs, or even for extensive energy storage.
Author Chen, Kuan-Ting
Tuan, Hsing-Yu
Hsieh, Yi-Yen
Chang, Chao-Hung
Chang, Che-Bin
Author_xml – sequence: 1
  givenname: Chao-Hung
  surname: Chang
  fullname: Chang, Chao-Hung
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
– sequence: 2
  givenname: Kuan-Ting
  surname: Chen
  fullname: Chen, Kuan-Ting
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
– sequence: 3
  givenname: Yi-Yen
  surname: Hsieh
  fullname: Hsieh, Yi-Yen
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
– sequence: 4
  givenname: Che-Bin
  surname: Chang
  fullname: Chang, Che-Bin
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
– sequence: 5
  givenname: Hsing-Yu
  orcidid: 0000-0003-2819-2270
  surname: Tuan
  fullname: Tuan, Hsing-Yu
  organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34978420$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1P3DAQhq0KVL567q3ysZeAP2InOW5X0EWihQNIvUUTe7K4Teyt7Yjur-AvkxVbDpV6mpHmeefrPSEHPngk5CNn55wJfgEmefDhnBvW1Fq-I8e8kbpgtf5x8JYrfkROUvrJmKrqSr8nR7JsqroU7Jg8L-M2ZRjoFRjMFLyli2geXUaTp4j00q-dR4zOr2no6Tfcsbd_nEX6HXbL5KcQf9GFDxYT7UOkK7d-LO4wzvkI3iC9CxlSctNIr4OnXyDnud0M72attl10li5hA8blENMZOexhSPhhH0_Jw9Xl_XJV3Nx-vV4ubgojtcyFFLyEBjWzlVKdNNb2AjmUjeg6pbgGVkIlm7nWNxXHzqAAxQFt3VkQ2MlT8vm17yaG3xOm3I4uGRwG8Bim1ArNtahrptiMftqjUzeibTfRjRC37d8nzsDFK2BiSCli_4Zw1u5savc2tXubZoX6RzFfD9kFnyO44b-6F25knBs
CitedBy_id crossref_primary_10_1016_j_ceramint_2022_06_226
crossref_primary_10_1002_aenm_202401183
crossref_primary_10_1039_D3NR06081K
crossref_primary_10_1002_smll_202311079
crossref_primary_10_1007_s40820_024_01641_9
crossref_primary_10_1002_advs_202402340
crossref_primary_10_1016_j_electacta_2024_145588
crossref_primary_10_1016_j_jallcom_2023_172599
crossref_primary_10_1016_j_ensm_2023_102998
crossref_primary_10_1016_j_jpowsour_2023_233289
crossref_primary_10_1002_aenm_202401657
crossref_primary_10_1002_ange_202209794
crossref_primary_10_1016_j_est_2023_109544
crossref_primary_10_1021_acsaem_2c03113
crossref_primary_10_1002_adfm_202313300
crossref_primary_10_1002_adfm_202422083
crossref_primary_10_1002_ange_202303600
crossref_primary_10_1021_acs_nanolett_2c03933
crossref_primary_10_1007_s10008_022_05287_8
crossref_primary_10_1021_acs_nanolett_3c03281
crossref_primary_10_1016_j_nanoen_2022_108065
crossref_primary_10_1021_acs_energyfuels_4c01629
crossref_primary_10_1002_adfm_202415092
crossref_primary_10_1002_smll_202305342
crossref_primary_10_1002_aenm_202300150
crossref_primary_10_1021_acsnano_4c06200
crossref_primary_10_1039_D4GC00688G
crossref_primary_10_1039_D3TA04468H
crossref_primary_10_1002_adfm_202402416
crossref_primary_10_1016_j_ensm_2023_102770
crossref_primary_10_1016_j_cej_2022_139199
crossref_primary_10_1021_acsami_3c14009
crossref_primary_10_1007_s40820_023_01318_9
crossref_primary_10_1016_j_cej_2022_137736
crossref_primary_10_1016_j_cej_2024_153445
crossref_primary_10_1021_acs_nanolett_2c03849
crossref_primary_10_1016_j_cclet_2024_110685
crossref_primary_10_1002_anie_202303600
crossref_primary_10_1016_j_jcis_2023_04_018
crossref_primary_10_1016_j_est_2023_109737
crossref_primary_10_1002_slct_202300018
crossref_primary_10_1016_j_jechem_2023_10_018
crossref_primary_10_1016_j_mtsust_2022_100141
crossref_primary_10_1039_D4NJ00785A
crossref_primary_10_1002_adfm_202400302
crossref_primary_10_1021_acsami_4c15890
crossref_primary_10_1016_j_cej_2024_148877
crossref_primary_10_1038_s41467_023_42108_6
crossref_primary_10_1039_D4TA02060J
crossref_primary_10_1007_s11426_022_1365_4
crossref_primary_10_1007_s40820_023_01202_6
crossref_primary_10_1016_j_cej_2024_155370
crossref_primary_10_1016_j_jpowsour_2022_232140
crossref_primary_10_1002_adsu_202400210
crossref_primary_10_1002_adma_202502894
crossref_primary_10_1039_D2SC04012C
crossref_primary_10_1016_j_jallcom_2023_169392
crossref_primary_10_1016_j_jcis_2024_09_207
crossref_primary_10_1016_j_ensm_2023_102853
crossref_primary_10_1007_s42114_024_00927_1
crossref_primary_10_1002_advs_202308582
crossref_primary_10_1002_eem2_12632
crossref_primary_10_1016_j_cej_2024_149289
crossref_primary_10_1039_D4TA05014B
crossref_primary_10_1002_smll_202300046
crossref_primary_10_1002_er_8500
crossref_primary_10_1016_j_est_2023_109649
crossref_primary_10_1002_batt_202300224
crossref_primary_10_1016_j_cej_2023_145992
crossref_primary_10_1016_j_ensm_2022_07_020
crossref_primary_10_1039_D2CC06692K
crossref_primary_10_1039_D3TA05558B
crossref_primary_10_3390_molecules29245906
crossref_primary_10_1088_2515_7655_acbf76
crossref_primary_10_1016_j_jallcom_2022_165285
crossref_primary_10_1039_D3EY00281K
crossref_primary_10_1039_D3QI00585B
crossref_primary_10_1002_anie_202209794
crossref_primary_10_1021_acsnano_4c00881
crossref_primary_10_1039_D3CS00601H
crossref_primary_10_1002_adfm_202412551
crossref_primary_10_1016_j_est_2024_111574
crossref_primary_10_1002_aenm_202400533
crossref_primary_10_1016_j_desal_2023_116409
crossref_primary_10_1016_j_ensm_2023_102942
crossref_primary_10_1016_j_apcatb_2024_124332
crossref_primary_10_1016_j_ensm_2024_103978
crossref_primary_10_1007_s12598_022_02111_0
crossref_primary_10_1021_acsnano_3c01260
Cites_doi 10.1038/nmat3601
10.1021/acsnano.0c01395
10.1016/j.ensm.2020.05.018
10.1039/C5TA00258C
10.1039/f19837902055
10.1016/j.jpowsour.2017.12.033
10.1016/j.ensm.2021.05.045
10.1021/acs.inorgchem.6b00503
10.1039/C9NH00211A
10.1039/C9NA00543A
10.1039/c1ce05025g
10.1002/adma.201800804
10.1002/smll.202006627
10.1063/1.1329672
10.1038/natrevmats.2016.13
10.1002/aenm.202002567
10.1021/acsnano.9b00634
10.1002/adfm.202010832
10.1021/acsnano.0c04203
10.1002/adfm.202004247
10.1002/aenm.201903455
10.1016/j.apsusc.2020.145947
10.1016/j.jpowsour.2020.228491
10.1016/j.apcata.2006.03.057
10.1016/0927-0256(96)00008-0
10.1039/C9TA01968E
10.1016/j.apmt.2019.07.003
10.1016/j.jcis.2021.05.088
10.1039/C8NR01685B
10.1021/acsnano.9b08526
10.1002/smll.201901775
10.1002/anie.201913174
10.1016/j.nanoen.2021.105784
10.1016/j.cej.2021.130451
10.1002/adfm.201604307
10.1021/jp074464w
10.1016/j.ensm.2021.04.034
10.1002/ange.201801389
10.1016/j.jpowsour.2017.02.041
10.1016/j.jpowsour.2018.01.046
10.1007/s12274-020-2906-6
10.1039/C3EE42351D
10.1103/PhysRevB.46.6671
10.1016/j.ensm.2021.05.013
10.1021/cm201604g
10.1002/adfm.201802684
10.1016/j.ensm.2021.02.036
10.1021/acsnano.8b08740
10.1039/D0EE02917C
10.1016/j.nanoen.2021.106233
10.1002/adfm.201903496
10.1002/advs.202004142
10.1002/adma.201806082
10.1002/adma.201501622
10.1016/j.cej.2021.129988
10.1002/advs.201900904
10.1002/advs.201801797
10.1039/D0TA03964K
10.1002/smll.202007597
10.1016/j.nanoen.2021.105792
10.1016/j.ensm.2020.12.013
10.1016/j.ensm.2018.10.007
10.1103/PhysRevB.50.17953
10.1016/j.ensm.2020.09.001
10.1002/adfm.202001588
10.1021/acsenergylett.9b01675
10.1039/D0TA01786H
10.1039/C4TA04996A
10.1039/C6RA20558E
10.1002/adma.201202146
10.1063/1.3382344
10.1016/j.ensm.2021.04.019
10.1002/smll.201403358
10.1016/j.cej.2020.128097
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.1c09863
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 1501
ExternalDocumentID 34978420
10_1021_acsnano_1c09863
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACS
ADHGD
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
NPM
7X8
ID FETCH-LOGICAL-c363t-3214a9e60d755b3cddf2e1a492bb5516a04a73955bf971ebce2a51aed8bda2eb3
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 09:59:17 EDT 2025
Mon Jul 21 05:49:19 EDT 2025
Tue Jul 01 03:37:20 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords anodes
capacitors
bimetallic oxides
potassium ion storage
batteries
bismuth antimonate
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-3214a9e60d755b3cddf2e1a492bb5516a04a73955bf971ebce2a51aed8bda2eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2819-2270
PMID 34978420
PQID 2616288050
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2616288050
pubmed_primary_34978420
crossref_primary_10_1021_acsnano_1c09863
crossref_citationtrail_10_1021_acsnano_1c09863
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2022
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref45/cit45
  doi: 10.1038/nmat3601
– ident: ref27/cit27
  doi: 10.1021/acsnano.0c01395
– ident: ref18/cit18
  doi: 10.1016/j.ensm.2020.05.018
– ident: ref34/cit34
  doi: 10.1039/C5TA00258C
– ident: ref38/cit38
  doi: 10.1039/f19837902055
– ident: ref22/cit22
  doi: 10.1016/j.jpowsour.2017.12.033
– ident: ref52/cit52
  doi: 10.1016/j.ensm.2021.05.045
– ident: ref37/cit37
  doi: 10.1021/acs.inorgchem.6b00503
– ident: ref59/cit59
  doi: 10.1039/C9NH00211A
– ident: ref23/cit23
  doi: 10.1039/C9NA00543A
– ident: ref68/cit68
  doi: 10.1039/c1ce05025g
– ident: ref65/cit65
  doi: 10.1002/adma.201800804
– ident: ref7/cit7
  doi: 10.1002/smll.202006627
– ident: ref74/cit74
  doi: 10.1063/1.1329672
– ident: ref4/cit4
  doi: 10.1038/natrevmats.2016.13
– ident: ref8/cit8
  doi: 10.1002/aenm.202002567
– ident: ref14/cit14
  doi: 10.1021/acsnano.9b00634
– ident: ref30/cit30
  doi: 10.1002/adfm.202010832
– ident: ref47/cit47
  doi: 10.1021/acsnano.0c04203
– ident: ref61/cit61
  doi: 10.1002/adfm.202004247
– ident: ref26/cit26
  doi: 10.1002/aenm.201903455
– ident: ref56/cit56
  doi: 10.1016/j.apsusc.2020.145947
– ident: ref39/cit39
  doi: 10.1016/j.jpowsour.2020.228491
– ident: ref67/cit67
  doi: 10.1016/j.apcata.2006.03.057
– ident: ref71/cit71
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref54/cit54
  doi: 10.1039/C9TA01968E
– ident: ref63/cit63
  doi: 10.1016/j.apmt.2019.07.003
– ident: ref29/cit29
  doi: 10.1016/j.jcis.2021.05.088
– ident: ref66/cit66
  doi: 10.1039/C8NR01685B
– ident: ref55/cit55
  doi: 10.1021/acsnano.9b08526
– ident: ref40/cit40
  doi: 10.1002/smll.201901775
– ident: ref9/cit9
  doi: 10.1002/anie.201913174
– ident: ref43/cit43
  doi: 10.1016/j.nanoen.2021.105784
– ident: ref46/cit46
  doi: 10.1016/j.cej.2021.130451
– ident: ref69/cit69
  doi: 10.1002/adfm.201604307
– ident: ref44/cit44
  doi: 10.1021/jp074464w
– ident: ref6/cit6
  doi: 10.1016/j.ensm.2021.04.034
– ident: ref53/cit53
  doi: 10.1002/ange.201801389
– ident: ref2/cit2
  doi: 10.1016/j.jpowsour.2017.02.041
– ident: ref1/cit1
  doi: 10.1016/j.jpowsour.2018.01.046
– ident: ref41/cit41
  doi: 10.1007/s12274-020-2906-6
– ident: ref57/cit57
  doi: 10.1039/C3EE42351D
– ident: ref72/cit72
  doi: 10.1103/PhysRevB.46.6671
– ident: ref28/cit28
  doi: 10.1016/j.ensm.2021.05.013
– ident: ref31/cit31
  doi: 10.1021/cm201604g
– ident: ref60/cit60
  doi: 10.1002/adfm.201802684
– ident: ref10/cit10
  doi: 10.1016/j.ensm.2021.02.036
– ident: ref19/cit19
  doi: 10.1021/acsnano.8b08740
– ident: ref51/cit51
  doi: 10.1039/D0EE02917C
– ident: ref48/cit48
  doi: 10.1016/j.nanoen.2021.106233
– ident: ref64/cit64
  doi: 10.1002/adfm.201903496
– ident: ref58/cit58
  doi: 10.1002/advs.202004142
– ident: ref49/cit49
  doi: 10.1002/adma.201806082
– ident: ref3/cit3
  doi: 10.1002/adma.201501622
– ident: ref16/cit16
  doi: 10.1016/j.cej.2021.129988
– ident: ref25/cit25
  doi: 10.1002/advs.201900904
– ident: ref21/cit21
  doi: 10.1002/advs.201801797
– ident: ref50/cit50
  doi: 10.1039/D0TA03964K
– ident: ref42/cit42
  doi: 10.1002/smll.202007597
– ident: ref13/cit13
  doi: 10.1016/j.nanoen.2021.105792
– ident: ref12/cit12
  doi: 10.1016/j.ensm.2020.12.013
– ident: ref32/cit32
  doi: 10.1016/j.ensm.2018.10.007
– ident: ref70/cit70
  doi: 10.1103/PhysRevB.50.17953
– ident: ref5/cit5
  doi: 10.1016/j.ensm.2020.09.001
– ident: ref15/cit15
  doi: 10.1002/adfm.202001588
– ident: ref11/cit11
  doi: 10.1021/acsenergylett.9b01675
– ident: ref62/cit62
  doi: 10.1039/D0TA01786H
– ident: ref20/cit20
  doi: 10.1039/C4TA04996A
– ident: ref36/cit36
  doi: 10.1039/C6RA20558E
– ident: ref24/cit24
  doi: 10.1002/adma.201202146
– ident: ref73/cit73
  doi: 10.1063/1.3382344
– ident: ref17/cit17
  doi: 10.1016/j.ensm.2021.04.019
– ident: ref33/cit33
  doi: 10.1002/smll.201403358
– ident: ref35/cit35
  doi: 10.1016/j.cej.2020.128097
SSID ssj0057876
Score 2.624856
Snippet Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1486
Title Crystal Facet and Architecture Engineering of Metal Oxide Nanonetwork Anodes for High-Performance Potassium Ion Batteries and Hybrid Capacitors
URI https://www.ncbi.nlm.nih.gov/pubmed/34978420
https://www.proquest.com/docview/2616288050
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7Ekx58P-qLFTx4Sd1sN2lyLMVSBR-ggrcw-wgUNZE2BfVP-JedSdJaFdH7bHbJzu58w8x-H2NHaWSltRGeb22VpwDaniZ67SgitjkMae1SpvPiMuzfqfP74P6TLPp7BV_6J2BGGWR50zcijsKS17OtiCW_072Z3LnkdmFVP8b8GEHElMTnx_iv8ecXUFkGl95y1ZY1KjkJqafkoTkudNO8_WRs_HvdK2yphpi8U_nEKptz2RpbnCEeXGfv3eErwsJH3gPjCg6Z5Z2ZigKfMeZ5yi8c2V69DKzjeB3nWdU7zjtZbt2II-7l1C_iXX--QuDXeYG4fDB-4md5xisaT8zKy7n6r_ROjHcxUJsByf1ssLve6W2379XSDJ5pha3CI3kjiF0obDsIdMtYm0rng4ql1lR6A6GASoCBTnHDnSbZscAHZyNtQWICv8nmabXbjCMCS1MDEKsUlECDGPdXBBBqEaaxlQ3WnGxYYmrecpLPeEzK-rn0k_pPJ_WfbrDj6YDnirLjd9PDiQckeKyoVgKZy8ejBBNLEmIWgWiwrco1ph9rkSqfkmLn_xPtsgVJ7yaE78lgj80Xw7HbRzRT6IPSkT8AFBTz_g
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+Facet+and+Architecture+Engineering+of+Metal+Oxide+Nanonetwork+Anodes+for+High-Performance+Potassium+Ion+Batteries+and+Hybrid+Capacitors&rft.jtitle=ACS+nano&rft.au=Chang%2C+Chao-Hung&rft.au=Chen%2C+Kuan-Ting&rft.au=Hsieh%2C+Yi-Yen&rft.au=Chang%2C+Che-Bin&rft.date=2022-01-25&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=16&rft.issue=1&rft.spage=1486&rft_id=info:doi/10.1021%2Facsnano.1c09863&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon