GA-based QOS-aware workflow scheduling of deadline tasks in grid computing
Grid computing is the aggregation of the power of heterogeneous, geographically distributed computing resources to provide high-performance computing. To benefit from the grid computing capabilities, effectual scheduling algorithms are primarily essential. This paper presents a GA-based approach, ca...
Saved in:
Published in | Knowledge and information systems Vol. 66; no. 5; pp. 2859 - 2884 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.05.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0219-1377 0219-3116 |
DOI | 10.1007/s10115-023-02048-5 |
Cover
Loading…
Abstract | Grid computing is the aggregation of the power of heterogeneous, geographically distributed computing resources to provide high-performance computing. To benefit from the grid computing capabilities, effectual scheduling algorithms are primarily essential. This paper presents a GA-based approach, called Grid Workflow Tasks Scheduling Algorithm (GWTSA), for scheduling workflow tasks on grid services based on users’ QoS (quality of service) constraints in terms of cost and time. For a given set of inter-dependent workflow tasks, it generates an optimal schedule, which minimizes the execution time and cost, such that the optimized time be within the time constraints (deadline) imposed by the user. In GWTSA, the workflow tasks are modeled as a DAG, which is divided, then the optimal sub-schedules of all task divisions are computed and used to obtain the execution schedule of the entire workflow. A GA-based technique is employed in GWTSA to compute the optimal execution sub-schedule for each branch division that consists of a set of sequential tasks. In this technique, the chromosome represents a branch division, where each gene holds the id of the service provider chosen to execute the corresponding task in the branch; and the fitness function is formulated as a multi-objective function of time and cost, this gives users the ability to determine their requirements if speed against cost or vice versa, by changing the weighting coefficients in the fitness function. The paper also exhibits the experimental results of assessing the performance of GWTSA with workflow samples of different sizes. |
---|---|
AbstractList | Grid computing is the aggregation of the power of heterogeneous, geographically distributed computing resources to provide high-performance computing. To benefit from the grid computing capabilities, effectual scheduling algorithms are primarily essential. This paper presents a GA-based approach, called Grid Workflow Tasks Scheduling Algorithm (GWTSA), for scheduling workflow tasks on grid services based on users’ QoS (quality of service) constraints in terms of cost and time. For a given set of inter-dependent workflow tasks, it generates an optimal schedule, which minimizes the execution time and cost, such that the optimized time be within the time constraints (deadline) imposed by the user. In GWTSA, the workflow tasks are modeled as a DAG, which is divided, then the optimal sub-schedules of all task divisions are computed and used to obtain the execution schedule of the entire workflow. A GA-based technique is employed in GWTSA to compute the optimal execution sub-schedule for each branch division that consists of a set of sequential tasks. In this technique, the chromosome represents a branch division, where each gene holds the id of the service provider chosen to execute the corresponding task in the branch; and the fitness function is formulated as a multi-objective function of time and cost, this gives users the ability to determine their requirements if speed against cost or vice versa, by changing the weighting coefficients in the fitness function. The paper also exhibits the experimental results of assessing the performance of GWTSA with workflow samples of different sizes. |
Author | Mahmoud, Tarek M. Girgis, Moheb R. Azzam, Hagar M. |
Author_xml | – sequence: 1 givenname: Moheb R. surname: Girgis fullname: Girgis, Moheb R. organization: Department of Computer Science, Faculty of Science, Minia University – sequence: 2 givenname: Tarek M. surname: Mahmoud fullname: Mahmoud, Tarek M. organization: Department of Computer Science, Faculty of Computers and Artificial Intelligence, Sadat City University – sequence: 3 givenname: Hagar M. surname: Azzam fullname: Azzam, Hagar M. email: hagar126@mu.edu.eg organization: Department of Computer Science, Faculty of Science, Minia University |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9F87dexFK1KoYh6DtnspG673dRkl-K_N7oFwUMPw8zheWaGd4JGrWsBoWtGbxml2V1glLGEUC5iUZmT5AyNKWcFEYylo-PMRJZdoEkIG0pZljI2Rs-LGSl1gAq_rF6JPmgP-OD81jbugIP5gKpv6naNncUV6CrOgDsdtgHXLV77usLG7fZ9F5lLdG51E-Dq2Kfo_eH-bf5IlqvF03y2JEakoiPccpvbgqfAUlPktpQFWCNAlpSCzcFynZUcigQ4T3OoZFWmOQdprITEAhVTdDPs3Xv32UPo1Mb1vo0nlaCyoAWVCYtUPlDGuxA8WGXqTne1azuv60Yxqn6SU0NyKianfpNTSVT5P3Xv6532X6clMUghwu0a_N9XJ6xv-2GCsw |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3457518 |
Cites_doi | 10.1109/ICGCIoT.2015.7380654 10.1007/s12652-020-02255-w 10.1109/W-FiCloud.2016.71 10.1016/j.asoc.2018.05.032 10.1002/cpe.3003 10.1007/s00542-019-04673-z 10.1007/s10489-021-02625-7 10.1109/FUZZ-IEEE.2017.8015589 10.1007/978-3-642-04020-7_26 10.1007/s11227-014-1368-6 10.1504/IJWGS.2011.044697 10.3923/itj.2008.91.97 10.1109/WORKS.2006.5282330 10.1016/j.jss.2016.07.006 10.1080/08839514.2021.1987708 10.1007/978-3-319-25744-0_6 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10115-023-02048-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 0219-3116 |
EndPage | 2884 |
ExternalDocumentID | 10_1007_s10115_023_02048_5 |
GrantInformation_xml | – fundername: Minia University |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6KP 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAS LLZTM M0C M0N M4Y MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-2f2f8f926e16c98fb49efc3e4b00ef8ef2a7b2e95e2268ed4db682e4cf4e5fe03 |
IEDL.DBID | AGYKE |
ISSN | 0219-1377 |
IngestDate | Sat Aug 16 18:51:48 EDT 2025 Tue Jul 01 01:11:00 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Fri Feb 21 02:39:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Workflow tasks scheduling Grid computing Quality of service constraints Genetic algorithms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-2f2f8f926e16c98fb49efc3e4b00ef8ef2a7b2e95e2268ed4db682e4cf4e5fe03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10115-023-02048-5 |
PQID | 3049090451 |
PQPubID | 43394 |
PageCount | 26 |
ParticipantIDs | proquest_journals_3049090451 crossref_citationtrail_10_1007_s10115_023_02048_5 crossref_primary_10_1007_s10115_023_02048_5 springer_journals_10_1007_s10115_023_02048_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240500 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 5 year: 2024 text: 20240500 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationSubtitle | An International Journal |
PublicationTitle | Knowledge and information systems |
PublicationTitleAbbrev | Knowl Inf Syst |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | BahnasawyNAKoutbMAMosaMOmaraFA new algorithm for static task scheduling for heterogeneous distributed computing systemsAfr J Math Comput Sci Res201146221234 Yu J, Buyya R (2006) A budget constrained scheduling of workflow applications on utility grids using genetic algorithms, In: Proceedings of the 15th IEEE International Symposium on High Performance Distributed Computing (HPDC’06), France, Jun 2006 Gabaldon E, Vila S, Guirado F, Lerida JL, Planes J (2017) Energy efficient scheduling on heterogeneous federated clusters using a fuzzy multi-objective meta-heuristics, In: IEEE international conference on fuzzy systems (FUZZ-IEEE), Naples, Italy Chen R, Shiau D, Andlo SH (2009) Combined discrete particle swarm optimization and simulated annealing for grid computing scheduling problem, In: Lecture notes in computer science, vol. 57, Springer, Berlin, pp. 242–251 Ankita, Sahana SK (2019) Evolutionary based hybrid GA for solving multi-objective grid scheduling problem, Microsyst Technol 26:1405–1416. GhoshTKDasSGhoshalNCastilloOJanaDGiriDAhmedAJob scheduling in computational grid using a hybrid algorithm based on genetic algorithm and particle swarm optimizationRecent advances in intelligent information systems and applied mathematics, ICITAM, Studies in Computational Intelligence2019New YorkSpringer RahmanMHassanRRanjanRBuyyaRAdaptive workflow scheduling for dynamic grid and cloud computing environmentConcurr Comput Pract Experience2013251816184210.1002/cpe.3003 KeshanchiBSouriANavimipourNJAn improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testingJ Syst Softw201712412110.1016/j.jss.2016.07.006 YounisMTYangSHybrid meta-heuristic algorithms for independent job scheduling in grid computingAppl Soft Comput20187249851710.1016/j.asoc.2018.05.032 Shakya S, Prajapati U (2015.) Task scheduling in grid computing using genetic algorithm, In: International Conference on Green Computing and Internet of Things (ICGCIoT), Greater Noida, India, 2015, pp. 1245–1248 BoseABiswasTKuilaPTiwariSA novel genetic algorithm based scheduling for multi-core systemsSmart innovations in communication and computational sciences, advances in intelligent systems and computing2019New YorkSpringer851 JiangYChenMTask scheduling for grid computing systems using a genetic algorithmJ Supercomput20157141357137710.1007/s11227-014-1368-6 Aggarwal M, Kent RD, Ngom A (2005) Genetic algorithm based scheduler for computational grids, In: Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05) ChauhanPNitinNDecentralized scheduling algorithm for DAG based tasks on P2P gridJ Eng20141–142014 GargRSinghAKAdaptive workflow scheduling in grid computing based on dynamic resource availabilityEng Sci Technol Int J201518256269 BenedictSHVasudevanVImproving scheduling of scientific workflows using tabu search for computational gridsInf Technol J200871919710.3923/itj.2008.91.97 YousifAAn enhanced firefly algorithm for time shared grid task schedulingAppl Artif Intell202135151567158610.1080/08839514.2021.1987708 Ankita, Sahana SK (2022) A balanced PSO to solve multi-objective grid scheduling problem, J Appl Intell 52:4015–4027 GoldbergDEGenetic algorithms in search, optimization, and machine learning, reading1989MAAddison-Wesley Bouali L, Oukfif K, Bouzefrane S, Oulebsir FB (2015) A hybrid algorithm for DAG application scheduling on computational grids, In: International Conference on Mobile, Secure and Programmable Networking (MSPN’2015), Paris, France, June 2015, pp. 63–77 HossamHSAbdel-GalilHBelalMWorkStealing algorithm for load balancing in grid computingInt J Adv Comput Sci Appl202112798104 YuJBuyyaRScheduling scientific workflow applications with deadline and budget constraints using genetic algorithmsSci Prog200614217230 Yu J, Buyya R, Tham CK (2005) QoS-based scheduling of workflow applications on service grids, In: Proceedings of the 1st IEEE International Conference on e-Science and Grid Computing (e-Science’05), Melbourne, Australia, December 2005. Gabaldon E, Guirado F, Lerida JL, Planes J (2016) Particle swarm optimization scheduling for energy saving in cluster computing heterogeneous environments, In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Vienna, Austria, August 2016, pp 321–325 MeddeberMYagoubiBTasks assignment for grid computingInt J Web Grid Serv2011742744310.1504/IJWGS.2011.044697 ChhabraASinghGKahlonKSPerformance-aware energy-efficient parallel job scheduling in HPC grid using nature-inspired hybrid meta-heuristicsJ Ambient Intell Humaniz Comput2021121801183510.1007/s12652-020-02255-w Bidgoli AM, Nezad ZM (2011) A new scheduling algorithm design for grid computing tasks, In: 5th Symposium on Advances in Science and Technology, Khavaran Higher-education Institute, Mashhad, Iran A Bose (2048_CR14) 2019 J Yu (2048_CR4) 2006; 14 TK Ghosh (2048_CR11) 2019 2048_CR3 R Garg (2048_CR25) 2015; 18 2048_CR2 A Yousif (2048_CR16) 2021; 35 2048_CR7 MT Younis (2048_CR10) 2018; 72 2048_CR21 2048_CR5 2048_CR9 DE Goldberg (2048_CR1) 1989 2048_CR8 HS Hossam (2048_CR22) 2021; 12 P Chauhan (2048_CR24) 2014; 1–14 2048_CR26 NA Bahnasawy (2048_CR20) 2011; 4 A Chhabra (2048_CR12) 2021; 12 B Keshanchi (2048_CR27) 2017; 124 2048_CR13 2048_CR17 2048_CR15 Y Jiang (2048_CR6) 2015; 71 M Rahman (2048_CR23) 2013; 25 SH Benedict (2048_CR18) 2008; 7 M Meddeber (2048_CR19) 2011; 7 |
References_xml | – reference: Aggarwal M, Kent RD, Ngom A (2005) Genetic algorithm based scheduler for computational grids, In: Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05) – reference: ChhabraASinghGKahlonKSPerformance-aware energy-efficient parallel job scheduling in HPC grid using nature-inspired hybrid meta-heuristicsJ Ambient Intell Humaniz Comput2021121801183510.1007/s12652-020-02255-w – reference: ChauhanPNitinNDecentralized scheduling algorithm for DAG based tasks on P2P gridJ Eng20141–142014 – reference: Shakya S, Prajapati U (2015.) Task scheduling in grid computing using genetic algorithm, In: International Conference on Green Computing and Internet of Things (ICGCIoT), Greater Noida, India, 2015, pp. 1245–1248 – reference: Bidgoli AM, Nezad ZM (2011) A new scheduling algorithm design for grid computing tasks, In: 5th Symposium on Advances in Science and Technology, Khavaran Higher-education Institute, Mashhad, Iran – reference: BoseABiswasTKuilaPTiwariSA novel genetic algorithm based scheduling for multi-core systemsSmart innovations in communication and computational sciences, advances in intelligent systems and computing2019New YorkSpringer851 – reference: Bouali L, Oukfif K, Bouzefrane S, Oulebsir FB (2015) A hybrid algorithm for DAG application scheduling on computational grids, In: International Conference on Mobile, Secure and Programmable Networking (MSPN’2015), Paris, France, June 2015, pp. 63–77 – reference: Gabaldon E, Guirado F, Lerida JL, Planes J (2016) Particle swarm optimization scheduling for energy saving in cluster computing heterogeneous environments, In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Vienna, Austria, August 2016, pp 321–325 – reference: HossamHSAbdel-GalilHBelalMWorkStealing algorithm for load balancing in grid computingInt J Adv Comput Sci Appl202112798104 – reference: Yu J, Buyya R (2006) A budget constrained scheduling of workflow applications on utility grids using genetic algorithms, In: Proceedings of the 15th IEEE International Symposium on High Performance Distributed Computing (HPDC’06), France, Jun 2006 – reference: RahmanMHassanRRanjanRBuyyaRAdaptive workflow scheduling for dynamic grid and cloud computing environmentConcurr Comput Pract Experience2013251816184210.1002/cpe.3003 – reference: GhoshTKDasSGhoshalNCastilloOJanaDGiriDAhmedAJob scheduling in computational grid using a hybrid algorithm based on genetic algorithm and particle swarm optimizationRecent advances in intelligent information systems and applied mathematics, ICITAM, Studies in Computational Intelligence2019New YorkSpringer – reference: YousifAAn enhanced firefly algorithm for time shared grid task schedulingAppl Artif Intell202135151567158610.1080/08839514.2021.1987708 – reference: GoldbergDEGenetic algorithms in search, optimization, and machine learning, reading1989MAAddison-Wesley – reference: Yu J, Buyya R, Tham CK (2005) QoS-based scheduling of workflow applications on service grids, In: Proceedings of the 1st IEEE International Conference on e-Science and Grid Computing (e-Science’05), Melbourne, Australia, December 2005. – reference: Chen R, Shiau D, Andlo SH (2009) Combined discrete particle swarm optimization and simulated annealing for grid computing scheduling problem, In: Lecture notes in computer science, vol. 57, Springer, Berlin, pp. 242–251 – reference: YounisMTYangSHybrid meta-heuristic algorithms for independent job scheduling in grid computingAppl Soft Comput20187249851710.1016/j.asoc.2018.05.032 – reference: JiangYChenMTask scheduling for grid computing systems using a genetic algorithmJ Supercomput20157141357137710.1007/s11227-014-1368-6 – reference: Ankita, Sahana SK (2019) Evolutionary based hybrid GA for solving multi-objective grid scheduling problem, Microsyst Technol 26:1405–1416. – reference: BenedictSHVasudevanVImproving scheduling of scientific workflows using tabu search for computational gridsInf Technol J200871919710.3923/itj.2008.91.97 – reference: YuJBuyyaRScheduling scientific workflow applications with deadline and budget constraints using genetic algorithmsSci Prog200614217230 – reference: MeddeberMYagoubiBTasks assignment for grid computingInt J Web Grid Serv2011742744310.1504/IJWGS.2011.044697 – reference: GargRSinghAKAdaptive workflow scheduling in grid computing based on dynamic resource availabilityEng Sci Technol Int J201518256269 – reference: Ankita, Sahana SK (2022) A balanced PSO to solve multi-objective grid scheduling problem, J Appl Intell 52:4015–4027 – reference: KeshanchiBSouriANavimipourNJAn improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testingJ Syst Softw201712412110.1016/j.jss.2016.07.006 – reference: BahnasawyNAKoutbMAMosaMOmaraFA new algorithm for static task scheduling for heterogeneous distributed computing systemsAfr J Math Comput Sci Res201146221234 – reference: Gabaldon E, Vila S, Guirado F, Lerida JL, Planes J (2017) Energy efficient scheduling on heterogeneous federated clusters using a fuzzy multi-objective meta-heuristics, In: IEEE international conference on fuzzy systems (FUZZ-IEEE), Naples, Italy – ident: 2048_CR2 – ident: 2048_CR17 – ident: 2048_CR26 doi: 10.1109/ICGCIoT.2015.7380654 – volume: 18 start-page: 256 year: 2015 ident: 2048_CR25 publication-title: Eng Sci Technol Int J – volume: 1–14 start-page: 2014 year: 2014 ident: 2048_CR24 publication-title: J Eng – volume-title: Genetic algorithms in search, optimization, and machine learning, reading year: 1989 ident: 2048_CR1 – volume: 12 start-page: 1801 year: 2021 ident: 2048_CR12 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02255-w – ident: 2048_CR8 doi: 10.1109/W-FiCloud.2016.71 – volume: 4 start-page: 221 issue: 6 year: 2011 ident: 2048_CR20 publication-title: Afr J Math Comput Sci Res – volume: 12 start-page: 98 issue: 7 year: 2021 ident: 2048_CR22 publication-title: Int J Adv Comput Sci Appl – start-page: 851 volume-title: Smart innovations in communication and computational sciences, advances in intelligent systems and computing year: 2019 ident: 2048_CR14 – ident: 2048_CR21 – volume: 72 start-page: 498 year: 2018 ident: 2048_CR10 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.05.032 – volume: 25 start-page: 1816 year: 2013 ident: 2048_CR23 publication-title: Concurr Comput Pract Experience doi: 10.1002/cpe.3003 – ident: 2048_CR13 doi: 10.1007/s00542-019-04673-z – ident: 2048_CR15 doi: 10.1007/s10489-021-02625-7 – ident: 2048_CR9 doi: 10.1109/FUZZ-IEEE.2017.8015589 – ident: 2048_CR5 doi: 10.1007/978-3-642-04020-7_26 – volume: 71 start-page: 1357 issue: 4 year: 2015 ident: 2048_CR6 publication-title: J Supercomput doi: 10.1007/s11227-014-1368-6 – volume: 7 start-page: 427 year: 2011 ident: 2048_CR19 publication-title: Int J Web Grid Serv doi: 10.1504/IJWGS.2011.044697 – volume: 14 start-page: 217 year: 2006 ident: 2048_CR4 publication-title: Sci Prog – volume: 7 start-page: 91 issue: 1 year: 2008 ident: 2048_CR18 publication-title: Inf Technol J doi: 10.3923/itj.2008.91.97 – ident: 2048_CR3 doi: 10.1109/WORKS.2006.5282330 – volume: 124 start-page: 1 year: 2017 ident: 2048_CR27 publication-title: J Syst Softw doi: 10.1016/j.jss.2016.07.006 – volume-title: Recent advances in intelligent information systems and applied mathematics, ICITAM, Studies in Computational Intelligence year: 2019 ident: 2048_CR11 – volume: 35 start-page: 1567 issue: 15 year: 2021 ident: 2048_CR16 publication-title: Appl Artif Intell doi: 10.1080/08839514.2021.1987708 – ident: 2048_CR7 doi: 10.1007/978-3-319-25744-0_6 |
SSID | ssj0017611 |
Score | 2.3836334 |
Snippet | Grid computing is the aggregation of the power of heterogeneous, geographically distributed computing resources to provide high-performance computing. To... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2859 |
SubjectTerms | Computer networks Computer Science Data Mining and Knowledge Discovery Database Management Distributed processing Genetic algorithms Geographical distribution Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Quality of service Regular Paper Scheduling Task scheduling Workflow |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gXLjwjRgMlAM3iFjSNKQnNCG2aRIgBJN2q9rUQYhpG2vR_j5Ol64CiZ2b-mDHec9xbBNy2YZAOd7LpLaCSSUzliZcMYGhg-QGY2jrAsXHJ9UfysEoHPkLt9w_q6zOxPKgzqbG3ZHfuHRQO3LdUO5mX8xNjXLZVT9CY5NscUQat891t7fKImCIXk7MQ69krrOeL5rxpXPIhRgiFnPloZqFv4GpZpt_EqQl7nT3yI4njLSztPA-2YDJAdmthjFQ75uHZNDrMAdJGX15fmXJIpkDdY-u7Hi6oBjCIqS4ynM6tTRDuzp2SYsk_8zpx4S-zz8yakqZuOaIDLsPb_d95gclMBOooGDCCqttJBRwZSJtUxmBNQFI9CmwGqxIblMBUQhItjRkMkuVFiCNlRBaaAfHpDGZTuCE0FDIlGvAsJVbGYBJudGcg0Krgc5k1CS80lJsfBdxN8xiHNf9j51mY9RsXGo2DpvkavXPbNlDY-3qVqX82PtTHtfWb5LryiD15_-lna6Xdka2BbKU5QvGFmkU8284R5ZRpBflVvoBifXK8w priority: 102 providerName: ProQuest |
Title | GA-based QOS-aware workflow scheduling of deadline tasks in grid computing |
URI | https://link.springer.com/article/10.1007/s10115-023-02048-5 https://www.proquest.com/docview/3049090451 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60Xrz4FuuLPXjTle5ms26OtbQVxbcFPYVkMyuitNJGBH-9s2liVVTwkkAyWZLZmcw3zAtgp4GB9riXK-MkV1plPE2E5pJcByUs-dDOO4qnZ_qop45vw9uyKGxUZbtXIcniT_2p2I3QCycbw31Bp-HhNMyEwkSmBjPN7t1J-yN6QK55MSmPtJH7jnplsczPq3w1SBOU-S0wWtibzjz0qjcdp5k87r_k6b59-9bE8b-fsgBzJQBlzbHELMIU9pdgvhruwEpdX4bjbpN7E5exy_NrnrwmQ2Q-ics9DV4ZucRkonwlOxs4lpGceLTK8mT0OGIPfXY_fMiYLdYkmhXoddo3rSNeDl7gNtBBzqWTzrhIahTaRsalKkJnA1Sko-gMOpkcpBKjEAm8GcxUlmojUVmnMHTYCFah1h_0cQ1YKFUqDJIbLJwK0KbCGiFQkxSgyVRUB1FxP7ZlV3I_HOMpnvRT9syKiVlxwaw4rMPuxzPP454cf1JvVpsal_o5in1wsRH53jp12Kv2aHL799XW_0e-AbOSUNA4Q3ITavnwBbcIxeTpNkybTne7FF06H7bPLq7oaku36NiTzXeSqekU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6F5AAXyqOItKXsAU50RXa93q4PCJWSkr5S6EPqzdjrWVS1SkoSFPVP9Tcy49iNqERvOXs9h9nPM994XgDvOhhZ5r3SuKClsaaQeaas1BQ6GOUphg4cKB72be_M7J3H5w24rXthuKyytomloS6Gnv-Rf-R0UCfhaSifr39L3hrF2dV6hcYMFvt4M6WQbfxp9yvd73utd7qn2z1ZbRWQPrLRROqggwuJtqisT1zITYLBR2gIgBgcBp1t5hqTGImZOCxMkVun0fhgMA7YiUjuI2gZ7mhtQutLt__9-C5vsWnLjb_kOBPJs_yqNp2qWY_YlyQfKbkh1cn4X1c457f3UrKlp9t5Bk8riiq2Zph6Dg0cvIClev2DqKzBS9j7tiXZCRbix9GJzKbZCAWXeYWr4VRQ0ExOjHvdxTCIgpDEfFZMsvHlWFwMxK_RRSF8KZPOLMPZQpT4CpqD4QBfg4i1yZVDCpRVMBH6XHmnFFrCCbrCJG1QtZZSX80t5_UZV-l84jJrNiXNpqVm07gNH-7euZ5N7Xjw9Fqt_LT6gsfpHG9t2KgvZP74_9JWHpb2Fh73Tg8P0oPd_v4qPNHEkWb1k2vQnIz-4BviOJN8vQKWgJ-LxvJfiScLmQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkCoutFAQaaHsAU6wIrteb9aHCqHS8KZFgMTN2OtZhIoSmqSK-tf4dcw4NhFIcOPs9RxmP89843kBrDUxssx7pXFBS2NNIfNMWakpdDDKUwwdOFA8ObX7l-bwKr6agIe6F4bLKmubWBrqouv5H_kWp4OaCU9D2QpVWcTv3fb2_V_JG6Q401qv0xhB5Aj_Dyl8638_2KW7Xte6_fPix76sNgxIH9loIHXQwYVEW1TWJy7kJsHgIzQERgwOg85aucYkRmIpDgtT5NZpND4YjAM2I5I7CdOtqJVw4Ofae08ZjJYtd_-SC00kT_WrGnaqtj3iYZK8peTWVCfj505xzHRfJGdLn9f-BLMVWRU7I3TNwQR25uFjvQhCVHbhMxzu7Uh2h4U4-3Uus2HWQ8EFX-GuOxQUPpM746530Q2iIEwxsxWDrP-nL2474qZ3WwhfyqQzC3D5LipchKlOt4NLIGJtcuWQQmYVTIQ-V94phZYQg64wSQNUraXUVxPMeZHGXTqevcyaTUmzaanZNG7AxtM796P5HW-eXq6Vn1bfcj8dI68Bm_WFjB-_Lu3L29JW4QMhOD0-OD36CjOayNKokHIZpga9f7hCZGeQfytRJeD6vWH8CEJYDmk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GA-based+QOS-aware+workflow+scheduling+of+deadline+tasks+in+grid+computing&rft.jtitle=Knowledge+and+information+systems&rft.au=Girgis%2C+Moheb+R.&rft.au=Mahmoud%2C+Tarek+M.&rft.au=Azzam%2C+Hagar+M.&rft.date=2024-05-01&rft.pub=Springer+London&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=66&rft.issue=5&rft.spage=2859&rft.epage=2884&rft_id=info:doi/10.1007%2Fs10115-023-02048-5&rft.externalDocID=10_1007_s10115_023_02048_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon |