The effect of coordination environment on the activity and selectivity of single-atom catalysts

[Display omitted] •Coordination environments of single-atom catalysts (SACs) are highlighted.•Coordination environments explain the structure-performance relationship rationally.•Suitable binding states and electronic interactions stabilize and functionalize SACs.•Preparation methods significantly a...

Full description

Saved in:
Bibliographic Details
Published inCoordination chemistry reviews Vol. 461; p. 214493
Main Authors Zhang, Yuqi, Yang, Jack, Ge, Riyue, Zhang, Jiujun, Cairney, Julie M., Li, Ying, Zhu, Mingyuan, Li, Sean, Li, Wenxian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Coordination environments of single-atom catalysts (SACs) are highlighted.•Coordination environments explain the structure-performance relationship rationally.•Suitable binding states and electronic interactions stabilize and functionalize SACs.•Preparation methods significantly affect the coordination environments of SACs.•Advanced characterizations reveal the geometric and electronic structures of SACs. Traditional heterogeneous catalysts with noble metals as active sites only have surface-active substances involved in the catalytic reactions, which greatly reduces the material utilization efficiencies and increases the production costs. Since 2011, single-atom catalysts (SACs) have been proven useful to solve this problem and have become a rapidly evolving research field. SACs allow the benefits from both homogeneous and heterogeneous catalysts to be combined in a single system, by providing isolated active sites, high selectivity, and ease of separation from reaction systems. Unfortunately, SACs suffer from the agglomeration of metal atoms during the fabrication and application processes for their high surface energy. Nevertheless, this problem can be solved by constructing strong coordination bonds between single-atoms and their supports, which can also significantly influence the activity and selectivity of SACs. In order to further identify and regulate the coordination environments of single-atoms, it is critical for the structural, physical, and chemical properties of SACs to be characterized downward to the atomic level. Hence, we first review different physical and chemical strategies used to stabilize the single-atom environments and clarify how the obtained coordination environments affect the catalytic performance of SACs. The reasonable selection of preparation methods can meet the specific requirements of central atoms and/or coordinated atoms, and effectively prevent the agglomeration of single-atoms. Moreover, we review the state-of-art complementary characterization methods (ex-situ and in-situ) to deepen the understanding of the critical structure–property relationship for SACs, which is essential to promote the rational design of SACs and other heterogeneous catalysts. Finally, we summarize several stages for the development of SACs and highlights challenges and prospects for the future of this field from the perspective of coordination environments. We believe that this review will provide new insights for future research on SACs to further improve both their activities and stabilities, reduce the associated preparation costs, and realize large-scale industrial applications.
AbstractList [Display omitted] •Coordination environments of single-atom catalysts (SACs) are highlighted.•Coordination environments explain the structure-performance relationship rationally.•Suitable binding states and electronic interactions stabilize and functionalize SACs.•Preparation methods significantly affect the coordination environments of SACs.•Advanced characterizations reveal the geometric and electronic structures of SACs. Traditional heterogeneous catalysts with noble metals as active sites only have surface-active substances involved in the catalytic reactions, which greatly reduces the material utilization efficiencies and increases the production costs. Since 2011, single-atom catalysts (SACs) have been proven useful to solve this problem and have become a rapidly evolving research field. SACs allow the benefits from both homogeneous and heterogeneous catalysts to be combined in a single system, by providing isolated active sites, high selectivity, and ease of separation from reaction systems. Unfortunately, SACs suffer from the agglomeration of metal atoms during the fabrication and application processes for their high surface energy. Nevertheless, this problem can be solved by constructing strong coordination bonds between single-atoms and their supports, which can also significantly influence the activity and selectivity of SACs. In order to further identify and regulate the coordination environments of single-atoms, it is critical for the structural, physical, and chemical properties of SACs to be characterized downward to the atomic level. Hence, we first review different physical and chemical strategies used to stabilize the single-atom environments and clarify how the obtained coordination environments affect the catalytic performance of SACs. The reasonable selection of preparation methods can meet the specific requirements of central atoms and/or coordinated atoms, and effectively prevent the agglomeration of single-atoms. Moreover, we review the state-of-art complementary characterization methods (ex-situ and in-situ) to deepen the understanding of the critical structure–property relationship for SACs, which is essential to promote the rational design of SACs and other heterogeneous catalysts. Finally, we summarize several stages for the development of SACs and highlights challenges and prospects for the future of this field from the perspective of coordination environments. We believe that this review will provide new insights for future research on SACs to further improve both their activities and stabilities, reduce the associated preparation costs, and realize large-scale industrial applications.
ArticleNumber 214493
Author Yang, Jack
Ge, Riyue
Li, Ying
Zhang, Yuqi
Cairney, Julie M.
Zhang, Jiujun
Li, Sean
Li, Wenxian
Zhu, Mingyuan
Author_xml – sequence: 1
  givenname: Yuqi
  surname: Zhang
  fullname: Zhang, Yuqi
  organization: Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
– sequence: 2
  givenname: Jack
  surname: Yang
  fullname: Yang, Jack
  organization: School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
– sequence: 3
  givenname: Riyue
  surname: Ge
  fullname: Ge, Riyue
  organization: Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
– sequence: 4
  givenname: Jiujun
  surname: Zhang
  fullname: Zhang, Jiujun
  organization: Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
– sequence: 5
  givenname: Julie M.
  surname: Cairney
  fullname: Cairney, Julie M.
  email: julie.cairney@sydney.edu.au
  organization: School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
– sequence: 6
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  organization: Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
– sequence: 7
  givenname: Mingyuan
  surname: Zhu
  fullname: Zhu, Mingyuan
  organization: Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
– sequence: 8
  givenname: Sean
  surname: Li
  fullname: Li, Sean
  email: sean.li@unsw.edu.au
  organization: School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
– sequence: 9
  givenname: Wenxian
  surname: Li
  fullname: Li, Wenxian
  email: shuliwx@t.shu.edu.cn
  organization: Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
BookMark eNp9kE1LAzEQhoNUsK3-AG_5A7vmY7fd4EmKX1DwUs8hOzvRlG0iSSj035tavXjoaXiZeQbeZ0YmPngk5JazmjO-uNvWALEWTIha8KZR8oJMebeUlewaNiFTxjirurZpr8gspW2JC6XElOjNJ1K0FiHTYCmEEAfnTXbBU_R7F4PfoS87T3O5NJDd3uUDNX6gCUf8y4VNzn-MWJkcdhRMNuMh5XRNLq0ZE978zjl5f3rcrF6q9dvz6-phXYFcyFxJxgelQHDVCzEo1qHhMCxEg7xtrVLWSI5grJRti12vDAPTI4fW9ExItpRzsjz9hRhSimg1uPxTI0fjRs2ZPnrSW1086aMnffJUSP6P_IpuZ-LhLHN_YrBU2juMOoFDDzi4WJToIbgz9Dd1DoRc
CitedBy_id crossref_primary_10_1002_cctc_202401186
crossref_primary_10_1016_j_mattod_2023_02_010
crossref_primary_10_1016_j_comptc_2025_115192
crossref_primary_10_3389_fchem_2023_1172146
crossref_primary_10_1002_tcr_202300330
crossref_primary_10_3390_en16062664
crossref_primary_10_1016_j_ijhydene_2023_09_291
crossref_primary_10_1002_anie_202315003
crossref_primary_10_1002_cctc_202400499
crossref_primary_10_3390_nano13132013
crossref_primary_10_1007_s11708_023_0892_6
crossref_primary_10_1039_D4SC00569D
crossref_primary_10_1039_D4RA09026H
crossref_primary_10_1016_j_surfin_2024_105265
crossref_primary_10_1002_advs_202205031
crossref_primary_10_1016_j_ccr_2024_215899
crossref_primary_10_1016_j_ecoenv_2025_117714
crossref_primary_10_1002_anie_202416912
crossref_primary_10_1016_j_apcatb_2024_124152
crossref_primary_10_1126_sciadv_ads6658
crossref_primary_10_1002_smll_202301818
crossref_primary_10_1063_5_0133355
crossref_primary_10_1021_acscatal_2c05155
crossref_primary_10_1039_D3TA03682K
crossref_primary_10_1016_j_apenergy_2023_121582
crossref_primary_10_1016_j_jechem_2024_05_045
crossref_primary_10_1007_s11705_024_2502_5
crossref_primary_10_1016_j_jece_2024_112838
crossref_primary_10_1002_cctc_202301684
crossref_primary_10_1021_acsbiomaterials_4c01530
crossref_primary_10_1002_adma_202301477
crossref_primary_10_1016_j_nanoso_2024_101216
crossref_primary_10_1016_j_ccr_2023_215524
crossref_primary_10_1016_j_apsusc_2023_158799
crossref_primary_10_1038_s41467_025_56102_7
crossref_primary_10_1002_smll_202311691
crossref_primary_10_1038_s41578_023_00633_2
crossref_primary_10_1007_s00894_023_05620_6
crossref_primary_10_1039_D3CP03722C
crossref_primary_10_1002_adfm_202312116
crossref_primary_10_1002_admi_202202050
crossref_primary_10_1016_j_chemosphere_2022_136735
crossref_primary_10_1039_D4TA03518F
crossref_primary_10_1016_j_jechem_2022_03_022
crossref_primary_10_1002_anie_202213318
crossref_primary_10_2139_ssrn_4184972
crossref_primary_10_1002_adfm_202423552
crossref_primary_10_1016_j_ccr_2024_215952
crossref_primary_10_1016_j_mcat_2022_112620
crossref_primary_10_1002_celc_202400476
crossref_primary_10_1088_1361_6528_ad64d9
crossref_primary_10_3390_en16186616
crossref_primary_10_1021_acs_chemmater_3c03099
crossref_primary_10_1002_adfm_202309223
crossref_primary_10_1016_j_nxnano_2024_100073
crossref_primary_10_1016_j_apcatb_2023_122898
crossref_primary_10_1016_j_seppur_2025_131936
crossref_primary_10_1002_ange_202416912
crossref_primary_10_1002_smll_202302739
crossref_primary_10_1016_j_susmat_2023_e00743
crossref_primary_10_26599_NTM_2022_9130010
crossref_primary_10_1016_j_inoche_2023_111819
crossref_primary_10_1002_sus2_229
crossref_primary_10_3390_catal13111409
crossref_primary_10_1002_adma_202211221
crossref_primary_10_1016_j_jece_2022_108207
crossref_primary_10_1002_anie_202219242
crossref_primary_10_1021_acs_langmuir_4c04034
crossref_primary_10_1039_D3EE04457B
crossref_primary_10_1080_09500839_2024_2343665
crossref_primary_10_1016_j_bios_2022_114662
crossref_primary_10_1016_j_mtchem_2022_101210
crossref_primary_10_1016_j_ccr_2024_215900
crossref_primary_10_1002_adma_202206783
crossref_primary_10_1016_j_jcis_2023_10_146
crossref_primary_10_32362_2410_6593_2023_18_2_135_167
crossref_primary_10_1002_adma_202412031
crossref_primary_10_1016_j_surfin_2024_105066
crossref_primary_10_1016_j_esci_2023_100140
crossref_primary_10_1021_acs_energyfuels_3c03037
crossref_primary_10_1002_adma_202404658
crossref_primary_10_1039_D5TA00311C
crossref_primary_10_1039_D4CY00727A
crossref_primary_10_1016_j_ijhydene_2025_02_275
crossref_primary_10_1016_S1872_2067_23_64456_0
crossref_primary_10_1021_acscatal_5c01147
crossref_primary_10_1021_acscatal_2c05992
crossref_primary_10_1080_24701556_2023_2267535
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1016_j_apcata_2024_120035
crossref_primary_10_1039_D3TA05366K
crossref_primary_10_1002_tcr_202300129
crossref_primary_10_1007_s10562_022_04208_8
crossref_primary_10_1016_j_jcat_2024_115784
crossref_primary_10_1021_acsestengg_4c00096
crossref_primary_10_1002_sstr_202300175
crossref_primary_10_1002_inf2_12421
crossref_primary_10_1016_j_apcatb_2022_122051
crossref_primary_10_1039_D3NR03310D
crossref_primary_10_1002_ange_202213318
crossref_primary_10_1016_j_jcis_2024_11_109
crossref_primary_10_1016_j_susmat_2022_e00421
crossref_primary_10_1002_smll_202412000
crossref_primary_10_1021_acscatal_4c01488
crossref_primary_10_1039_D3CY00236E
crossref_primary_10_1021_acs_nanolett_4c05201
crossref_primary_10_1007_s12274_024_6693_3
crossref_primary_10_1016_j_psep_2024_11_120
crossref_primary_10_1016_j_apcata_2023_119228
crossref_primary_10_1016_j_efmat_2023_04_001
crossref_primary_10_1016_j_jechem_2022_06_031
crossref_primary_10_1007_s11244_025_02064_5
crossref_primary_10_1021_jacsau_3c00557
crossref_primary_10_1002_cssc_202301105
crossref_primary_10_1016_j_jechem_2025_02_022
crossref_primary_10_1002_cctc_202200611
crossref_primary_10_1016_j_apcatb_2023_122966
crossref_primary_10_1002_cey2_695
crossref_primary_10_1002_smll_202302429
crossref_primary_10_1016_j_cclet_2024_110612
crossref_primary_10_3390_nano12162793
crossref_primary_10_1016_j_snb_2023_133843
crossref_primary_10_1021_acscatal_3c03928
crossref_primary_10_1002_cssc_202401314
crossref_primary_10_1016_j_mtnano_2022_100248
crossref_primary_10_1016_j_susc_2024_122541
crossref_primary_10_1038_s41467_023_40003_8
crossref_primary_10_1021_acsanm_4c06508
crossref_primary_10_1016_j_cej_2023_143650
crossref_primary_10_1016_j_jechem_2023_12_033
crossref_primary_10_1016_j_nxmate_2024_100192
crossref_primary_10_1021_acs_chemmater_3c02367
crossref_primary_10_1016_j_nxmate_2025_100491
crossref_primary_10_3390_catal14090569
crossref_primary_10_1021_acs_jpcc_2c02307
crossref_primary_10_1021_acsnano_4c13030
crossref_primary_10_1016_j_apenergy_2022_119999
crossref_primary_10_1002_ange_202315003
crossref_primary_10_1002_ange_202219242
crossref_primary_10_1002_asia_202401256
crossref_primary_10_1002_celc_202400159
crossref_primary_10_1016_j_mtsust_2024_100858
crossref_primary_10_1016_j_susmat_2024_e01090
crossref_primary_10_1002_advs_202206107
crossref_primary_10_1016_j_cclet_2023_109347
crossref_primary_10_1002_smll_202404254
crossref_primary_10_1088_2631_7990_ad3316
crossref_primary_10_1039_D3TA07230D
crossref_primary_10_1002_chem_202400669
crossref_primary_10_1016_j_jcis_2024_12_083
crossref_primary_10_1002_aoc_70055
crossref_primary_10_1016_j_ccr_2023_215606
crossref_primary_10_1021_acsnano_3c09224
crossref_primary_10_1002_smll_202305009
crossref_primary_10_1007_s11581_022_04731_z
crossref_primary_10_1039_D4NA00433G
crossref_primary_10_1002_aic_18449
crossref_primary_10_1016_j_ijhydene_2024_07_407
Cites_doi 10.1002/anie.201509241
10.1002/cctc.201300946
10.1038/nnano.2011.42
10.1016/j.chempr.2019.12.008
10.1002/anie.202004841
10.1021/acs.chemmater.7b02206
10.1021/acssuschemeng.8b02613
10.1002/smtd.201800481
10.1126/sciadv.1500462
10.1146/annurev-chembioeng-062011-080939
10.1021/acscatal.8b04885
10.1016/j.jcat.2008.09.022
10.1021/acs.jpcc.8b00078
10.1002/adma.201505281
10.1002/cctc.201500363
10.1016/j.jcat.2013.04.012
10.1002/adma.201706287
10.1039/c3cs35468g
10.1038/s42004-020-0289-y
10.1038/s41467-019-11992-2
10.1038/s41467-019-12459-0
10.1038/nchem.1721
10.1039/b924051a
10.1098/rsta.2009.0112
10.1002/anie.202003842
10.1021/jp503745c
10.1126/science.aam7092
10.1021/acscentsci.0c00512
10.1002/anie.201804958
10.1038/s41467-017-01765-0
10.1039/C5CS00434A
10.1002/anie.201402342
10.1002/adma.201808135
10.1016/S1872-2067(17)62903-6
10.1016/S0167-2991(06)80895-5
10.1038/s41467-017-01521-4
10.1016/S1872-2067(17)62900-0
10.1021/acscatal.6b02899
10.1016/j.micromeso.2020.110507
10.1021/ja507463w
10.1016/S1872-2067(17)62882-1
10.1021/ja402512r
10.1126/science.1079879
10.1038/s41565-018-0089-z
10.1039/D0TA06942F
10.1002/smll.201903418
10.1002/adma.201302569
10.1002/anie.200907289
10.1021/acsaem.8b00817
10.1021/jacs.6b10169
10.1021/nl404640n
10.1016/j.chempr.2018.12.011
10.1021/ol4028013
10.1021/ja508879j
10.1021/ja0773148
10.1016/j.apcatb.2016.05.074
10.1039/C3EE42799D
10.1002/chem.201903822
10.1021/jacs.9b05576
10.1039/D0TA09903A
10.1002/chem.201303366
10.1039/C7CY01603D
10.1039/c0cp90010a
10.1016/j.catcom.2020.105999
10.1021/acs.chemrev.9b00157
10.1021/nn502438k
10.1038/s41467-018-06967-8
10.1039/C8EE02939C
10.1016/j.apcatb.2019.117786
10.1002/adma.201704624
10.1021/acscatal.9b04621
10.1038/srep05441
10.1039/C6NR09707C
10.1021/acscatal.5b00700
10.1021/acs.jpcc.7b03213
10.1039/C1CS15171A
10.1038/s41467-019-08419-3
10.1038/s41467-019-09290-y
10.3390/nano10020244
10.1016/S1872-2067(18)63047-5
10.1021/jacs.8b07294
10.1126/science.aad4998
10.1007/s12274-020-2755-3
10.1063/1.5128934
10.1016/j.apcatb.2009.12.012
10.1126/science.aaf8800
10.1021/cs401117e
10.1021/acscatal.8b04937
10.1016/j.nanoen.2016.01.016
10.1021/jacs.7b09314
10.1016/j.cbpa.2018.12.011
10.1039/C9EE00162J
10.1021/jacs.7b07093
10.1016/S1872-2067(15)60889-0
10.1002/adfm.202000531
10.1021/acscatal.8b02288
10.1016/S1872-2067(15)61090-7
10.1038/s41467-019-11856-9
10.1002/anie.201903545
10.1021/nn302674k
10.1021/jacs.8b09834
10.1002/anie.202114951
10.1016/j.nanoen.2018.02.025
10.1021/acsnano.7b09064
10.1002/adsc.201500846
10.1016/j.joule.2018.06.019
10.1007/s40843-020-1271-x
10.1038/nchem.1095
10.1038/ncomms5885
10.1038/s41467-020-14917-6
10.1038/s41467-019-12510-0
10.1039/C7CY00723J
10.1021/jacs.9b03811
10.1038/s41467-019-12461-6
10.1002/anie.201601208
10.1021/jacs.7b10817
10.1002/anie.200461699
10.1016/S1872-2067(17)62880-8
10.1002/anie.201806936
10.1039/C9CS00869A
10.1038/s41467-019-12886-z
10.1021/nl403520c
10.1021/nn5054798
10.1021/ar300361m
10.1021/acscatal.6b00677
10.1016/j.ijhydene.2021.09.063
10.1021/acscatal.0c01950
10.1002/cctc.201500595
10.1038/s41467-018-03380-z
10.1002/anie.202009331
10.1021/acs.chemrev.7b00776
10.1038/nature24640
10.1021/acsnano.5b05984
10.1038/ncomms2929
10.1021/ja408574m
10.1021/ja312646d
10.1038/ncomms10922
10.1002/cphc.202000595
10.1016/j.nanoen.2018.06.023
10.1002/smll.202001896
10.1021/acsenergylett.8b00640
10.1002/advs.201903089
10.1002/anie.201403353
10.1016/j.apcatb.2019.118233
10.1038/nchem.1412
10.1039/c2cs35174a
10.1038/nmat3087
10.1016/S1872-2067(17)62872-9
10.1016/j.tsf.2006.05.049
10.1002/adma.202105204
10.1021/acsnano.7b00796
10.1038/s41563-019-0571-5
10.1126/science.abe5757
10.1016/j.cej.2019.123655
10.1021/jacs.0c08409
10.1126/sciadv.abb9823
10.1016/j.cej.2020.126458
10.1021/jp804699c
10.1021/acscatal.8b00398
10.1080/01614940903048661
10.1021/ja503557x
10.1002/smtd.201700286
10.1002/anie.201703864
10.1039/C8QM00081F
10.1016/j.apcatb.2019.118196
10.1039/c0cp02009e
10.1021/acsanm.0c00146
10.1126/science.abg2533
10.1016/j.jpowsour.2020.228446
10.1021/jacs.9b06482
10.1021/jacs.6b02692
10.1038/s41929-018-0090-9
10.1016/j.nanoen.2020.104931
10.1038/s41929-019-0279-6
10.1038/s41467-019-12362-8
10.1039/D0GC02689A
10.1038/s41570-018-0010-1
10.1039/C4CP04181J
10.1021/jacs.5b12515
10.1002/anie.201712451
10.1039/C8CS00016F
10.1038/nchem.2618
10.1007/s12274-019-2351-6
10.1103/PhysRevLett.109.206803
10.1038/ncomms16100
10.1039/C9TA05981D
10.1093/nsr/nwy056
10.1016/j.gee.2017.02.001
10.1002/anie.201702473
10.1126/science.aaf5251
10.1021/ja5128133
10.1126/sciadv.aax6322
10.1039/C9RA05965B
10.1126/sciadv.aba3809
10.1002/anie.201307203
10.1021/cs500071c
10.1038/s41467-018-03235-7
10.1021/acscatal.6b01534
10.1021/ar3002427
10.1038/s41929-017-0008-y
10.1002/anie.201812423
10.1002/anie.201604802
10.1039/C8SC04986F
10.1021/cs400649n
10.1016/j.xcrp.2019.100004
10.1002/aenm.201801101
10.1021/acsnano.7b02148
10.1126/science.1253150
10.1021/acscatal.0c00097
10.1021/acscatal.1c01200
10.1016/j.nanoen.2016.12.056
10.1002/anie.201610119
10.1038/ncomms14036
10.1002/adma.201904548
10.1093/nsr/nwv024
10.1016/S1872-2067(17)62839-0
10.1038/s41467-019-11619-6
10.1038/s41560-017-0078-8
10.1038/s41557-020-0473-9
10.1002/anie.202014112
10.1021/acscatal.7b00199
10.1021/acs.chemrev.5b00760
10.1002/aenm.202002592
10.1021/ja405149m
10.1038/s41929-018-0192-4
10.1002/adma.201604456
10.1016/j.cej.2020.128359
10.1021/cs100043j
10.1016/j.jcat.2015.03.016
10.1016/j.nanoen.2019.04.076
10.1016/j.cej.2020.127804
10.1039/D1CY00115A
10.1021/ja2040464
10.1038/s41929-018-0063-z
10.1038/nature11434
10.1039/C6SC02105K
10.1007/s12274-016-1416-z
10.1021/jacs.7b09074
10.1021/ja513292k
10.1126/science.281.5383.1647
10.1016/j.chempr.2017.09.014
10.1021/jacs.7b02736
10.1038/s41467-020-16558-1
10.1038/ncomms6634
10.1021/jacs.6b13100
10.1016/j.cej.2020.124904
10.1021/jacs.5b06485
10.1002/cctc.201801174
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ccr.2022.214493
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3840
ExternalDocumentID 10_1016_j_ccr_2022_214493
S0010854522000881
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
6J9
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M23
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
UPT
WH7
XPP
YK3
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMH
HVGLF
HZ~
H~9
NDZJH
OHT
R2-
RIG
SCB
SEW
SIC
SSH
UQL
VH1
WUQ
XJT
ZKB
ZY4
ID FETCH-LOGICAL-c363t-301d99c219b22d908ea1cd624e155f99fa31ecaf3355e8b9a0cabe1c5ab023073
IEDL.DBID .~1
ISSN 0010-8545
IngestDate Thu Apr 24 23:01:15 EDT 2025
Tue Jul 01 02:43:53 EDT 2025
Fri Feb 23 02:40:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PSAC
NPC
Stabilization strategy
DG
XANES
APT
EELS
Catalytic activity
XAS
Characterization technique
DV
(FT) (E)XAFS
MC
FTIR
E(S)TEM
Atomic configuration
NCs
SV
Coordination environment
AC-HAADF STEM
Single-atom catalyst
DRIFT
(N)CNFs
(r)GO
NPs
CVD
ZIFs
ALD
MWCNTs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-301d99c219b22d908ea1cd624e155f99fa31ecaf3355e8b9a0cabe1c5ab023073
ParticipantIDs crossref_citationtrail_10_1016_j_ccr_2022_214493
crossref_primary_10_1016_j_ccr_2022_214493
elsevier_sciencedirect_doi_10_1016_j_ccr_2022_214493
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-15
PublicationDateYYYYMMDD 2022-06-15
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Coordination chemistry reviews
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liang, Li, Wang, Zhou, Wang, Regier, Dai (b0735) 2011; 10
Wang, Zhang, Wang, Gao, Luo, Wang, Zeng, Li, Li, Wang, Zheng, Zhu, Zhang, Ma, Si, Zeng (b0275) 2016; 7
Li, Schweitzer, League, Bernales, Peters, Getsoian, Wang, Miller, Vjunov, Fulton, Lercher, Cramer, Gagliardi, Hupp, Farha (b0590) 2016; 138
Cheng, Sun (b0595) 2017; 38
Wang, Liu, Allard, Lee, Liu, Li, Wang, Wang, Oh, Li, Flytzani-Stephanopoulos, Shen, Goldsmith, Yang (b0255) 2019; 10
Zhang, Wang, Miller, Liu, Yang, Wang, Li, Huang, Mou, Zhang (b1210) 2014; 4
Bruix, Lykhach, Matolínová, Neitzel, Skála, Tsud, Vorokhta, Stetsovych, Ševčíková, Mysliveček, Fiala, Václavů, Prince, Bruyère, Potin, Illas, Matolín, Libuda, Neyman (b0150) 2014; 53
Gai, Boyes (b1270) 2022
Li, Maurya, Kim, Li, Wang, Shi, Liu, Feng, Lin, Shao (b0190) 2020; 10
Liu, Wang, Yang, Shi, Qiao, Lucero, Ma, More, Cullen, Feng, Wu (b0575) 2020; 59
Kunwar, Zhou, DeLaRiva, Peterson, Xiong, Pereira-Hernández, Purdy, ter Veen, Brongersma, Miller, Hashiguchi, Kovarik, Lin, Guo, Wang, Datye (b0365) 2019; 9
Zhang, Doyle-Davis, Sun (b1165) 2019; 12
DeRita, Dai, Lopez-Zepeda, Pham, Graham, Pan, Christopher (b0360) 2017; 139
Wang, Huang, Liang, Liu, Wang, Zhang (b0335) 2017; 38
Gao, Chen, Wang, Wang, Zheng, Zhu, Song, Zhang, Xiong (b0180) 2018; 30
Simonovis, Hunt, Palomino, Senanayake, Waluyo (b1135) 2018; 122
Kärkäs, Porco, Stephenson (b0780) 2016; 116
Flytzani-Stephanopoulos, Gates (b0175) 2012; 3
Cao, Zhao, Lee, Yang, Liu, Giannakakis, Li, Ouyang, Wang, Sykes, Flytzani-Stephanopoulos (b0545) 2020; 6
Tang, Li, Fung, Jiang, Huang, Zhang, Iwasawa, Sakata, Nguyen, Zhang, Frenkel, Tao (b0265) 2018; 9
Peterson, DeLaRiva, Lin, Johnson, Guo, Miller, Hun Kwak, Peden, Kiefer, Allard, Ribeiro, Datye (b0825) 2014; 5
Cheng, Guo, Li, Wu, Xu, Zheng, Song (b1015) 2021; 410
Pei, Liu, Wang, Lee, Isaacs, Li, Pan, Yang, Wang, Tai, Wilson, Zhang (b1230) 2015; 5
Chen, Jiang, Shao, Holtz, Odstrčil, Guizar-Sicairos, Hanke, Ganschow, Schlom, Muller (b1120) 2021; 372
Tedsree, Li, Jones, Chan, Yu, Bagot, Marquis, Smith, Tsang (b1250) 2011; 6
Lessard, Valsamakis, Flytzani-Stephanopoulos (b0550) 2012; 48
Jin, Sultan, Ha, Tiwari, Kim, Kim (b0655) 2020; 30
Zhang, Liu, Zhang (b0105) 2019; 3
Johns, Goeke, Ashbacher, Thüne, Niemantsverdriet, Kiefer, Kim, Balogh, Datye (b0870) 2015; 328
Chen, Wu, Yang, Chen, Lin, Chen (b1150) 2020; 394
Zhang, Cai, Zhu, Zhuang, Xu, Hao, Lu, Li, Duan, Du (b0860) 2020; 392
Zhang, Zhao, Wang, Gong (b0055) 2018; 47
Sa, Park, Jeong, Park, Lee, Kim, Park, Joo (b0710) 2014; 53
Zhang, Feng, Liu, Zuo, Qin, Yan, Xing, Li, Si, Zhou, Zeng (b0570) 2020; 11
Hübner, de Vries, Farina (b0370) 2016; 358
Zhang, Sun, Wang, Dai (b1045) 2018; 57
F. Yang, S. Ding, H. Song, N. Yan, Single-atom Pd dispersed on nanoscale anatase TiO
Zhang, Cheng, Luan, Lou (b0925) 2021; 60
Cheng, Zhao, Johannessen, Veder, Saunders, Rowles, Cheng, Liu, Chisholm, Marco, Cheng, Yang, Jiang (b0320) 2018; 30
for the selective hydrogenation of phenylacetylene, Sci. China Mater. 63 (2020) 982-992. https://doi.org/10.1007/s40843-020-1271-x.
Qu, Chen, Li, Duan, Wang, Lin, Yuan, Zhou, Hu, Yang, Zhao, Wang, Zhao, Hu, Wu, Zhang, Xu, Liu, Gao, You, Huang, Zheng, Gu, Wu, Li (b1125) 2019; 141
Chen, Zhou, Xing, Xu, Tong, Xie, Zhang, Yan, Chu, Wu, Xie (b0685) 2017; 56
Jiang, Luo, Peng, Yu, Lu, Chan, Liu, de Groot, Tan (b0995) 2020; 11
Cui, Li, Ryabchuk, Junge, Beller (b0075) 2018; 1
He, He, Deng, Peng, Chen, Zhang, Yao, Zhang, Xiao, Ma, Ge, Ji (b0670) 2019; 10
Pan, Zhang, Liu, Cullen, More, Wang, Feng, Wang, Wu, Li (b1040) 2018; 8
Su (b1055) 2017; 2
Li, Yang, Zhang, Huang, Liu (b1215) 2019; 9
Wang, Gu, Song, Wang, Yu (b0505) 2018; 2
Chen, Wanyan, Zeng, Fang, Li, Dong, Qin, Wu, Liu, Wang, Kuang, Xie, Zheng (b0455) 2018; 6
Xing, Chen, Li, Yuan, Zhou, Zheng, Wang, Hu, Wang, Zhao, Wang, Yang (b0495) 2014; 20
Li, Bi, Zhang, Tao, Chu, Zhang, Luo, Wu, Xie (b0330) 2016; 28
Schreyer, Eckert, Immohr, de Bellis, Felderhoff, Schüth (b0630) 2019; 58
Samad, Hoenig, Regalbuto (b0530) 2015; 7
Li, Wang, Wu, Li (b0415) 2018; 5
Tang, Jiao, Shi, Liu, Xie, Chen, Zhang, Qiao (b0380) 2020; 59
Chen, Guo, Kong, Xing, Liu, Yu, Li, Geng, Si, Zeng (b1200) 2020; 22
Zhou, Yang, Wang, Miao, Liu, Pan, Su, Li, Tan, Zhang (b0160) 2016; 37
Jones, Xiong, DeLaRiva, Peterson, Pham, Challa, Qi, Oh, Wiebenga, Pereira Hernández, Wang, Datye (b0885) 2016; 353
Qiao, Lin, Wang, Chen, Zhang, Liu (b0245) 2015; 36
Bo, McCullough, Dull, Ardagh, Wang, Notestein (b0540) 2019; 151
Wang, You, Zhao, Zhang, Liu, Fu, Li, Zhou, Zheng, Xu, Yao, Jia, Wang, Huang, Wu (b0945) 2020; 10
Sun, Sun, Gu, Liang, Zhang, Yang, Deng, Wei, Peng, Xu, Fang, Li, Han, Jiang, Huang (b1020) 2019; 61
Yu, Cao, Wang, Yu (b0790) 2017; 121
Wei, Huang, Wang, Zhang, Ge, Ma, Wen, Zhang, Li, Lei, Zhang, Irawan, Liu, Wu (b0815) 2017; 8
Liang, Du, Gibson, Du, Qiao (b0730) 2013; 25
Xiang, Chitry, Liddicoat, Felfer, Cairney, Ringer, Kruse (b1245) 2013; 135
Meng, Zhang, Xu, Cheng, Yu (b0795) 2016; 198
Liang, Hao, Shi (b0420) 2015; 7
Zeng, Wang, Cai, Huang, Tao, Tang, Zhu (b1145) 2020; 74
Kistler, Chotigkrai, Xu, Enderle, Praserthdam, Chen, Browning, Gates (b1110) 2014; 53
Ding, Gu, Su, Li (b0855) 2014; 118
Wang, Chen, Zhao, Yao, Chen, You, Zhao, Wu, Wang, Huang, Yang, Hong, Wei, Wu, Li (b1035) 2018; 57
Mitchell, Vorobyeva, Pérez‐Ramírez (b0230) 2018; 57
Nam, Park, Kim, Shin, Park, Kim, Lee, Cho (b0740) 2014; 14
Pan, Chen, Wu, Chen, Liu, Cao, Cheong, Meng, Luo, Zheng, Liu, Wang, Peng, Li, Chen (b0340) 2019; 10
Yi, Si, Saltsburg, Flytzani-Stephanopoulos (b0840) 2010; 95
Kim, Heo, Kim, Park, Yoon, Kim, Oh, Yi, Noh, Park (b0785) 2012; 489
Alonso, Moglie, Pastor-Pérez, Sepúlveda-Escribano (b0445) 2014; 6
Liu, Tsunoyama, Akita, Xie, Tsukuda (b0090) 2011; 1
Jiang, Li, Sheng, Hu, Chen, Wang (b0375) 2018; 140
Loh, Sen, Bosman, Tan, Zhong, Nijhuis, Král, Matsudaira, Mirsaidov (b0810) 2017; 9
Li, Wang, Sawada, Han, Samuels, Allen, Kirkland, Grossman, Warner (b1080) 2017; 11
Zhu, Shi, Feng, Du, Lin (b1130) 2018; 3
Sun, Zhao, Mu, Zha, Li, Chen, Zang, Luo, Li, Purdy, Kropf, Miller, Zeng, Gong (b0270) 2018; 9
Xu, Cheng, Cao, Zeng (b0010) 2018; 1
Hulva, Meier, Bliem, Jakub, Kraushofer, Schmid, Diebold, Franchini, Parkinson (b0385) 2021; 371
van Bokhoven (b1190) 2010; 12
Li, Guan, Wu, Liu, Lin, Sun, Ye, Zheng, Pan, Zhu, Chen, Zhang, Wei, Lu (b0350) 2019; 141
Tavakkoli, Holmberg, Kronberg, Jiang, Sainio, Kauppinen, Kallio, Laasonen (b0560) 2017; 7
Zu, Li, Liu, Sun, Xu, Yao, Yan, Gao, Wang, Wei, Xie (b0950) 2019; 31
Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (b0045) 2017; 355
Wu, Du, Zhang, Cai (b0430) 2015; 17
Zhang, Guo, Guan, Liu, Huang, Xue, Dong, Pennycook, Chisholm (b0565) 2013; 4
Li, He, Ge, Zhu, Feng, Li (b0060) 2019; 22
Hwang, Rao, Giordano, Katayama, Yu, Shao-Horn (b0040) 2017; 358
Yang, Allard, Flytzani-Stephanopoulos (b0555) 2013; 135
Chang, Tanaka, Ishikawa, Toyoura, Matsunaga, Ikuhara, Shibata (b1075) 2014; 14
Yang, Wang, Qiao, Li, Liu, Zhang (b0130) 2013; 46
Gong, Selloni, Dulub, Jacobson, Diebold (b0500) 2008; 130
Li, Bagot, Christian, Theobald, Sharman, Ozkaya, Moody, Tsang, Smith (b1240) 2014; 4
Ullah, Ayub, Mahmood (b0980) 2021; 46
Warner, Lin, He, Koshino, Suenaga (b1085) 2014; 8
Hansen, DeLaRiva, Challa, Datye (b0875) 2013; 46
Fonseca, Lu (b0580) 2021; 11
Cheng, Gu, Liu, Kang, Zhang, Wang (b0640) 2016; 55
Jia, Ramaswamy, Hafiz, Tylus, Strickland, Wu, Barbiellini, Bansil, Holby, Zelenay, Mukerjee (b0425) 2015; 9
Cheon, Kim, Kim, Goddeti, Park, Joo (b0720) 2014; 136
Chen, Huang, Ma, Chen, Tang (b0220) 2017; 7
Elam, Zinovev, Han, Wang, Welp, Hryn, Pellin (b0620) 2006; 515
Ren, Tang, Zhang, Liu, Li, Miao, Sheng Su, Wang, Li, Zhang (b1195) 2019; 10
Wei, Liu, Wang, Zhang, Qiao, Yang, Huang, Miao, Liu, Zhang (b0820) 2014; 5
Xiang, He, Sun, Fan, Yang, Fang, Kuai (b0520) 2020; 308
Li, Zhang, Cheng, Chen, Luan, Gao, Lou (b0965) 2022; 34
Choi, Kim, Kwon, Cho, Yun, Kim, Mayrhofer, Kim, Choi (b0470) 2016; 7
Qin, Liu, Fu, Zheng (b0050) 2018; 2
Corma, Concepción, Boronat, Sabater, Navas, Yacaman, Larios, Posadas, López-Quintela, Buceta, Mendoza, Guilera, Mayoral (b0085) 2013; 5
Telychko, Mutombo, Ondráček, Hapala, Bocquet, Kolorenč, Vondráček, Jelínek, Švec (b0905) 2014; 8
Jiao, Regalbuto (b0535) 2008; 260
Meng, Voiry, Goswami, Zou, Huang, Chhowalla, Liu, Asefa (b0715) 2014; 136
Lin, Wang, Qiao, Liu, Yang, Wang, Liang, Li, Liu, Zhang (b0305) 2013; 135
Yang, Shang, Zhang, Shi, Waterhouse, Gu, Zhang (b0395) 2019; 10
Chen, Ji, Chen, Peng, Wang, Li (b0080) 2018; 2
Shah, Dai, Mateen, Hassan, Zhuang, Liu, Israr, Cheong, Hu, Tu, Zhang, Chen, Peng, Chen, Li (b0990) 2022; 61
Pennycook, Chisholm, Lupini, Varela, Borisevich, Oxley, Luo, van Benthem, Oh, Sales, Molina, García-Barriocanal, Leon, Santamaría, Rashkeev, Pantelides (b1070) 2009; 367
Zhang, Jia, Zhang, Xiong, Sun, Chen, Chen, Kuang, Zheng, Tang, Liu, Liu, Sun, Lin, Dai (b0240) 2019; 12
Yan, Cheng, Yi, Lin, Yao, Wang, Li, Wei, Lu (b0600) 2015; 137
Qiao, Wang, Yang, Allard, Jiang, Cui, Liu, Li, Zhang (b0155) 2011; 3
Jiao, Jiang (b0005) 2019; 5
Yang, Shi, Wang, Lv, Cao (b1100) 2018; 50
Wang, Zhang, Deng, Bao (b0165) 2017; 38
Zhang, Zuo, Qiu, Wang, Zhang, Zhang, Lou (b0955) 2020; 6
Jung, Shin, Lee, Efremov, Lee, Lee, Kim, Hooch Antink, Park, Lee, Cho, Yoo, Sung, Hyeon (b0410) 2020; 19
Ratnasamy, Wagner (b0485) 2009; 51
Zhan, Yang, Zhang, Guo, Lu, Chisholm, Dai (b0635) 2017; 29
Chen, Zhao, Ishikawa, Asao, Yamamoto, Jin (b0450) 2013; 15
Wang, Chen, Zeng, Wang, Li, Qin, Wu, Xie, Zheng (b0850) 2017; 9
Song, Chen, Guo, Sun, Li, Cao, Wang, Sun, Lin, Wang (b0145) 2018; 8
Zhao, Zhang, Huang, Liu, Zhang, He, Wu, Zhang, Wu, Yang, Gu, Hu, Wan (b0215) 2019; 10
Wang, Chen, Yan, Xu, Chu, Chen, Lin, Liang (b0400) 2019; 5
Wang, Arandiyan, Scott, Aguey-Zinsou, Amal (b0280) 2018; 1
Liu, Jiao, Mei, Tong, Li, Ruan, Song, Sun, Jiang, Wang, Jiang, Gu, Zhou, Xu (b0310) 2019; 58
Zhang, Wu, Cheong, Chen, Lin, Li, Zheng, Yan, Gu, Chen, Peng, Wang, Li (b0440) 2018; 9
Zhao, Dai, Yao, Chen, Wang, Wang, Yang, Wei, Wu, Li (b0750) 2017; 139
Li, Wang, Dai, Pu, Lao, Chen, Wang, Zheng, Zhu, Zhang, Si, Ma, Zeng (b0290) 2018; 13
Li, Xia, Wang, Zheng, Lai, Pan, Jiang, Song, Wang,
Zhang (10.1016/j.ccr.2022.214493_b0055) 2018; 47
Yang (10.1016/j.ccr.2022.214493_b0205) 2016; 55
Sa (10.1016/j.ccr.2022.214493_b0710) 2014; 53
Chen (10.1016/j.ccr.2022.214493_b0080) 2018; 2
Cheon (10.1016/j.ccr.2022.214493_b0720) 2014; 136
Corma (10.1016/j.ccr.2022.214493_b0085) 2013; 5
Flytzani-Stephanopoulos (10.1016/j.ccr.2022.214493_b0175) 2012; 3
Zhang (10.1016/j.ccr.2022.214493_b0240) 2019; 12
Jiang (10.1016/j.ccr.2022.214493_b0375) 2018; 140
Yin (10.1016/j.ccr.2022.214493_b0700) 2016; 55
Zhao (10.1016/j.ccr.2022.214493_b1235) 2020; 49
Jiang (10.1016/j.ccr.2022.214493_b1265) 2019; 10
Ge (10.1016/j.ccr.2022.214493_b0015) 2020; 260
Lu (10.1016/j.ccr.2022.214493_b0930) 2019; 10
Elam (10.1016/j.ccr.2022.214493_b0620) 2006; 515
He (10.1016/j.ccr.2022.214493_b0670) 2019; 10
Chen (10.1016/j.ccr.2022.214493_b1120) 2021; 372
Lu (10.1016/j.ccr.2022.214493_b0250) 2019; 2
Schmidt (10.1016/j.ccr.2022.214493_b1255) 2017; 8
Cheng (10.1016/j.ccr.2022.214493_b0595) 2017; 38
Cheng (10.1016/j.ccr.2022.214493_b1015) 2021; 410
Yang (10.1016/j.ccr.2022.214493_b0975) 2021; 9
10.1016/j.ccr.2022.214493_b1155
Xiang (10.1016/j.ccr.2022.214493_b0520) 2020; 308
Kim (10.1016/j.ccr.2022.214493_b0785) 2012; 489
Boucher (10.1016/j.ccr.2022.214493_b0830) 2011; 13
Bruix (10.1016/j.ccr.2022.214493_b0150) 2014; 53
Valden (10.1016/j.ccr.2022.214493_b0140) 1998; 281
Álvarez-Docio (10.1016/j.ccr.2022.214493_b0460) 2020; 140
Yang (10.1016/j.ccr.2022.214493_b1225) 2017; 7
Li (10.1016/j.ccr.2022.214493_b0345) 2019; 2
Simonovis (10.1016/j.ccr.2022.214493_b1135) 2018; 122
Zhu (10.1016/j.ccr.2022.214493_b0030) 2017; 56
Ramaswamy (10.1016/j.ccr.2022.214493_b0020) 2019; 119
Guo (10.1016/j.ccr.2022.214493_b0865) 2014; 344
Xing (10.1016/j.ccr.2022.214493_b0495) 2014; 20
Meng (10.1016/j.ccr.2022.214493_b0715) 2014; 136
Gao (10.1016/j.ccr.2022.214493_b0915) 2020; 6
Li (10.1016/j.ccr.2022.214493_b0060) 2019; 22
Bo (10.1016/j.ccr.2022.214493_b0540) 2019; 151
Telychko (10.1016/j.ccr.2022.214493_b0905) 2014; 8
Kunwar (10.1016/j.ccr.2022.214493_b0365) 2019; 9
Nam (10.1016/j.ccr.2022.214493_b0740) 2014; 14
Xu (10.1016/j.ccr.2022.214493_b0010) 2018; 1
Huang (10.1016/j.ccr.2022.214493_b0585) 2017; 10
Xiao (10.1016/j.ccr.2022.214493_b0690) 2018; 46
Zeng (10.1016/j.ccr.2022.214493_b1145) 2020; 74
Fu (10.1016/j.ccr.2022.214493_b0680) 2017; 29
Balaz (10.1016/j.ccr.2022.214493_b0650) 2013; 42
Pan (10.1016/j.ccr.2022.214493_b0340) 2019; 10
Liang (10.1016/j.ccr.2022.214493_b0735) 2011; 10
Lou (10.1016/j.ccr.2022.214493_b0985) 2021; 11
Jones (10.1016/j.ccr.2022.214493_b0885) 2016; 353
He (10.1016/j.ccr.2022.214493_b0185) 2019; 7
Ding (10.1016/j.ccr.2022.214493_b0515) 2020; 3
Xu (10.1016/j.ccr.2022.214493_b0095) 2020; 25
Li (10.1016/j.ccr.2022.214493_b0965) 2022; 34
Yu (10.1016/j.ccr.2022.214493_b0790) 2017; 121
Sun (10.1016/j.ccr.2022.214493_b0920) 2019; 141
Liu (10.1016/j.ccr.2022.214493_b0225) 2018; 118
Hansen (10.1016/j.ccr.2022.214493_b0875) 2013; 46
Hulva (10.1016/j.ccr.2022.214493_b0385) 2021; 371
Wei (10.1016/j.ccr.2022.214493_b0770) 2019; 10
Zhang (10.1016/j.ccr.2022.214493_b0890) 2013; 305
Yu (10.1016/j.ccr.2022.214493_b0025) 2021; 404
Li (10.1016/j.ccr.2022.214493_b1030) 2017; 139
Cui (10.1016/j.ccr.2022.214493_b0075) 2018; 1
Qu (10.1016/j.ccr.2022.214493_b1125) 2019; 141
Ren (10.1016/j.ccr.2022.214493_b1195) 2019; 10
Li (10.1016/j.ccr.2022.214493_b0100) 2021; 421
Jiao (10.1016/j.ccr.2022.214493_b0535) 2008; 260
Zhang (10.1016/j.ccr.2022.214493_b0775) 2020; 261
Wei (10.1016/j.ccr.2022.214493_b0815) 2017; 8
Mistry (10.1016/j.ccr.2022.214493_b0125) 2014; 136
Parvez (10.1016/j.ccr.2022.214493_b0745) 2012; 6
Li (10.1016/j.ccr.2022.214493_b0590) 2016; 138
Shi (10.1016/j.ccr.2022.214493_b0325) 2016; 45
Gong (10.1016/j.ccr.2022.214493_b0500) 2008; 130
Liang (10.1016/j.ccr.2022.214493_b0730) 2013; 25
Shah (10.1016/j.ccr.2022.214493_b0990) 2022; 61
Li (10.1016/j.ccr.2022.214493_b0190) 2020; 10
Shan (10.1016/j.ccr.2022.214493_b0260) 2017; 551
Liu (10.1016/j.ccr.2022.214493_b0575) 2020; 59
Chen (10.1016/j.ccr.2022.214493_b1200) 2020; 22
Schreyer (10.1016/j.ccr.2022.214493_b0630) 2019; 58
Chen (10.1016/j.ccr.2022.214493_b1150) 2020; 394
Park (10.1016/j.ccr.2022.214493_b0465) 2013; 3
Zhao (10.1016/j.ccr.2022.214493_b0750) 2017; 139
Zhou (10.1016/j.ccr.2022.214493_b0160) 2016; 37
Zhang (10.1016/j.ccr.2022.214493_b0105) 2019; 3
Yang (10.1016/j.ccr.2022.214493_b1160) 2019; 256
Zhu (10.1016/j.ccr.2022.214493_b1130) 2018; 3
Song (10.1016/j.ccr.2022.214493_b0145) 2018; 8
Li (10.1016/j.ccr.2022.214493_b0135) 2003; 299
Ha (10.1016/j.ccr.2022.214493_b1205) 2020; 10
Seh (10.1016/j.ccr.2022.214493_b0045) 2017; 355
Yang (10.1016/j.ccr.2022.214493_b0200) 2018; 3
Han (10.1016/j.ccr.2022.214493_b0170) 2017; 38
Zhan (10.1016/j.ccr.2022.214493_b0635) 2017; 29
Chen (10.1016/j.ccr.2022.214493_b0665) 2017; 32
Jung (10.1016/j.ccr.2022.214493_b0410) 2020; 19
Li (10.1016/j.ccr.2022.214493_b1010) 2020; 7
Yang (10.1016/j.ccr.2022.214493_b0130) 2013; 46
Tang (10.1016/j.ccr.2022.214493_b0380) 2020; 59
Tavakkoli (10.1016/j.ccr.2022.214493_b0560) 2017; 7
Wanjala (10.1016/j.ccr.2022.214493_b1185) 2011; 133
Liu (10.1016/j.ccr.2022.214493_b0110) 2017; 7
Li (10.1016/j.ccr.2022.214493_b0935) 2020; 13
Gatla (10.1016/j.ccr.2022.214493_b0475) 2016; 6
Liu (10.1016/j.ccr.2022.214493_b0090) 2011; 1
Cheng (10.1016/j.ccr.2022.214493_b0320) 2018; 30
Tedsree (10.1016/j.ccr.2022.214493_b1250) 2011; 6
Cheng (10.1016/j.ccr.2022.214493_b0605) 2016; 29
Meng (10.1016/j.ccr.2022.214493_b0795) 2016; 198
Wang (10.1016/j.ccr.2022.214493_b0505) 2018; 2
James (10.1016/j.ccr.2022.214493_b0645) 2012; 41
Zhang (10.1016/j.ccr.2022.214493_b1005) 2019; 31
Yan (10.1016/j.ccr.2022.214493_b0600) 2015; 137
Wang (10.1016/j.ccr.2022.214493_b0400) 2019; 5
Wang (10.1016/j.ccr.2022.214493_b0165) 2017; 38
Liang (10.1016/j.ccr.2022.214493_b0035) 2021; 17
Zhang (10.1016/j.ccr.2022.214493_b0925) 2021; 60
Ding (10.1016/j.ccr.2022.214493_b0855) 2014; 118
Chen (10.1016/j.ccr.2022.214493_b0220) 2017; 7
Chen (10.1016/j.ccr.2022.214493_b0070) 2018; 39
Liu (10.1016/j.ccr.2022.214493_b0405) 2019; 141
Jin (10.1016/j.ccr.2022.214493_b0655) 2020; 30
Pei (10.1016/j.ccr.2022.214493_b1230) 2015; 5
Fonseca (10.1016/j.ccr.2022.214493_b0580) 2021; 11
Li (10.1016/j.ccr.2022.214493_b1080) 2017; 11
Jiao (10.1016/j.ccr.2022.214493_b0005) 2019; 5
Hübner (10.1016/j.ccr.2022.214493_b0370) 2016; 358
Ratnasamy (10.1016/j.ccr.2022.214493_b0485) 2009; 51
Lu (10.1016/j.ccr.2022.214493_b1275) 2020; 10
Yang (10.1016/j.ccr.2022.214493_b1100) 2018; 50
Johns (10.1016/j.ccr.2022.214493_b0870) 2015; 328
Frenkel (10.1016/j.ccr.2022.214493_b1180) 2012; 41
van Bokhoven (10.1016/j.ccr.2022.214493_b1190) 2010; 12
Wu (10.1016/j.ccr.2022.214493_b0430) 2015; 17
Pennycook (10.1016/j.ccr.2022.214493_b1070) 2009; 367
Qiao (10.1016/j.ccr.2022.214493_b0155) 2011; 3
Gao (10.1016/j.ccr.2022.214493_b0285) 2016; 138
Gao (10.1016/j.ccr.2022.214493_b0180) 2018; 30
Li (10.1016/j.ccr.2022.214493_b0415) 2018; 5
Hou (10.1016/j.ccr.2022.214493_b0900) 2020; 16
Chen (10.1016/j.ccr.2022.214493_b0450) 2013; 15
Chen (10.1016/j.ccr.2022.214493_b0755) 2017; 56
Kärkäs (10.1016/j.ccr.2022.214493_b0780) 2016; 116
Zhang (10.1016/j.ccr.2022.214493_b0315) 2020; 471
Jang (10.1016/j.ccr.2022.214493_b0490) 2008; 112
Zheng (10.1016/j.ccr.2022.214493_b1025) 2017; 139
Zhang (10.1016/j.ccr.2022.214493_b0860) 2020; 392
Deng (10.1016/j.ccr.2022.214493_b1095) 2015; 1
Yang (10.1016/j.ccr.2022.214493_b1140) 2020; 21
Sun (10.1016/j.ccr.2022.214493_b0270) 2018; 9
Zhou (10.1016/j.ccr.2022.214493_b1090) 2012; 109
Cheng (10.1016/j.ccr.2022.214493_b0640) 2016; 55
Liu (10.1016/j.ccr.2022.214493_b0725) 2010; 49
Jiang (10.1016/j.ccr.2022.214493_b1260) 2017; 3
Chen (10.1016/j.ccr.2022.214493_b0685) 2017; 56
Cai (10.1016/j.ccr.2022.214493_b0880) 2020; 8
Liu (10.1016/j.ccr.2022.214493_b0765) 2016; 7
Wang (10.1016/j.ccr.2022.214493_b0610) 2020; 3
Zhang (10.1016/j.ccr.2022.214493_b0565) 2013; 4
Jiao (10.1016/j.ccr.2022.214493_b0390) 2017; 139
He (10.1016/j.ccr.2022.214493_b0660) 2020; 1
Li (10.1016/j.ccr.2022.214493_b0350) 2019; 141
Yang (10.1016/j.ccr.2022.214493_b0395) 2019; 10
Zhang (10.1016/j.ccr.2022.214493_b0210) 2020; 6
Wang (10.1016/j.ccr.2022.214493_b0850) 2017; 9
Yang (10.1016/j.ccr.2022.214493_b0300) 2015; 137
Mao (10.1016/j.ccr.2022.214493_b0435) 2014; 4
Wang (10.1016/j.ccr.2022.214493_b0280) 2018; 1
Tang (10.1016/j.ccr.2022.214493_b0265) 2018; 9
Alonso (10.1016/j.ccr.2022.214493_b0445) 2014; 6
Chang (10.1016/j.ccr.2022.214493_b1075) 2014; 14
Zhang (10.1016/j.ccr.2022.214493_b0895) 2017; 8
Sietsma (10.1016/j.ccr.2022.214493_b0480) 2006; 162
Ullah (10.1016/j.ccr.2022.214493_b0980) 2021; 46
Wei (10.1016/j.ccr.2022.214493_b0820) 2014; 5
Li (10.1016/j.ccr.2022.214493_b1215) 2019; 9
Rivera‐Cárcamo (10.1016/j.ccr.2022.214493_b1060) 2018; 10
Tang (10.1016/j.ccr.2022.214493_b0295) 2019; 10
Qin (10.1016/j.ccr.2022.214493_b0050) 2018; 2
Qiao (10.1016/j.ccr.2022.214493_b0245) 2015; 36
Liu (10.1016/j.ccr.2022.214493_b0310) 2019; 58
Sun (10.1016/j.ccr.2022.214493_b1020) 2019; 61
Matsubu (10.1016/j.ccr.2022.214493_b1115) 2015; 137
Ramaswamy (10.1016/j.ccr.2022.214493_b0705) 2013; 135
Wang (10.1016/j.ccr.2022.214493_b0255) 2019; 10
Chen (10.1016/j.ccr.2022.214493_b0455) 2018; 6
Remediakis (10.1016/j.ccr.2022.214493_b0115) 2005; 44
Wang (10.1016/j.ccr.2022.214493_b0195) 2018; 2
Zhang (10.1016/j.ccr.2022.214493_b0440) 2018; 9
Huang (10.1016/j.ccr.2022.214493_b0615) 2020; 10
Zhang (10.1016/j.ccr.2022.214493_b0510) 2018; 140
Campbell (10.1016/j.ccr.2022.214493_b0845) 2012; 4
Hwang (10.1016/j.ccr.2022.214493_b0040) 2017; 358
Yang (10.1016/j.ccr.2022.214493_b0555) 2013; 135
Li (10.1016/j.ccr.2022.214493_b0805) 2018; 8
Lin (10.1016/j.ccr.2022.214493_b0305) 2013; 135
Ogino (10.1016/j.ccr.2022.214493_b1175) 2017; 38
Zhang (10.1016/j.ccr.2022.214493_b0695) 2014; 7
Jiang (10.1016/j.ccr.2022.214493_b0995) 2020; 11
Li (10.1016/j.ccr.2022.214493_b0970) 2022
Li (10.1016/j.ccr.2022.214493_b0910) 2020; 12
Lessard (10.1016/j.ccr.2022.214493_b0550) 2012; 48
Rothenberg (10.1016/j.ccr.2022.214493_b0065) 2008
DeRita (10.1016/j.ccr.2022.214493_b0360) 2017; 139
Ma (10.1016/j.ccr.2022.214493_b1105) 2018; 12
Warner (10.1016/j.ccr.2022.214493_b1085) 2014; 8
Zhang (10.1016/j.ccr.2
References_xml – volume: 13
  start-page: 2517
  year: 2011
  end-page: 2527
  ident: b0830
  article-title: 'Shape effects' in metal oxide supported nanoscale gold catalysts
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 1317
  year: 2019
  end-page: 1325
  ident: b0240
  article-title: A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 2215
  year: 2020
  end-page: 2264
  ident: b1235
  article-title: Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 34
  year: 2017
  end-page: 59
  ident: b0110
  article-title: Catalysis by supported single metal atoms
  publication-title: ACS Catal.
– volume: 37
  start-page: 692
  year: 2016
  end-page: 699
  ident: b0160
  article-title: Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation
  publication-title: Chinese J. Catal.
– volume: 141
  start-page: 9664
  year: 2019
  end-page: 9672
  ident: b0405
  article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 7529
  year: 2020
  end-page: 7536
  ident: b1200
  article-title: Tuning the coordination number of Fe single atoms for the efficient reduction of CO
  publication-title: Green Chem.
– volume: 10
  start-page: 780
  year: 2011
  end-page: 786
  ident: b0735
  article-title: Co
  publication-title: Nat. Mater.
– volume: 13
  start-page: 411
  year: 2018
  end-page: 417
  ident: b0290
  article-title: Synergetic interaction between neighbouring platinum monomers in CO
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 16100
  year: 2017
  ident: b0895
  article-title: Thermally stable single atom Pt/m-Al
  publication-title: Nat. Commun.
– volume: 30
  start-page: 2000531
  year: 2020
  ident: b0655
  article-title: Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 14036
  year: 2016
  ident: b0275
  article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst
  publication-title: Nat. Commun.
– volume: 135
  start-page: 15443
  year: 2013
  end-page: 15449
  ident: b0705
  article-title: Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry
  publication-title: J. Am. Chem. Soc.
– volume: 489
  start-page: 128
  year: 2012
  end-page: 132
  ident: b0785
  article-title: Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films
  publication-title: Nature
– volume: 358
  start-page: 3
  year: 2016
  end-page: 25
  ident: b0370
  article-title: Why does industry not use immobilized transition metal complexes as catalysts?
  publication-title: Adv. Synth. Catal.
– volume: 14
  start-page: 134
  year: 2014
  end-page: 138
  ident: b1075
  article-title: Direct imaging of Pt single atoms adsorbed on TiO
  publication-title: Nano Lett.
– volume: 38
  start-page: 1498
  year: 2017
  end-page: 1507
  ident: b0170
  article-title: Highlights of the major progress in single-atom catalysis in 2015 and 2016
  publication-title: Chinese J. Catal.
– volume: 95
  start-page: 87
  year: 2010
  end-page: 92
  ident: b0840
  article-title: Steam reforming of methanol over ceria and gold-ceria nanoshapes
  publication-title: Appl. Catal. B
– volume: 4
  start-page: 695
  year: 2014
  end-page: 702
  ident: b1240
  article-title: Atomic imaging of carbon-supported Pt, Pt/Co, and Ir@Pt nanocatalysts by atom-probe tomography
  publication-title: ACS Catal.
– volume: 42
  start-page: 7571
  year: 2013
  end-page: 7637
  ident: b0650
  article-title: Hallmarks of mechanochemistry: from nanoparticles to technology
  publication-title: Chem Soc Rev
– volume: 30
  start-page: e1706287
  year: 2018
  ident: b0320
  article-title: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction
  publication-title: Adv. Mater.
– volume: 47
  start-page: 5423
  year: 2018
  end-page: 5443
  ident: b0055
  article-title: Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 2058
  year: 2016
  end-page: 2062
  ident: b0205
  article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 6
  start-page: 6151
  year: 2016
  end-page: 6155
  ident: b0475
  article-title: Room-temperature CO oxidation catalyst: low-temperature metal-support interaction between platinum nanoparticles and nanosized ceria
  publication-title: ACS Catal.
– volume: 50
  start-page: 691
  year: 2018
  end-page: 698
  ident: b1100
  article-title: Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery
  publication-title: Nano Energy
– volume: 25
  start-page: e00172
  year: 2020
  ident: b0095
  article-title: Bridging metal-ion induced vertical growth of MoS
  publication-title: SM&T
– volume: 56
  start-page: 13944
  year: 2017
  end-page: 13960
  ident: b0030
  article-title: Single-atom electrocatalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 410
  start-page: 128359
  year: 2021
  ident: b1015
  article-title: Rational design of ultrahigh loading metal single-atoms (Co, Ni, Mo) anchored on in-situ pre-crosslinked guar gum derived N-doped carbon aerogel for efficient overall water splitting
  publication-title: Chem. Eng. J.
– volume: 141
  start-page: 4505
  year: 2019
  end-page: 4509
  ident: b1125
  article-title: Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: e1704624
  year: 2018
  ident: b0180
  article-title: Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3663
  year: 2019
  ident: b0670
  article-title: A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1801101
  year: 2018
  ident: b0145
  article-title: General dimension-controlled synthesis of hollow carbon embedded with metal singe atoms or core-shell nanoparticles for energy storage applications
  publication-title: Adv. Energy Mater.
– volume: 355
  year: 2017
  ident: b0045
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 55
  start-page: 4725
  year: 2016
  end-page: 4728
  ident: b0640
  article-title: Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 10
  start-page: 244
  year: 2020
  ident: b0615
  article-title: Atomic layer deposition for preparing isolated Co sites on SiO
  publication-title: Nanomaterials (Basel)
– volume: 39
  start-page: 893
  year: 2018
  end-page: 898
  ident: b0070
  article-title: Single-atom catalysis: Bridging the homo- and heterogeneous catalysis
  publication-title: Chinese J. Catal.
– volume: 140
  start-page: 105999
  year: 2020
  ident: b0460
  article-title: Pt mechanical dispersion on non-porous alumina for soot oxidation
  publication-title: Catal. Commun.
– volume: 2
  start-page: 183
  year: 2015
  end-page: 201
  ident: b0120
  article-title: Understanding nano effects in catalysis
  publication-title: Natl. Sci. Rev.
– volume: 10
  start-page: 1278
  year: 2019
  ident: b0215
  article-title: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1401
  year: 2019
  end-page: 1409
  ident: b0625
  article-title: Insight of the stability and activity of platinum single atoms on ceria
  publication-title: Nano Res.
– volume: 392
  start-page: 123655
  year: 2020
  ident: b0860
  article-title: Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: a dynamic transformation from clusters to single atoms
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: 1904548
  year: 2019
  ident: b1005
  article-title: Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix
  publication-title: Adv. Mater.
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  ident: b0155
  article-title: Single-atom catalysis of CO oxidation using Pt
  publication-title: Nat. Chem.
– volume: 38
  start-page: 1460
  year: 2017
  end-page: 1472
  ident: b1065
  article-title: Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: probing the catalytically active centers
  publication-title: Chinese J. Catal.
– volume: 1
  start-page: 63
  year: 2018
  end-page: 72
  ident: b1050
  article-title: General synthesis and definitive structural identification of MN
  publication-title: Nature Catal.
– year: 2022
  ident: b1270
  article-title: In situ visualisation and analysis of dynamic single atom processes in heterogeneous catalysts
  publication-title: J. Mater. Chem. A
– volume: 281
  start-page: 1647
  year: 1998
  end-page: 1650
  ident: b0140
  article-title: Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties
  publication-title: Science
– volume: 143
  start-page: 2173
  year: 2021
  end-page: 2177
  ident: b0960
  article-title: Isolated cobalt centers on W
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 339
  year: 2018
  end-page: 348
  ident: b0010
  article-title: A universal principle for a rational design of single-atom electrocatalysts
  publication-title: Nat. Catal.
– volume: 8
  start-page: 1490
  year: 2017
  ident: b0815
  article-title: Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth
  publication-title: Nat. Commun.
– volume: 141
  start-page: 12372
  year: 2019
  end-page: 12381
  ident: b0920
  article-title: Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 436
  year: 2020
  end-page: 442
  ident: b0410
  article-title: Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H
  publication-title: Nat. Mater.
– volume: 46
  start-page: 396
  year: 2018
  end-page: 403
  ident: b0690
  article-title: Identification of binuclear Co
  publication-title: Nano Energy
– volume: 32
  start-page: 353
  year: 2017
  end-page: 358
  ident: b0665
  article-title: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction
  publication-title: Nano Energy
– volume: 49
  start-page: 2565
  year: 2010
  end-page: 2569
  ident: b0725
  article-title: Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 12
  start-page: 764
  year: 2020
  end-page: 772
  ident: b0910
  article-title: Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy
  publication-title: Nat. Chem.
– volume: 5
  start-page: 3717
  year: 2015
  end-page: 3725
  ident: b1230
  article-title: Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene
  publication-title: ACS Catal.
– volume: 55
  start-page: 10800
  year: 2016
  end-page: 10805
  ident: b0700
  article-title: Single cobalt atoms with precise n-coordination as superior oxygen reduction reaction catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 38
  start-page: 1443
  year: 2017
  end-page: 1453
  ident: b0165
  article-title: Two-dimensional materials confining single atoms for catalysis
  publication-title: Chinese J. Catal.
– volume: 6
  start-page: 14054
  year: 2018
  end-page: 14062
  ident: b0455
  article-title: Surface engineering protocol to obtain an atomically dispersed Pt/CeO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 56
  start-page: 610
  year: 2017
  end-page: 614
  ident: b0685
  article-title: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 394
  start-page: 124904
  year: 2020
  ident: b1150
  article-title: Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst
  publication-title: Chem Eng. J.
– volume: 471
  start-page: 228446
  year: 2020
  ident: b0315
  article-title: Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting
  publication-title: J. Power Sources
– volume: 10
  start-page: 2830
  year: 2019
  end-page: 2836
  ident: b0770
  article-title: Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction
  publication-title: Chem. Sci.
– volume: 7
  start-page: 2559
  year: 2015
  end-page: 2567
  ident: b0420
  article-title: The power of single-atom catalysis
  publication-title: ChemCatChem
– volume: 260
  start-page: 329
  year: 2008
  end-page: 341
  ident: b0535
  article-title: The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: I. Amorphous silica
  publication-title: J. Catal.
– volume: 11
  start-page: 2701
  year: 2020
  ident: b0995
  article-title: Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation
  publication-title: Nat. Commun.
– volume: 344
  start-page: 616
  year: 2014
  end-page: 619
  ident: b0865
  article-title: Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen
  publication-title: Science
– volume: 230
  start-page: 7
  year: 2019
  end-page: 15
  ident: b1170
  article-title: Forskolin reduces fat accumulation in Nile tilapia (Oreochromis niloticus) through stimulating lipolysis and beta-oxidation
  publication-title: Comp. Biochem. Physiol. A Mol. Integr. Physiol.
– volume: 28
  start-page: 2427
  year: 2016
  end-page: 2431
  ident: b0330
  article-title: Single-atom Pt as Co-catalyst for enhanced photocatalytic H
  publication-title: Adv. Mater.
– volume: 138
  start-page: 6292
  year: 2016
  end-page: 6297
  ident: b0285
  article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 1824
  year: 2005
  end-page: 1826
  ident: b0115
  article-title: CO oxidation on rutile-supported au nanoparticles
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 136
  start-page: 13554
  year: 2014
  end-page: 13557
  ident: b0715
  article-title: N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions
  publication-title: J. Am. Chem. Soc.
– reference: for the selective hydrogenation of phenylacetylene, Sci. China Mater. 63 (2020) 982-992. https://doi.org/10.1007/s40843-020-1271-x.
– volume: 260
  start-page: 118196
  year: 2020
  ident: b0015
  article-title: Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction
  publication-title: Appl. Catal. B
– volume: 51
  start-page: 325
  year: 2009
  end-page: 440
  ident: b0485
  article-title: Water gas shift catalysis
  publication-title: Catal. Rev.
– volume: 6
  start-page: eaba3809
  year: 2020
  ident: b0545
  article-title: High-loading single Pt atom sites [Pt-O(OH)
  publication-title: Sci. Adv.
– volume: 7
  start-page: 10922
  year: 2016
  ident: b0470
  article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst
  publication-title: Nat. Commun.
– volume: 4
  start-page: 5441
  year: 2014
  ident: b0435
  article-title: A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D
  publication-title: Sci. Rep.
– volume: 118
  start-page: 12216
  year: 2014
  end-page: 12223
  ident: b0855
  article-title: Single Pd atom embedded in CeO
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 1024
  year: 2018
  end-page: 1030
  ident: b0505
  article-title: Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions
  publication-title: Mater. Chem. Front.
– volume: 3
  start-page: 950
  year: 2017
  end-page: 960
  ident: b1260
  article-title: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis
  publication-title: Chem
– volume: 7
  start-page: 3460
  year: 2015
  end-page: 3463
  ident: b0530
  article-title: Synthesis of platinum catalysts over thick slurries of oxide supports by strong electrostatic adsorption
  publication-title: ChemCatChem
– volume: 1
  start-page: 6781
  year: 2018
  end-page: 6789
  ident: b0280
  article-title: Single atom and nanoclustered Pt catalysts for selective CO
  publication-title: ACS Appl. Energy Mater.
– volume: 10
  start-page: 4500
  year: 2019
  ident: b1195
  article-title: Unraveling the coordination structure-performance relationship in Pt
  publication-title: Nat. Commun.
– volume: 6
  start-page: 302
  year: 2011
  end-page: 307
  ident: b1250
  article-title: Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 12496
  year: 2015
  end-page: 12505
  ident: b0425
  article-title: Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity
  publication-title: ACS Nano
– volume: 7
  start-page: 3121
  year: 2017
  end-page: 3130
  ident: b0560
  article-title: Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction
  publication-title: ACS Catal.
– volume: 10
  start-page: 3997
  year: 2019
  ident: b1265
  article-title: Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination
  publication-title: Nat. Commun.
– volume: 38
  start-page: 1473
  year: 2017
  end-page: 1480
  ident: b1220
  article-title: Using probe molecule FTIR spectroscopy to identify and characterize Pt-group metal based single atom catalysts
  publication-title: Chinese J. Catal.
– volume: 138
  start-page: 1977
  year: 2016
  end-page: 1982
  ident: b0590
  article-title: Sintering-resistant single-site nickel catalyst supported by metal-organic framework
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 149
  year: 2019
  end-page: 156
  ident: b0250
  article-title: Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl
  publication-title: Nat. Catal.
– volume: 3
  start-page: 1800481
  year: 2019
  ident: b0105
  article-title: Insights into single-atom metal-support interactions in electrocatalytic water splitting
  publication-title: Small Methods
– volume: 10
  start-page: 2754
  year: 2020
  end-page: 2761
  ident: b0945
  article-title: N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation
  publication-title: ACS Catal.
– volume: 6
  start-page: 658
  year: 2020
  end-page: 674
  ident: b0915
  article-title: Enabling direct H
  publication-title: Chem 6
– volume: 308
  start-page: 110507
  year: 2020
  ident: b0520
  article-title: Hollow mesoporous CeO
  publication-title: Micropor. Mesopor. Mat.
– volume: 8
  start-page: 3116
  year: 2018
  end-page: 3122
  ident: b1040
  article-title: Unveiling active sites of CO
  publication-title: ACS Catal.
– volume: 12
  start-page: 1949
  year: 2018
  end-page: 1958
  ident: b1105
  article-title: Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery
  publication-title: ACS Nano
– volume: 10
  start-page: 5058
  year: 2018
  end-page: 5091
  ident: b1060
  article-title: Single atom catalysts on carbon-based materials
  publication-title: ChemCatChem
– volume: 305
  start-page: 7
  year: 2013
  end-page: 18
  ident: b0890
  article-title: Crown Jewel catalyst: How neighboring atoms affect the catalytic activity of top Au atoms?
  publication-title: J. Catal.
– volume: 4
  start-page: 1924
  year: 2013
  ident: b0565
  article-title: Catalytically active single-atom niobium in graphitic layers
  publication-title: Nat. Commun.
– volume: 135
  start-page: 15314
  year: 2013
  end-page: 15317
  ident: b0305
  article-title: Remarkable performance of Ir
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1302
  year: 2017
  end-page: 1312
  ident: b0585
  article-title: Enhancing both selectivity and coking-resistance of a single-atom Pd
  publication-title: Nano Res.
– volume: 61
  year: 2022
  ident: b0990
  article-title: Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 7
  start-page: 4520
  year: 2017
  end-page: 4533
  ident: b0235
  article-title: Direct synthesis of hierarchical ZSM-5 zeolite using cetyltrimethylammonium as structure directing agent for methanol-to-hydrocarbons conversion
  publication-title: Catal Sci. Technol.
– volume: 11
  start-page: 3392
  year: 2017
  end-page: 3403
  ident: b1080
  article-title: Atomic structure and dynamics of single platinum atom interactions with monolayer MoS
  publication-title: ACS Nano
– volume: 16
  start-page: e2001896
  year: 2020
  ident: b0900
  article-title: Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO
  publication-title: Small
– volume: 10
  start-page: 4290
  year: 2019
  ident: b0340
  article-title: Regulating the coordination structure of single-atom Fe-N
  publication-title: Nat. Commun.
– volume: 11
  start-page: 6930
  year: 2017
  end-page: 6941
  ident: b0675
  article-title: Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium
  publication-title: ACS Nano
– volume: 5
  start-page: 786
  year: 2019
  end-page: 804
  ident: b0005
  article-title: Metal-organic-framework-based single-atom catalysts for energy applications
  publication-title: Chem
– volume: 5
  start-page: 5634
  year: 2014
  ident: b0820
  article-title: FeO
  publication-title: Nat. Commun.
– year: 2022
  ident: b0970
  article-title: Hierarchical 3D porous carbon with facilely accessible Fe-N
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1666
  year: 2017
  ident: b1255
  article-title: Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts
  publication-title: Nat. Commun.
– volume: 1
  start-page: 100004
  year: 2020
  ident: b0660
  article-title: Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts
  publication-title: Cell Rep. Phys. Sci.
– volume: 3
  start-page: 140
  year: 2018
  end-page: 147
  ident: b0200
  article-title: Atomically dispersed Ni(i) as the active site for electrochemical CO
  publication-title: Nat. Energy
– volume: 59
  start-page: 21698
  year: 2020
  end-page: 21705
  ident: b0575
  article-title: Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
– year: 2008
  ident: b0065
  article-title: Catalysis: Concepts and Green Applications
– volume: 7
  start-page: 1301
  year: 2017
  end-page: 1307
  ident: b1225
  article-title: Support effects in single-atom platinum catalysts for electrochemical oxygen reduction
  publication-title: ACS Catal.
– volume: 10
  start-page: 4585
  year: 2019
  ident: b0395
  article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts
  publication-title: Nat. Commun.
– volume: 515
  start-page: 1664
  year: 2006
  end-page: 1673
  ident: b0620
  article-title: Atomic layer deposition of palladium films on Al
  publication-title: Thin Solid Films
– volume: 9
  start-page: 27002
  year: 2019
  end-page: 27012
  ident: b0525
  article-title: Promotion of Pt/CeO
  publication-title: RSC Adv.
– volume: 2
  start-page: 70
  year: 2017
  end-page: 83
  ident: b1055
  article-title: Advanced electron microscopy characterization of nanomaterials for catalysis
  publication-title: Green Energy Environ.
– volume: 3
  start-page: 2867
  year: 2020
  end-page: 2874
  ident: b0610
  article-title: Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions
  publication-title: ACS Appl. Nano Mater.
– volume: 138
  start-page: 15743
  year: 2016
  end-page: 15750
  ident: b0355
  article-title: Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 22467
  year: 2020
  end-page: 22487
  ident: b0880
  article-title: Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
– reference: F. Yang, S. Ding, H. Song, N. Yan, Single-atom Pd dispersed on nanoscale anatase TiO
– volume: 7
  start-page: 442
  year: 2014
  end-page: 450
  ident: b0695
  article-title: ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 77
  year: 2017
  end-page: 82
  ident: b0810
  article-title: Multistep nucleation of nanocrystals in aqueous solution
  publication-title: Nat. Chem.
– volume: 6
  start-page: 857
  year: 2014
  end-page: 865
  ident: b0445
  article-title: Solvent- and ligand-free diboration of alkynes and alkenes catalyzed by platinum nanoparticles on titania
  publication-title: ChemCatChem
– volume: 10
  start-page: 4849
  year: 2019
  ident: b1000
  article-title: Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction
  publication-title: Nat. Commun.
– volume: 29
  start-page: 7323
  year: 2017
  end-page: 7329
  ident: b0635
  article-title: Incorporating rich mesoporosity into a ceria-based catalyst via mechanochemistry
  publication-title: Chem. Mater.
– volume: 56
  start-page: 6937
  year: 2017
  end-page: 6941
  ident: b0755
  article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 5
  start-page: eaax6322
  year: 2019
  ident: b0400
  article-title: A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts
  publication-title: Sci. Adv.
– volume: 11
  start-page: 7018
  year: 2021
  end-page: 7059
  ident: b0580
  article-title: Single-atom catalysts designed and prepared by the atomic layer deposition technique
  publication-title: ACS catal.
– volume: 22
  start-page: e00114
  year: 2019
  ident: b0060
  article-title: Cobalt porphyrin (CoTCPP) advanced visible light response of g-C
  publication-title: SM&T
– volume: 137
  start-page: 3470
  year: 2015
  end-page: 3473
  ident: b0300
  article-title: A common single-site Pt(II)-O(OH)
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 7114
  year: 2013
  end-page: 7117
  ident: b1245
  article-title: Long-chain terminal alcohols through catalytic CO hydrogenation
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1441
  year: 2015
  end-page: 1449
  ident: b0430
  article-title: Graphyne-supported single Fe atom catalysts for CO oxidation
  publication-title: Phys. Chem. Chem. Phys.
– volume: 198
  start-page: 286
  year: 2016
  end-page: 294
  ident: b0795
  article-title: Enhanced photocatalytic H
  publication-title: Appl. Catal. B
– volume: 137
  start-page: 3076
  year: 2015
  end-page: 3084
  ident: b1115
  article-title: Isolated metal active site concentration and stability control catalytic CO
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2452
  year: 2020
  end-page: 2458
  ident: b0190
  article-title: Stabilizing single-atom iron electrocatalysts for oxygen reduction via ceria confining and trapping
  publication-title: ACS Catal.
– volume: 1
  start-page: 385
  year: 2018
  end-page: 397
  ident: b0075
  article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts
  publication-title: Nat. Catal.
– reference: N. Yi, R. Si, H. Saltsburg, M. Flytzani-Stephanopoulos, Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions, Energy Environ. Sci. 3 (2010) 253-253. https://doi.org/10.1039/c003390c.
– volume: 137
  start-page: 10484
  year: 2015
  end-page: 10487
  ident: b0600
  article-title: Single-atom Pd
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 954
  year: 2018
  end-page: 962
  ident: b0510
  article-title: C-C coupling on single-atom-based heterogeneous catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1002
  year: 2018
  ident: b0440
  article-title: Cation vacancy stabilization of single-atomic-site Pt
  publication-title: Nat. Commun.
– volume: 136
  start-page: 16473
  year: 2014
  end-page: 16476
  ident: b0125
  article-title: Exceptional size-dependent activity enhancement in the electroreduction of CO
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 1944
  year: 2018
  end-page: 1948
  ident: b1035
  article-title: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 3
  start-page: 43
  year: 2020
  ident: b0515
  article-title: Atomically dispersed palladium catalyses Suzuki-Miyaura reactions under phosphine-free conditions
  publication-title: Commun. Chem.
– volume: 13
  start-page: 1842
  year: 2020
  end-page: 1855
  ident: b0935
  article-title: Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance
  publication-title: Nano Res.
– volume: 139
  start-page: 8078
  year: 2017
  end-page: 8081
  ident: b0750
  article-title: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 7318
  year: 2014
  end-page: 7324
  ident: b0905
  article-title: Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization
  publication-title: ACS Nano
– volume: 139
  start-page: 3336
  year: 2017
  end-page: 3339
  ident: b1025
  article-title: Molecule-level g-C
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 631
  year: 2019
  ident: b0930
  article-title: Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1604456
  year: 2017
  ident: b0680
  article-title: In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1870
  year: 2014
  end-page: 1876
  ident: b0740
  article-title: Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts
  publication-title: Nano Lett.
– volume: 551
  start-page: 605
  year: 2017
  end-page: 608
  ident: b0260
  article-title: Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts
  publication-title: Nature
– volume: 6
  start-page: eabb9823
  year: 2020
  ident: b0955
  article-title: Direct probing of atomically dispersed Ru species over multi-edged TiO
  publication-title: Sci. Adv.
– volume: 10
  start-page: 4488
  year: 2019
  ident: b0295
  article-title: Rh single atoms on TiO
  publication-title: Nat. Commun.
– volume: 58
  start-page: 11262
  year: 2019
  end-page: 11265
  ident: b0630
  article-title: Milling down to nanometers: a general process for the direct dry synthesis of supported metal catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 141
  start-page: 14515
  year: 2019
  end-page: 14519
  ident: b0350
  article-title: Highly Active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 11945
  year: 2019
  end-page: 11979
  ident: b0020
  article-title: Alkaline Anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer
  publication-title: Chem. Rev.
– volume: 46
  start-page: 1740
  year: 2013
  end-page: 1748
  ident: b0130
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 4250
  year: 2017
  end-page: 4258
  ident: b0220
  article-title: Fabrication, characterization, and stability of supported single-atom catalysts
  publication-title: Catal. Sci. Technol.
– volume: 109
  year: 2012
  ident: b1090
  article-title: Direct determination of the chemical bonding of individual impurities in graphene
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 597
  year: 2012
  end-page: 598
  ident: b0845
  article-title: Catalyst-support interactions: electronic perturbations
  publication-title: Nat. Chem.
– volume: 36
  start-page: 1505
  year: 2015
  end-page: 1511
  ident: b0245
  article-title: Highly active Au
  publication-title: Chinese J. Catal.
– volume: 122
  start-page: 4488
  year: 2018
  end-page: 4495
  ident: b1135
  article-title: Enhanced stability of Pt-Cu single-atom alloy catalysts: in situ characterization of the Pt/Cu(111) surface in an ambient pressure of CO
  publication-title: J. Phys. Chem. C
– volume: 139
  start-page: 14889
  year: 2017
  end-page: 14892
  ident: b1030
  article-title: Exclusive Ni-N
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 4981
  year: 2018
  end-page: 5079
  ident: b0225
  article-title: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles
  publication-title: Chem. Rev.
– volume: 25
  start-page: 6226
  year: 2013
  end-page: 6231
  ident: b0730
  article-title: N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction
  publication-title: Adv. Mater.
– volume: 9
  start-page: 6643
  year: 2017
  end-page: 6648
  ident: b0850
  article-title: The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties
  publication-title: Nanoscale
– volume: 57
  start-page: 15316
  year: 2018
  end-page: 15329
  ident: b0230
  article-title: The multifaceted reactivity of single-atom heterogeneous catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 139
  start-page: 14150
  year: 2017
  end-page: 14165
  ident: b0360
  article-title: Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1713
  year: 2018
  end-page: 1721
  ident: b1130
  article-title: Single-atom catalysts for electrochemical water splitting
  publication-title: ACS Energy Lett.
– volume: 53
  start-page: 8904
  year: 2014
  end-page: 8907
  ident: b1110
  article-title: A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 59
  start-page: 13057
  year: 2020
  end-page: 13062
  ident: b0760
  article-title: High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 136
  start-page: 8875
  year: 2014
  end-page: 8878
  ident: b0720
  article-title: Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 10525
  year: 2014
  end-page: 10530
  ident: b0150
  article-title: Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 404
  start-page: 126458
  year: 2021
  ident: b0025
  article-title: Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co
  publication-title: Chem. Eng. J.
– volume: 358
  start-page: 751
  year: 2017
  end-page: 756
  ident: b0040
  article-title: Perovskites in catalysis and electrocatalysis
  publication-title: Science
– volume: 5
  start-page: 775
  year: 2013
  end-page: 781
  ident: b0085
  article-title: Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity
  publication-title: Nat. Chem.
– volume: 140
  start-page: 11594
  year: 2018
  end-page: 11598
  ident: b0375
  article-title: Edge-site engineering of atomically dispersed Fe-N
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 3768
  year: 2013
  end-page: 3771
  ident: b0555
  article-title: Atomically dispersed Au-(OH)
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 9171
  year: 2020
  end-page: 9176
  ident: b0380
  article-title: Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 10
  start-page: 3808
  year: 2019
  ident: b0255
  article-title: Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1215
  year: 2020
  ident: b0570
  article-title: Electrochemical deposition as a universal route for fabricating single-atom catalysts
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1242
  year: 2018
  end-page: 1264
  ident: b0080
  article-title: Single-atom catalysts: synthetic strategies and electrochemical applications
  publication-title: Joule
– volume: 41
  start-page: 413
  year: 2012
  end-page: 447
  ident: b0645
  article-title: Mechanochemistry: opportunities for new and cleaner synthesis
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 4885
  year: 2014
  ident: b0825
  article-title: Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina
  publication-title: Nat. Commun.
– volume: 3
  start-page: 545
  year: 2012
  end-page: 574
  ident: b0175
  article-title: Atomically dispersed supported metal catalysts
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 11
  start-page: 3578
  year: 2021
  end-page: 3588
  ident: b0985
  article-title: Pt1-O
  publication-title: Catal Sci. Technol.
– volume: 9
  start-page: 4454
  year: 2018
  ident: b0270
  article-title: Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation
  publication-title: Nat. Commun.
– volume: 6
  start-page: 9541
  year: 2012
  end-page: 9550
  ident: b0745
  article-title: Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction
  publication-title: ACS Nano
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  ident: b0325
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1508
  year: 2017
  end-page: 1514
  ident: b0595
  article-title: Single atom catalyst by atomic layer deposition technique
  publication-title: Chinese J. Catal.
– volume: 34
  start-page: e2105204
  year: 2022
  ident: b0965
  article-title: Loading single-Ni atoms on assembled hollow N-rich carbon plates for efficient CO
  publication-title: Adv. Mater.
– volume: 61
  start-page: 245
  year: 2019
  end-page: 250
  ident: b1020
  article-title: High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures
  publication-title: Nano Energy
– volume: 130
  start-page: 370
  year: 2008
  end-page: 381
  ident: b0500
  article-title: Small Au and Pt clusters at the anatase TiO
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 492
  year: 2019
  end-page: 517
  ident: b1165
  article-title: Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 37814
  year: 2021
  end-page: 37823
  ident: b0980
  article-title: High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight
  publication-title: Int. J. Hydrog. Energy
– volume: 15
  start-page: 5766
  year: 2013
  end-page: 5769
  ident: b0450
  article-title: Remarkable catalytic property of nanoporous gold on activation of diborons for direct diboration of alkynes
  publication-title: Org. Lett.
– volume: 3
  start-page: 3067
  year: 2013
  end-page: 3074
  ident: b0465
  article-title: Strong interaction between pt and thiolated carbon for electrocatalytic durability enhancement
  publication-title: ACS Catal.
– volume: 1
  year: 2015
  ident: b1095
  article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature
  publication-title: Sci. Adv.
– volume: 10
  start-page: 2002592
  year: 2020
  ident: b1205
  article-title: Atomically dispersed Co-pyridinic N-C for superior oxygen reduction reaction
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 5502
  year: 2010
  ident: b1190
  article-title: Recent developments in X-ray absorption spectroscopy
  publication-title: Phys. Chem. Chem. Phys.
– volume: 21
  start-page: 2486
  year: 2020
  end-page: 2496
  ident: b1140
  article-title: Identifying the types and characterization of the active sites on M-X-C single-atom catalysts
  publication-title: ChemPhysChem
– volume: 8
  start-page: 8450
  year: 2018
  end-page: 8458
  ident: b0805
  article-title: Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions
  publication-title: ACS Catal.
– volume: 2
  start-page: 495
  year: 2019
  end-page: 503
  ident: b0345
  article-title: Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis
  publication-title: Nat. Catal.
– volume: 116
  start-page: 9683
  year: 2016
  end-page: 9747
  ident: b0780
  article-title: Photochemical approaches to complex chemotypes: applications in natural product synthesis
  publication-title: Chem. Rev.
– volume: 121
  start-page: 13191
  year: 2017
  end-page: 13201
  ident: b0790
  article-title: Ag-modified BiOCl single-crystal nanosheets: dependence of photocatalytic performance on the region-selective deposition of Ag nanoparticles
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 673
  year: 2018
  end-page: 689
  ident: b0415
  article-title: Recent advances in the precise control of isolated single-site catalysts by chemical methods
  publication-title: Natl. Sci. Rev.
– volume: 9
  start-page: 3978
  year: 2019
  end-page: 3990
  ident: b0365
  article-title: Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support
  publication-title: ACS Catal.
– volume: 60
  start-page: 13177
  year: 2021
  end-page: 13196
  ident: b0925
  article-title: Atomically dispersed reactive centers for electrocatalytic CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 9
  start-page: 2521
  year: 2019
  end-page: 2531
  ident: b1215
  article-title: In situ/operando techniques for characterization of single-atom catalysts
  publication-title: ACS Catal.
– volume: 7
  start-page: 1903089
  year: 2020
  ident: b1010
  article-title: High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction
  publication-title: Adv. Sci.
– volume: 2
  start-page: 1700286
  year: 2018
  ident: b0050
  article-title: Strategies for stabilizing atomically dispersed metal catalysts
  publication-title: Small Methods
– volume: 31
  start-page: e1808135
  year: 2019
  ident: b0950
  article-title: Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Sn
  publication-title: Adv. Mater.
– volume: 7
  start-page: 20840
  year: 2019
  end-page: 20846
  ident: b0185
  article-title: Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries
  publication-title: J. Mater. Chem. A
– volume: 162
  start-page: 95
  year: 2006
  end-page: 102
  ident: b0480
  article-title: Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying
  publication-title: Stud. Surf. Sci. Catal.
– volume: 9
  start-page: 2438
  year: 2021
  end-page: 2447
  ident: b0975
  article-title: FeS
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 4857
  year: 2012
  end-page: 4859
  ident: b0550
  article-title: Novel Au/La
  publication-title: ChemComm
– volume: 9
  start-page: 1231
  year: 2018
  ident: b0265
  article-title: Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions
  publication-title: Nat. Commun.
– volume: 17
  start-page: e1903418
  year: 2021
  ident: b0035
  article-title: Cobalt chalcogenides/cobalt phosphides/cobaltates with hierarchical nanostructures for anode materials of lithium-ion batteries: improving the lithiation environment
  publication-title: Small
– volume: 151
  start-page: 214703
  year: 2019
  ident: b0540
  article-title: Strong electrostatic adsorption of Pt onto SiO
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 5758
  year: 2016
  end-page: 5764
  ident: b0765
  article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes
  publication-title: Chem. Sci.
– volume: 1
  start-page: 2
  year: 2011
  end-page: 6
  ident: b0090
  article-title: Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: size effect in the sub-2 nm regime
  publication-title: ACS Catal.
– volume: 133
  start-page: 12714
  year: 2011
  end-page: 12727
  ident: b1185
  article-title: Correlation between atomic coordination structure and enhanced electrocatalytic activity for trimetallic alloy catalysts
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 8163
  year: 2012
  end-page: 8178
  ident: b1180
  article-title: Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1528
  year: 2017
  end-page: 1539
  ident: b0335
  article-title: Preparation, characterization and catalytic performance of single-atom catalysts, Chinese
  publication-title: J. Catal.
– volume: 26
  start-page: 4070
  year: 2020
  end-page: 4079
  ident: b0940
  article-title: A facile route for constructing effective Cu-N
  publication-title: Chemistry
– volume: 421
  start-page: 127804
  year: 2021
  ident: b0100
  article-title: FeS
  publication-title: Chem. Eng. J.
– volume: 371
  start-page: 375
  year: 2021
  end-page: 379
  ident: b0385
  article-title: Unraveling CO adsorption on model single-atom catalysts
  publication-title: Science
– volume: 29
  start-page: 220
  year: 2016
  end-page: 242
  ident: b0605
  article-title: Electrocatalysts by atomic layer deposition for fuel cell applications
  publication-title: Nano Energy
– volume: 20
  start-page: 2138
  year: 2014
  end-page: 2144
  ident: b0495
  article-title: Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution
  publication-title: Chemistry
– volume: 46
  start-page: 1720
  year: 2013
  end-page: 1730
  ident: b0875
  article-title: Sintering of catalytic nanoparticles: particle migration or ostwald ripening?
  publication-title: Acc. Chem. Res.
– volume: 38
  start-page: 1481
  year: 2017
  end-page: 1488
  ident: b1175
  article-title: X-ray absorption spectroscopy for single-atom catalysts: Critical importance and persistent challenges
  publication-title: Chinese J. Catal.
– volume: 256
  start-page: 117786
  year: 2019
  ident: b1160
  article-title: Fully catalytic upgrading synthesis of 5-Ethoxymethylfurfural from biomass-derived 5-Hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid
  publication-title: Appl. Catal. B
– volume: 74
  start-page: 104931
  year: 2020
  ident: b1145
  article-title: Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures
  publication-title: Nano Energy
– volume: 352
  start-page: 797
  year: 2016
  end-page: 800
  ident: b0800
  article-title: Photochemical route for synthesizing atomically dispersed palladium catalysts
  publication-title: Science
– volume: 261
  start-page: 118233
  year: 2020
  ident: b0775
  article-title: Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B
– volume: 53
  start-page: 4102
  year: 2014
  end-page: 4106
  ident: b0710
  article-title: Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  ident: b0195
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
– volume: 8
  start-page: 11806
  year: 2014
  end-page: 11815
  ident: b1085
  article-title: Stability and spectroscopy of single nitrogen dopants in graphene at elevated temperatures
  publication-title: ACS Nano
– volume: 328
  start-page: 151
  year: 2015
  end-page: 164
  ident: b0870
  article-title: Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts
  publication-title: J. Catal.
– volume: 353
  start-page: 150
  year: 2016
  end-page: 154
  ident: b0885
  article-title: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping
  publication-title: Science
– volume: 10
  start-page: 7584
  year: 2020
  end-page: 7618
  ident: b1275
  article-title: Electrocatalysis of single-atom sites: impacts of atomic coordination
  publication-title: ACS Catal.
– volume: 4
  start-page: 1546
  year: 2014
  end-page: 1553
  ident: b1210
  article-title: Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water
  publication-title: ACS Catal.
– volume: 58
  start-page: 1163
  year: 2019
  end-page: 1167
  ident: b0310
  article-title: Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 112
  start-page: 17200
  year: 2008
  end-page: 17205
  ident: b0490
  article-title: Location and state of Pt in platinized CdS/TiO
  publication-title: J. Phys. Chem. C
– volume: 57
  start-page: 9038
  year: 2018
  end-page: 9043
  ident: b1045
  article-title: Efficient Oxygen Reduction Reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 139
  start-page: 18093
  year: 2017
  end-page: 18100
  ident: b0390
  article-title: Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO
  publication-title: J. Am. Chem. Soc.
– volume: 299
  start-page: 864
  year: 2003
  end-page: 867
  ident: b0135
  article-title: Au
  publication-title: Science
– volume: 372
  start-page: 826
  year: 2021
  end-page: 831
  ident: b1120
  article-title: Electron ptychography achieves atomic-resolution limits set by lattice vibrations
  publication-title: Science
– volume: 367
  start-page: 3709
  year: 2009
  end-page: 3733
  ident: b1070
  article-title: Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems
  publication-title: Philos. T. R. Soc. A
– volume: 6
  start-page: 1288
  year: 2020
  end-page: 1301
  ident: b0210
  article-title: Emerging multifunctional single-atom catalysts/nanozymes
  publication-title: ACS Cent. Sci.
– volume: 55
  start-page: 2058
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0205
  article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201509241
– volume: 6
  start-page: 857
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0445
  article-title: Solvent- and ligand-free diboration of alkynes and alkenes catalyzed by platinum nanoparticles on titania
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201300946
– volume: 6
  start-page: 302
  year: 2011
  ident: 10.1016/j.ccr.2022.214493_b1250
  article-title: Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.42
– volume: 6
  start-page: 658
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0915
  article-title: Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst
  publication-title: Chem 6
  doi: 10.1016/j.chempr.2019.12.008
– volume: 59
  start-page: 13057
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0760
  article-title: High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202004841
– volume: 29
  start-page: 7323
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0635
  article-title: Incorporating rich mesoporosity into a ceria-based catalyst via mechanochemistry
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02206
– volume: 6
  start-page: 14054
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0455
  article-title: Surface engineering protocol to obtain an atomically dispersed Pt/CeO2 catalyst with high activity and stability for CO oxidation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02613
– volume: 3
  start-page: 1800481
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0105
  article-title: Insights into single-atom metal-support interactions in electrocatalytic water splitting
  publication-title: Small Methods
  doi: 10.1002/smtd.201800481
– volume: 1
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b1095
  article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500462
– volume: 3
  start-page: 545
  year: 2012
  ident: 10.1016/j.ccr.2022.214493_b0175
  article-title: Atomically dispersed supported metal catalysts
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-062011-080939
– volume: 9
  start-page: 3978
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0365
  article-title: Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04885
– volume: 260
  start-page: 329
  year: 2008
  ident: 10.1016/j.ccr.2022.214493_b0535
  article-title: The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: I. Amorphous silica
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.09.022
– volume: 122
  start-page: 4488
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b1135
  article-title: Enhanced stability of Pt-Cu single-atom alloy catalysts: in situ characterization of the Pt/Cu(111) surface in an ambient pressure of CO
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b00078
– volume: 28
  start-page: 2427
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0330
  article-title: Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505281
– volume: 7
  start-page: 2559
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b0420
  article-title: The power of single-atom catalysis
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500363
– volume: 305
  start-page: 7
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0890
  article-title: Crown Jewel catalyst: How neighboring atoms affect the catalytic activity of top Au atoms?
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.04.012
– volume: 30
  start-page: e1706287
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0320
  article-title: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706287
– volume: 42
  start-page: 7571
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0650
  article-title: Hallmarks of mechanochemistry: from nanoparticles to technology
  publication-title: Chem Soc Rev
  doi: 10.1039/c3cs35468g
– volume: 3
  start-page: 43
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0515
  article-title: Atomically dispersed palladium catalyses Suzuki-Miyaura reactions under phosphine-free conditions
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-020-0289-y
– volume: 10
  start-page: 3997
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b1265
  article-title: Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11992-2
– volume: 10
  start-page: 4500
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b1195
  article-title: Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12459-0
– volume: 5
  start-page: 775
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0085
  article-title: Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1721
– ident: 10.1016/j.ccr.2022.214493_b0835
  doi: 10.1039/b924051a
– volume: 367
  start-page: 3709
  year: 2009
  ident: 10.1016/j.ccr.2022.214493_b1070
  article-title: Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems
  publication-title: Philos. T. R. Soc. A
  doi: 10.1098/rsta.2009.0112
– volume: 59
  start-page: 9171
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0380
  article-title: Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202003842
– volume: 118
  start-page: 12216
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0855
  article-title: Single Pd atom embedded in CeO2(111) for NO reduction with CO: a first-principles study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp503745c
– volume: 358
  start-page: 751
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0040
  article-title: Perovskites in catalysis and electrocatalysis
  publication-title: Science
  doi: 10.1126/science.aam7092
– volume: 6
  start-page: 1288
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0210
  article-title: Emerging multifunctional single-atom catalysts/nanozymes
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00512
– volume: 57
  start-page: 9038
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b1045
  article-title: Efficient Oxygen Reduction Reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201804958
– volume: 8
  start-page: 1666
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b1255
  article-title: Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01765-0
– volume: 45
  start-page: 1529
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0325
  article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– volume: 53
  start-page: 10525
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0150
  article-title: Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201402342
– volume: 31
  start-page: e1808135
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0950
  article-title: Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808135
– volume: 38
  start-page: 1508
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0595
  article-title: Single atom catalyst by atomic layer deposition technique
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(17)62903-6
– volume: 162
  start-page: 95
  year: 2006
  ident: 10.1016/j.ccr.2022.214493_b0480
  article-title: Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(06)80895-5
– volume: 8
  start-page: 1490
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0815
  article-title: Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01521-4
– volume: 38
  start-page: 1460
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b1065
  article-title: Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: probing the catalytically active centers
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(17)62900-0
– volume: 7
  start-page: 1301
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b1225
  article-title: Support effects in single-atom platinum catalysts for electrochemical oxygen reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02899
– volume: 308
  start-page: 110507
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0520
  article-title: Hollow mesoporous CeO2 microspheres for efficient loading of Au single-atoms to catalyze the water-gas shift reaction
  publication-title: Micropor. Mesopor. Mat.
  doi: 10.1016/j.micromeso.2020.110507
– volume: 136
  start-page: 13554
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0715
  article-title: N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja507463w
– volume: 38
  start-page: 1473
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b1220
  article-title: Using probe molecule FTIR spectroscopy to identify and characterize Pt-group metal based single atom catalysts
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(17)62882-1
– volume: 135
  start-page: 7114
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b1245
  article-title: Long-chain terminal alcohols through catalytic CO hydrogenation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402512r
– volume: 299
  start-page: 864
  year: 2003
  ident: 10.1016/j.ccr.2022.214493_b0135
  article-title: Au20: a tetrahedral cluster
  publication-title: Science
  doi: 10.1126/science.1079879
– volume: 13
  start-page: 411
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0290
  article-title: Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 8
  start-page: 22467
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0880
  article-title: Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06942F
– volume: 17
  start-page: e1903418
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b0035
  article-title: Cobalt chalcogenides/cobalt phosphides/cobaltates with hierarchical nanostructures for anode materials of lithium-ion batteries: improving the lithiation environment
  publication-title: Small
  doi: 10.1002/smll.201903418
– volume: 25
  start-page: 6226
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0730
  article-title: N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302569
– volume: 49
  start-page: 2565
  year: 2010
  ident: 10.1016/j.ccr.2022.214493_b0725
  article-title: Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200907289
– volume: 1
  start-page: 6781
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0280
  article-title: Single atom and nanoclustered Pt catalysts for selective CO2 reduction
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00817
– volume: 138
  start-page: 15743
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0355
  article-title: Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10169
– volume: 14
  start-page: 1870
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0740
  article-title: Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts
  publication-title: Nano Lett.
  doi: 10.1021/nl404640n
– volume: 5
  start-page: 786
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0005
  article-title: Metal-organic-framework-based single-atom catalysts for energy applications
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.12.011
– volume: 15
  start-page: 5766
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0450
  article-title: Remarkable catalytic property of nanoporous gold on activation of diborons for direct diboration of alkynes
  publication-title: Org. Lett.
  doi: 10.1021/ol4028013
– volume: 136
  start-page: 16473
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0125
  article-title: Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508879j
– volume: 130
  start-page: 370
  year: 2008
  ident: 10.1016/j.ccr.2022.214493_b0500
  article-title: Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0773148
– volume: 198
  start-page: 286
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0795
  article-title: Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.05.074
– volume: 7
  start-page: 442
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0695
  article-title: ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42799D
– volume: 26
  start-page: 4070
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0940
  article-title: A facile route for constructing effective Cu-Nx active sites for oxygen reduction reaction
  publication-title: Chemistry
  doi: 10.1002/chem.201903822
– volume: 141
  start-page: 12372
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0920
  article-title: Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05576
– volume: 9
  start-page: 2438
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b0975
  article-title: FeS2-anchored transition metal single atoms for highly efficient overall water splitting: a DFT computational screening study
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09903A
– volume: 20
  start-page: 2138
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0495
  article-title: Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution
  publication-title: Chemistry
  doi: 10.1002/chem.201303366
– volume: 7
  start-page: 4520
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0235
  article-title: Direct synthesis of hierarchical ZSM-5 zeolite using cetyltrimethylammonium as structure directing agent for methanol-to-hydrocarbons conversion
  publication-title: Catal Sci. Technol.
  doi: 10.1039/C7CY01603D
– volume: 12
  start-page: 5502
  year: 2010
  ident: 10.1016/j.ccr.2022.214493_b1190
  article-title: Recent developments in X-ray absorption spectroscopy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp90010a
– volume: 140
  start-page: 105999
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0460
  article-title: Pt mechanical dispersion on non-porous alumina for soot oxidation
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2020.105999
– volume: 119
  start-page: 11945
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0020
  article-title: Alkaline Anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00157
– volume: 8
  start-page: 7318
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0905
  article-title: Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization
  publication-title: ACS Nano
  doi: 10.1021/nn502438k
– volume: 9
  start-page: 4454
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0270
  article-title: Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06967-8
– volume: 12
  start-page: 492
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b1165
  article-title: Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02939C
– volume: 256
  start-page: 117786
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b1160
  article-title: Fully catalytic upgrading synthesis of 5-Ethoxymethylfurfural from biomass-derived 5-Hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.117786
– volume: 30
  start-page: e1704624
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0180
  article-title: Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704624
– volume: 10
  start-page: 2452
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0190
  article-title: Stabilizing single-atom iron electrocatalysts for oxygen reduction via ceria confining and trapping
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04621
– volume: 4
  start-page: 5441
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0435
  article-title: A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: a CO-promoted O2 activation
  publication-title: Sci. Rep.
  doi: 10.1038/srep05441
– volume: 9
  start-page: 6643
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0850
  article-title: The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties
  publication-title: Nanoscale
  doi: 10.1039/C6NR09707C
– volume: 5
  start-page: 3717
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b1230
  article-title: Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00700
– volume: 121
  start-page: 13191
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0790
  article-title: Ag-modified BiOCl single-crystal nanosheets: dependence of photocatalytic performance on the region-selective deposition of Ag nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b03213
– volume: 41
  start-page: 413
  year: 2012
  ident: 10.1016/j.ccr.2022.214493_b0645
  article-title: Mechanochemistry: opportunities for new and cleaner synthesis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15171A
– volume: 10
  start-page: 631
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0930
  article-title: Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08419-3
– volume: 10
  start-page: 1278
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0215
  article-title: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09290-y
– volume: 10
  start-page: 244
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0615
  article-title: Atomic layer deposition for preparing isolated Co sites on SiO2 for ethane dehydrogenation catalysis
  publication-title: Nanomaterials (Basel)
  doi: 10.3390/nano10020244
– volume: 39
  start-page: 893
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0070
  article-title: Single-atom catalysis: Bridging the homo- and heterogeneous catalysis
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(18)63047-5
– volume: 140
  start-page: 11594
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0375
  article-title: Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07294
– volume: 355
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0045
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 13
  start-page: 1842
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0935
  article-title: Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2755-3
– volume: 151
  start-page: 214703
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0540
  article-title: Strong electrostatic adsorption of Pt onto SiO2 partially overcoated Al2O3-towards single atom catalysts
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5128934
– volume: 95
  start-page: 87
  year: 2010
  ident: 10.1016/j.ccr.2022.214493_b0840
  article-title: Steam reforming of methanol over ceria and gold-ceria nanoshapes
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2009.12.012
– volume: 353
  start-page: 150
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0885
  article-title: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping
  publication-title: Science
  doi: 10.1126/science.aaf8800
– volume: 4
  start-page: 695
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b1240
  article-title: Atomic imaging of carbon-supported Pt, Pt/Co, and Ir@Pt nanocatalysts by atom-probe tomography
  publication-title: ACS Catal.
  doi: 10.1021/cs401117e
– volume: 9
  start-page: 2521
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b1215
  article-title: In situ/operando techniques for characterization of single-atom catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04937
– volume: 29
  start-page: 220
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0605
  article-title: Electrocatalysts by atomic layer deposition for fuel cell applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.01.016
– volume: 140
  start-page: 954
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0510
  article-title: C-C coupling on single-atom-based heterogeneous catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09314
– volume: 230
  start-page: 7
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b1170
  article-title: Forskolin reduces fat accumulation in Nile tilapia (Oreochromis niloticus) through stimulating lipolysis and beta-oxidation
  publication-title: Comp. Biochem. Physiol. A Mol. Integr. Physiol.
  doi: 10.1016/j.cbpa.2018.12.011
– volume: 12
  start-page: 1317
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0240
  article-title: A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00162J
– volume: 139
  start-page: 14150
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0360
  article-title: Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07093
– volume: 36
  start-page: 1505
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b0245
  article-title: Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(15)60889-0
– volume: 30
  start-page: 2000531
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0655
  article-title: Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000531
– volume: 8
  start-page: 8450
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0805
  article-title: Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02288
– year: 2008
  ident: 10.1016/j.ccr.2022.214493_b0065
– volume: 37
  start-page: 692
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0160
  article-title: Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(15)61090-7
– volume: 10
  start-page: 3808
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0255
  article-title: Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11856-9
– volume: 58
  start-page: 11262
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0630
  article-title: Milling down to nanometers: a general process for the direct dry synthesis of supported metal catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201903545
– volume: 6
  start-page: 9541
  year: 2012
  ident: 10.1016/j.ccr.2022.214493_b0745
  article-title: Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction
  publication-title: ACS Nano
  doi: 10.1021/nn302674k
– volume: 141
  start-page: 4505
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b1125
  article-title: Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09834
– volume: 61
  year: 2022
  ident: 10.1016/j.ccr.2022.214493_b0990
  article-title: Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202114951
– volume: 46
  start-page: 396
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0690
  article-title: Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.025
– volume: 12
  start-page: 1949
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b1105
  article-title: Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b09064
– volume: 358
  start-page: 3
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0370
  article-title: Why does industry not use immobilized transition metal complexes as catalysts?
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201500846
– volume: 2
  start-page: 1242
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0080
  article-title: Single-atom catalysts: synthetic strategies and electrochemical applications
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.019
– ident: 10.1016/j.ccr.2022.214493_b1155
  doi: 10.1007/s40843-020-1271-x
– volume: 3
  start-page: 634
  year: 2011
  ident: 10.1016/j.ccr.2022.214493_b0155
  article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– year: 2022
  ident: 10.1016/j.ccr.2022.214493_b1270
  article-title: In situ visualisation and analysis of dynamic single atom processes in heterogeneous catalysts
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 4885
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0825
  article-title: Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5885
– volume: 11
  start-page: 1215
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0570
  article-title: Electrochemical deposition as a universal route for fabricating single-atom catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14917-6
– volume: 10
  start-page: 4585
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0395
  article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12510-0
– volume: 7
  start-page: 4250
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0220
  article-title: Fabrication, characterization, and stability of supported single-atom catalysts
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY00723J
– volume: 141
  start-page: 9664
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0405
  article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03811
– volume: 10
  start-page: 4488
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0295
  article-title: Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12461-6
– volume: 55
  start-page: 4725
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0640
  article-title: Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201601208
– volume: 139
  start-page: 18093
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0390
  article-title: Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10817
– volume: 44
  start-page: 1824
  year: 2005
  ident: 10.1016/j.ccr.2022.214493_b0115
  article-title: CO oxidation on rutile-supported au nanoparticles
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200461699
– volume: 38
  start-page: 1481
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b1175
  article-title: X-ray absorption spectroscopy for single-atom catalysts: Critical importance and persistent challenges
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(17)62880-8
– volume: 57
  start-page: 15316
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0230
  article-title: The multifaceted reactivity of single-atom heterogeneous catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201806936
– volume: 22
  start-page: e00114
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0060
  article-title: Cobalt porphyrin (CoTCPP) advanced visible light response of g-C3N4 nanosheets
  publication-title: SM&T
– volume: 49
  start-page: 2215
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b1235
  article-title: Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00869A
– volume: 10
  start-page: 4849
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b1000
  article-title: Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12886-z
– volume: 14
  start-page: 134
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b1075
  article-title: Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces
  publication-title: Nano Lett.
  doi: 10.1021/nl403520c
– volume: 8
  start-page: 11806
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b1085
  article-title: Stability and spectroscopy of single nitrogen dopants in graphene at elevated temperatures
  publication-title: ACS Nano
  doi: 10.1021/nn5054798
– volume: 46
  start-page: 1740
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0130
  article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300361m
– volume: 6
  start-page: 6151
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0475
  article-title: Room-temperature CO oxidation catalyst: low-temperature metal-support interaction between platinum nanoparticles and nanosized ceria
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00677
– volume: 46
  start-page: 37814
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b0980
  article-title: High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2021.09.063
– volume: 10
  start-page: 7584
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b1275
  article-title: Electrocatalysis of single-atom sites: impacts of atomic coordination
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01950
– volume: 7
  start-page: 3460
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b0530
  article-title: Synthesis of platinum catalysts over thick slurries of oxide supports by strong electrostatic adsorption
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500595
– volume: 9
  start-page: 1002
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0440
  article-title: Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03380-z
– volume: 59
  start-page: 21698
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0575
  article-title: Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202009331
– volume: 118
  start-page: 4981
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0225
  article-title: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00776
– volume: 551
  start-page: 605
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0260
  article-title: Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts
  publication-title: Nature
  doi: 10.1038/nature24640
– volume: 9
  start-page: 12496
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b0425
  article-title: Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05984
– volume: 4
  start-page: 1924
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0565
  article-title: Catalytically active single-atom niobium in graphitic layers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2929
– volume: 135
  start-page: 15314
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0305
  article-title: Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408574m
– volume: 135
  start-page: 3768
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0555
  article-title: Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312646d
– volume: 7
  start-page: 10922
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0470
  article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10922
– volume: 21
  start-page: 2486
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b1140
  article-title: Identifying the types and characterization of the active sites on M-X-C single-atom catalysts
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.202000595
– volume: 50
  start-page: 691
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b1100
  article-title: Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.023
– volume: 16
  start-page: e2001896
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0900
  article-title: Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO2 reduction
  publication-title: Small
  doi: 10.1002/smll.202001896
– volume: 3
  start-page: 1713
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b1130
  article-title: Single-atom catalysts for electrochemical water splitting
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00640
– volume: 7
  start-page: 1903089
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b1010
  article-title: High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903089
– volume: 53
  start-page: 8904
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b1110
  article-title: A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201403353
– volume: 261
  start-page: 118233
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0775
  article-title: Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118233
– volume: 4
  start-page: 597
  year: 2012
  ident: 10.1016/j.ccr.2022.214493_b0845
  article-title: Catalyst-support interactions: electronic perturbations
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1412
– volume: 41
  start-page: 8163
  year: 2012
  ident: 10.1016/j.ccr.2022.214493_b1180
  article-title: Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35174a
– volume: 10
  start-page: 780
  year: 2011
  ident: 10.1016/j.ccr.2022.214493_b0735
  article-title: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3087
– volume: 38
  start-page: 1498
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0170
  article-title: Highlights of the major progress in single-atom catalysis in 2015 and 2016
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(17)62872-9
– volume: 515
  start-page: 1664
  year: 2006
  ident: 10.1016/j.ccr.2022.214493_b0620
  article-title: Atomic layer deposition of palladium films on Al2O3 surfaces
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.05.049
– volume: 34
  start-page: e2105204
  year: 2022
  ident: 10.1016/j.ccr.2022.214493_b0965
  article-title: Loading single-Ni atoms on assembled hollow N-rich carbon plates for efficient CO2 electroreduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105204
– volume: 11
  start-page: 3392
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b1080
  article-title: Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00796
– volume: 19
  start-page: 436
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0410
  article-title: Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0571-5
– volume: 371
  start-page: 375
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b0385
  article-title: Unraveling CO adsorption on model single-atom catalysts
  publication-title: Science
  doi: 10.1126/science.abe5757
– volume: 392
  start-page: 123655
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0860
  article-title: Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: a dynamic transformation from clusters to single atoms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123655
– volume: 143
  start-page: 2173
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b0960
  article-title: Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c08409
– volume: 6
  start-page: eabb9823
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0955
  article-title: Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb9823
– volume: 404
  start-page: 126458
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b0025
  article-title: Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored TiO2@P-C3N4 core-shell nanorod arrays
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126458
– volume: 112
  start-page: 17200
  year: 2008
  ident: 10.1016/j.ccr.2022.214493_b0490
  article-title: Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp804699c
– volume: 8
  start-page: 3116
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b1040
  article-title: Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00398
– volume: 51
  start-page: 325
  year: 2009
  ident: 10.1016/j.ccr.2022.214493_b0485
  article-title: Water gas shift catalysis
  publication-title: Catal. Rev.
  doi: 10.1080/01614940903048661
– volume: 136
  start-page: 8875
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0720
  article-title: Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503557x
– year: 2022
  ident: 10.1016/j.ccr.2022.214493_b0970
  article-title: Hierarchical 3D porous carbon with facilely accessible Fe-N4 single-atom sites for Zn-air batteries
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1700286
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0050
  article-title: Strategies for stabilizing atomically dispersed metal catalysts
  publication-title: Small Methods
  doi: 10.1002/smtd.201700286
– volume: 56
  start-page: 13944
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0030
  article-title: Single-atom electrocatalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201703864
– volume: 2
  start-page: 1024
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0505
  article-title: Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00081F
– volume: 260
  start-page: 118196
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0015
  article-title: Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118196
– volume: 13
  start-page: 2517
  year: 2011
  ident: 10.1016/j.ccr.2022.214493_b0830
  article-title: 'Shape effects' in metal oxide supported nanoscale gold catalysts
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02009e
– volume: 3
  start-page: 2867
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0610
  article-title: Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00146
– volume: 372
  start-page: 826
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b1120
  article-title: Electron ptychography achieves atomic-resolution limits set by lattice vibrations
  publication-title: Science
  doi: 10.1126/science.abg2533
– volume: 471
  start-page: 228446
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0315
  article-title: Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228446
– volume: 141
  start-page: 14515
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0350
  article-title: Highly Active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06482
– volume: 138
  start-page: 6292
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0285
  article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02692
– volume: 1
  start-page: 385
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0075
  article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0090-9
– volume: 74
  start-page: 104931
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b1145
  article-title: Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104931
– volume: 2
  start-page: 495
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0345
  article-title: Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0279-6
– volume: 10
  start-page: 4290
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0340
  article-title: Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12362-8
– volume: 25
  start-page: e00172
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0095
  article-title: Bridging metal-ion induced vertical growth of MoS2 and overall fast electron transfer in (C, P)3N4-M (Ni2+, Co2+)-MoS2 electrocatalyst for efficient hydrogen evolution reaction
  publication-title: SM&T
– volume: 22
  start-page: 7529
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b1200
  article-title: Tuning the coordination number of Fe single atoms for the efficient reduction of CO2
  publication-title: Green Chem.
  doi: 10.1039/D0GC02689A
– volume: 2
  start-page: 65
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0195
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 17
  start-page: 1441
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b0430
  article-title: Graphyne-supported single Fe atom catalysts for CO oxidation
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04181J
– volume: 138
  start-page: 1977
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0590
  article-title: Sintering-resistant single-site nickel catalyst supported by metal-organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12515
– volume: 57
  start-page: 1944
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b1035
  article-title: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201712451
– volume: 47
  start-page: 5423
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0055
  article-title: Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00016F
– volume: 9
  start-page: 77
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0810
  article-title: Multistep nucleation of nanocrystals in aqueous solution
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2618
– volume: 12
  start-page: 1401
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0625
  article-title: Insight of the stability and activity of platinum single atoms on ceria
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2351-6
– volume: 109
  year: 2012
  ident: 10.1016/j.ccr.2022.214493_b1090
  article-title: Direct determination of the chemical bonding of individual impurities in graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.206803
– volume: 8
  start-page: 16100
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0895
  article-title: Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16100
– volume: 7
  start-page: 20840
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0185
  article-title: Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05981D
– volume: 5
  start-page: 673
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0415
  article-title: Recent advances in the precise control of isolated single-site catalysts by chemical methods
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwy056
– volume: 2
  start-page: 70
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b1055
  article-title: Advanced electron microscopy characterization of nanomaterials for catalysis
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2017.02.001
– volume: 56
  start-page: 6937
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0755
  article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201702473
– volume: 352
  start-page: 797
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0800
  article-title: Photochemical route for synthesizing atomically dispersed palladium catalysts
  publication-title: Science
  doi: 10.1126/science.aaf5251
– volume: 137
  start-page: 3076
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b1115
  article-title: Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5128133
– volume: 38
  start-page: 1528
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0335
  article-title: Preparation, characterization and catalytic performance of single-atom catalysts, Chinese
  publication-title: J. Catal.
– volume: 5
  start-page: eaax6322
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0400
  article-title: A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax6322
– volume: 9
  start-page: 27002
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0525
  article-title: Promotion of Pt/CeO2 catalyst by hydrogen treatment for low-temperature CO oxidation
  publication-title: RSC Adv.
  doi: 10.1039/C9RA05965B
– volume: 6
  start-page: eaba3809
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0545
  article-title: High-loading single Pt atom sites [Pt-O(OH)x] catalyze the CO PROX reaction with high activity and selectivity at mild conditions
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba3809
– volume: 53
  start-page: 4102
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0710
  article-title: Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201307203
– volume: 4
  start-page: 1546
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b1210
  article-title: Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water
  publication-title: ACS Catal.
  doi: 10.1021/cs500071c
– volume: 9
  start-page: 1231
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0265
  article-title: Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03235-7
– volume: 7
  start-page: 34
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0110
  article-title: Catalysis by supported single metal atoms
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01534
– volume: 46
  start-page: 1720
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0875
  article-title: Sintering of catalytic nanoparticles: particle migration or ostwald ripening?
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3002427
– volume: 1
  start-page: 63
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b1050
  article-title: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities
  publication-title: Nature Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 58
  start-page: 1163
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0310
  article-title: Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201812423
– volume: 55
  start-page: 10800
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0700
  article-title: Single cobalt atoms with precise n-coordination as superior oxygen reduction reaction catalysts
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201604802
– volume: 10
  start-page: 2830
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0770
  article-title: Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04986F
– volume: 3
  start-page: 3067
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0465
  article-title: Strong interaction between pt and thiolated carbon for electrocatalytic durability enhancement
  publication-title: ACS Catal.
  doi: 10.1021/cs400649n
– volume: 1
  start-page: 100004
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0660
  article-title: Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2019.100004
– volume: 8
  start-page: 1801101
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0145
  article-title: General dimension-controlled synthesis of hollow carbon embedded with metal singe atoms or core-shell nanoparticles for energy storage applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801101
– volume: 11
  start-page: 6930
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0675
  article-title: Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02148
– volume: 344
  start-page: 616
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0865
  article-title: Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen
  publication-title: Science
  doi: 10.1126/science.1253150
– volume: 10
  start-page: 2754
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0945
  article-title: N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00097
– volume: 11
  start-page: 7018
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b0580
  article-title: Single-atom catalysts designed and prepared by the atomic layer deposition technique
  publication-title: ACS catal.
  doi: 10.1021/acscatal.1c01200
– volume: 32
  start-page: 353
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0665
  article-title: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.056
– volume: 56
  start-page: 610
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0685
  article-title: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201610119
– volume: 7
  start-page: 14036
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0275
  article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14036
– volume: 31
  start-page: 1904548
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b1005
  article-title: Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904548
– volume: 2
  start-page: 183
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b0120
  article-title: Understanding nano effects in catalysis
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwv024
– volume: 38
  start-page: 1443
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0165
  article-title: Two-dimensional materials confining single atoms for catalysis
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(17)62839-0
– volume: 10
  start-page: 3663
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0670
  article-title: A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11619-6
– volume: 3
  start-page: 140
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0200
  article-title: Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0078-8
– volume: 12
  start-page: 764
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0910
  article-title: Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0473-9
– volume: 60
  start-page: 13177
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b0925
  article-title: Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202014112
– volume: 7
  start-page: 3121
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0560
  article-title: Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00199
– volume: 116
  start-page: 9683
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0780
  article-title: Photochemical approaches to complex chemotypes: applications in natural product synthesis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00760
– volume: 10
  start-page: 2002592
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b1205
  article-title: Atomically dispersed Co-pyridinic N-C for superior oxygen reduction reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002592
– volume: 135
  start-page: 15443
  year: 2013
  ident: 10.1016/j.ccr.2022.214493_b0705
  article-title: Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405149m
– volume: 2
  start-page: 149
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b0250
  article-title: Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0192-4
– volume: 29
  start-page: 1604456
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0680
  article-title: In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604456
– volume: 410
  start-page: 128359
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b1015
  article-title: Rational design of ultrahigh loading metal single-atoms (Co, Ni, Mo) anchored on in-situ pre-crosslinked guar gum derived N-doped carbon aerogel for efficient overall water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128359
– volume: 1
  start-page: 2
  year: 2011
  ident: 10.1016/j.ccr.2022.214493_b0090
  article-title: Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: size effect in the sub-2 nm regime
  publication-title: ACS Catal.
  doi: 10.1021/cs100043j
– volume: 328
  start-page: 151
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b0870
  article-title: Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.03.016
– volume: 61
  start-page: 245
  year: 2019
  ident: 10.1016/j.ccr.2022.214493_b1020
  article-title: High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.076
– volume: 421
  start-page: 127804
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b0100
  article-title: FeS2 bridging function to enhance charge transfer between MoS2 and g-C3N4 for efficient hydrogen evolution reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127804
– volume: 11
  start-page: 3578
  year: 2021
  ident: 10.1016/j.ccr.2022.214493_b0985
  article-title: Pt1-O4 as active sites boosting CO oxidation via a non-classical Mars-van Krevelen mechanism
  publication-title: Catal Sci. Technol.
  doi: 10.1039/D1CY00115A
– volume: 133
  start-page: 12714
  year: 2011
  ident: 10.1016/j.ccr.2022.214493_b1185
  article-title: Correlation between atomic coordination structure and enhanced electrocatalytic activity for trimetallic alloy catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2040464
– volume: 1
  start-page: 339
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b0010
  article-title: A universal principle for a rational design of single-atom electrocatalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0063-z
– volume: 489
  start-page: 128
  year: 2012
  ident: 10.1016/j.ccr.2022.214493_b0785
  article-title: Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films
  publication-title: Nature
  doi: 10.1038/nature11434
– volume: 7
  start-page: 5758
  year: 2016
  ident: 10.1016/j.ccr.2022.214493_b0765
  article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC02105K
– volume: 48
  start-page: 4857
  year: 2012
  ident: 10.1016/j.ccr.2022.214493_b0550
  article-title: Novel Au/La2O3 and Au/La2O2SO4 catalysts for the water-gas shift reaction prepared via an anion adsorption method
  publication-title: ChemComm
– volume: 10
  start-page: 1302
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0585
  article-title: Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1416-z
– volume: 139
  start-page: 14889
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b1030
  article-title: Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09074
– volume: 137
  start-page: 3470
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b0300
  article-title: A common single-site Pt(II)-O(OH)x- species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja513292k
– volume: 281
  start-page: 1647
  year: 1998
  ident: 10.1016/j.ccr.2022.214493_b0140
  article-title: Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties
  publication-title: Science
  doi: 10.1126/science.281.5383.1647
– volume: 3
  start-page: 950
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b1260
  article-title: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.09.014
– volume: 139
  start-page: 8078
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b0750
  article-title: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02736
– volume: 11
  start-page: 2701
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b0995
  article-title: Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16558-1
– volume: 5
  start-page: 5634
  year: 2014
  ident: 10.1016/j.ccr.2022.214493_b0820
  article-title: FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6634
– volume: 139
  start-page: 3336
  year: 2017
  ident: 10.1016/j.ccr.2022.214493_b1025
  article-title: Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13100
– volume: 394
  start-page: 124904
  year: 2020
  ident: 10.1016/j.ccr.2022.214493_b1150
  article-title: Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst
  publication-title: Chem Eng. J.
  doi: 10.1016/j.cej.2020.124904
– volume: 137
  start-page: 10484
  year: 2015
  ident: 10.1016/j.ccr.2022.214493_b0600
  article-title: Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06485
– volume: 10
  start-page: 5058
  year: 2018
  ident: 10.1016/j.ccr.2022.214493_b1060
  article-title: Single atom catalysts on carbon-based materials
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801174
SSID ssj0016992
Score 2.6821365
SecondaryResourceType review_article
Snippet [Display omitted] •Coordination environments of single-atom catalysts (SACs) are highlighted.•Coordination environments explain the structure-performance...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 214493
SubjectTerms Atomic configuration
Catalytic activity
Characterization technique
Coordination environment
Single-atom catalyst
Stabilization strategy
Title The effect of coordination environment on the activity and selectivity of single-atom catalysts
URI https://dx.doi.org/10.1016/j.ccr.2022.214493
Volume 461
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DD3oRf-L8MXLwJGRrmixtjmM4puJODnYLSZrCZHbD1YMX_3bzmnZMUA8eU_KgvL58eUm_9z2EbjLKrUsFJSKhnHAnc2Ksjok0mYUgMMxBgfPTRIyn_GHWn7XQsKmFAVpljf0B0yu0rp_0am_2VvM51PgCcx4UwWEjq8qvOU8gyrufG5oHFVIGxXCPNzC7-bNZcbysBUnQOO6CcJhkP-9NW_vN6BAd1IkiHoR3OUItVxyjvWHTn-0EKf-FcaBj4GWO7dIfI-fhbg9vla9hP_RJHoYCBugTgXWR4XXV_SaMvS3cFywc8efvV1zd53ysy_Upmo7unodjUrdLIJYJVhK_VDMprYcgE8eZjFKnqc1EzJ3PGXIpc82oszpnPsVwqZE6sto4avvawEEkYWdop1gW7hxhrXPHEudxMGHcUpFaw7JIZwJEQ6l0bRQ1jlK21hKHlhYL1ZDGXpT3rQLfquDbNrrdmKyCkMZfk3njffUtGpQH-t_NLv5ndon2YQQEMNq_Qjvl27u79qlGaTpVLHXQ7uD-cTz5AuF704c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGGBBPEV5eoAFKVDHaRoPDAioWvqYqNTN2I4jFZW2okWIhT_FH-QuDwQSMCB1dJKL4svl7ux89x3AccwD66KQe2GNB17gZOIZq31PmtiSERjhqMC50w0bveC2X-2X4L2ohSFYZe77M5-eeuv8yHmuzfPJYEA1voScJ0ZwCmQRz5GVLff6guu26UXzGl_yie_Xb-6uGl7eWsCzIhQzD806ltLi52p8P5aVyGlu49APHMbXRMpEC-6sTgSGYxcZqStWG8dtVRtK2msC77sASwG6C2qbcPb2iSvhoZQZRTk6OHq84ldqCiqzljhIff-MmMqk-DkYfglw9TVYzTNTdplNfh1KbrQBy1dFQ7hNUGhSLMN_sHHC7BjnP8g2E9mXejmGQ8wqGVVMUGMKpkcxm6btdrIxytIGxdB5uOB_ZOkG0ut0Nt2C3lyUuA2Lo_HI7QDTOnGi5tDx1kRgeRhZI-KKjkNiKeXSlaFSKErZnLycemgMVYFSe1CoW0W6VZluy3D6KTLJmDv-ujgotK--mZ_CyPK72O7_xI5guXHXaat2s9vagxU6Q-gzXt2HxdnTszvAPGdmDlO7YnA_b0P-AGaTD4o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+coordination+environment+on+the+activity+and+selectivity+of+single-atom+catalysts&rft.jtitle=Coordination+chemistry+reviews&rft.au=Zhang%2C+Yuqi&rft.au=Yang%2C+Jack&rft.au=Ge%2C+Riyue&rft.au=Zhang%2C+Jiujun&rft.date=2022-06-15&rft.issn=0010-8545&rft.volume=461&rft.spage=214493&rft_id=info:doi/10.1016%2Fj.ccr.2022.214493&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ccr_2022_214493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon