The effect of coordination environment on the activity and selectivity of single-atom catalysts
[Display omitted] •Coordination environments of single-atom catalysts (SACs) are highlighted.•Coordination environments explain the structure-performance relationship rationally.•Suitable binding states and electronic interactions stabilize and functionalize SACs.•Preparation methods significantly a...
Saved in:
Published in | Coordination chemistry reviews Vol. 461; p. 214493 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Coordination environments of single-atom catalysts (SACs) are highlighted.•Coordination environments explain the structure-performance relationship rationally.•Suitable binding states and electronic interactions stabilize and functionalize SACs.•Preparation methods significantly affect the coordination environments of SACs.•Advanced characterizations reveal the geometric and electronic structures of SACs.
Traditional heterogeneous catalysts with noble metals as active sites only have surface-active substances involved in the catalytic reactions, which greatly reduces the material utilization efficiencies and increases the production costs. Since 2011, single-atom catalysts (SACs) have been proven useful to solve this problem and have become a rapidly evolving research field. SACs allow the benefits from both homogeneous and heterogeneous catalysts to be combined in a single system, by providing isolated active sites, high selectivity, and ease of separation from reaction systems. Unfortunately, SACs suffer from the agglomeration of metal atoms during the fabrication and application processes for their high surface energy. Nevertheless, this problem can be solved by constructing strong coordination bonds between single-atoms and their supports, which can also significantly influence the activity and selectivity of SACs. In order to further identify and regulate the coordination environments of single-atoms, it is critical for the structural, physical, and chemical properties of SACs to be characterized downward to the atomic level. Hence, we first review different physical and chemical strategies used to stabilize the single-atom environments and clarify how the obtained coordination environments affect the catalytic performance of SACs. The reasonable selection of preparation methods can meet the specific requirements of central atoms and/or coordinated atoms, and effectively prevent the agglomeration of single-atoms. Moreover, we review the state-of-art complementary characterization methods (ex-situ and in-situ) to deepen the understanding of the critical structure–property relationship for SACs, which is essential to promote the rational design of SACs and other heterogeneous catalysts. Finally, we summarize several stages for the development of SACs and highlights challenges and prospects for the future of this field from the perspective of coordination environments. We believe that this review will provide new insights for future research on SACs to further improve both their activities and stabilities, reduce the associated preparation costs, and realize large-scale industrial applications. |
---|---|
AbstractList | [Display omitted]
•Coordination environments of single-atom catalysts (SACs) are highlighted.•Coordination environments explain the structure-performance relationship rationally.•Suitable binding states and electronic interactions stabilize and functionalize SACs.•Preparation methods significantly affect the coordination environments of SACs.•Advanced characterizations reveal the geometric and electronic structures of SACs.
Traditional heterogeneous catalysts with noble metals as active sites only have surface-active substances involved in the catalytic reactions, which greatly reduces the material utilization efficiencies and increases the production costs. Since 2011, single-atom catalysts (SACs) have been proven useful to solve this problem and have become a rapidly evolving research field. SACs allow the benefits from both homogeneous and heterogeneous catalysts to be combined in a single system, by providing isolated active sites, high selectivity, and ease of separation from reaction systems. Unfortunately, SACs suffer from the agglomeration of metal atoms during the fabrication and application processes for their high surface energy. Nevertheless, this problem can be solved by constructing strong coordination bonds between single-atoms and their supports, which can also significantly influence the activity and selectivity of SACs. In order to further identify and regulate the coordination environments of single-atoms, it is critical for the structural, physical, and chemical properties of SACs to be characterized downward to the atomic level. Hence, we first review different physical and chemical strategies used to stabilize the single-atom environments and clarify how the obtained coordination environments affect the catalytic performance of SACs. The reasonable selection of preparation methods can meet the specific requirements of central atoms and/or coordinated atoms, and effectively prevent the agglomeration of single-atoms. Moreover, we review the state-of-art complementary characterization methods (ex-situ and in-situ) to deepen the understanding of the critical structure–property relationship for SACs, which is essential to promote the rational design of SACs and other heterogeneous catalysts. Finally, we summarize several stages for the development of SACs and highlights challenges and prospects for the future of this field from the perspective of coordination environments. We believe that this review will provide new insights for future research on SACs to further improve both their activities and stabilities, reduce the associated preparation costs, and realize large-scale industrial applications. |
ArticleNumber | 214493 |
Author | Yang, Jack Ge, Riyue Li, Ying Zhang, Yuqi Cairney, Julie M. Zhang, Jiujun Li, Sean Li, Wenxian Zhu, Mingyuan |
Author_xml | – sequence: 1 givenname: Yuqi surname: Zhang fullname: Zhang, Yuqi organization: Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China – sequence: 2 givenname: Jack surname: Yang fullname: Yang, Jack organization: School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia – sequence: 3 givenname: Riyue surname: Ge fullname: Ge, Riyue organization: Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China – sequence: 4 givenname: Jiujun surname: Zhang fullname: Zhang, Jiujun organization: Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China – sequence: 5 givenname: Julie M. surname: Cairney fullname: Cairney, Julie M. email: julie.cairney@sydney.edu.au organization: School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia – sequence: 6 givenname: Ying surname: Li fullname: Li, Ying organization: Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China – sequence: 7 givenname: Mingyuan surname: Zhu fullname: Zhu, Mingyuan organization: Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China – sequence: 8 givenname: Sean surname: Li fullname: Li, Sean email: sean.li@unsw.edu.au organization: School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia – sequence: 9 givenname: Wenxian surname: Li fullname: Li, Wenxian email: shuliwx@t.shu.edu.cn organization: Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China |
BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A7vmY7fd4EmKX1DwUs8hOzvRlG0iSSj035tavXjoaXiZeQbeZ0YmPngk5JazmjO-uNvWALEWTIha8KZR8oJMebeUlewaNiFTxjirurZpr8gspW2JC6XElOjNJ1K0FiHTYCmEEAfnTXbBU_R7F4PfoS87T3O5NJDd3uUDNX6gCUf8y4VNzn-MWJkcdhRMNuMh5XRNLq0ZE978zjl5f3rcrF6q9dvz6-phXYFcyFxJxgelQHDVCzEo1qHhMCxEg7xtrVLWSI5grJRti12vDAPTI4fW9ExItpRzsjz9hRhSimg1uPxTI0fjRs2ZPnrSW1086aMnffJUSP6P_IpuZ-LhLHN_YrBU2juMOoFDDzi4WJToIbgz9Dd1DoRc |
CitedBy_id | crossref_primary_10_1002_cctc_202401186 crossref_primary_10_1016_j_mattod_2023_02_010 crossref_primary_10_1016_j_comptc_2025_115192 crossref_primary_10_3389_fchem_2023_1172146 crossref_primary_10_1002_tcr_202300330 crossref_primary_10_3390_en16062664 crossref_primary_10_1016_j_ijhydene_2023_09_291 crossref_primary_10_1002_anie_202315003 crossref_primary_10_1002_cctc_202400499 crossref_primary_10_3390_nano13132013 crossref_primary_10_1007_s11708_023_0892_6 crossref_primary_10_1039_D4SC00569D crossref_primary_10_1039_D4RA09026H crossref_primary_10_1016_j_surfin_2024_105265 crossref_primary_10_1002_advs_202205031 crossref_primary_10_1016_j_ccr_2024_215899 crossref_primary_10_1016_j_ecoenv_2025_117714 crossref_primary_10_1002_anie_202416912 crossref_primary_10_1016_j_apcatb_2024_124152 crossref_primary_10_1126_sciadv_ads6658 crossref_primary_10_1002_smll_202301818 crossref_primary_10_1063_5_0133355 crossref_primary_10_1021_acscatal_2c05155 crossref_primary_10_1039_D3TA03682K crossref_primary_10_1016_j_apenergy_2023_121582 crossref_primary_10_1016_j_jechem_2024_05_045 crossref_primary_10_1007_s11705_024_2502_5 crossref_primary_10_1016_j_jece_2024_112838 crossref_primary_10_1002_cctc_202301684 crossref_primary_10_1021_acsbiomaterials_4c01530 crossref_primary_10_1002_adma_202301477 crossref_primary_10_1016_j_nanoso_2024_101216 crossref_primary_10_1016_j_ccr_2023_215524 crossref_primary_10_1016_j_apsusc_2023_158799 crossref_primary_10_1038_s41467_025_56102_7 crossref_primary_10_1002_smll_202311691 crossref_primary_10_1038_s41578_023_00633_2 crossref_primary_10_1007_s00894_023_05620_6 crossref_primary_10_1039_D3CP03722C crossref_primary_10_1002_adfm_202312116 crossref_primary_10_1002_admi_202202050 crossref_primary_10_1016_j_chemosphere_2022_136735 crossref_primary_10_1039_D4TA03518F crossref_primary_10_1016_j_jechem_2022_03_022 crossref_primary_10_1002_anie_202213318 crossref_primary_10_2139_ssrn_4184972 crossref_primary_10_1002_adfm_202423552 crossref_primary_10_1016_j_ccr_2024_215952 crossref_primary_10_1016_j_mcat_2022_112620 crossref_primary_10_1002_celc_202400476 crossref_primary_10_1088_1361_6528_ad64d9 crossref_primary_10_3390_en16186616 crossref_primary_10_1021_acs_chemmater_3c03099 crossref_primary_10_1002_adfm_202309223 crossref_primary_10_1016_j_nxnano_2024_100073 crossref_primary_10_1016_j_apcatb_2023_122898 crossref_primary_10_1016_j_seppur_2025_131936 crossref_primary_10_1002_ange_202416912 crossref_primary_10_1002_smll_202302739 crossref_primary_10_1016_j_susmat_2023_e00743 crossref_primary_10_26599_NTM_2022_9130010 crossref_primary_10_1016_j_inoche_2023_111819 crossref_primary_10_1002_sus2_229 crossref_primary_10_3390_catal13111409 crossref_primary_10_1002_adma_202211221 crossref_primary_10_1016_j_jece_2022_108207 crossref_primary_10_1002_anie_202219242 crossref_primary_10_1021_acs_langmuir_4c04034 crossref_primary_10_1039_D3EE04457B crossref_primary_10_1080_09500839_2024_2343665 crossref_primary_10_1016_j_bios_2022_114662 crossref_primary_10_1016_j_mtchem_2022_101210 crossref_primary_10_1016_j_ccr_2024_215900 crossref_primary_10_1002_adma_202206783 crossref_primary_10_1016_j_jcis_2023_10_146 crossref_primary_10_32362_2410_6593_2023_18_2_135_167 crossref_primary_10_1002_adma_202412031 crossref_primary_10_1016_j_surfin_2024_105066 crossref_primary_10_1016_j_esci_2023_100140 crossref_primary_10_1021_acs_energyfuels_3c03037 crossref_primary_10_1002_adma_202404658 crossref_primary_10_1039_D5TA00311C crossref_primary_10_1039_D4CY00727A crossref_primary_10_1016_j_ijhydene_2025_02_275 crossref_primary_10_1016_S1872_2067_23_64456_0 crossref_primary_10_1021_acscatal_5c01147 crossref_primary_10_1021_acscatal_2c05992 crossref_primary_10_1080_24701556_2023_2267535 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1016_j_apcata_2024_120035 crossref_primary_10_1039_D3TA05366K crossref_primary_10_1002_tcr_202300129 crossref_primary_10_1007_s10562_022_04208_8 crossref_primary_10_1016_j_jcat_2024_115784 crossref_primary_10_1021_acsestengg_4c00096 crossref_primary_10_1002_sstr_202300175 crossref_primary_10_1002_inf2_12421 crossref_primary_10_1016_j_apcatb_2022_122051 crossref_primary_10_1039_D3NR03310D crossref_primary_10_1002_ange_202213318 crossref_primary_10_1016_j_jcis_2024_11_109 crossref_primary_10_1016_j_susmat_2022_e00421 crossref_primary_10_1002_smll_202412000 crossref_primary_10_1021_acscatal_4c01488 crossref_primary_10_1039_D3CY00236E crossref_primary_10_1021_acs_nanolett_4c05201 crossref_primary_10_1007_s12274_024_6693_3 crossref_primary_10_1016_j_psep_2024_11_120 crossref_primary_10_1016_j_apcata_2023_119228 crossref_primary_10_1016_j_efmat_2023_04_001 crossref_primary_10_1016_j_jechem_2022_06_031 crossref_primary_10_1007_s11244_025_02064_5 crossref_primary_10_1021_jacsau_3c00557 crossref_primary_10_1002_cssc_202301105 crossref_primary_10_1016_j_jechem_2025_02_022 crossref_primary_10_1002_cctc_202200611 crossref_primary_10_1016_j_apcatb_2023_122966 crossref_primary_10_1002_cey2_695 crossref_primary_10_1002_smll_202302429 crossref_primary_10_1016_j_cclet_2024_110612 crossref_primary_10_3390_nano12162793 crossref_primary_10_1016_j_snb_2023_133843 crossref_primary_10_1021_acscatal_3c03928 crossref_primary_10_1002_cssc_202401314 crossref_primary_10_1016_j_mtnano_2022_100248 crossref_primary_10_1016_j_susc_2024_122541 crossref_primary_10_1038_s41467_023_40003_8 crossref_primary_10_1021_acsanm_4c06508 crossref_primary_10_1016_j_cej_2023_143650 crossref_primary_10_1016_j_jechem_2023_12_033 crossref_primary_10_1016_j_nxmate_2024_100192 crossref_primary_10_1021_acs_chemmater_3c02367 crossref_primary_10_1016_j_nxmate_2025_100491 crossref_primary_10_3390_catal14090569 crossref_primary_10_1021_acs_jpcc_2c02307 crossref_primary_10_1021_acsnano_4c13030 crossref_primary_10_1016_j_apenergy_2022_119999 crossref_primary_10_1002_ange_202315003 crossref_primary_10_1002_ange_202219242 crossref_primary_10_1002_asia_202401256 crossref_primary_10_1002_celc_202400159 crossref_primary_10_1016_j_mtsust_2024_100858 crossref_primary_10_1016_j_susmat_2024_e01090 crossref_primary_10_1002_advs_202206107 crossref_primary_10_1016_j_cclet_2023_109347 crossref_primary_10_1002_smll_202404254 crossref_primary_10_1088_2631_7990_ad3316 crossref_primary_10_1039_D3TA07230D crossref_primary_10_1002_chem_202400669 crossref_primary_10_1016_j_jcis_2024_12_083 crossref_primary_10_1002_aoc_70055 crossref_primary_10_1016_j_ccr_2023_215606 crossref_primary_10_1021_acsnano_3c09224 crossref_primary_10_1002_smll_202305009 crossref_primary_10_1007_s11581_022_04731_z crossref_primary_10_1039_D4NA00433G crossref_primary_10_1002_aic_18449 crossref_primary_10_1016_j_ijhydene_2024_07_407 |
Cites_doi | 10.1002/anie.201509241 10.1002/cctc.201300946 10.1038/nnano.2011.42 10.1016/j.chempr.2019.12.008 10.1002/anie.202004841 10.1021/acs.chemmater.7b02206 10.1021/acssuschemeng.8b02613 10.1002/smtd.201800481 10.1126/sciadv.1500462 10.1146/annurev-chembioeng-062011-080939 10.1021/acscatal.8b04885 10.1016/j.jcat.2008.09.022 10.1021/acs.jpcc.8b00078 10.1002/adma.201505281 10.1002/cctc.201500363 10.1016/j.jcat.2013.04.012 10.1002/adma.201706287 10.1039/c3cs35468g 10.1038/s42004-020-0289-y 10.1038/s41467-019-11992-2 10.1038/s41467-019-12459-0 10.1038/nchem.1721 10.1039/b924051a 10.1098/rsta.2009.0112 10.1002/anie.202003842 10.1021/jp503745c 10.1126/science.aam7092 10.1021/acscentsci.0c00512 10.1002/anie.201804958 10.1038/s41467-017-01765-0 10.1039/C5CS00434A 10.1002/anie.201402342 10.1002/adma.201808135 10.1016/S1872-2067(17)62903-6 10.1016/S0167-2991(06)80895-5 10.1038/s41467-017-01521-4 10.1016/S1872-2067(17)62900-0 10.1021/acscatal.6b02899 10.1016/j.micromeso.2020.110507 10.1021/ja507463w 10.1016/S1872-2067(17)62882-1 10.1021/ja402512r 10.1126/science.1079879 10.1038/s41565-018-0089-z 10.1039/D0TA06942F 10.1002/smll.201903418 10.1002/adma.201302569 10.1002/anie.200907289 10.1021/acsaem.8b00817 10.1021/jacs.6b10169 10.1021/nl404640n 10.1016/j.chempr.2018.12.011 10.1021/ol4028013 10.1021/ja508879j 10.1021/ja0773148 10.1016/j.apcatb.2016.05.074 10.1039/C3EE42799D 10.1002/chem.201903822 10.1021/jacs.9b05576 10.1039/D0TA09903A 10.1002/chem.201303366 10.1039/C7CY01603D 10.1039/c0cp90010a 10.1016/j.catcom.2020.105999 10.1021/acs.chemrev.9b00157 10.1021/nn502438k 10.1038/s41467-018-06967-8 10.1039/C8EE02939C 10.1016/j.apcatb.2019.117786 10.1002/adma.201704624 10.1021/acscatal.9b04621 10.1038/srep05441 10.1039/C6NR09707C 10.1021/acscatal.5b00700 10.1021/acs.jpcc.7b03213 10.1039/C1CS15171A 10.1038/s41467-019-08419-3 10.1038/s41467-019-09290-y 10.3390/nano10020244 10.1016/S1872-2067(18)63047-5 10.1021/jacs.8b07294 10.1126/science.aad4998 10.1007/s12274-020-2755-3 10.1063/1.5128934 10.1016/j.apcatb.2009.12.012 10.1126/science.aaf8800 10.1021/cs401117e 10.1021/acscatal.8b04937 10.1016/j.nanoen.2016.01.016 10.1021/jacs.7b09314 10.1016/j.cbpa.2018.12.011 10.1039/C9EE00162J 10.1021/jacs.7b07093 10.1016/S1872-2067(15)60889-0 10.1002/adfm.202000531 10.1021/acscatal.8b02288 10.1016/S1872-2067(15)61090-7 10.1038/s41467-019-11856-9 10.1002/anie.201903545 10.1021/nn302674k 10.1021/jacs.8b09834 10.1002/anie.202114951 10.1016/j.nanoen.2018.02.025 10.1021/acsnano.7b09064 10.1002/adsc.201500846 10.1016/j.joule.2018.06.019 10.1007/s40843-020-1271-x 10.1038/nchem.1095 10.1038/ncomms5885 10.1038/s41467-020-14917-6 10.1038/s41467-019-12510-0 10.1039/C7CY00723J 10.1021/jacs.9b03811 10.1038/s41467-019-12461-6 10.1002/anie.201601208 10.1021/jacs.7b10817 10.1002/anie.200461699 10.1016/S1872-2067(17)62880-8 10.1002/anie.201806936 10.1039/C9CS00869A 10.1038/s41467-019-12886-z 10.1021/nl403520c 10.1021/nn5054798 10.1021/ar300361m 10.1021/acscatal.6b00677 10.1016/j.ijhydene.2021.09.063 10.1021/acscatal.0c01950 10.1002/cctc.201500595 10.1038/s41467-018-03380-z 10.1002/anie.202009331 10.1021/acs.chemrev.7b00776 10.1038/nature24640 10.1021/acsnano.5b05984 10.1038/ncomms2929 10.1021/ja408574m 10.1021/ja312646d 10.1038/ncomms10922 10.1002/cphc.202000595 10.1016/j.nanoen.2018.06.023 10.1002/smll.202001896 10.1021/acsenergylett.8b00640 10.1002/advs.201903089 10.1002/anie.201403353 10.1016/j.apcatb.2019.118233 10.1038/nchem.1412 10.1039/c2cs35174a 10.1038/nmat3087 10.1016/S1872-2067(17)62872-9 10.1016/j.tsf.2006.05.049 10.1002/adma.202105204 10.1021/acsnano.7b00796 10.1038/s41563-019-0571-5 10.1126/science.abe5757 10.1016/j.cej.2019.123655 10.1021/jacs.0c08409 10.1126/sciadv.abb9823 10.1016/j.cej.2020.126458 10.1021/jp804699c 10.1021/acscatal.8b00398 10.1080/01614940903048661 10.1021/ja503557x 10.1002/smtd.201700286 10.1002/anie.201703864 10.1039/C8QM00081F 10.1016/j.apcatb.2019.118196 10.1039/c0cp02009e 10.1021/acsanm.0c00146 10.1126/science.abg2533 10.1016/j.jpowsour.2020.228446 10.1021/jacs.9b06482 10.1021/jacs.6b02692 10.1038/s41929-018-0090-9 10.1016/j.nanoen.2020.104931 10.1038/s41929-019-0279-6 10.1038/s41467-019-12362-8 10.1039/D0GC02689A 10.1038/s41570-018-0010-1 10.1039/C4CP04181J 10.1021/jacs.5b12515 10.1002/anie.201712451 10.1039/C8CS00016F 10.1038/nchem.2618 10.1007/s12274-019-2351-6 10.1103/PhysRevLett.109.206803 10.1038/ncomms16100 10.1039/C9TA05981D 10.1093/nsr/nwy056 10.1016/j.gee.2017.02.001 10.1002/anie.201702473 10.1126/science.aaf5251 10.1021/ja5128133 10.1126/sciadv.aax6322 10.1039/C9RA05965B 10.1126/sciadv.aba3809 10.1002/anie.201307203 10.1021/cs500071c 10.1038/s41467-018-03235-7 10.1021/acscatal.6b01534 10.1021/ar3002427 10.1038/s41929-017-0008-y 10.1002/anie.201812423 10.1002/anie.201604802 10.1039/C8SC04986F 10.1021/cs400649n 10.1016/j.xcrp.2019.100004 10.1002/aenm.201801101 10.1021/acsnano.7b02148 10.1126/science.1253150 10.1021/acscatal.0c00097 10.1021/acscatal.1c01200 10.1016/j.nanoen.2016.12.056 10.1002/anie.201610119 10.1038/ncomms14036 10.1002/adma.201904548 10.1093/nsr/nwv024 10.1016/S1872-2067(17)62839-0 10.1038/s41467-019-11619-6 10.1038/s41560-017-0078-8 10.1038/s41557-020-0473-9 10.1002/anie.202014112 10.1021/acscatal.7b00199 10.1021/acs.chemrev.5b00760 10.1002/aenm.202002592 10.1021/ja405149m 10.1038/s41929-018-0192-4 10.1002/adma.201604456 10.1016/j.cej.2020.128359 10.1021/cs100043j 10.1016/j.jcat.2015.03.016 10.1016/j.nanoen.2019.04.076 10.1016/j.cej.2020.127804 10.1039/D1CY00115A 10.1021/ja2040464 10.1038/s41929-018-0063-z 10.1038/nature11434 10.1039/C6SC02105K 10.1007/s12274-016-1416-z 10.1021/jacs.7b09074 10.1021/ja513292k 10.1126/science.281.5383.1647 10.1016/j.chempr.2017.09.014 10.1021/jacs.7b02736 10.1038/s41467-020-16558-1 10.1038/ncomms6634 10.1021/jacs.6b13100 10.1016/j.cej.2020.124904 10.1021/jacs.5b06485 10.1002/cctc.201801174 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ccr.2022.214493 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3840 |
ExternalDocumentID | 10_1016_j_ccr_2022_214493 S0010854522000881 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6J9 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ UPT WH7 XPP YK3 ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 NDZJH OHT R2- RIG SCB SEW SIC SSH UQL VH1 WUQ XJT ZKB ZY4 |
ID | FETCH-LOGICAL-c363t-301d99c219b22d908ea1cd624e155f99fa31ecaf3355e8b9a0cabe1c5ab023073 |
IEDL.DBID | .~1 |
ISSN | 0010-8545 |
IngestDate | Thu Apr 24 23:01:15 EDT 2025 Tue Jul 01 02:43:53 EDT 2025 Fri Feb 23 02:40:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PSAC NPC Stabilization strategy DG XANES APT EELS Catalytic activity XAS Characterization technique DV (FT) (E)XAFS MC FTIR E(S)TEM Atomic configuration NCs SV Coordination environment AC-HAADF STEM Single-atom catalyst DRIFT (N)CNFs (r)GO NPs CVD ZIFs ALD MWCNTs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-301d99c219b22d908ea1cd624e155f99fa31ecaf3355e8b9a0cabe1c5ab023073 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ccr_2022_214493 crossref_primary_10_1016_j_ccr_2022_214493 elsevier_sciencedirect_doi_10_1016_j_ccr_2022_214493 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-15 |
PublicationDateYYYYMMDD | 2022-06-15 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Coordination chemistry reviews |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liang, Li, Wang, Zhou, Wang, Regier, Dai (b0735) 2011; 10 Wang, Zhang, Wang, Gao, Luo, Wang, Zeng, Li, Li, Wang, Zheng, Zhu, Zhang, Ma, Si, Zeng (b0275) 2016; 7 Li, Schweitzer, League, Bernales, Peters, Getsoian, Wang, Miller, Vjunov, Fulton, Lercher, Cramer, Gagliardi, Hupp, Farha (b0590) 2016; 138 Cheng, Sun (b0595) 2017; 38 Wang, Liu, Allard, Lee, Liu, Li, Wang, Wang, Oh, Li, Flytzani-Stephanopoulos, Shen, Goldsmith, Yang (b0255) 2019; 10 Zhang, Wang, Miller, Liu, Yang, Wang, Li, Huang, Mou, Zhang (b1210) 2014; 4 Bruix, Lykhach, Matolínová, Neitzel, Skála, Tsud, Vorokhta, Stetsovych, Ševčíková, Mysliveček, Fiala, Václavů, Prince, Bruyère, Potin, Illas, Matolín, Libuda, Neyman (b0150) 2014; 53 Gai, Boyes (b1270) 2022 Li, Maurya, Kim, Li, Wang, Shi, Liu, Feng, Lin, Shao (b0190) 2020; 10 Liu, Wang, Yang, Shi, Qiao, Lucero, Ma, More, Cullen, Feng, Wu (b0575) 2020; 59 Kunwar, Zhou, DeLaRiva, Peterson, Xiong, Pereira-Hernández, Purdy, ter Veen, Brongersma, Miller, Hashiguchi, Kovarik, Lin, Guo, Wang, Datye (b0365) 2019; 9 Zhang, Doyle-Davis, Sun (b1165) 2019; 12 DeRita, Dai, Lopez-Zepeda, Pham, Graham, Pan, Christopher (b0360) 2017; 139 Wang, Huang, Liang, Liu, Wang, Zhang (b0335) 2017; 38 Gao, Chen, Wang, Wang, Zheng, Zhu, Song, Zhang, Xiong (b0180) 2018; 30 Simonovis, Hunt, Palomino, Senanayake, Waluyo (b1135) 2018; 122 Kärkäs, Porco, Stephenson (b0780) 2016; 116 Flytzani-Stephanopoulos, Gates (b0175) 2012; 3 Cao, Zhao, Lee, Yang, Liu, Giannakakis, Li, Ouyang, Wang, Sykes, Flytzani-Stephanopoulos (b0545) 2020; 6 Tang, Li, Fung, Jiang, Huang, Zhang, Iwasawa, Sakata, Nguyen, Zhang, Frenkel, Tao (b0265) 2018; 9 Peterson, DeLaRiva, Lin, Johnson, Guo, Miller, Hun Kwak, Peden, Kiefer, Allard, Ribeiro, Datye (b0825) 2014; 5 Cheng, Guo, Li, Wu, Xu, Zheng, Song (b1015) 2021; 410 Pei, Liu, Wang, Lee, Isaacs, Li, Pan, Yang, Wang, Tai, Wilson, Zhang (b1230) 2015; 5 Chen, Jiang, Shao, Holtz, Odstrčil, Guizar-Sicairos, Hanke, Ganschow, Schlom, Muller (b1120) 2021; 372 Tedsree, Li, Jones, Chan, Yu, Bagot, Marquis, Smith, Tsang (b1250) 2011; 6 Lessard, Valsamakis, Flytzani-Stephanopoulos (b0550) 2012; 48 Jin, Sultan, Ha, Tiwari, Kim, Kim (b0655) 2020; 30 Zhang, Liu, Zhang (b0105) 2019; 3 Johns, Goeke, Ashbacher, Thüne, Niemantsverdriet, Kiefer, Kim, Balogh, Datye (b0870) 2015; 328 Chen, Wu, Yang, Chen, Lin, Chen (b1150) 2020; 394 Zhang, Cai, Zhu, Zhuang, Xu, Hao, Lu, Li, Duan, Du (b0860) 2020; 392 Zhang, Zhao, Wang, Gong (b0055) 2018; 47 Sa, Park, Jeong, Park, Lee, Kim, Park, Joo (b0710) 2014; 53 Zhang, Feng, Liu, Zuo, Qin, Yan, Xing, Li, Si, Zhou, Zeng (b0570) 2020; 11 Hübner, de Vries, Farina (b0370) 2016; 358 Zhang, Sun, Wang, Dai (b1045) 2018; 57 F. Yang, S. Ding, H. Song, N. Yan, Single-atom Pd dispersed on nanoscale anatase TiO Zhang, Cheng, Luan, Lou (b0925) 2021; 60 Cheng, Zhao, Johannessen, Veder, Saunders, Rowles, Cheng, Liu, Chisholm, Marco, Cheng, Yang, Jiang (b0320) 2018; 30 for the selective hydrogenation of phenylacetylene, Sci. China Mater. 63 (2020) 982-992. https://doi.org/10.1007/s40843-020-1271-x. Qu, Chen, Li, Duan, Wang, Lin, Yuan, Zhou, Hu, Yang, Zhao, Wang, Zhao, Hu, Wu, Zhang, Xu, Liu, Gao, You, Huang, Zheng, Gu, Wu, Li (b1125) 2019; 141 Chen, Zhou, Xing, Xu, Tong, Xie, Zhang, Yan, Chu, Wu, Xie (b0685) 2017; 56 Jiang, Luo, Peng, Yu, Lu, Chan, Liu, de Groot, Tan (b0995) 2020; 11 Cui, Li, Ryabchuk, Junge, Beller (b0075) 2018; 1 He, He, Deng, Peng, Chen, Zhang, Yao, Zhang, Xiao, Ma, Ge, Ji (b0670) 2019; 10 Pan, Zhang, Liu, Cullen, More, Wang, Feng, Wang, Wu, Li (b1040) 2018; 8 Su (b1055) 2017; 2 Li, Yang, Zhang, Huang, Liu (b1215) 2019; 9 Wang, Gu, Song, Wang, Yu (b0505) 2018; 2 Chen, Wanyan, Zeng, Fang, Li, Dong, Qin, Wu, Liu, Wang, Kuang, Xie, Zheng (b0455) 2018; 6 Xing, Chen, Li, Yuan, Zhou, Zheng, Wang, Hu, Wang, Zhao, Wang, Yang (b0495) 2014; 20 Li, Bi, Zhang, Tao, Chu, Zhang, Luo, Wu, Xie (b0330) 2016; 28 Schreyer, Eckert, Immohr, de Bellis, Felderhoff, Schüth (b0630) 2019; 58 Samad, Hoenig, Regalbuto (b0530) 2015; 7 Li, Wang, Wu, Li (b0415) 2018; 5 Tang, Jiao, Shi, Liu, Xie, Chen, Zhang, Qiao (b0380) 2020; 59 Chen, Guo, Kong, Xing, Liu, Yu, Li, Geng, Si, Zeng (b1200) 2020; 22 Zhou, Yang, Wang, Miao, Liu, Pan, Su, Li, Tan, Zhang (b0160) 2016; 37 Jones, Xiong, DeLaRiva, Peterson, Pham, Challa, Qi, Oh, Wiebenga, Pereira Hernández, Wang, Datye (b0885) 2016; 353 Qiao, Lin, Wang, Chen, Zhang, Liu (b0245) 2015; 36 Bo, McCullough, Dull, Ardagh, Wang, Notestein (b0540) 2019; 151 Wang, You, Zhao, Zhang, Liu, Fu, Li, Zhou, Zheng, Xu, Yao, Jia, Wang, Huang, Wu (b0945) 2020; 10 Sun, Sun, Gu, Liang, Zhang, Yang, Deng, Wei, Peng, Xu, Fang, Li, Han, Jiang, Huang (b1020) 2019; 61 Yu, Cao, Wang, Yu (b0790) 2017; 121 Wei, Huang, Wang, Zhang, Ge, Ma, Wen, Zhang, Li, Lei, Zhang, Irawan, Liu, Wu (b0815) 2017; 8 Liang, Du, Gibson, Du, Qiao (b0730) 2013; 25 Xiang, Chitry, Liddicoat, Felfer, Cairney, Ringer, Kruse (b1245) 2013; 135 Meng, Zhang, Xu, Cheng, Yu (b0795) 2016; 198 Liang, Hao, Shi (b0420) 2015; 7 Zeng, Wang, Cai, Huang, Tao, Tang, Zhu (b1145) 2020; 74 Kistler, Chotigkrai, Xu, Enderle, Praserthdam, Chen, Browning, Gates (b1110) 2014; 53 Ding, Gu, Su, Li (b0855) 2014; 118 Wang, Chen, Zhao, Yao, Chen, You, Zhao, Wu, Wang, Huang, Yang, Hong, Wei, Wu, Li (b1035) 2018; 57 Mitchell, Vorobyeva, Pérez‐Ramírez (b0230) 2018; 57 Nam, Park, Kim, Shin, Park, Kim, Lee, Cho (b0740) 2014; 14 Pan, Chen, Wu, Chen, Liu, Cao, Cheong, Meng, Luo, Zheng, Liu, Wang, Peng, Li, Chen (b0340) 2019; 10 Yi, Si, Saltsburg, Flytzani-Stephanopoulos (b0840) 2010; 95 Kim, Heo, Kim, Park, Yoon, Kim, Oh, Yi, Noh, Park (b0785) 2012; 489 Alonso, Moglie, Pastor-Pérez, Sepúlveda-Escribano (b0445) 2014; 6 Liu, Tsunoyama, Akita, Xie, Tsukuda (b0090) 2011; 1 Jiang, Li, Sheng, Hu, Chen, Wang (b0375) 2018; 140 Loh, Sen, Bosman, Tan, Zhong, Nijhuis, Král, Matsudaira, Mirsaidov (b0810) 2017; 9 Li, Wang, Sawada, Han, Samuels, Allen, Kirkland, Grossman, Warner (b1080) 2017; 11 Zhu, Shi, Feng, Du, Lin (b1130) 2018; 3 Sun, Zhao, Mu, Zha, Li, Chen, Zang, Luo, Li, Purdy, Kropf, Miller, Zeng, Gong (b0270) 2018; 9 Xu, Cheng, Cao, Zeng (b0010) 2018; 1 Hulva, Meier, Bliem, Jakub, Kraushofer, Schmid, Diebold, Franchini, Parkinson (b0385) 2021; 371 van Bokhoven (b1190) 2010; 12 Li, Guan, Wu, Liu, Lin, Sun, Ye, Zheng, Pan, Zhu, Chen, Zhang, Wei, Lu (b0350) 2019; 141 Tavakkoli, Holmberg, Kronberg, Jiang, Sainio, Kauppinen, Kallio, Laasonen (b0560) 2017; 7 Zu, Li, Liu, Sun, Xu, Yao, Yan, Gao, Wang, Wei, Xie (b0950) 2019; 31 Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (b0045) 2017; 355 Wu, Du, Zhang, Cai (b0430) 2015; 17 Zhang, Guo, Guan, Liu, Huang, Xue, Dong, Pennycook, Chisholm (b0565) 2013; 4 Li, He, Ge, Zhu, Feng, Li (b0060) 2019; 22 Hwang, Rao, Giordano, Katayama, Yu, Shao-Horn (b0040) 2017; 358 Yang, Allard, Flytzani-Stephanopoulos (b0555) 2013; 135 Chang, Tanaka, Ishikawa, Toyoura, Matsunaga, Ikuhara, Shibata (b1075) 2014; 14 Yang, Wang, Qiao, Li, Liu, Zhang (b0130) 2013; 46 Gong, Selloni, Dulub, Jacobson, Diebold (b0500) 2008; 130 Li, Bagot, Christian, Theobald, Sharman, Ozkaya, Moody, Tsang, Smith (b1240) 2014; 4 Ullah, Ayub, Mahmood (b0980) 2021; 46 Warner, Lin, He, Koshino, Suenaga (b1085) 2014; 8 Hansen, DeLaRiva, Challa, Datye (b0875) 2013; 46 Fonseca, Lu (b0580) 2021; 11 Cheng, Gu, Liu, Kang, Zhang, Wang (b0640) 2016; 55 Jia, Ramaswamy, Hafiz, Tylus, Strickland, Wu, Barbiellini, Bansil, Holby, Zelenay, Mukerjee (b0425) 2015; 9 Cheon, Kim, Kim, Goddeti, Park, Joo (b0720) 2014; 136 Chen, Huang, Ma, Chen, Tang (b0220) 2017; 7 Elam, Zinovev, Han, Wang, Welp, Hryn, Pellin (b0620) 2006; 515 Ren, Tang, Zhang, Liu, Li, Miao, Sheng Su, Wang, Li, Zhang (b1195) 2019; 10 Wei, Liu, Wang, Zhang, Qiao, Yang, Huang, Miao, Liu, Zhang (b0820) 2014; 5 Xiang, He, Sun, Fan, Yang, Fang, Kuai (b0520) 2020; 308 Li, Zhang, Cheng, Chen, Luan, Gao, Lou (b0965) 2022; 34 Choi, Kim, Kwon, Cho, Yun, Kim, Mayrhofer, Kim, Choi (b0470) 2016; 7 Qin, Liu, Fu, Zheng (b0050) 2018; 2 Corma, Concepción, Boronat, Sabater, Navas, Yacaman, Larios, Posadas, López-Quintela, Buceta, Mendoza, Guilera, Mayoral (b0085) 2013; 5 Telychko, Mutombo, Ondráček, Hapala, Bocquet, Kolorenč, Vondráček, Jelínek, Švec (b0905) 2014; 8 Jiao, Regalbuto (b0535) 2008; 260 Meng, Voiry, Goswami, Zou, Huang, Chhowalla, Liu, Asefa (b0715) 2014; 136 Lin, Wang, Qiao, Liu, Yang, Wang, Liang, Li, Liu, Zhang (b0305) 2013; 135 Yang, Shang, Zhang, Shi, Waterhouse, Gu, Zhang (b0395) 2019; 10 Chen, Ji, Chen, Peng, Wang, Li (b0080) 2018; 2 Shah, Dai, Mateen, Hassan, Zhuang, Liu, Israr, Cheong, Hu, Tu, Zhang, Chen, Peng, Chen, Li (b0990) 2022; 61 Pennycook, Chisholm, Lupini, Varela, Borisevich, Oxley, Luo, van Benthem, Oh, Sales, Molina, García-Barriocanal, Leon, Santamaría, Rashkeev, Pantelides (b1070) 2009; 367 Zhang, Jia, Zhang, Xiong, Sun, Chen, Chen, Kuang, Zheng, Tang, Liu, Liu, Sun, Lin, Dai (b0240) 2019; 12 Yan, Cheng, Yi, Lin, Yao, Wang, Li, Wei, Lu (b0600) 2015; 137 Qiao, Wang, Yang, Allard, Jiang, Cui, Liu, Li, Zhang (b0155) 2011; 3 Jiao, Jiang (b0005) 2019; 5 Yang, Shi, Wang, Lv, Cao (b1100) 2018; 50 Wang, Zhang, Deng, Bao (b0165) 2017; 38 Zhang, Zuo, Qiu, Wang, Zhang, Zhang, Lou (b0955) 2020; 6 Jung, Shin, Lee, Efremov, Lee, Lee, Kim, Hooch Antink, Park, Lee, Cho, Yoo, Sung, Hyeon (b0410) 2020; 19 Ratnasamy, Wagner (b0485) 2009; 51 Zhan, Yang, Zhang, Guo, Lu, Chisholm, Dai (b0635) 2017; 29 Chen, Zhao, Ishikawa, Asao, Yamamoto, Jin (b0450) 2013; 15 Wang, Chen, Zeng, Wang, Li, Qin, Wu, Xie, Zheng (b0850) 2017; 9 Song, Chen, Guo, Sun, Li, Cao, Wang, Sun, Lin, Wang (b0145) 2018; 8 Zhao, Zhang, Huang, Liu, Zhang, He, Wu, Zhang, Wu, Yang, Gu, Hu, Wan (b0215) 2019; 10 Wang, Chen, Yan, Xu, Chu, Chen, Lin, Liang (b0400) 2019; 5 Wang, Arandiyan, Scott, Aguey-Zinsou, Amal (b0280) 2018; 1 Liu, Jiao, Mei, Tong, Li, Ruan, Song, Sun, Jiang, Wang, Jiang, Gu, Zhou, Xu (b0310) 2019; 58 Zhang, Wu, Cheong, Chen, Lin, Li, Zheng, Yan, Gu, Chen, Peng, Wang, Li (b0440) 2018; 9 Zhao, Dai, Yao, Chen, Wang, Wang, Yang, Wei, Wu, Li (b0750) 2017; 139 Li, Wang, Dai, Pu, Lao, Chen, Wang, Zheng, Zhu, Zhang, Si, Ma, Zeng (b0290) 2018; 13 Li, Xia, Wang, Zheng, Lai, Pan, Jiang, Song, Wang, Zhang (10.1016/j.ccr.2022.214493_b0055) 2018; 47 Yang (10.1016/j.ccr.2022.214493_b0205) 2016; 55 Sa (10.1016/j.ccr.2022.214493_b0710) 2014; 53 Chen (10.1016/j.ccr.2022.214493_b0080) 2018; 2 Cheon (10.1016/j.ccr.2022.214493_b0720) 2014; 136 Corma (10.1016/j.ccr.2022.214493_b0085) 2013; 5 Flytzani-Stephanopoulos (10.1016/j.ccr.2022.214493_b0175) 2012; 3 Zhang (10.1016/j.ccr.2022.214493_b0240) 2019; 12 Jiang (10.1016/j.ccr.2022.214493_b0375) 2018; 140 Yin (10.1016/j.ccr.2022.214493_b0700) 2016; 55 Zhao (10.1016/j.ccr.2022.214493_b1235) 2020; 49 Jiang (10.1016/j.ccr.2022.214493_b1265) 2019; 10 Ge (10.1016/j.ccr.2022.214493_b0015) 2020; 260 Lu (10.1016/j.ccr.2022.214493_b0930) 2019; 10 Elam (10.1016/j.ccr.2022.214493_b0620) 2006; 515 He (10.1016/j.ccr.2022.214493_b0670) 2019; 10 Chen (10.1016/j.ccr.2022.214493_b1120) 2021; 372 Lu (10.1016/j.ccr.2022.214493_b0250) 2019; 2 Schmidt (10.1016/j.ccr.2022.214493_b1255) 2017; 8 Cheng (10.1016/j.ccr.2022.214493_b0595) 2017; 38 Cheng (10.1016/j.ccr.2022.214493_b1015) 2021; 410 Yang (10.1016/j.ccr.2022.214493_b0975) 2021; 9 10.1016/j.ccr.2022.214493_b1155 Xiang (10.1016/j.ccr.2022.214493_b0520) 2020; 308 Kim (10.1016/j.ccr.2022.214493_b0785) 2012; 489 Boucher (10.1016/j.ccr.2022.214493_b0830) 2011; 13 Bruix (10.1016/j.ccr.2022.214493_b0150) 2014; 53 Valden (10.1016/j.ccr.2022.214493_b0140) 1998; 281 Álvarez-Docio (10.1016/j.ccr.2022.214493_b0460) 2020; 140 Yang (10.1016/j.ccr.2022.214493_b1225) 2017; 7 Li (10.1016/j.ccr.2022.214493_b0345) 2019; 2 Simonovis (10.1016/j.ccr.2022.214493_b1135) 2018; 122 Zhu (10.1016/j.ccr.2022.214493_b0030) 2017; 56 Ramaswamy (10.1016/j.ccr.2022.214493_b0020) 2019; 119 Guo (10.1016/j.ccr.2022.214493_b0865) 2014; 344 Xing (10.1016/j.ccr.2022.214493_b0495) 2014; 20 Meng (10.1016/j.ccr.2022.214493_b0715) 2014; 136 Gao (10.1016/j.ccr.2022.214493_b0915) 2020; 6 Li (10.1016/j.ccr.2022.214493_b0060) 2019; 22 Bo (10.1016/j.ccr.2022.214493_b0540) 2019; 151 Telychko (10.1016/j.ccr.2022.214493_b0905) 2014; 8 Kunwar (10.1016/j.ccr.2022.214493_b0365) 2019; 9 Nam (10.1016/j.ccr.2022.214493_b0740) 2014; 14 Xu (10.1016/j.ccr.2022.214493_b0010) 2018; 1 Huang (10.1016/j.ccr.2022.214493_b0585) 2017; 10 Xiao (10.1016/j.ccr.2022.214493_b0690) 2018; 46 Zeng (10.1016/j.ccr.2022.214493_b1145) 2020; 74 Fu (10.1016/j.ccr.2022.214493_b0680) 2017; 29 Balaz (10.1016/j.ccr.2022.214493_b0650) 2013; 42 Pan (10.1016/j.ccr.2022.214493_b0340) 2019; 10 Liang (10.1016/j.ccr.2022.214493_b0735) 2011; 10 Lou (10.1016/j.ccr.2022.214493_b0985) 2021; 11 Jones (10.1016/j.ccr.2022.214493_b0885) 2016; 353 He (10.1016/j.ccr.2022.214493_b0185) 2019; 7 Ding (10.1016/j.ccr.2022.214493_b0515) 2020; 3 Xu (10.1016/j.ccr.2022.214493_b0095) 2020; 25 Li (10.1016/j.ccr.2022.214493_b0965) 2022; 34 Yu (10.1016/j.ccr.2022.214493_b0790) 2017; 121 Sun (10.1016/j.ccr.2022.214493_b0920) 2019; 141 Liu (10.1016/j.ccr.2022.214493_b0225) 2018; 118 Hansen (10.1016/j.ccr.2022.214493_b0875) 2013; 46 Hulva (10.1016/j.ccr.2022.214493_b0385) 2021; 371 Wei (10.1016/j.ccr.2022.214493_b0770) 2019; 10 Zhang (10.1016/j.ccr.2022.214493_b0890) 2013; 305 Yu (10.1016/j.ccr.2022.214493_b0025) 2021; 404 Li (10.1016/j.ccr.2022.214493_b1030) 2017; 139 Cui (10.1016/j.ccr.2022.214493_b0075) 2018; 1 Qu (10.1016/j.ccr.2022.214493_b1125) 2019; 141 Ren (10.1016/j.ccr.2022.214493_b1195) 2019; 10 Li (10.1016/j.ccr.2022.214493_b0100) 2021; 421 Jiao (10.1016/j.ccr.2022.214493_b0535) 2008; 260 Zhang (10.1016/j.ccr.2022.214493_b0775) 2020; 261 Wei (10.1016/j.ccr.2022.214493_b0815) 2017; 8 Mistry (10.1016/j.ccr.2022.214493_b0125) 2014; 136 Parvez (10.1016/j.ccr.2022.214493_b0745) 2012; 6 Li (10.1016/j.ccr.2022.214493_b0590) 2016; 138 Shi (10.1016/j.ccr.2022.214493_b0325) 2016; 45 Gong (10.1016/j.ccr.2022.214493_b0500) 2008; 130 Liang (10.1016/j.ccr.2022.214493_b0730) 2013; 25 Shah (10.1016/j.ccr.2022.214493_b0990) 2022; 61 Li (10.1016/j.ccr.2022.214493_b0190) 2020; 10 Shan (10.1016/j.ccr.2022.214493_b0260) 2017; 551 Liu (10.1016/j.ccr.2022.214493_b0575) 2020; 59 Chen (10.1016/j.ccr.2022.214493_b1200) 2020; 22 Schreyer (10.1016/j.ccr.2022.214493_b0630) 2019; 58 Chen (10.1016/j.ccr.2022.214493_b1150) 2020; 394 Park (10.1016/j.ccr.2022.214493_b0465) 2013; 3 Zhao (10.1016/j.ccr.2022.214493_b0750) 2017; 139 Zhou (10.1016/j.ccr.2022.214493_b0160) 2016; 37 Zhang (10.1016/j.ccr.2022.214493_b0105) 2019; 3 Yang (10.1016/j.ccr.2022.214493_b1160) 2019; 256 Zhu (10.1016/j.ccr.2022.214493_b1130) 2018; 3 Song (10.1016/j.ccr.2022.214493_b0145) 2018; 8 Li (10.1016/j.ccr.2022.214493_b0135) 2003; 299 Ha (10.1016/j.ccr.2022.214493_b1205) 2020; 10 Seh (10.1016/j.ccr.2022.214493_b0045) 2017; 355 Yang (10.1016/j.ccr.2022.214493_b0200) 2018; 3 Han (10.1016/j.ccr.2022.214493_b0170) 2017; 38 Zhan (10.1016/j.ccr.2022.214493_b0635) 2017; 29 Chen (10.1016/j.ccr.2022.214493_b0665) 2017; 32 Jung (10.1016/j.ccr.2022.214493_b0410) 2020; 19 Li (10.1016/j.ccr.2022.214493_b1010) 2020; 7 Yang (10.1016/j.ccr.2022.214493_b0130) 2013; 46 Tang (10.1016/j.ccr.2022.214493_b0380) 2020; 59 Tavakkoli (10.1016/j.ccr.2022.214493_b0560) 2017; 7 Wanjala (10.1016/j.ccr.2022.214493_b1185) 2011; 133 Liu (10.1016/j.ccr.2022.214493_b0110) 2017; 7 Li (10.1016/j.ccr.2022.214493_b0935) 2020; 13 Gatla (10.1016/j.ccr.2022.214493_b0475) 2016; 6 Liu (10.1016/j.ccr.2022.214493_b0090) 2011; 1 Cheng (10.1016/j.ccr.2022.214493_b0320) 2018; 30 Tedsree (10.1016/j.ccr.2022.214493_b1250) 2011; 6 Cheng (10.1016/j.ccr.2022.214493_b0605) 2016; 29 Meng (10.1016/j.ccr.2022.214493_b0795) 2016; 198 Wang (10.1016/j.ccr.2022.214493_b0505) 2018; 2 James (10.1016/j.ccr.2022.214493_b0645) 2012; 41 Zhang (10.1016/j.ccr.2022.214493_b1005) 2019; 31 Yan (10.1016/j.ccr.2022.214493_b0600) 2015; 137 Wang (10.1016/j.ccr.2022.214493_b0400) 2019; 5 Wang (10.1016/j.ccr.2022.214493_b0165) 2017; 38 Liang (10.1016/j.ccr.2022.214493_b0035) 2021; 17 Zhang (10.1016/j.ccr.2022.214493_b0925) 2021; 60 Ding (10.1016/j.ccr.2022.214493_b0855) 2014; 118 Chen (10.1016/j.ccr.2022.214493_b0220) 2017; 7 Chen (10.1016/j.ccr.2022.214493_b0070) 2018; 39 Liu (10.1016/j.ccr.2022.214493_b0405) 2019; 141 Jin (10.1016/j.ccr.2022.214493_b0655) 2020; 30 Pei (10.1016/j.ccr.2022.214493_b1230) 2015; 5 Fonseca (10.1016/j.ccr.2022.214493_b0580) 2021; 11 Li (10.1016/j.ccr.2022.214493_b1080) 2017; 11 Jiao (10.1016/j.ccr.2022.214493_b0005) 2019; 5 Hübner (10.1016/j.ccr.2022.214493_b0370) 2016; 358 Ratnasamy (10.1016/j.ccr.2022.214493_b0485) 2009; 51 Lu (10.1016/j.ccr.2022.214493_b1275) 2020; 10 Yang (10.1016/j.ccr.2022.214493_b1100) 2018; 50 Johns (10.1016/j.ccr.2022.214493_b0870) 2015; 328 Frenkel (10.1016/j.ccr.2022.214493_b1180) 2012; 41 van Bokhoven (10.1016/j.ccr.2022.214493_b1190) 2010; 12 Wu (10.1016/j.ccr.2022.214493_b0430) 2015; 17 Pennycook (10.1016/j.ccr.2022.214493_b1070) 2009; 367 Qiao (10.1016/j.ccr.2022.214493_b0155) 2011; 3 Gao (10.1016/j.ccr.2022.214493_b0285) 2016; 138 Gao (10.1016/j.ccr.2022.214493_b0180) 2018; 30 Li (10.1016/j.ccr.2022.214493_b0415) 2018; 5 Hou (10.1016/j.ccr.2022.214493_b0900) 2020; 16 Chen (10.1016/j.ccr.2022.214493_b0450) 2013; 15 Chen (10.1016/j.ccr.2022.214493_b0755) 2017; 56 Kärkäs (10.1016/j.ccr.2022.214493_b0780) 2016; 116 Zhang (10.1016/j.ccr.2022.214493_b0315) 2020; 471 Jang (10.1016/j.ccr.2022.214493_b0490) 2008; 112 Zheng (10.1016/j.ccr.2022.214493_b1025) 2017; 139 Zhang (10.1016/j.ccr.2022.214493_b0860) 2020; 392 Deng (10.1016/j.ccr.2022.214493_b1095) 2015; 1 Yang (10.1016/j.ccr.2022.214493_b1140) 2020; 21 Sun (10.1016/j.ccr.2022.214493_b0270) 2018; 9 Zhou (10.1016/j.ccr.2022.214493_b1090) 2012; 109 Cheng (10.1016/j.ccr.2022.214493_b0640) 2016; 55 Liu (10.1016/j.ccr.2022.214493_b0725) 2010; 49 Jiang (10.1016/j.ccr.2022.214493_b1260) 2017; 3 Chen (10.1016/j.ccr.2022.214493_b0685) 2017; 56 Cai (10.1016/j.ccr.2022.214493_b0880) 2020; 8 Liu (10.1016/j.ccr.2022.214493_b0765) 2016; 7 Wang (10.1016/j.ccr.2022.214493_b0610) 2020; 3 Zhang (10.1016/j.ccr.2022.214493_b0565) 2013; 4 Jiao (10.1016/j.ccr.2022.214493_b0390) 2017; 139 He (10.1016/j.ccr.2022.214493_b0660) 2020; 1 Li (10.1016/j.ccr.2022.214493_b0350) 2019; 141 Yang (10.1016/j.ccr.2022.214493_b0395) 2019; 10 Zhang (10.1016/j.ccr.2022.214493_b0210) 2020; 6 Wang (10.1016/j.ccr.2022.214493_b0850) 2017; 9 Yang (10.1016/j.ccr.2022.214493_b0300) 2015; 137 Mao (10.1016/j.ccr.2022.214493_b0435) 2014; 4 Wang (10.1016/j.ccr.2022.214493_b0280) 2018; 1 Tang (10.1016/j.ccr.2022.214493_b0265) 2018; 9 Alonso (10.1016/j.ccr.2022.214493_b0445) 2014; 6 Chang (10.1016/j.ccr.2022.214493_b1075) 2014; 14 Zhang (10.1016/j.ccr.2022.214493_b0895) 2017; 8 Sietsma (10.1016/j.ccr.2022.214493_b0480) 2006; 162 Ullah (10.1016/j.ccr.2022.214493_b0980) 2021; 46 Wei (10.1016/j.ccr.2022.214493_b0820) 2014; 5 Li (10.1016/j.ccr.2022.214493_b1215) 2019; 9 Rivera‐Cárcamo (10.1016/j.ccr.2022.214493_b1060) 2018; 10 Tang (10.1016/j.ccr.2022.214493_b0295) 2019; 10 Qin (10.1016/j.ccr.2022.214493_b0050) 2018; 2 Qiao (10.1016/j.ccr.2022.214493_b0245) 2015; 36 Liu (10.1016/j.ccr.2022.214493_b0310) 2019; 58 Sun (10.1016/j.ccr.2022.214493_b1020) 2019; 61 Matsubu (10.1016/j.ccr.2022.214493_b1115) 2015; 137 Ramaswamy (10.1016/j.ccr.2022.214493_b0705) 2013; 135 Wang (10.1016/j.ccr.2022.214493_b0255) 2019; 10 Chen (10.1016/j.ccr.2022.214493_b0455) 2018; 6 Remediakis (10.1016/j.ccr.2022.214493_b0115) 2005; 44 Wang (10.1016/j.ccr.2022.214493_b0195) 2018; 2 Zhang (10.1016/j.ccr.2022.214493_b0440) 2018; 9 Huang (10.1016/j.ccr.2022.214493_b0615) 2020; 10 Zhang (10.1016/j.ccr.2022.214493_b0510) 2018; 140 Campbell (10.1016/j.ccr.2022.214493_b0845) 2012; 4 Hwang (10.1016/j.ccr.2022.214493_b0040) 2017; 358 Yang (10.1016/j.ccr.2022.214493_b0555) 2013; 135 Li (10.1016/j.ccr.2022.214493_b0805) 2018; 8 Lin (10.1016/j.ccr.2022.214493_b0305) 2013; 135 Ogino (10.1016/j.ccr.2022.214493_b1175) 2017; 38 Zhang (10.1016/j.ccr.2022.214493_b0695) 2014; 7 Jiang (10.1016/j.ccr.2022.214493_b0995) 2020; 11 Li (10.1016/j.ccr.2022.214493_b0970) 2022 Li (10.1016/j.ccr.2022.214493_b0910) 2020; 12 Lessard (10.1016/j.ccr.2022.214493_b0550) 2012; 48 Rothenberg (10.1016/j.ccr.2022.214493_b0065) 2008 DeRita (10.1016/j.ccr.2022.214493_b0360) 2017; 139 Ma (10.1016/j.ccr.2022.214493_b1105) 2018; 12 Warner (10.1016/j.ccr.2022.214493_b1085) 2014; 8 Zhang (10.1016/j.ccr.2 |
References_xml | – volume: 13 start-page: 2517 year: 2011 end-page: 2527 ident: b0830 article-title: 'Shape effects' in metal oxide supported nanoscale gold catalysts publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 1317 year: 2019 end-page: 1325 ident: b0240 article-title: A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies publication-title: Energy Environ. Sci. – volume: 49 start-page: 2215 year: 2020 end-page: 2264 ident: b1235 article-title: Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation publication-title: Chem. Soc. Rev. – volume: 7 start-page: 34 year: 2017 end-page: 59 ident: b0110 article-title: Catalysis by supported single metal atoms publication-title: ACS Catal. – volume: 37 start-page: 692 year: 2016 end-page: 699 ident: b0160 article-title: Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation publication-title: Chinese J. Catal. – volume: 141 start-page: 9664 year: 2019 end-page: 9672 ident: b0405 article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 7529 year: 2020 end-page: 7536 ident: b1200 article-title: Tuning the coordination number of Fe single atoms for the efficient reduction of CO publication-title: Green Chem. – volume: 10 start-page: 780 year: 2011 end-page: 786 ident: b0735 article-title: Co publication-title: Nat. Mater. – volume: 13 start-page: 411 year: 2018 end-page: 417 ident: b0290 article-title: Synergetic interaction between neighbouring platinum monomers in CO publication-title: Nat. Nanotechnol. – volume: 8 start-page: 16100 year: 2017 ident: b0895 article-title: Thermally stable single atom Pt/m-Al publication-title: Nat. Commun. – volume: 30 start-page: 2000531 year: 2020 ident: b0655 article-title: Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution publication-title: Adv. Funct. Mater. – volume: 7 start-page: 14036 year: 2016 ident: b0275 article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst publication-title: Nat. Commun. – volume: 135 start-page: 15443 year: 2013 end-page: 15449 ident: b0705 article-title: Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry publication-title: J. Am. Chem. Soc. – volume: 489 start-page: 128 year: 2012 end-page: 132 ident: b0785 article-title: Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films publication-title: Nature – volume: 358 start-page: 3 year: 2016 end-page: 25 ident: b0370 article-title: Why does industry not use immobilized transition metal complexes as catalysts? publication-title: Adv. Synth. Catal. – volume: 14 start-page: 134 year: 2014 end-page: 138 ident: b1075 article-title: Direct imaging of Pt single atoms adsorbed on TiO publication-title: Nano Lett. – volume: 38 start-page: 1498 year: 2017 end-page: 1507 ident: b0170 article-title: Highlights of the major progress in single-atom catalysis in 2015 and 2016 publication-title: Chinese J. Catal. – volume: 95 start-page: 87 year: 2010 end-page: 92 ident: b0840 article-title: Steam reforming of methanol over ceria and gold-ceria nanoshapes publication-title: Appl. Catal. B – volume: 4 start-page: 695 year: 2014 end-page: 702 ident: b1240 article-title: Atomic imaging of carbon-supported Pt, Pt/Co, and Ir@Pt nanocatalysts by atom-probe tomography publication-title: ACS Catal. – volume: 42 start-page: 7571 year: 2013 end-page: 7637 ident: b0650 article-title: Hallmarks of mechanochemistry: from nanoparticles to technology publication-title: Chem Soc Rev – volume: 30 start-page: e1706287 year: 2018 ident: b0320 article-title: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction publication-title: Adv. Mater. – volume: 47 start-page: 5423 year: 2018 end-page: 5443 ident: b0055 article-title: Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide publication-title: Chem. Soc. Rev. – volume: 55 start-page: 2058 year: 2016 end-page: 2062 ident: b0205 article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions publication-title: Angew. Chem. Int. Ed. Engl. – volume: 6 start-page: 6151 year: 2016 end-page: 6155 ident: b0475 article-title: Room-temperature CO oxidation catalyst: low-temperature metal-support interaction between platinum nanoparticles and nanosized ceria publication-title: ACS Catal. – volume: 50 start-page: 691 year: 2018 end-page: 698 ident: b1100 article-title: Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery publication-title: Nano Energy – volume: 25 start-page: e00172 year: 2020 ident: b0095 article-title: Bridging metal-ion induced vertical growth of MoS publication-title: SM&T – volume: 56 start-page: 13944 year: 2017 end-page: 13960 ident: b0030 article-title: Single-atom electrocatalysts publication-title: Angew. Chem. Int. Ed. Engl. – volume: 410 start-page: 128359 year: 2021 ident: b1015 article-title: Rational design of ultrahigh loading metal single-atoms (Co, Ni, Mo) anchored on in-situ pre-crosslinked guar gum derived N-doped carbon aerogel for efficient overall water splitting publication-title: Chem. Eng. J. – volume: 141 start-page: 4505 year: 2019 end-page: 4509 ident: b1125 article-title: Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal publication-title: J. Am. Chem. Soc. – volume: 30 start-page: e1704624 year: 2018 ident: b0180 article-title: Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO publication-title: Adv. Mater. – volume: 10 start-page: 3663 year: 2019 ident: b0670 article-title: A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation publication-title: Nat. Commun. – volume: 8 start-page: 1801101 year: 2018 ident: b0145 article-title: General dimension-controlled synthesis of hollow carbon embedded with metal singe atoms or core-shell nanoparticles for energy storage applications publication-title: Adv. Energy Mater. – volume: 355 year: 2017 ident: b0045 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 55 start-page: 4725 year: 2016 end-page: 4728 ident: b0640 article-title: Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling publication-title: Angew. Chem. Int. Ed. Engl. – volume: 10 start-page: 244 year: 2020 ident: b0615 article-title: Atomic layer deposition for preparing isolated Co sites on SiO publication-title: Nanomaterials (Basel) – volume: 39 start-page: 893 year: 2018 end-page: 898 ident: b0070 article-title: Single-atom catalysis: Bridging the homo- and heterogeneous catalysis publication-title: Chinese J. Catal. – volume: 140 start-page: 105999 year: 2020 ident: b0460 article-title: Pt mechanical dispersion on non-porous alumina for soot oxidation publication-title: Catal. Commun. – volume: 2 start-page: 183 year: 2015 end-page: 201 ident: b0120 article-title: Understanding nano effects in catalysis publication-title: Natl. Sci. Rev. – volume: 10 start-page: 1278 year: 2019 ident: b0215 article-title: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts publication-title: Nat. Commun. – volume: 12 start-page: 1401 year: 2019 end-page: 1409 ident: b0625 article-title: Insight of the stability and activity of platinum single atoms on ceria publication-title: Nano Res. – volume: 392 start-page: 123655 year: 2020 ident: b0860 article-title: Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: a dynamic transformation from clusters to single atoms publication-title: Chem. Eng. J. – volume: 31 start-page: 1904548 year: 2019 ident: b1005 article-title: Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix publication-title: Adv. Mater. – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: b0155 article-title: Single-atom catalysis of CO oxidation using Pt publication-title: Nat. Chem. – volume: 38 start-page: 1460 year: 2017 end-page: 1472 ident: b1065 article-title: Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: probing the catalytically active centers publication-title: Chinese J. Catal. – volume: 1 start-page: 63 year: 2018 end-page: 72 ident: b1050 article-title: General synthesis and definitive structural identification of MN publication-title: Nature Catal. – year: 2022 ident: b1270 article-title: In situ visualisation and analysis of dynamic single atom processes in heterogeneous catalysts publication-title: J. Mater. Chem. A – volume: 281 start-page: 1647 year: 1998 end-page: 1650 ident: b0140 article-title: Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties publication-title: Science – volume: 143 start-page: 2173 year: 2021 end-page: 2177 ident: b0960 article-title: Isolated cobalt centers on W publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 339 year: 2018 end-page: 348 ident: b0010 article-title: A universal principle for a rational design of single-atom electrocatalysts publication-title: Nat. Catal. – volume: 8 start-page: 1490 year: 2017 ident: b0815 article-title: Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth publication-title: Nat. Commun. – volume: 141 start-page: 12372 year: 2019 end-page: 12381 ident: b0920 article-title: Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 436 year: 2020 end-page: 442 ident: b0410 article-title: Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H publication-title: Nat. Mater. – volume: 46 start-page: 396 year: 2018 end-page: 403 ident: b0690 article-title: Identification of binuclear Co publication-title: Nano Energy – volume: 32 start-page: 353 year: 2017 end-page: 358 ident: b0665 article-title: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction publication-title: Nano Energy – volume: 49 start-page: 2565 year: 2010 end-page: 2569 ident: b0725 article-title: Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction publication-title: Angew. Chem. Int. Ed. Engl. – volume: 12 start-page: 764 year: 2020 end-page: 772 ident: b0910 article-title: Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy publication-title: Nat. Chem. – volume: 5 start-page: 3717 year: 2015 end-page: 3725 ident: b1230 article-title: Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene publication-title: ACS Catal. – volume: 55 start-page: 10800 year: 2016 end-page: 10805 ident: b0700 article-title: Single cobalt atoms with precise n-coordination as superior oxygen reduction reaction catalysts publication-title: Angew. Chem. Int. Ed. Engl. – volume: 38 start-page: 1443 year: 2017 end-page: 1453 ident: b0165 article-title: Two-dimensional materials confining single atoms for catalysis publication-title: Chinese J. Catal. – volume: 6 start-page: 14054 year: 2018 end-page: 14062 ident: b0455 article-title: Surface engineering protocol to obtain an atomically dispersed Pt/CeO publication-title: ACS Sustain. Chem. Eng. – volume: 56 start-page: 610 year: 2017 end-page: 614 ident: b0685 article-title: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions publication-title: Angew. Chem. Int. Ed. Engl. – volume: 394 start-page: 124904 year: 2020 ident: b1150 article-title: Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst publication-title: Chem Eng. J. – volume: 471 start-page: 228446 year: 2020 ident: b0315 article-title: Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting publication-title: J. Power Sources – volume: 10 start-page: 2830 year: 2019 end-page: 2836 ident: b0770 article-title: Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction publication-title: Chem. Sci. – volume: 7 start-page: 2559 year: 2015 end-page: 2567 ident: b0420 article-title: The power of single-atom catalysis publication-title: ChemCatChem – volume: 260 start-page: 329 year: 2008 end-page: 341 ident: b0535 article-title: The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: I. Amorphous silica publication-title: J. Catal. – volume: 11 start-page: 2701 year: 2020 ident: b0995 article-title: Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation publication-title: Nat. Commun. – volume: 344 start-page: 616 year: 2014 end-page: 619 ident: b0865 article-title: Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen publication-title: Science – volume: 230 start-page: 7 year: 2019 end-page: 15 ident: b1170 article-title: Forskolin reduces fat accumulation in Nile tilapia (Oreochromis niloticus) through stimulating lipolysis and beta-oxidation publication-title: Comp. Biochem. Physiol. A Mol. Integr. Physiol. – volume: 28 start-page: 2427 year: 2016 end-page: 2431 ident: b0330 article-title: Single-atom Pt as Co-catalyst for enhanced photocatalytic H publication-title: Adv. Mater. – volume: 138 start-page: 6292 year: 2016 end-page: 6297 ident: b0285 article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 1824 year: 2005 end-page: 1826 ident: b0115 article-title: CO oxidation on rutile-supported au nanoparticles publication-title: Angew. Chem. Int. Ed. Engl. – volume: 136 start-page: 13554 year: 2014 end-page: 13557 ident: b0715 article-title: N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions publication-title: J. Am. Chem. Soc. – reference: for the selective hydrogenation of phenylacetylene, Sci. China Mater. 63 (2020) 982-992. https://doi.org/10.1007/s40843-020-1271-x. – volume: 260 start-page: 118196 year: 2020 ident: b0015 article-title: Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction publication-title: Appl. Catal. B – volume: 51 start-page: 325 year: 2009 end-page: 440 ident: b0485 article-title: Water gas shift catalysis publication-title: Catal. Rev. – volume: 6 start-page: eaba3809 year: 2020 ident: b0545 article-title: High-loading single Pt atom sites [Pt-O(OH) publication-title: Sci. Adv. – volume: 7 start-page: 10922 year: 2016 ident: b0470 article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst publication-title: Nat. Commun. – volume: 4 start-page: 5441 year: 2014 ident: b0435 article-title: A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D publication-title: Sci. Rep. – volume: 118 start-page: 12216 year: 2014 end-page: 12223 ident: b0855 article-title: Single Pd atom embedded in CeO publication-title: J. Phys. Chem. C – volume: 2 start-page: 1024 year: 2018 end-page: 1030 ident: b0505 article-title: Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions publication-title: Mater. Chem. Front. – volume: 3 start-page: 950 year: 2017 end-page: 960 ident: b1260 article-title: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis publication-title: Chem – volume: 7 start-page: 3460 year: 2015 end-page: 3463 ident: b0530 article-title: Synthesis of platinum catalysts over thick slurries of oxide supports by strong electrostatic adsorption publication-title: ChemCatChem – volume: 1 start-page: 6781 year: 2018 end-page: 6789 ident: b0280 article-title: Single atom and nanoclustered Pt catalysts for selective CO publication-title: ACS Appl. Energy Mater. – volume: 10 start-page: 4500 year: 2019 ident: b1195 article-title: Unraveling the coordination structure-performance relationship in Pt publication-title: Nat. Commun. – volume: 6 start-page: 302 year: 2011 end-page: 307 ident: b1250 article-title: Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst publication-title: Nat. Nanotechnol. – volume: 9 start-page: 12496 year: 2015 end-page: 12505 ident: b0425 article-title: Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity publication-title: ACS Nano – volume: 7 start-page: 3121 year: 2017 end-page: 3130 ident: b0560 article-title: Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction publication-title: ACS Catal. – volume: 10 start-page: 3997 year: 2019 ident: b1265 article-title: Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination publication-title: Nat. Commun. – volume: 38 start-page: 1473 year: 2017 end-page: 1480 ident: b1220 article-title: Using probe molecule FTIR spectroscopy to identify and characterize Pt-group metal based single atom catalysts publication-title: Chinese J. Catal. – volume: 138 start-page: 1977 year: 2016 end-page: 1982 ident: b0590 article-title: Sintering-resistant single-site nickel catalyst supported by metal-organic framework publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 149 year: 2019 end-page: 156 ident: b0250 article-title: Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl publication-title: Nat. Catal. – volume: 3 start-page: 1800481 year: 2019 ident: b0105 article-title: Insights into single-atom metal-support interactions in electrocatalytic water splitting publication-title: Small Methods – volume: 10 start-page: 2754 year: 2020 end-page: 2761 ident: b0945 article-title: N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation publication-title: ACS Catal. – volume: 6 start-page: 658 year: 2020 end-page: 674 ident: b0915 article-title: Enabling direct H publication-title: Chem 6 – volume: 308 start-page: 110507 year: 2020 ident: b0520 article-title: Hollow mesoporous CeO publication-title: Micropor. Mesopor. Mat. – volume: 8 start-page: 3116 year: 2018 end-page: 3122 ident: b1040 article-title: Unveiling active sites of CO publication-title: ACS Catal. – volume: 12 start-page: 1949 year: 2018 end-page: 1958 ident: b1105 article-title: Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery publication-title: ACS Nano – volume: 10 start-page: 5058 year: 2018 end-page: 5091 ident: b1060 article-title: Single atom catalysts on carbon-based materials publication-title: ChemCatChem – volume: 305 start-page: 7 year: 2013 end-page: 18 ident: b0890 article-title: Crown Jewel catalyst: How neighboring atoms affect the catalytic activity of top Au atoms? publication-title: J. Catal. – volume: 4 start-page: 1924 year: 2013 ident: b0565 article-title: Catalytically active single-atom niobium in graphitic layers publication-title: Nat. Commun. – volume: 135 start-page: 15314 year: 2013 end-page: 15317 ident: b0305 article-title: Remarkable performance of Ir publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1302 year: 2017 end-page: 1312 ident: b0585 article-title: Enhancing both selectivity and coking-resistance of a single-atom Pd publication-title: Nano Res. – volume: 61 year: 2022 ident: b0990 article-title: Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER publication-title: Angew. Chem. Int. Ed. Engl. – volume: 7 start-page: 4520 year: 2017 end-page: 4533 ident: b0235 article-title: Direct synthesis of hierarchical ZSM-5 zeolite using cetyltrimethylammonium as structure directing agent for methanol-to-hydrocarbons conversion publication-title: Catal Sci. Technol. – volume: 11 start-page: 3392 year: 2017 end-page: 3403 ident: b1080 article-title: Atomic structure and dynamics of single platinum atom interactions with monolayer MoS publication-title: ACS Nano – volume: 16 start-page: e2001896 year: 2020 ident: b0900 article-title: Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO publication-title: Small – volume: 10 start-page: 4290 year: 2019 ident: b0340 article-title: Regulating the coordination structure of single-atom Fe-N publication-title: Nat. Commun. – volume: 11 start-page: 6930 year: 2017 end-page: 6941 ident: b0675 article-title: Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium publication-title: ACS Nano – volume: 5 start-page: 786 year: 2019 end-page: 804 ident: b0005 article-title: Metal-organic-framework-based single-atom catalysts for energy applications publication-title: Chem – volume: 5 start-page: 5634 year: 2014 ident: b0820 article-title: FeO publication-title: Nat. Commun. – year: 2022 ident: b0970 article-title: Hierarchical 3D porous carbon with facilely accessible Fe-N publication-title: J. Mater. Chem. A – volume: 8 start-page: 1666 year: 2017 ident: b1255 article-title: Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts publication-title: Nat. Commun. – volume: 1 start-page: 100004 year: 2020 ident: b0660 article-title: Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts publication-title: Cell Rep. Phys. Sci. – volume: 3 start-page: 140 year: 2018 end-page: 147 ident: b0200 article-title: Atomically dispersed Ni(i) as the active site for electrochemical CO publication-title: Nat. Energy – volume: 59 start-page: 21698 year: 2020 end-page: 21705 ident: b0575 article-title: Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts publication-title: Angew. Chem. Int. Ed. Engl. – year: 2008 ident: b0065 article-title: Catalysis: Concepts and Green Applications – volume: 7 start-page: 1301 year: 2017 end-page: 1307 ident: b1225 article-title: Support effects in single-atom platinum catalysts for electrochemical oxygen reduction publication-title: ACS Catal. – volume: 10 start-page: 4585 year: 2019 ident: b0395 article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts publication-title: Nat. Commun. – volume: 515 start-page: 1664 year: 2006 end-page: 1673 ident: b0620 article-title: Atomic layer deposition of palladium films on Al publication-title: Thin Solid Films – volume: 9 start-page: 27002 year: 2019 end-page: 27012 ident: b0525 article-title: Promotion of Pt/CeO publication-title: RSC Adv. – volume: 2 start-page: 70 year: 2017 end-page: 83 ident: b1055 article-title: Advanced electron microscopy characterization of nanomaterials for catalysis publication-title: Green Energy Environ. – volume: 3 start-page: 2867 year: 2020 end-page: 2874 ident: b0610 article-title: Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions publication-title: ACS Appl. Nano Mater. – volume: 138 start-page: 15743 year: 2016 end-page: 15750 ident: b0355 article-title: Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 22467 year: 2020 end-page: 22487 ident: b0880 article-title: Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction publication-title: J. Mater. Chem. A – reference: F. Yang, S. Ding, H. Song, N. Yan, Single-atom Pd dispersed on nanoscale anatase TiO – volume: 7 start-page: 442 year: 2014 end-page: 450 ident: b0695 article-title: ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction publication-title: Energy Environ. Sci. – volume: 9 start-page: 77 year: 2017 end-page: 82 ident: b0810 article-title: Multistep nucleation of nanocrystals in aqueous solution publication-title: Nat. Chem. – volume: 6 start-page: 857 year: 2014 end-page: 865 ident: b0445 article-title: Solvent- and ligand-free diboration of alkynes and alkenes catalyzed by platinum nanoparticles on titania publication-title: ChemCatChem – volume: 10 start-page: 4849 year: 2019 ident: b1000 article-title: Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction publication-title: Nat. Commun. – volume: 29 start-page: 7323 year: 2017 end-page: 7329 ident: b0635 article-title: Incorporating rich mesoporosity into a ceria-based catalyst via mechanochemistry publication-title: Chem. Mater. – volume: 56 start-page: 6937 year: 2017 end-page: 6941 ident: b0755 article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. Engl. – volume: 5 start-page: eaax6322 year: 2019 ident: b0400 article-title: A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts publication-title: Sci. Adv. – volume: 11 start-page: 7018 year: 2021 end-page: 7059 ident: b0580 article-title: Single-atom catalysts designed and prepared by the atomic layer deposition technique publication-title: ACS catal. – volume: 22 start-page: e00114 year: 2019 ident: b0060 article-title: Cobalt porphyrin (CoTCPP) advanced visible light response of g-C publication-title: SM&T – volume: 137 start-page: 3470 year: 2015 end-page: 3473 ident: b0300 article-title: A common single-site Pt(II)-O(OH) publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 7114 year: 2013 end-page: 7117 ident: b1245 article-title: Long-chain terminal alcohols through catalytic CO hydrogenation publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1441 year: 2015 end-page: 1449 ident: b0430 article-title: Graphyne-supported single Fe atom catalysts for CO oxidation publication-title: Phys. Chem. Chem. Phys. – volume: 198 start-page: 286 year: 2016 end-page: 294 ident: b0795 article-title: Enhanced photocatalytic H publication-title: Appl. Catal. B – volume: 137 start-page: 3076 year: 2015 end-page: 3084 ident: b1115 article-title: Isolated metal active site concentration and stability control catalytic CO publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2452 year: 2020 end-page: 2458 ident: b0190 article-title: Stabilizing single-atom iron electrocatalysts for oxygen reduction via ceria confining and trapping publication-title: ACS Catal. – volume: 1 start-page: 385 year: 2018 end-page: 397 ident: b0075 article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts publication-title: Nat. Catal. – reference: N. Yi, R. Si, H. Saltsburg, M. Flytzani-Stephanopoulos, Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions, Energy Environ. Sci. 3 (2010) 253-253. https://doi.org/10.1039/c003390c. – volume: 137 start-page: 10484 year: 2015 end-page: 10487 ident: b0600 article-title: Single-atom Pd publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 954 year: 2018 end-page: 962 ident: b0510 article-title: C-C coupling on single-atom-based heterogeneous catalyst publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1002 year: 2018 ident: b0440 article-title: Cation vacancy stabilization of single-atomic-site Pt publication-title: Nat. Commun. – volume: 136 start-page: 16473 year: 2014 end-page: 16476 ident: b0125 article-title: Exceptional size-dependent activity enhancement in the electroreduction of CO publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 1944 year: 2018 end-page: 1948 ident: b1035 article-title: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 3 start-page: 43 year: 2020 ident: b0515 article-title: Atomically dispersed palladium catalyses Suzuki-Miyaura reactions under phosphine-free conditions publication-title: Commun. Chem. – volume: 13 start-page: 1842 year: 2020 end-page: 1855 ident: b0935 article-title: Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance publication-title: Nano Res. – volume: 139 start-page: 8078 year: 2017 end-page: 8081 ident: b0750 article-title: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7318 year: 2014 end-page: 7324 ident: b0905 article-title: Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization publication-title: ACS Nano – volume: 139 start-page: 3336 year: 2017 end-page: 3339 ident: b1025 article-title: Molecule-level g-C publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 631 year: 2019 ident: b0930 article-title: Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media publication-title: Nat. Commun. – volume: 29 start-page: 1604456 year: 2017 ident: b0680 article-title: In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells publication-title: Adv. Mater. – volume: 14 start-page: 1870 year: 2014 end-page: 1876 ident: b0740 article-title: Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts publication-title: Nano Lett. – volume: 551 start-page: 605 year: 2017 end-page: 608 ident: b0260 article-title: Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts publication-title: Nature – volume: 6 start-page: eabb9823 year: 2020 ident: b0955 article-title: Direct probing of atomically dispersed Ru species over multi-edged TiO publication-title: Sci. Adv. – volume: 10 start-page: 4488 year: 2019 ident: b0295 article-title: Rh single atoms on TiO publication-title: Nat. Commun. – volume: 58 start-page: 11262 year: 2019 end-page: 11265 ident: b0630 article-title: Milling down to nanometers: a general process for the direct dry synthesis of supported metal catalysts publication-title: Angew. Chem. Int. Ed. Engl. – volume: 141 start-page: 14515 year: 2019 end-page: 14519 ident: b0350 article-title: Highly Active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 11945 year: 2019 end-page: 11979 ident: b0020 article-title: Alkaline Anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer publication-title: Chem. Rev. – volume: 46 start-page: 1740 year: 2013 end-page: 1748 ident: b0130 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. – volume: 7 start-page: 4250 year: 2017 end-page: 4258 ident: b0220 article-title: Fabrication, characterization, and stability of supported single-atom catalysts publication-title: Catal. Sci. Technol. – volume: 109 year: 2012 ident: b1090 article-title: Direct determination of the chemical bonding of individual impurities in graphene publication-title: Phys. Rev. Lett. – volume: 4 start-page: 597 year: 2012 end-page: 598 ident: b0845 article-title: Catalyst-support interactions: electronic perturbations publication-title: Nat. Chem. – volume: 36 start-page: 1505 year: 2015 end-page: 1511 ident: b0245 article-title: Highly active Au publication-title: Chinese J. Catal. – volume: 122 start-page: 4488 year: 2018 end-page: 4495 ident: b1135 article-title: Enhanced stability of Pt-Cu single-atom alloy catalysts: in situ characterization of the Pt/Cu(111) surface in an ambient pressure of CO publication-title: J. Phys. Chem. C – volume: 139 start-page: 14889 year: 2017 end-page: 14892 ident: b1030 article-title: Exclusive Ni-N publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 4981 year: 2018 end-page: 5079 ident: b0225 article-title: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles publication-title: Chem. Rev. – volume: 25 start-page: 6226 year: 2013 end-page: 6231 ident: b0730 article-title: N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction publication-title: Adv. Mater. – volume: 9 start-page: 6643 year: 2017 end-page: 6648 ident: b0850 article-title: The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties publication-title: Nanoscale – volume: 57 start-page: 15316 year: 2018 end-page: 15329 ident: b0230 article-title: The multifaceted reactivity of single-atom heterogeneous catalysts publication-title: Angew. Chem. Int. Ed. Engl. – volume: 139 start-page: 14150 year: 2017 end-page: 14165 ident: b0360 article-title: Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1713 year: 2018 end-page: 1721 ident: b1130 article-title: Single-atom catalysts for electrochemical water splitting publication-title: ACS Energy Lett. – volume: 53 start-page: 8904 year: 2014 end-page: 8907 ident: b1110 article-title: A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms publication-title: Angew. Chem. Int. Ed. Engl. – volume: 59 start-page: 13057 year: 2020 end-page: 13062 ident: b0760 article-title: High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N publication-title: Angew. Chem. Int. Ed. Engl. – volume: 136 start-page: 8875 year: 2014 end-page: 8878 ident: b0720 article-title: Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 10525 year: 2014 end-page: 10530 ident: b0150 article-title: Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum publication-title: Angew. Chem. Int. Ed. Engl. – volume: 404 start-page: 126458 year: 2021 ident: b0025 article-title: Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co publication-title: Chem. Eng. J. – volume: 358 start-page: 751 year: 2017 end-page: 756 ident: b0040 article-title: Perovskites in catalysis and electrocatalysis publication-title: Science – volume: 5 start-page: 775 year: 2013 end-page: 781 ident: b0085 article-title: Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity publication-title: Nat. Chem. – volume: 140 start-page: 11594 year: 2018 end-page: 11598 ident: b0375 article-title: Edge-site engineering of atomically dispersed Fe-N publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 3768 year: 2013 end-page: 3771 ident: b0555 article-title: Atomically dispersed Au-(OH) publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 9171 year: 2020 end-page: 9176 ident: b0380 article-title: Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts publication-title: Angew. Chem. Int. Ed. Engl. – volume: 10 start-page: 3808 year: 2019 ident: b0255 article-title: Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt publication-title: Nat. Commun. – volume: 11 start-page: 1215 year: 2020 ident: b0570 article-title: Electrochemical deposition as a universal route for fabricating single-atom catalysts publication-title: Nat. Commun. – volume: 2 start-page: 1242 year: 2018 end-page: 1264 ident: b0080 article-title: Single-atom catalysts: synthetic strategies and electrochemical applications publication-title: Joule – volume: 41 start-page: 413 year: 2012 end-page: 447 ident: b0645 article-title: Mechanochemistry: opportunities for new and cleaner synthesis publication-title: Chem. Soc. Rev. – volume: 5 start-page: 4885 year: 2014 ident: b0825 article-title: Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina publication-title: Nat. Commun. – volume: 3 start-page: 545 year: 2012 end-page: 574 ident: b0175 article-title: Atomically dispersed supported metal catalysts publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 11 start-page: 3578 year: 2021 end-page: 3588 ident: b0985 article-title: Pt1-O publication-title: Catal Sci. Technol. – volume: 9 start-page: 4454 year: 2018 ident: b0270 article-title: Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation publication-title: Nat. Commun. – volume: 6 start-page: 9541 year: 2012 end-page: 9550 ident: b0745 article-title: Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction publication-title: ACS Nano – volume: 45 start-page: 1529 year: 2016 end-page: 1541 ident: b0325 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1508 year: 2017 end-page: 1514 ident: b0595 article-title: Single atom catalyst by atomic layer deposition technique publication-title: Chinese J. Catal. – volume: 34 start-page: e2105204 year: 2022 ident: b0965 article-title: Loading single-Ni atoms on assembled hollow N-rich carbon plates for efficient CO publication-title: Adv. Mater. – volume: 61 start-page: 245 year: 2019 end-page: 250 ident: b1020 article-title: High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures publication-title: Nano Energy – volume: 130 start-page: 370 year: 2008 end-page: 381 ident: b0500 article-title: Small Au and Pt clusters at the anatase TiO publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 492 year: 2019 end-page: 517 ident: b1165 article-title: Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms publication-title: Energy Environ. Sci. – volume: 46 start-page: 37814 year: 2021 end-page: 37823 ident: b0980 article-title: High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight publication-title: Int. J. Hydrog. Energy – volume: 15 start-page: 5766 year: 2013 end-page: 5769 ident: b0450 article-title: Remarkable catalytic property of nanoporous gold on activation of diborons for direct diboration of alkynes publication-title: Org. Lett. – volume: 3 start-page: 3067 year: 2013 end-page: 3074 ident: b0465 article-title: Strong interaction between pt and thiolated carbon for electrocatalytic durability enhancement publication-title: ACS Catal. – volume: 1 year: 2015 ident: b1095 article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature publication-title: Sci. Adv. – volume: 10 start-page: 2002592 year: 2020 ident: b1205 article-title: Atomically dispersed Co-pyridinic N-C for superior oxygen reduction reaction publication-title: Adv. Energy Mater. – volume: 12 start-page: 5502 year: 2010 ident: b1190 article-title: Recent developments in X-ray absorption spectroscopy publication-title: Phys. Chem. Chem. Phys. – volume: 21 start-page: 2486 year: 2020 end-page: 2496 ident: b1140 article-title: Identifying the types and characterization of the active sites on M-X-C single-atom catalysts publication-title: ChemPhysChem – volume: 8 start-page: 8450 year: 2018 end-page: 8458 ident: b0805 article-title: Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions publication-title: ACS Catal. – volume: 2 start-page: 495 year: 2019 end-page: 503 ident: b0345 article-title: Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis publication-title: Nat. Catal. – volume: 116 start-page: 9683 year: 2016 end-page: 9747 ident: b0780 article-title: Photochemical approaches to complex chemotypes: applications in natural product synthesis publication-title: Chem. Rev. – volume: 121 start-page: 13191 year: 2017 end-page: 13201 ident: b0790 article-title: Ag-modified BiOCl single-crystal nanosheets: dependence of photocatalytic performance on the region-selective deposition of Ag nanoparticles publication-title: J. Phys. Chem. C – volume: 5 start-page: 673 year: 2018 end-page: 689 ident: b0415 article-title: Recent advances in the precise control of isolated single-site catalysts by chemical methods publication-title: Natl. Sci. Rev. – volume: 9 start-page: 3978 year: 2019 end-page: 3990 ident: b0365 article-title: Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support publication-title: ACS Catal. – volume: 60 start-page: 13177 year: 2021 end-page: 13196 ident: b0925 article-title: Atomically dispersed reactive centers for electrocatalytic CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 9 start-page: 2521 year: 2019 end-page: 2531 ident: b1215 article-title: In situ/operando techniques for characterization of single-atom catalysts publication-title: ACS Catal. – volume: 7 start-page: 1903089 year: 2020 ident: b1010 article-title: High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction publication-title: Adv. Sci. – volume: 2 start-page: 1700286 year: 2018 ident: b0050 article-title: Strategies for stabilizing atomically dispersed metal catalysts publication-title: Small Methods – volume: 31 start-page: e1808135 year: 2019 ident: b0950 article-title: Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Sn publication-title: Adv. Mater. – volume: 7 start-page: 20840 year: 2019 end-page: 20846 ident: b0185 article-title: Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries publication-title: J. Mater. Chem. A – volume: 162 start-page: 95 year: 2006 end-page: 102 ident: b0480 article-title: Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying publication-title: Stud. Surf. Sci. Catal. – volume: 9 start-page: 2438 year: 2021 end-page: 2447 ident: b0975 article-title: FeS publication-title: J. Mater. Chem. A – volume: 48 start-page: 4857 year: 2012 end-page: 4859 ident: b0550 article-title: Novel Au/La publication-title: ChemComm – volume: 9 start-page: 1231 year: 2018 ident: b0265 article-title: Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions publication-title: Nat. Commun. – volume: 17 start-page: e1903418 year: 2021 ident: b0035 article-title: Cobalt chalcogenides/cobalt phosphides/cobaltates with hierarchical nanostructures for anode materials of lithium-ion batteries: improving the lithiation environment publication-title: Small – volume: 151 start-page: 214703 year: 2019 ident: b0540 article-title: Strong electrostatic adsorption of Pt onto SiO publication-title: J. Chem. Phys. – volume: 7 start-page: 5758 year: 2016 end-page: 5764 ident: b0765 article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes publication-title: Chem. Sci. – volume: 1 start-page: 2 year: 2011 end-page: 6 ident: b0090 article-title: Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: size effect in the sub-2 nm regime publication-title: ACS Catal. – volume: 133 start-page: 12714 year: 2011 end-page: 12727 ident: b1185 article-title: Correlation between atomic coordination structure and enhanced electrocatalytic activity for trimetallic alloy catalysts publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 8163 year: 2012 end-page: 8178 ident: b1180 article-title: Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1528 year: 2017 end-page: 1539 ident: b0335 article-title: Preparation, characterization and catalytic performance of single-atom catalysts, Chinese publication-title: J. Catal. – volume: 26 start-page: 4070 year: 2020 end-page: 4079 ident: b0940 article-title: A facile route for constructing effective Cu-N publication-title: Chemistry – volume: 421 start-page: 127804 year: 2021 ident: b0100 article-title: FeS publication-title: Chem. Eng. J. – volume: 371 start-page: 375 year: 2021 end-page: 379 ident: b0385 article-title: Unraveling CO adsorption on model single-atom catalysts publication-title: Science – volume: 29 start-page: 220 year: 2016 end-page: 242 ident: b0605 article-title: Electrocatalysts by atomic layer deposition for fuel cell applications publication-title: Nano Energy – volume: 20 start-page: 2138 year: 2014 end-page: 2144 ident: b0495 article-title: Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution publication-title: Chemistry – volume: 46 start-page: 1720 year: 2013 end-page: 1730 ident: b0875 article-title: Sintering of catalytic nanoparticles: particle migration or ostwald ripening? publication-title: Acc. Chem. Res. – volume: 38 start-page: 1481 year: 2017 end-page: 1488 ident: b1175 article-title: X-ray absorption spectroscopy for single-atom catalysts: Critical importance and persistent challenges publication-title: Chinese J. Catal. – volume: 256 start-page: 117786 year: 2019 ident: b1160 article-title: Fully catalytic upgrading synthesis of 5-Ethoxymethylfurfural from biomass-derived 5-Hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid publication-title: Appl. Catal. B – volume: 74 start-page: 104931 year: 2020 ident: b1145 article-title: Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures publication-title: Nano Energy – volume: 352 start-page: 797 year: 2016 end-page: 800 ident: b0800 article-title: Photochemical route for synthesizing atomically dispersed palladium catalysts publication-title: Science – volume: 261 start-page: 118233 year: 2020 ident: b0775 article-title: Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution publication-title: Appl. Catal. B – volume: 53 start-page: 4102 year: 2014 end-page: 4106 ident: b0710 article-title: Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells publication-title: Angew. Chem. Int. Ed. Engl. – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: b0195 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. – volume: 8 start-page: 11806 year: 2014 end-page: 11815 ident: b1085 article-title: Stability and spectroscopy of single nitrogen dopants in graphene at elevated temperatures publication-title: ACS Nano – volume: 328 start-page: 151 year: 2015 end-page: 164 ident: b0870 article-title: Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts publication-title: J. Catal. – volume: 353 start-page: 150 year: 2016 end-page: 154 ident: b0885 article-title: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping publication-title: Science – volume: 10 start-page: 7584 year: 2020 end-page: 7618 ident: b1275 article-title: Electrocatalysis of single-atom sites: impacts of atomic coordination publication-title: ACS Catal. – volume: 4 start-page: 1546 year: 2014 end-page: 1553 ident: b1210 article-title: Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water publication-title: ACS Catal. – volume: 58 start-page: 1163 year: 2019 end-page: 1167 ident: b0310 article-title: Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. Engl. – volume: 112 start-page: 17200 year: 2008 end-page: 17205 ident: b0490 article-title: Location and state of Pt in platinized CdS/TiO publication-title: J. Phys. Chem. C – volume: 57 start-page: 9038 year: 2018 end-page: 9043 ident: b1045 article-title: Efficient Oxygen Reduction Reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework publication-title: Angew. Chem. Int. Ed. Engl. – volume: 139 start-page: 18093 year: 2017 end-page: 18100 ident: b0390 article-title: Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO publication-title: J. Am. Chem. Soc. – volume: 299 start-page: 864 year: 2003 end-page: 867 ident: b0135 article-title: Au publication-title: Science – volume: 372 start-page: 826 year: 2021 end-page: 831 ident: b1120 article-title: Electron ptychography achieves atomic-resolution limits set by lattice vibrations publication-title: Science – volume: 367 start-page: 3709 year: 2009 end-page: 3733 ident: b1070 article-title: Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems publication-title: Philos. T. R. Soc. A – volume: 6 start-page: 1288 year: 2020 end-page: 1301 ident: b0210 article-title: Emerging multifunctional single-atom catalysts/nanozymes publication-title: ACS Cent. Sci. – volume: 55 start-page: 2058 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0205 article-title: Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201509241 – volume: 6 start-page: 857 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0445 article-title: Solvent- and ligand-free diboration of alkynes and alkenes catalyzed by platinum nanoparticles on titania publication-title: ChemCatChem doi: 10.1002/cctc.201300946 – volume: 6 start-page: 302 year: 2011 ident: 10.1016/j.ccr.2022.214493_b1250 article-title: Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.42 – volume: 6 start-page: 658 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0915 article-title: Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst publication-title: Chem 6 doi: 10.1016/j.chempr.2019.12.008 – volume: 59 start-page: 13057 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0760 article-title: High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202004841 – volume: 29 start-page: 7323 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0635 article-title: Incorporating rich mesoporosity into a ceria-based catalyst via mechanochemistry publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02206 – volume: 6 start-page: 14054 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0455 article-title: Surface engineering protocol to obtain an atomically dispersed Pt/CeO2 catalyst with high activity and stability for CO oxidation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02613 – volume: 3 start-page: 1800481 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0105 article-title: Insights into single-atom metal-support interactions in electrocatalytic water splitting publication-title: Small Methods doi: 10.1002/smtd.201800481 – volume: 1 year: 2015 ident: 10.1016/j.ccr.2022.214493_b1095 article-title: A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature publication-title: Sci. Adv. doi: 10.1126/sciadv.1500462 – volume: 3 start-page: 545 year: 2012 ident: 10.1016/j.ccr.2022.214493_b0175 article-title: Atomically dispersed supported metal catalysts publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-062011-080939 – volume: 9 start-page: 3978 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0365 article-title: Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support publication-title: ACS Catal. doi: 10.1021/acscatal.8b04885 – volume: 260 start-page: 329 year: 2008 ident: 10.1016/j.ccr.2022.214493_b0535 article-title: The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: I. Amorphous silica publication-title: J. Catal. doi: 10.1016/j.jcat.2008.09.022 – volume: 122 start-page: 4488 year: 2018 ident: 10.1016/j.ccr.2022.214493_b1135 article-title: Enhanced stability of Pt-Cu single-atom alloy catalysts: in situ characterization of the Pt/Cu(111) surface in an ambient pressure of CO publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b00078 – volume: 28 start-page: 2427 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0330 article-title: Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution publication-title: Adv. Mater. doi: 10.1002/adma.201505281 – volume: 7 start-page: 2559 year: 2015 ident: 10.1016/j.ccr.2022.214493_b0420 article-title: The power of single-atom catalysis publication-title: ChemCatChem doi: 10.1002/cctc.201500363 – volume: 305 start-page: 7 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0890 article-title: Crown Jewel catalyst: How neighboring atoms affect the catalytic activity of top Au atoms? publication-title: J. Catal. doi: 10.1016/j.jcat.2013.04.012 – volume: 30 start-page: e1706287 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0320 article-title: Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction publication-title: Adv. Mater. doi: 10.1002/adma.201706287 – volume: 42 start-page: 7571 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0650 article-title: Hallmarks of mechanochemistry: from nanoparticles to technology publication-title: Chem Soc Rev doi: 10.1039/c3cs35468g – volume: 3 start-page: 43 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0515 article-title: Atomically dispersed palladium catalyses Suzuki-Miyaura reactions under phosphine-free conditions publication-title: Commun. Chem. doi: 10.1038/s42004-020-0289-y – volume: 10 start-page: 3997 year: 2019 ident: 10.1016/j.ccr.2022.214493_b1265 article-title: Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination publication-title: Nat. Commun. doi: 10.1038/s41467-019-11992-2 – volume: 10 start-page: 4500 year: 2019 ident: 10.1016/j.ccr.2022.214493_b1195 article-title: Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-019-12459-0 – volume: 5 start-page: 775 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0085 article-title: Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity publication-title: Nat. Chem. doi: 10.1038/nchem.1721 – ident: 10.1016/j.ccr.2022.214493_b0835 doi: 10.1039/b924051a – volume: 367 start-page: 3709 year: 2009 ident: 10.1016/j.ccr.2022.214493_b1070 article-title: Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems publication-title: Philos. T. R. Soc. A doi: 10.1098/rsta.2009.0112 – volume: 59 start-page: 9171 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0380 article-title: Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202003842 – volume: 118 start-page: 12216 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0855 article-title: Single Pd atom embedded in CeO2(111) for NO reduction with CO: a first-principles study publication-title: J. Phys. Chem. C doi: 10.1021/jp503745c – volume: 358 start-page: 751 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0040 article-title: Perovskites in catalysis and electrocatalysis publication-title: Science doi: 10.1126/science.aam7092 – volume: 6 start-page: 1288 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0210 article-title: Emerging multifunctional single-atom catalysts/nanozymes publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00512 – volume: 57 start-page: 9038 year: 2018 ident: 10.1016/j.ccr.2022.214493_b1045 article-title: Efficient Oxygen Reduction Reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201804958 – volume: 8 start-page: 1666 year: 2017 ident: 10.1016/j.ccr.2022.214493_b1255 article-title: Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-017-01765-0 – volume: 45 start-page: 1529 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0325 article-title: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 53 start-page: 10525 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0150 article-title: Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201402342 – volume: 31 start-page: e1808135 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0950 article-title: Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites publication-title: Adv. Mater. doi: 10.1002/adma.201808135 – volume: 38 start-page: 1508 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0595 article-title: Single atom catalyst by atomic layer deposition technique publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(17)62903-6 – volume: 162 start-page: 95 year: 2006 ident: 10.1016/j.ccr.2022.214493_b0480 article-title: Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(06)80895-5 – volume: 8 start-page: 1490 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0815 article-title: Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth publication-title: Nat. Commun. doi: 10.1038/s41467-017-01521-4 – volume: 38 start-page: 1460 year: 2017 ident: 10.1016/j.ccr.2022.214493_b1065 article-title: Aberration-corrected scanning transmission electron microscopy in single-atom catalysis: probing the catalytically active centers publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(17)62900-0 – volume: 7 start-page: 1301 year: 2017 ident: 10.1016/j.ccr.2022.214493_b1225 article-title: Support effects in single-atom platinum catalysts for electrochemical oxygen reduction publication-title: ACS Catal. doi: 10.1021/acscatal.6b02899 – volume: 308 start-page: 110507 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0520 article-title: Hollow mesoporous CeO2 microspheres for efficient loading of Au single-atoms to catalyze the water-gas shift reaction publication-title: Micropor. Mesopor. Mat. doi: 10.1016/j.micromeso.2020.110507 – volume: 136 start-page: 13554 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0715 article-title: N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja507463w – volume: 38 start-page: 1473 year: 2017 ident: 10.1016/j.ccr.2022.214493_b1220 article-title: Using probe molecule FTIR spectroscopy to identify and characterize Pt-group metal based single atom catalysts publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(17)62882-1 – volume: 135 start-page: 7114 year: 2013 ident: 10.1016/j.ccr.2022.214493_b1245 article-title: Long-chain terminal alcohols through catalytic CO hydrogenation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402512r – volume: 299 start-page: 864 year: 2003 ident: 10.1016/j.ccr.2022.214493_b0135 article-title: Au20: a tetrahedral cluster publication-title: Science doi: 10.1126/science.1079879 – volume: 13 start-page: 411 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0290 article-title: Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 8 start-page: 22467 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0880 article-title: Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06942F – volume: 17 start-page: e1903418 year: 2021 ident: 10.1016/j.ccr.2022.214493_b0035 article-title: Cobalt chalcogenides/cobalt phosphides/cobaltates with hierarchical nanostructures for anode materials of lithium-ion batteries: improving the lithiation environment publication-title: Small doi: 10.1002/smll.201903418 – volume: 25 start-page: 6226 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0730 article-title: N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction publication-title: Adv. Mater. doi: 10.1002/adma.201302569 – volume: 49 start-page: 2565 year: 2010 ident: 10.1016/j.ccr.2022.214493_b0725 article-title: Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200907289 – volume: 1 start-page: 6781 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0280 article-title: Single atom and nanoclustered Pt catalysts for selective CO2 reduction publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00817 – volume: 138 start-page: 15743 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0355 article-title: Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10169 – volume: 14 start-page: 1870 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0740 article-title: Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts publication-title: Nano Lett. doi: 10.1021/nl404640n – volume: 5 start-page: 786 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0005 article-title: Metal-organic-framework-based single-atom catalysts for energy applications publication-title: Chem doi: 10.1016/j.chempr.2018.12.011 – volume: 15 start-page: 5766 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0450 article-title: Remarkable catalytic property of nanoporous gold on activation of diborons for direct diboration of alkynes publication-title: Org. Lett. doi: 10.1021/ol4028013 – volume: 136 start-page: 16473 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0125 article-title: Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508879j – volume: 130 start-page: 370 year: 2008 ident: 10.1016/j.ccr.2022.214493_b0500 article-title: Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0773148 – volume: 198 start-page: 286 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0795 article-title: Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.05.074 – volume: 7 start-page: 442 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0695 article-title: ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42799D – volume: 26 start-page: 4070 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0940 article-title: A facile route for constructing effective Cu-Nx active sites for oxygen reduction reaction publication-title: Chemistry doi: 10.1002/chem.201903822 – volume: 141 start-page: 12372 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0920 article-title: Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05576 – volume: 9 start-page: 2438 year: 2021 ident: 10.1016/j.ccr.2022.214493_b0975 article-title: FeS2-anchored transition metal single atoms for highly efficient overall water splitting: a DFT computational screening study publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09903A – volume: 20 start-page: 2138 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0495 article-title: Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution publication-title: Chemistry doi: 10.1002/chem.201303366 – volume: 7 start-page: 4520 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0235 article-title: Direct synthesis of hierarchical ZSM-5 zeolite using cetyltrimethylammonium as structure directing agent for methanol-to-hydrocarbons conversion publication-title: Catal Sci. Technol. doi: 10.1039/C7CY01603D – volume: 12 start-page: 5502 year: 2010 ident: 10.1016/j.ccr.2022.214493_b1190 article-title: Recent developments in X-ray absorption spectroscopy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp90010a – volume: 140 start-page: 105999 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0460 article-title: Pt mechanical dispersion on non-porous alumina for soot oxidation publication-title: Catal. Commun. doi: 10.1016/j.catcom.2020.105999 – volume: 119 start-page: 11945 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0020 article-title: Alkaline Anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00157 – volume: 8 start-page: 7318 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0905 article-title: Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization publication-title: ACS Nano doi: 10.1021/nn502438k – volume: 9 start-page: 4454 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0270 article-title: Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation publication-title: Nat. Commun. doi: 10.1038/s41467-018-06967-8 – volume: 12 start-page: 492 year: 2019 ident: 10.1016/j.ccr.2022.214493_b1165 article-title: Pt-Based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02939C – volume: 256 start-page: 117786 year: 2019 ident: 10.1016/j.ccr.2022.214493_b1160 article-title: Fully catalytic upgrading synthesis of 5-Ethoxymethylfurfural from biomass-derived 5-Hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.117786 – volume: 30 start-page: e1704624 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0180 article-title: Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer publication-title: Adv. Mater. doi: 10.1002/adma.201704624 – volume: 10 start-page: 2452 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0190 article-title: Stabilizing single-atom iron electrocatalysts for oxygen reduction via ceria confining and trapping publication-title: ACS Catal. doi: 10.1021/acscatal.9b04621 – volume: 4 start-page: 5441 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0435 article-title: A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: a CO-promoted O2 activation publication-title: Sci. Rep. doi: 10.1038/srep05441 – volume: 9 start-page: 6643 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0850 article-title: The synergy between atomically dispersed Pd and cerium oxide for enhanced catalytic properties publication-title: Nanoscale doi: 10.1039/C6NR09707C – volume: 5 start-page: 3717 year: 2015 ident: 10.1016/j.ccr.2022.214493_b1230 article-title: Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene publication-title: ACS Catal. doi: 10.1021/acscatal.5b00700 – volume: 121 start-page: 13191 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0790 article-title: Ag-modified BiOCl single-crystal nanosheets: dependence of photocatalytic performance on the region-selective deposition of Ag nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b03213 – volume: 41 start-page: 413 year: 2012 ident: 10.1016/j.ccr.2022.214493_b0645 article-title: Mechanochemistry: opportunities for new and cleaner synthesis publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15171A – volume: 10 start-page: 631 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0930 article-title: Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media publication-title: Nat. Commun. doi: 10.1038/s41467-019-08419-3 – volume: 10 start-page: 1278 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0215 article-title: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-09290-y – volume: 10 start-page: 244 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0615 article-title: Atomic layer deposition for preparing isolated Co sites on SiO2 for ethane dehydrogenation catalysis publication-title: Nanomaterials (Basel) doi: 10.3390/nano10020244 – volume: 39 start-page: 893 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0070 article-title: Single-atom catalysis: Bridging the homo- and heterogeneous catalysis publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(18)63047-5 – volume: 140 start-page: 11594 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0375 article-title: Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07294 – volume: 355 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0045 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 13 start-page: 1842 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0935 article-title: Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance publication-title: Nano Res. doi: 10.1007/s12274-020-2755-3 – volume: 151 start-page: 214703 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0540 article-title: Strong electrostatic adsorption of Pt onto SiO2 partially overcoated Al2O3-towards single atom catalysts publication-title: J. Chem. Phys. doi: 10.1063/1.5128934 – volume: 95 start-page: 87 year: 2010 ident: 10.1016/j.ccr.2022.214493_b0840 article-title: Steam reforming of methanol over ceria and gold-ceria nanoshapes publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2009.12.012 – volume: 353 start-page: 150 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0885 article-title: Thermally stable single-atom platinum-on-ceria catalysts via atom trapping publication-title: Science doi: 10.1126/science.aaf8800 – volume: 4 start-page: 695 year: 2014 ident: 10.1016/j.ccr.2022.214493_b1240 article-title: Atomic imaging of carbon-supported Pt, Pt/Co, and Ir@Pt nanocatalysts by atom-probe tomography publication-title: ACS Catal. doi: 10.1021/cs401117e – volume: 9 start-page: 2521 year: 2019 ident: 10.1016/j.ccr.2022.214493_b1215 article-title: In situ/operando techniques for characterization of single-atom catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.8b04937 – volume: 29 start-page: 220 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0605 article-title: Electrocatalysts by atomic layer deposition for fuel cell applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.01.016 – volume: 140 start-page: 954 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0510 article-title: C-C coupling on single-atom-based heterogeneous catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09314 – volume: 230 start-page: 7 year: 2019 ident: 10.1016/j.ccr.2022.214493_b1170 article-title: Forskolin reduces fat accumulation in Nile tilapia (Oreochromis niloticus) through stimulating lipolysis and beta-oxidation publication-title: Comp. Biochem. Physiol. A Mol. Integr. Physiol. doi: 10.1016/j.cbpa.2018.12.011 – volume: 12 start-page: 1317 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0240 article-title: A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00162J – volume: 139 start-page: 14150 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0360 article-title: Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07093 – volume: 36 start-page: 1505 year: 2015 ident: 10.1016/j.ccr.2022.214493_b0245 article-title: Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(15)60889-0 – volume: 30 start-page: 2000531 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0655 article-title: Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000531 – volume: 8 start-page: 8450 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0805 article-title: Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions publication-title: ACS Catal. doi: 10.1021/acscatal.8b02288 – year: 2008 ident: 10.1016/j.ccr.2022.214493_b0065 – volume: 37 start-page: 692 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0160 article-title: Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(15)61090-7 – volume: 10 start-page: 3808 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0255 article-title: Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms publication-title: Nat. Commun. doi: 10.1038/s41467-019-11856-9 – volume: 58 start-page: 11262 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0630 article-title: Milling down to nanometers: a general process for the direct dry synthesis of supported metal catalysts publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201903545 – volume: 6 start-page: 9541 year: 2012 ident: 10.1016/j.ccr.2022.214493_b0745 article-title: Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction publication-title: ACS Nano doi: 10.1021/nn302674k – volume: 141 start-page: 4505 year: 2019 ident: 10.1016/j.ccr.2022.214493_b1125 article-title: Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09834 – volume: 61 year: 2022 ident: 10.1016/j.ccr.2022.214493_b0990 article-title: Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202114951 – volume: 46 start-page: 396 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0690 article-title: Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.025 – volume: 12 start-page: 1949 year: 2018 ident: 10.1016/j.ccr.2022.214493_b1105 article-title: Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery publication-title: ACS Nano doi: 10.1021/acsnano.7b09064 – volume: 358 start-page: 3 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0370 article-title: Why does industry not use immobilized transition metal complexes as catalysts? publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201500846 – volume: 2 start-page: 1242 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0080 article-title: Single-atom catalysts: synthetic strategies and electrochemical applications publication-title: Joule doi: 10.1016/j.joule.2018.06.019 – ident: 10.1016/j.ccr.2022.214493_b1155 doi: 10.1007/s40843-020-1271-x – volume: 3 start-page: 634 year: 2011 ident: 10.1016/j.ccr.2022.214493_b0155 article-title: Single-atom catalysis of CO oxidation using Pt1/FeOx publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – year: 2022 ident: 10.1016/j.ccr.2022.214493_b1270 article-title: In situ visualisation and analysis of dynamic single atom processes in heterogeneous catalysts publication-title: J. Mater. Chem. A – volume: 5 start-page: 4885 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0825 article-title: Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina publication-title: Nat. Commun. doi: 10.1038/ncomms5885 – volume: 11 start-page: 1215 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0570 article-title: Electrochemical deposition as a universal route for fabricating single-atom catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-020-14917-6 – volume: 10 start-page: 4585 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0395 article-title: A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-12510-0 – volume: 7 start-page: 4250 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0220 article-title: Fabrication, characterization, and stability of supported single-atom catalysts publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY00723J – volume: 141 start-page: 9664 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0405 article-title: Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03811 – volume: 10 start-page: 4488 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0295 article-title: Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site publication-title: Nat. Commun. doi: 10.1038/s41467-019-12461-6 – volume: 55 start-page: 4725 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0640 article-title: Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201601208 – volume: 139 start-page: 18093 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0390 article-title: Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10817 – volume: 44 start-page: 1824 year: 2005 ident: 10.1016/j.ccr.2022.214493_b0115 article-title: CO oxidation on rutile-supported au nanoparticles publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200461699 – volume: 38 start-page: 1481 year: 2017 ident: 10.1016/j.ccr.2022.214493_b1175 article-title: X-ray absorption spectroscopy for single-atom catalysts: Critical importance and persistent challenges publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(17)62880-8 – volume: 57 start-page: 15316 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0230 article-title: The multifaceted reactivity of single-atom heterogeneous catalysts publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201806936 – volume: 22 start-page: e00114 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0060 article-title: Cobalt porphyrin (CoTCPP) advanced visible light response of g-C3N4 nanosheets publication-title: SM&T – volume: 49 start-page: 2215 year: 2020 ident: 10.1016/j.ccr.2022.214493_b1235 article-title: Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00869A – volume: 10 start-page: 4849 year: 2019 ident: 10.1016/j.ccr.2022.214493_b1000 article-title: Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-12886-z – volume: 14 start-page: 134 year: 2014 ident: 10.1016/j.ccr.2022.214493_b1075 article-title: Direct imaging of Pt single atoms adsorbed on TiO2 (110) surfaces publication-title: Nano Lett. doi: 10.1021/nl403520c – volume: 8 start-page: 11806 year: 2014 ident: 10.1016/j.ccr.2022.214493_b1085 article-title: Stability and spectroscopy of single nitrogen dopants in graphene at elevated temperatures publication-title: ACS Nano doi: 10.1021/nn5054798 – volume: 46 start-page: 1740 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0130 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 6 start-page: 6151 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0475 article-title: Room-temperature CO oxidation catalyst: low-temperature metal-support interaction between platinum nanoparticles and nanosized ceria publication-title: ACS Catal. doi: 10.1021/acscatal.6b00677 – volume: 46 start-page: 37814 year: 2021 ident: 10.1016/j.ccr.2022.214493_b0980 article-title: High performance SACs for HER process using late first-row transition metals anchored on graphyne support: a DFT insight publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2021.09.063 – volume: 10 start-page: 7584 year: 2020 ident: 10.1016/j.ccr.2022.214493_b1275 article-title: Electrocatalysis of single-atom sites: impacts of atomic coordination publication-title: ACS Catal. doi: 10.1021/acscatal.0c01950 – volume: 7 start-page: 3460 year: 2015 ident: 10.1016/j.ccr.2022.214493_b0530 article-title: Synthesis of platinum catalysts over thick slurries of oxide supports by strong electrostatic adsorption publication-title: ChemCatChem doi: 10.1002/cctc.201500595 – volume: 9 start-page: 1002 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0440 article-title: Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes publication-title: Nat. Commun. doi: 10.1038/s41467-018-03380-z – volume: 59 start-page: 21698 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0575 article-title: Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202009331 – volume: 118 start-page: 4981 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0225 article-title: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00776 – volume: 551 start-page: 605 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0260 article-title: Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts publication-title: Nature doi: 10.1038/nature24640 – volume: 9 start-page: 12496 year: 2015 ident: 10.1016/j.ccr.2022.214493_b0425 article-title: Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity publication-title: ACS Nano doi: 10.1021/acsnano.5b05984 – volume: 4 start-page: 1924 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0565 article-title: Catalytically active single-atom niobium in graphitic layers publication-title: Nat. Commun. doi: 10.1038/ncomms2929 – volume: 135 start-page: 15314 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0305 article-title: Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408574m – volume: 135 start-page: 3768 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0555 article-title: Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312646d – volume: 7 start-page: 10922 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0470 article-title: Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst publication-title: Nat. Commun. doi: 10.1038/ncomms10922 – volume: 21 start-page: 2486 year: 2020 ident: 10.1016/j.ccr.2022.214493_b1140 article-title: Identifying the types and characterization of the active sites on M-X-C single-atom catalysts publication-title: ChemPhysChem doi: 10.1002/cphc.202000595 – volume: 50 start-page: 691 year: 2018 ident: 10.1016/j.ccr.2022.214493_b1100 article-title: Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.023 – volume: 16 start-page: e2001896 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0900 article-title: Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO2 reduction publication-title: Small doi: 10.1002/smll.202001896 – volume: 3 start-page: 1713 year: 2018 ident: 10.1016/j.ccr.2022.214493_b1130 article-title: Single-atom catalysts for electrochemical water splitting publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00640 – volume: 7 start-page: 1903089 year: 2020 ident: 10.1016/j.ccr.2022.214493_b1010 article-title: High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction publication-title: Adv. Sci. doi: 10.1002/advs.201903089 – volume: 53 start-page: 8904 year: 2014 ident: 10.1016/j.ccr.2022.214493_b1110 article-title: A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201403353 – volume: 261 start-page: 118233 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0775 article-title: Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118233 – volume: 4 start-page: 597 year: 2012 ident: 10.1016/j.ccr.2022.214493_b0845 article-title: Catalyst-support interactions: electronic perturbations publication-title: Nat. Chem. doi: 10.1038/nchem.1412 – volume: 41 start-page: 8163 year: 2012 ident: 10.1016/j.ccr.2022.214493_b1180 article-title: Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35174a – volume: 10 start-page: 780 year: 2011 ident: 10.1016/j.ccr.2022.214493_b0735 article-title: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction publication-title: Nat. Mater. doi: 10.1038/nmat3087 – volume: 38 start-page: 1498 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0170 article-title: Highlights of the major progress in single-atom catalysis in 2015 and 2016 publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(17)62872-9 – volume: 515 start-page: 1664 year: 2006 ident: 10.1016/j.ccr.2022.214493_b0620 article-title: Atomic layer deposition of palladium films on Al2O3 surfaces publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.05.049 – volume: 34 start-page: e2105204 year: 2022 ident: 10.1016/j.ccr.2022.214493_b0965 article-title: Loading single-Ni atoms on assembled hollow N-rich carbon plates for efficient CO2 electroreduction publication-title: Adv. Mater. doi: 10.1002/adma.202105204 – volume: 11 start-page: 3392 year: 2017 ident: 10.1016/j.ccr.2022.214493_b1080 article-title: Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2 publication-title: ACS Nano doi: 10.1021/acsnano.7b00796 – volume: 19 start-page: 436 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0410 article-title: Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production publication-title: Nat. Mater. doi: 10.1038/s41563-019-0571-5 – volume: 371 start-page: 375 year: 2021 ident: 10.1016/j.ccr.2022.214493_b0385 article-title: Unraveling CO adsorption on model single-atom catalysts publication-title: Science doi: 10.1126/science.abe5757 – volume: 392 start-page: 123655 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0860 article-title: Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: a dynamic transformation from clusters to single atoms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123655 – volume: 143 start-page: 2173 year: 2021 ident: 10.1016/j.ccr.2022.214493_b0960 article-title: Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c08409 – volume: 6 start-page: eabb9823 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0955 article-title: Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution publication-title: Sci. Adv. doi: 10.1126/sciadv.abb9823 – volume: 404 start-page: 126458 year: 2021 ident: 10.1016/j.ccr.2022.214493_b0025 article-title: Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored TiO2@P-C3N4 core-shell nanorod arrays publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126458 – volume: 112 start-page: 17200 year: 2008 ident: 10.1016/j.ccr.2022.214493_b0490 article-title: Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light publication-title: J. Phys. Chem. C doi: 10.1021/jp804699c – volume: 8 start-page: 3116 year: 2018 ident: 10.1016/j.ccr.2022.214493_b1040 article-title: Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.8b00398 – volume: 51 start-page: 325 year: 2009 ident: 10.1016/j.ccr.2022.214493_b0485 article-title: Water gas shift catalysis publication-title: Catal. Rev. doi: 10.1080/01614940903048661 – volume: 136 start-page: 8875 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0720 article-title: Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503557x – year: 2022 ident: 10.1016/j.ccr.2022.214493_b0970 article-title: Hierarchical 3D porous carbon with facilely accessible Fe-N4 single-atom sites for Zn-air batteries publication-title: J. Mater. Chem. A – volume: 2 start-page: 1700286 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0050 article-title: Strategies for stabilizing atomically dispersed metal catalysts publication-title: Small Methods doi: 10.1002/smtd.201700286 – volume: 56 start-page: 13944 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0030 article-title: Single-atom electrocatalysts publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201703864 – volume: 2 start-page: 1024 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0505 article-title: Facile one-pot synthesis of MOF supported gold pseudo-single-atom catalysts for hydrogenation reactions publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00081F – volume: 260 start-page: 118196 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0015 article-title: Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118196 – volume: 13 start-page: 2517 year: 2011 ident: 10.1016/j.ccr.2022.214493_b0830 article-title: 'Shape effects' in metal oxide supported nanoscale gold catalysts publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02009e – volume: 3 start-page: 2867 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0610 article-title: Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00146 – volume: 372 start-page: 826 year: 2021 ident: 10.1016/j.ccr.2022.214493_b1120 article-title: Electron ptychography achieves atomic-resolution limits set by lattice vibrations publication-title: Science doi: 10.1126/science.abg2533 – volume: 471 start-page: 228446 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0315 article-title: Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228446 – volume: 141 start-page: 14515 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0350 article-title: Highly Active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06482 – volume: 138 start-page: 6292 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0285 article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02692 – volume: 1 start-page: 385 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0075 article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0090-9 – volume: 74 start-page: 104931 year: 2020 ident: 10.1016/j.ccr.2022.214493_b1145 article-title: Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104931 – volume: 2 start-page: 495 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0345 article-title: Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis publication-title: Nat. Catal. doi: 10.1038/s41929-019-0279-6 – volume: 10 start-page: 4290 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0340 article-title: Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-019-12362-8 – volume: 25 start-page: e00172 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0095 article-title: Bridging metal-ion induced vertical growth of MoS2 and overall fast electron transfer in (C, P)3N4-M (Ni2+, Co2+)-MoS2 electrocatalyst for efficient hydrogen evolution reaction publication-title: SM&T – volume: 22 start-page: 7529 year: 2020 ident: 10.1016/j.ccr.2022.214493_b1200 article-title: Tuning the coordination number of Fe single atoms for the efficient reduction of CO2 publication-title: Green Chem. doi: 10.1039/D0GC02689A – volume: 2 start-page: 65 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0195 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 17 start-page: 1441 year: 2015 ident: 10.1016/j.ccr.2022.214493_b0430 article-title: Graphyne-supported single Fe atom catalysts for CO oxidation publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04181J – volume: 138 start-page: 1977 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0590 article-title: Sintering-resistant single-site nickel catalyst supported by metal-organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12515 – volume: 57 start-page: 1944 year: 2018 ident: 10.1016/j.ccr.2022.214493_b1035 article-title: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201712451 – volume: 47 start-page: 5423 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0055 article-title: Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00016F – volume: 9 start-page: 77 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0810 article-title: Multistep nucleation of nanocrystals in aqueous solution publication-title: Nat. Chem. doi: 10.1038/nchem.2618 – volume: 12 start-page: 1401 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0625 article-title: Insight of the stability and activity of platinum single atoms on ceria publication-title: Nano Res. doi: 10.1007/s12274-019-2351-6 – volume: 109 year: 2012 ident: 10.1016/j.ccr.2022.214493_b1090 article-title: Direct determination of the chemical bonding of individual impurities in graphene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.206803 – volume: 8 start-page: 16100 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0895 article-title: Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation publication-title: Nat. Commun. doi: 10.1038/ncomms16100 – volume: 7 start-page: 20840 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0185 article-title: Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05981D – volume: 5 start-page: 673 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0415 article-title: Recent advances in the precise control of isolated single-site catalysts by chemical methods publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwy056 – volume: 2 start-page: 70 year: 2017 ident: 10.1016/j.ccr.2022.214493_b1055 article-title: Advanced electron microscopy characterization of nanomaterials for catalysis publication-title: Green Energy Environ. doi: 10.1016/j.gee.2017.02.001 – volume: 56 start-page: 6937 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0755 article-title: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201702473 – volume: 352 start-page: 797 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0800 article-title: Photochemical route for synthesizing atomically dispersed palladium catalysts publication-title: Science doi: 10.1126/science.aaf5251 – volume: 137 start-page: 3076 year: 2015 ident: 10.1016/j.ccr.2022.214493_b1115 article-title: Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5128133 – volume: 38 start-page: 1528 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0335 article-title: Preparation, characterization and catalytic performance of single-atom catalysts, Chinese publication-title: J. Catal. – volume: 5 start-page: eaax6322 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0400 article-title: A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts publication-title: Sci. Adv. doi: 10.1126/sciadv.aax6322 – volume: 9 start-page: 27002 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0525 article-title: Promotion of Pt/CeO2 catalyst by hydrogen treatment for low-temperature CO oxidation publication-title: RSC Adv. doi: 10.1039/C9RA05965B – volume: 6 start-page: eaba3809 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0545 article-title: High-loading single Pt atom sites [Pt-O(OH)x] catalyze the CO PROX reaction with high activity and selectivity at mild conditions publication-title: Sci. Adv. doi: 10.1126/sciadv.aba3809 – volume: 53 start-page: 4102 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0710 article-title: Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201307203 – volume: 4 start-page: 1546 year: 2014 ident: 10.1016/j.ccr.2022.214493_b1210 article-title: Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water publication-title: ACS Catal. doi: 10.1021/cs500071c – volume: 9 start-page: 1231 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0265 article-title: Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions publication-title: Nat. Commun. doi: 10.1038/s41467-018-03235-7 – volume: 7 start-page: 34 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0110 article-title: Catalysis by supported single metal atoms publication-title: ACS Catal. doi: 10.1021/acscatal.6b01534 – volume: 46 start-page: 1720 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0875 article-title: Sintering of catalytic nanoparticles: particle migration or ostwald ripening? publication-title: Acc. Chem. Res. doi: 10.1021/ar3002427 – volume: 1 start-page: 63 year: 2018 ident: 10.1016/j.ccr.2022.214493_b1050 article-title: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities publication-title: Nature Catal. doi: 10.1038/s41929-017-0008-y – volume: 58 start-page: 1163 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0310 article-title: Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201812423 – volume: 55 start-page: 10800 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0700 article-title: Single cobalt atoms with precise n-coordination as superior oxygen reduction reaction catalysts publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201604802 – volume: 10 start-page: 2830 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0770 article-title: Ultralow-temperature photochemical synthesis of atomically dispersed Pt catalysts for the hydrogen evolution reaction publication-title: Chem. Sci. doi: 10.1039/C8SC04986F – volume: 3 start-page: 3067 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0465 article-title: Strong interaction between pt and thiolated carbon for electrocatalytic durability enhancement publication-title: ACS Catal. doi: 10.1021/cs400649n – volume: 1 start-page: 100004 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0660 article-title: Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2019.100004 – volume: 8 start-page: 1801101 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0145 article-title: General dimension-controlled synthesis of hollow carbon embedded with metal singe atoms or core-shell nanoparticles for energy storage applications publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801101 – volume: 11 start-page: 6930 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0675 article-title: Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium publication-title: ACS Nano doi: 10.1021/acsnano.7b02148 – volume: 344 start-page: 616 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0865 article-title: Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen publication-title: Science doi: 10.1126/science.1253150 – volume: 10 start-page: 2754 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0945 article-title: N-coordinated dual-metal single-site catalyst for low-temperature CO oxidation publication-title: ACS Catal. doi: 10.1021/acscatal.0c00097 – volume: 11 start-page: 7018 year: 2021 ident: 10.1016/j.ccr.2022.214493_b0580 article-title: Single-atom catalysts designed and prepared by the atomic layer deposition technique publication-title: ACS catal. doi: 10.1021/acscatal.1c01200 – volume: 32 start-page: 353 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0665 article-title: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.056 – volume: 56 start-page: 610 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0685 article-title: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201610119 – volume: 7 start-page: 14036 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0275 article-title: Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst publication-title: Nat. Commun. doi: 10.1038/ncomms14036 – volume: 31 start-page: 1904548 year: 2019 ident: 10.1016/j.ccr.2022.214493_b1005 article-title: Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix publication-title: Adv. Mater. doi: 10.1002/adma.201904548 – volume: 2 start-page: 183 year: 2015 ident: 10.1016/j.ccr.2022.214493_b0120 article-title: Understanding nano effects in catalysis publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwv024 – volume: 38 start-page: 1443 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0165 article-title: Two-dimensional materials confining single atoms for catalysis publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(17)62839-0 – volume: 10 start-page: 3663 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0670 article-title: A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation publication-title: Nat. Commun. doi: 10.1038/s41467-019-11619-6 – volume: 3 start-page: 140 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0200 article-title: Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction publication-title: Nat. Energy doi: 10.1038/s41560-017-0078-8 – volume: 12 start-page: 764 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0910 article-title: Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy publication-title: Nat. Chem. doi: 10.1038/s41557-020-0473-9 – volume: 60 start-page: 13177 year: 2021 ident: 10.1016/j.ccr.2022.214493_b0925 article-title: Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202014112 – volume: 7 start-page: 3121 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0560 article-title: Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.7b00199 – volume: 116 start-page: 9683 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0780 article-title: Photochemical approaches to complex chemotypes: applications in natural product synthesis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00760 – volume: 10 start-page: 2002592 year: 2020 ident: 10.1016/j.ccr.2022.214493_b1205 article-title: Atomically dispersed Co-pyridinic N-C for superior oxygen reduction reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002592 – volume: 135 start-page: 15443 year: 2013 ident: 10.1016/j.ccr.2022.214493_b0705 article-title: Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405149m – volume: 2 start-page: 149 year: 2019 ident: 10.1016/j.ccr.2022.214493_b0250 article-title: Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0192-4 – volume: 29 start-page: 1604456 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0680 article-title: In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer-electrolyte-membrane fuel cells publication-title: Adv. Mater. doi: 10.1002/adma.201604456 – volume: 410 start-page: 128359 year: 2021 ident: 10.1016/j.ccr.2022.214493_b1015 article-title: Rational design of ultrahigh loading metal single-atoms (Co, Ni, Mo) anchored on in-situ pre-crosslinked guar gum derived N-doped carbon aerogel for efficient overall water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128359 – volume: 1 start-page: 2 year: 2011 ident: 10.1016/j.ccr.2022.214493_b0090 article-title: Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: size effect in the sub-2 nm regime publication-title: ACS Catal. doi: 10.1021/cs100043j – volume: 328 start-page: 151 year: 2015 ident: 10.1016/j.ccr.2022.214493_b0870 article-title: Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2015.03.016 – volume: 61 start-page: 245 year: 2019 ident: 10.1016/j.ccr.2022.214493_b1020 article-title: High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.076 – volume: 421 start-page: 127804 year: 2021 ident: 10.1016/j.ccr.2022.214493_b0100 article-title: FeS2 bridging function to enhance charge transfer between MoS2 and g-C3N4 for efficient hydrogen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127804 – volume: 11 start-page: 3578 year: 2021 ident: 10.1016/j.ccr.2022.214493_b0985 article-title: Pt1-O4 as active sites boosting CO oxidation via a non-classical Mars-van Krevelen mechanism publication-title: Catal Sci. Technol. doi: 10.1039/D1CY00115A – volume: 133 start-page: 12714 year: 2011 ident: 10.1016/j.ccr.2022.214493_b1185 article-title: Correlation between atomic coordination structure and enhanced electrocatalytic activity for trimetallic alloy catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2040464 – volume: 1 start-page: 339 year: 2018 ident: 10.1016/j.ccr.2022.214493_b0010 article-title: A universal principle for a rational design of single-atom electrocatalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0063-z – volume: 489 start-page: 128 year: 2012 ident: 10.1016/j.ccr.2022.214493_b0785 article-title: Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films publication-title: Nature doi: 10.1038/nature11434 – volume: 7 start-page: 5758 year: 2016 ident: 10.1016/j.ccr.2022.214493_b0765 article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes publication-title: Chem. Sci. doi: 10.1039/C6SC02105K – volume: 48 start-page: 4857 year: 2012 ident: 10.1016/j.ccr.2022.214493_b0550 article-title: Novel Au/La2O3 and Au/La2O2SO4 catalysts for the water-gas shift reaction prepared via an anion adsorption method publication-title: ChemComm – volume: 10 start-page: 1302 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0585 article-title: Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation publication-title: Nano Res. doi: 10.1007/s12274-016-1416-z – volume: 139 start-page: 14889 year: 2017 ident: 10.1016/j.ccr.2022.214493_b1030 article-title: Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09074 – volume: 137 start-page: 3470 year: 2015 ident: 10.1016/j.ccr.2022.214493_b0300 article-title: A common single-site Pt(II)-O(OH)x- species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja513292k – volume: 281 start-page: 1647 year: 1998 ident: 10.1016/j.ccr.2022.214493_b0140 article-title: Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties publication-title: Science doi: 10.1126/science.281.5383.1647 – volume: 3 start-page: 950 year: 2017 ident: 10.1016/j.ccr.2022.214493_b1260 article-title: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis publication-title: Chem doi: 10.1016/j.chempr.2017.09.014 – volume: 139 start-page: 8078 year: 2017 ident: 10.1016/j.ccr.2022.214493_b0750 article-title: Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02736 – volume: 11 start-page: 2701 year: 2020 ident: 10.1016/j.ccr.2022.214493_b0995 article-title: Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-020-16558-1 – volume: 5 start-page: 5634 year: 2014 ident: 10.1016/j.ccr.2022.214493_b0820 article-title: FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes publication-title: Nat. Commun. doi: 10.1038/ncomms6634 – volume: 139 start-page: 3336 year: 2017 ident: 10.1016/j.ccr.2022.214493_b1025 article-title: Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13100 – volume: 394 start-page: 124904 year: 2020 ident: 10.1016/j.ccr.2022.214493_b1150 article-title: Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst publication-title: Chem Eng. J. doi: 10.1016/j.cej.2020.124904 – volume: 137 start-page: 10484 year: 2015 ident: 10.1016/j.ccr.2022.214493_b0600 article-title: Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06485 – volume: 10 start-page: 5058 year: 2018 ident: 10.1016/j.ccr.2022.214493_b1060 article-title: Single atom catalysts on carbon-based materials publication-title: ChemCatChem doi: 10.1002/cctc.201801174 |
SSID | ssj0016992 |
Score | 2.6821365 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Coordination environments of single-atom catalysts (SACs) are highlighted.•Coordination environments explain the structure-performance... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 214493 |
SubjectTerms | Atomic configuration Catalytic activity Characterization technique Coordination environment Single-atom catalyst Stabilization strategy |
Title | The effect of coordination environment on the activity and selectivity of single-atom catalysts |
URI | https://dx.doi.org/10.1016/j.ccr.2022.214493 |
Volume | 461 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DD3oRf-L8MXLwJGRrmixtjmM4puJODnYLSZrCZHbD1YMX_3bzmnZMUA8eU_KgvL58eUm_9z2EbjLKrUsFJSKhnHAnc2Ksjok0mYUgMMxBgfPTRIyn_GHWn7XQsKmFAVpljf0B0yu0rp_0am_2VvM51PgCcx4UwWEjq8qvOU8gyrufG5oHFVIGxXCPNzC7-bNZcbysBUnQOO6CcJhkP-9NW_vN6BAd1IkiHoR3OUItVxyjvWHTn-0EKf-FcaBj4GWO7dIfI-fhbg9vla9hP_RJHoYCBugTgXWR4XXV_SaMvS3cFywc8efvV1zd53ysy_Upmo7unodjUrdLIJYJVhK_VDMprYcgE8eZjFKnqc1EzJ3PGXIpc82oszpnPsVwqZE6sto4avvawEEkYWdop1gW7hxhrXPHEudxMGHcUpFaw7JIZwJEQ6l0bRQ1jlK21hKHlhYL1ZDGXpT3rQLfquDbNrrdmKyCkMZfk3njffUtGpQH-t_NLv5ndon2YQQEMNq_Qjvl27u79qlGaTpVLHXQ7uD-cTz5AuF704c |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4VGGBBPEV5eoAFKVDHaRoPDAioWvqYqNTN2I4jFZW2okWIhT_FH-QuDwQSMCB1dJKL4svl7ux89x3AccwD66KQe2GNB17gZOIZq31PmtiSERjhqMC50w0bveC2X-2X4L2ohSFYZe77M5-eeuv8yHmuzfPJYEA1voScJ0ZwCmQRz5GVLff6guu26UXzGl_yie_Xb-6uGl7eWsCzIhQzD806ltLi52p8P5aVyGlu49APHMbXRMpEC-6sTgSGYxcZqStWG8dtVRtK2msC77sASwG6C2qbcPb2iSvhoZQZRTk6OHq84ldqCiqzljhIff-MmMqk-DkYfglw9TVYzTNTdplNfh1KbrQBy1dFQ7hNUGhSLMN_sHHC7BjnP8g2E9mXejmGQ8wqGVVMUGMKpkcxm6btdrIxytIGxdB5uOB_ZOkG0ut0Nt2C3lyUuA2Lo_HI7QDTOnGi5tDx1kRgeRhZI-KKjkNiKeXSlaFSKErZnLycemgMVYFSe1CoW0W6VZluy3D6KTLJmDv-ujgotK--mZ_CyPK72O7_xI5guXHXaat2s9vagxU6Q-gzXt2HxdnTszvAPGdmDlO7YnA_b0P-AGaTD4o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+coordination+environment+on+the+activity+and+selectivity+of+single-atom+catalysts&rft.jtitle=Coordination+chemistry+reviews&rft.au=Zhang%2C+Yuqi&rft.au=Yang%2C+Jack&rft.au=Ge%2C+Riyue&rft.au=Zhang%2C+Jiujun&rft.date=2022-06-15&rft.issn=0010-8545&rft.volume=461&rft.spage=214493&rft_id=info:doi/10.1016%2Fj.ccr.2022.214493&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ccr_2022_214493 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |