Crystal Facet and Architecture Engineering of Metal Oxide Nanonetwork Anodes for High-Performance Potassium Ion Batteries and Hybrid Capacitors
Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their abundance and high theoretic gravimetric capacity; however, due to the inherent insulating property of wide band gaps and deficient ion-transp...
Saved in:
Published in | ACS nano Vol. 16; no. 1; pp. 1486 - 1501 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
25.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their abundance and high theoretic gravimetric capacity; however, due to the inherent insulating property of wide band gaps and deficient ion-transport kinetics, metal oxide anodes exhibit poor K
electrochemical performance. In this work, we report crystal facet and architecture engineering of metal oxides to achieve significantly enhanced K
storage performance. A bismuth antimonate (BiSbO
) nanonetwork with an architecture of perpendicularly crossed single crystal nanorods of majorly exposed (001) planes are synthesized
CTAB-mediated growth. (001) is found to be the preferential surface diffusion path for superior adsorption and K
transport, and in addition, the interconnected nanorods gives rise to a robust matrix to enhance electrical conductivity and ion transport, as well as buffering dramatic volume change during insertion/extraction of K
. Thanks to the synergistic effect of facet and structural engineering of BiSbO
electrodes, a stable dual conversion-alloying mechanism based on reversible six-electron transfer per formula unit of ternary metal oxides is realized, proceeding by reversible coexistence of potassium peroxide conversion reactions (KO
↔K
O) and Bi
Sb
alloying reactions (BiSb ↔ KBiSb ↔ K
BiSb). As a result, BiSbO
nanonetwork anodes show outstanding potassium ion storage in terms of capacity, cycling life, and rate capability. Finally, the implementation of a BiSbO
nanonetwork anode in the
full cell configuration of both PIBs and PIHCs shows satisfactory performance in a Ragone plot that sheds light on their practical applications for a wide range of K
-based energy storage devices. We believe this study will propose a promising avenue to design advanced hierarchical nanostructures of ternary or binary conversion-type materials for PIBs, PIHCs, or even for extensive energy storage. |
---|---|
AbstractList | Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their abundance and high theoretic gravimetric capacity; however, due to the inherent insulating property of wide band gaps and deficient ion-transport kinetics, metal oxide anodes exhibit poor K+ electrochemical performance. In this work, we report crystal facet and architecture engineering of metal oxides to achieve significantly enhanced K+ storage performance. A bismuth antimonate (BiSbO4) nanonetwork with an architecture of perpendicularly crossed single crystal nanorods of majorly exposed (001) planes are synthesized via CTAB-mediated growth. (001) is found to be the preferential surface diffusion path for superior adsorption and K+ transport, and in addition, the interconnected nanorods gives rise to a robust matrix to enhance electrical conductivity and ion transport, as well as buffering dramatic volume change during insertion/extraction of K+. Thanks to the synergistic effect of facet and structural engineering of BiSbO4 electrodes, a stable dual conversion-alloying mechanism based on reversible six-electron transfer per formula unit of ternary metal oxides is realized, proceeding by reversible coexistence of potassium peroxide conversion reactions (KO2↔K2O) and BixSby alloying reactions (BiSb ↔ KBiSb ↔ K3BiSb). As a result, BiSbO4 nanonetwork anodes show outstanding potassium ion storage in terms of capacity, cycling life, and rate capability. Finally, the implementation of a BiSbO4 nanonetwork anode in the state-of-the-art full cell configuration of both PIBs and PIHCs shows satisfactory performance in a Ragone plot that sheds light on their practical applications for a wide range of K+-based energy storage devices. We believe this study will propose a promising avenue to design advanced hierarchical nanostructures of ternary or binary conversion-type materials for PIBs, PIHCs, or even for extensive energy storage.Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their abundance and high theoretic gravimetric capacity; however, due to the inherent insulating property of wide band gaps and deficient ion-transport kinetics, metal oxide anodes exhibit poor K+ electrochemical performance. In this work, we report crystal facet and architecture engineering of metal oxides to achieve significantly enhanced K+ storage performance. A bismuth antimonate (BiSbO4) nanonetwork with an architecture of perpendicularly crossed single crystal nanorods of majorly exposed (001) planes are synthesized via CTAB-mediated growth. (001) is found to be the preferential surface diffusion path for superior adsorption and K+ transport, and in addition, the interconnected nanorods gives rise to a robust matrix to enhance electrical conductivity and ion transport, as well as buffering dramatic volume change during insertion/extraction of K+. Thanks to the synergistic effect of facet and structural engineering of BiSbO4 electrodes, a stable dual conversion-alloying mechanism based on reversible six-electron transfer per formula unit of ternary metal oxides is realized, proceeding by reversible coexistence of potassium peroxide conversion reactions (KO2↔K2O) and BixSby alloying reactions (BiSb ↔ KBiSb ↔ K3BiSb). As a result, BiSbO4 nanonetwork anodes show outstanding potassium ion storage in terms of capacity, cycling life, and rate capability. Finally, the implementation of a BiSbO4 nanonetwork anode in the state-of-the-art full cell configuration of both PIBs and PIHCs shows satisfactory performance in a Ragone plot that sheds light on their practical applications for a wide range of K+-based energy storage devices. We believe this study will propose a promising avenue to design advanced hierarchical nanostructures of ternary or binary conversion-type materials for PIBs, PIHCs, or even for extensive energy storage. Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their abundance and high theoretic gravimetric capacity; however, due to the inherent insulating property of wide band gaps and deficient ion-transport kinetics, metal oxide anodes exhibit poor K electrochemical performance. In this work, we report crystal facet and architecture engineering of metal oxides to achieve significantly enhanced K storage performance. A bismuth antimonate (BiSbO ) nanonetwork with an architecture of perpendicularly crossed single crystal nanorods of majorly exposed (001) planes are synthesized CTAB-mediated growth. (001) is found to be the preferential surface diffusion path for superior adsorption and K transport, and in addition, the interconnected nanorods gives rise to a robust matrix to enhance electrical conductivity and ion transport, as well as buffering dramatic volume change during insertion/extraction of K . Thanks to the synergistic effect of facet and structural engineering of BiSbO electrodes, a stable dual conversion-alloying mechanism based on reversible six-electron transfer per formula unit of ternary metal oxides is realized, proceeding by reversible coexistence of potassium peroxide conversion reactions (KO ↔K O) and Bi Sb alloying reactions (BiSb ↔ KBiSb ↔ K BiSb). As a result, BiSbO nanonetwork anodes show outstanding potassium ion storage in terms of capacity, cycling life, and rate capability. Finally, the implementation of a BiSbO nanonetwork anode in the full cell configuration of both PIBs and PIHCs shows satisfactory performance in a Ragone plot that sheds light on their practical applications for a wide range of K -based energy storage devices. We believe this study will propose a promising avenue to design advanced hierarchical nanostructures of ternary or binary conversion-type materials for PIBs, PIHCs, or even for extensive energy storage. |
Author | Chen, Kuan-Ting Tuan, Hsing-Yu Hsieh, Yi-Yen Chang, Chao-Hung Chang, Che-Bin |
Author_xml | – sequence: 1 givenname: Chao-Hung surname: Chang fullname: Chang, Chao-Hung organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan – sequence: 2 givenname: Kuan-Ting surname: Chen fullname: Chen, Kuan-Ting organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan – sequence: 3 givenname: Yi-Yen surname: Hsieh fullname: Hsieh, Yi-Yen organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan – sequence: 4 givenname: Che-Bin surname: Chang fullname: Chang, Che-Bin organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan – sequence: 5 givenname: Hsing-Yu orcidid: 0000-0003-2819-2270 surname: Tuan fullname: Tuan, Hsing-Yu organization: Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34978420$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1P3DAQhq0KVL567q3ysZeAP2InOW5X0EWihQNIvUUTe7K4Teyt7Yjur-AvkxVbDpV6mpHmeefrPSEHPngk5CNn55wJfgEmefDhnBvW1Fq-I8e8kbpgtf5x8JYrfkROUvrJmKrqSr8nR7JsqroU7Jg8L-M2ZRjoFRjMFLyli2geXUaTp4j00q-dR4zOr2no6Tfcsbd_nEX6HXbL5KcQf9GFDxYT7UOkK7d-LO4wzvkI3iC9CxlSctNIr4OnXyDnud0M72attl10li5hA8blENMZOexhSPhhH0_Jw9Xl_XJV3Nx-vV4ubgojtcyFFLyEBjWzlVKdNNb2AjmUjeg6pbgGVkIlm7nWNxXHzqAAxQFt3VkQ2MlT8vm17yaG3xOm3I4uGRwG8Bim1ArNtahrptiMftqjUzeibTfRjRC37d8nzsDFK2BiSCli_4Zw1u5savc2tXubZoX6RzFfD9kFnyO44b-6F25knBs |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2022_06_226 crossref_primary_10_1002_aenm_202401183 crossref_primary_10_1039_D3NR06081K crossref_primary_10_1002_smll_202311079 crossref_primary_10_1007_s40820_024_01641_9 crossref_primary_10_1002_advs_202402340 crossref_primary_10_1016_j_electacta_2024_145588 crossref_primary_10_1016_j_jallcom_2023_172599 crossref_primary_10_1016_j_ensm_2023_102998 crossref_primary_10_1016_j_jpowsour_2023_233289 crossref_primary_10_1002_aenm_202401657 crossref_primary_10_1002_ange_202209794 crossref_primary_10_1016_j_est_2023_109544 crossref_primary_10_1021_acsaem_2c03113 crossref_primary_10_1002_adfm_202313300 crossref_primary_10_1002_adfm_202422083 crossref_primary_10_1002_ange_202303600 crossref_primary_10_1021_acs_nanolett_2c03933 crossref_primary_10_1007_s10008_022_05287_8 crossref_primary_10_1021_acs_nanolett_3c03281 crossref_primary_10_1016_j_nanoen_2022_108065 crossref_primary_10_1021_acs_energyfuels_4c01629 crossref_primary_10_1002_adfm_202415092 crossref_primary_10_1002_smll_202305342 crossref_primary_10_1002_aenm_202300150 crossref_primary_10_1021_acsnano_4c06200 crossref_primary_10_1039_D4GC00688G crossref_primary_10_1039_D3TA04468H crossref_primary_10_1002_adfm_202402416 crossref_primary_10_1016_j_ensm_2023_102770 crossref_primary_10_1016_j_cej_2022_139199 crossref_primary_10_1021_acsami_3c14009 crossref_primary_10_1007_s40820_023_01318_9 crossref_primary_10_1016_j_cej_2022_137736 crossref_primary_10_1016_j_cej_2024_153445 crossref_primary_10_1021_acs_nanolett_2c03849 crossref_primary_10_1016_j_cclet_2024_110685 crossref_primary_10_1002_anie_202303600 crossref_primary_10_1016_j_jcis_2023_04_018 crossref_primary_10_1016_j_est_2023_109737 crossref_primary_10_1002_slct_202300018 crossref_primary_10_1016_j_jechem_2023_10_018 crossref_primary_10_1016_j_mtsust_2022_100141 crossref_primary_10_1039_D4NJ00785A crossref_primary_10_1002_adfm_202400302 crossref_primary_10_1021_acsami_4c15890 crossref_primary_10_1016_j_cej_2024_148877 crossref_primary_10_1038_s41467_023_42108_6 crossref_primary_10_1039_D4TA02060J crossref_primary_10_1007_s11426_022_1365_4 crossref_primary_10_1007_s40820_023_01202_6 crossref_primary_10_1016_j_cej_2024_155370 crossref_primary_10_1016_j_jpowsour_2022_232140 crossref_primary_10_1002_adsu_202400210 crossref_primary_10_1002_adma_202502894 crossref_primary_10_1039_D2SC04012C crossref_primary_10_1016_j_jallcom_2023_169392 crossref_primary_10_1016_j_jcis_2024_09_207 crossref_primary_10_1016_j_ensm_2023_102853 crossref_primary_10_1007_s42114_024_00927_1 crossref_primary_10_1002_advs_202308582 crossref_primary_10_1002_eem2_12632 crossref_primary_10_1016_j_cej_2024_149289 crossref_primary_10_1039_D4TA05014B crossref_primary_10_1002_smll_202300046 crossref_primary_10_1002_er_8500 crossref_primary_10_1016_j_est_2023_109649 crossref_primary_10_1002_batt_202300224 crossref_primary_10_1016_j_cej_2023_145992 crossref_primary_10_1016_j_ensm_2022_07_020 crossref_primary_10_1039_D2CC06692K crossref_primary_10_1039_D3TA05558B crossref_primary_10_3390_molecules29245906 crossref_primary_10_1088_2515_7655_acbf76 crossref_primary_10_1016_j_jallcom_2022_165285 crossref_primary_10_1039_D3EY00281K crossref_primary_10_1039_D3QI00585B crossref_primary_10_1002_anie_202209794 crossref_primary_10_1021_acsnano_4c00881 crossref_primary_10_1039_D3CS00601H crossref_primary_10_1002_adfm_202412551 crossref_primary_10_1016_j_est_2024_111574 crossref_primary_10_1002_aenm_202400533 crossref_primary_10_1016_j_desal_2023_116409 crossref_primary_10_1016_j_ensm_2023_102942 crossref_primary_10_1016_j_apcatb_2024_124332 crossref_primary_10_1016_j_ensm_2024_103978 crossref_primary_10_1007_s12598_022_02111_0 crossref_primary_10_1021_acsnano_3c01260 |
Cites_doi | 10.1038/nmat3601 10.1021/acsnano.0c01395 10.1016/j.ensm.2020.05.018 10.1039/C5TA00258C 10.1039/f19837902055 10.1016/j.jpowsour.2017.12.033 10.1016/j.ensm.2021.05.045 10.1021/acs.inorgchem.6b00503 10.1039/C9NH00211A 10.1039/C9NA00543A 10.1039/c1ce05025g 10.1002/adma.201800804 10.1002/smll.202006627 10.1063/1.1329672 10.1038/natrevmats.2016.13 10.1002/aenm.202002567 10.1021/acsnano.9b00634 10.1002/adfm.202010832 10.1021/acsnano.0c04203 10.1002/adfm.202004247 10.1002/aenm.201903455 10.1016/j.apsusc.2020.145947 10.1016/j.jpowsour.2020.228491 10.1016/j.apcata.2006.03.057 10.1016/0927-0256(96)00008-0 10.1039/C9TA01968E 10.1016/j.apmt.2019.07.003 10.1016/j.jcis.2021.05.088 10.1039/C8NR01685B 10.1021/acsnano.9b08526 10.1002/smll.201901775 10.1002/anie.201913174 10.1016/j.nanoen.2021.105784 10.1016/j.cej.2021.130451 10.1002/adfm.201604307 10.1021/jp074464w 10.1016/j.ensm.2021.04.034 10.1002/ange.201801389 10.1016/j.jpowsour.2017.02.041 10.1016/j.jpowsour.2018.01.046 10.1007/s12274-020-2906-6 10.1039/C3EE42351D 10.1103/PhysRevB.46.6671 10.1016/j.ensm.2021.05.013 10.1021/cm201604g 10.1002/adfm.201802684 10.1016/j.ensm.2021.02.036 10.1021/acsnano.8b08740 10.1039/D0EE02917C 10.1016/j.nanoen.2021.106233 10.1002/adfm.201903496 10.1002/advs.202004142 10.1002/adma.201806082 10.1002/adma.201501622 10.1016/j.cej.2021.129988 10.1002/advs.201900904 10.1002/advs.201801797 10.1039/D0TA03964K 10.1002/smll.202007597 10.1016/j.nanoen.2021.105792 10.1016/j.ensm.2020.12.013 10.1016/j.ensm.2018.10.007 10.1103/PhysRevB.50.17953 10.1016/j.ensm.2020.09.001 10.1002/adfm.202001588 10.1021/acsenergylett.9b01675 10.1039/D0TA01786H 10.1039/C4TA04996A 10.1039/C6RA20558E 10.1002/adma.201202146 10.1063/1.3382344 10.1016/j.ensm.2021.04.019 10.1002/smll.201403358 10.1016/j.cej.2020.128097 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.1c09863 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 1501 |
ExternalDocumentID | 34978420 10_1021_acsnano_1c09863 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACBEA ACGFO ACGFS ACS ADHGD ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ NPM 7X8 |
ID | FETCH-LOGICAL-c363t-3214a9e60d755b3cddf2e1a492bb5516a04a73955bf971ebce2a51aed8bda2eb3 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 09:59:17 EDT 2025 Mon Jul 21 05:49:19 EDT 2025 Tue Jul 01 03:37:20 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | anodes capacitors bimetallic oxides potassium ion storage batteries bismuth antimonate |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-3214a9e60d755b3cddf2e1a492bb5516a04a73955bf971ebce2a51aed8bda2eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2819-2270 |
PMID | 34978420 |
PQID | 2616288050 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2616288050 pubmed_primary_34978420 crossref_primary_10_1021_acsnano_1c09863 crossref_citationtrail_10_1021_acsnano_1c09863 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-25 |
PublicationDateYYYYMMDD | 2022-01-25 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2022 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref45/cit45 doi: 10.1038/nmat3601 – ident: ref27/cit27 doi: 10.1021/acsnano.0c01395 – ident: ref18/cit18 doi: 10.1016/j.ensm.2020.05.018 – ident: ref34/cit34 doi: 10.1039/C5TA00258C – ident: ref38/cit38 doi: 10.1039/f19837902055 – ident: ref22/cit22 doi: 10.1016/j.jpowsour.2017.12.033 – ident: ref52/cit52 doi: 10.1016/j.ensm.2021.05.045 – ident: ref37/cit37 doi: 10.1021/acs.inorgchem.6b00503 – ident: ref59/cit59 doi: 10.1039/C9NH00211A – ident: ref23/cit23 doi: 10.1039/C9NA00543A – ident: ref68/cit68 doi: 10.1039/c1ce05025g – ident: ref65/cit65 doi: 10.1002/adma.201800804 – ident: ref7/cit7 doi: 10.1002/smll.202006627 – ident: ref74/cit74 doi: 10.1063/1.1329672 – ident: ref4/cit4 doi: 10.1038/natrevmats.2016.13 – ident: ref8/cit8 doi: 10.1002/aenm.202002567 – ident: ref14/cit14 doi: 10.1021/acsnano.9b00634 – ident: ref30/cit30 doi: 10.1002/adfm.202010832 – ident: ref47/cit47 doi: 10.1021/acsnano.0c04203 – ident: ref61/cit61 doi: 10.1002/adfm.202004247 – ident: ref26/cit26 doi: 10.1002/aenm.201903455 – ident: ref56/cit56 doi: 10.1016/j.apsusc.2020.145947 – ident: ref39/cit39 doi: 10.1016/j.jpowsour.2020.228491 – ident: ref67/cit67 doi: 10.1016/j.apcata.2006.03.057 – ident: ref71/cit71 doi: 10.1016/0927-0256(96)00008-0 – ident: ref54/cit54 doi: 10.1039/C9TA01968E – ident: ref63/cit63 doi: 10.1016/j.apmt.2019.07.003 – ident: ref29/cit29 doi: 10.1016/j.jcis.2021.05.088 – ident: ref66/cit66 doi: 10.1039/C8NR01685B – ident: ref55/cit55 doi: 10.1021/acsnano.9b08526 – ident: ref40/cit40 doi: 10.1002/smll.201901775 – ident: ref9/cit9 doi: 10.1002/anie.201913174 – ident: ref43/cit43 doi: 10.1016/j.nanoen.2021.105784 – ident: ref46/cit46 doi: 10.1016/j.cej.2021.130451 – ident: ref69/cit69 doi: 10.1002/adfm.201604307 – ident: ref44/cit44 doi: 10.1021/jp074464w – ident: ref6/cit6 doi: 10.1016/j.ensm.2021.04.034 – ident: ref53/cit53 doi: 10.1002/ange.201801389 – ident: ref2/cit2 doi: 10.1016/j.jpowsour.2017.02.041 – ident: ref1/cit1 doi: 10.1016/j.jpowsour.2018.01.046 – ident: ref41/cit41 doi: 10.1007/s12274-020-2906-6 – ident: ref57/cit57 doi: 10.1039/C3EE42351D – ident: ref72/cit72 doi: 10.1103/PhysRevB.46.6671 – ident: ref28/cit28 doi: 10.1016/j.ensm.2021.05.013 – ident: ref31/cit31 doi: 10.1021/cm201604g – ident: ref60/cit60 doi: 10.1002/adfm.201802684 – ident: ref10/cit10 doi: 10.1016/j.ensm.2021.02.036 – ident: ref19/cit19 doi: 10.1021/acsnano.8b08740 – ident: ref51/cit51 doi: 10.1039/D0EE02917C – ident: ref48/cit48 doi: 10.1016/j.nanoen.2021.106233 – ident: ref64/cit64 doi: 10.1002/adfm.201903496 – ident: ref58/cit58 doi: 10.1002/advs.202004142 – ident: ref49/cit49 doi: 10.1002/adma.201806082 – ident: ref3/cit3 doi: 10.1002/adma.201501622 – ident: ref16/cit16 doi: 10.1016/j.cej.2021.129988 – ident: ref25/cit25 doi: 10.1002/advs.201900904 – ident: ref21/cit21 doi: 10.1002/advs.201801797 – ident: ref50/cit50 doi: 10.1039/D0TA03964K – ident: ref42/cit42 doi: 10.1002/smll.202007597 – ident: ref13/cit13 doi: 10.1016/j.nanoen.2021.105792 – ident: ref12/cit12 doi: 10.1016/j.ensm.2020.12.013 – ident: ref32/cit32 doi: 10.1016/j.ensm.2018.10.007 – ident: ref70/cit70 doi: 10.1103/PhysRevB.50.17953 – ident: ref5/cit5 doi: 10.1016/j.ensm.2020.09.001 – ident: ref15/cit15 doi: 10.1002/adfm.202001588 – ident: ref11/cit11 doi: 10.1021/acsenergylett.9b01675 – ident: ref62/cit62 doi: 10.1039/D0TA01786H – ident: ref20/cit20 doi: 10.1039/C4TA04996A – ident: ref36/cit36 doi: 10.1039/C6RA20558E – ident: ref24/cit24 doi: 10.1002/adma.201202146 – ident: ref73/cit73 doi: 10.1063/1.3382344 – ident: ref17/cit17 doi: 10.1016/j.ensm.2021.04.019 – ident: ref33/cit33 doi: 10.1002/smll.201403358 – ident: ref35/cit35 doi: 10.1016/j.cej.2020.128097 |
SSID | ssj0057876 |
Score | 2.624856 |
Snippet | Metal oxides are considered as prospective dual-functional anode candidates for potassium ion batteries (PIBs) and hybrid capacitors (PIHCs) because of their... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1486 |
Title | Crystal Facet and Architecture Engineering of Metal Oxide Nanonetwork Anodes for High-Performance Potassium Ion Batteries and Hybrid Capacitors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34978420 https://www.proquest.com/docview/2616288050 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7Ekx58P-qLFTx4Sd1sN2lyLMVSBR-ggrcw-wgUNZE2BfVP-JedSdJaFdH7bHbJzu58w8x-H2NHaWSltRGeb22VpwDaniZ67SgitjkMae1SpvPiMuzfqfP74P6TLPp7BV_6J2BGGWR50zcijsKS17OtiCW_072Z3LnkdmFVP8b8GEHElMTnx_iv8ecXUFkGl95y1ZY1KjkJqafkoTkudNO8_WRs_HvdK2yphpi8U_nEKptz2RpbnCEeXGfv3eErwsJH3gPjCg6Z5Z2ZigKfMeZ5yi8c2V69DKzjeB3nWdU7zjtZbt2II-7l1C_iXX--QuDXeYG4fDB-4md5xisaT8zKy7n6r_ROjHcxUJsByf1ssLve6W2379XSDJ5pha3CI3kjiF0obDsIdMtYm0rng4ql1lR6A6GASoCBTnHDnSbZscAHZyNtQWICv8nmabXbjCMCS1MDEKsUlECDGPdXBBBqEaaxlQ3WnGxYYmrecpLPeEzK-rn0k_pPJ_WfbrDj6YDnirLjd9PDiQckeKyoVgKZy8ejBBNLEmIWgWiwrco1ph9rkSqfkmLn_xPtsgVJ7yaE78lgj80Xw7HbRzRT6IPSkT8AFBTz_g |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+Facet+and+Architecture+Engineering+of+Metal+Oxide+Nanonetwork+Anodes+for+High-Performance+Potassium+Ion+Batteries+and+Hybrid+Capacitors&rft.jtitle=ACS+nano&rft.au=Chang%2C+Chao-Hung&rft.au=Chen%2C+Kuan-Ting&rft.au=Hsieh%2C+Yi-Yen&rft.au=Chang%2C+Che-Bin&rft.date=2022-01-25&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=16&rft.issue=1&rft.spage=1486&rft_id=info:doi/10.1021%2Facsnano.1c09863&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |