GA-based QOS-aware workflow scheduling of deadline tasks in grid computing

Grid computing is the aggregation of the power of heterogeneous, geographically distributed computing resources to provide high-performance computing. To benefit from the grid computing capabilities, effectual scheduling algorithms are primarily essential. This paper presents a GA-based approach, ca...

Full description

Saved in:
Bibliographic Details
Published inKnowledge and information systems Vol. 66; no. 5; pp. 2859 - 2884
Main Authors Girgis, Moheb R., Mahmoud, Tarek M., Azzam, Hagar M.
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0219-1377
0219-3116
DOI10.1007/s10115-023-02048-5

Cover

Loading…
Abstract Grid computing is the aggregation of the power of heterogeneous, geographically distributed computing resources to provide high-performance computing. To benefit from the grid computing capabilities, effectual scheduling algorithms are primarily essential. This paper presents a GA-based approach, called Grid Workflow Tasks Scheduling Algorithm (GWTSA), for scheduling workflow tasks on grid services based on users’ QoS (quality of service) constraints in terms of cost and time. For a given set of inter-dependent workflow tasks, it generates an optimal schedule, which minimizes the execution time and cost, such that the optimized time be within the time constraints (deadline) imposed by the user. In GWTSA, the workflow tasks are modeled as a DAG, which is divided, then the optimal sub-schedules of all task divisions are computed and used to obtain the execution schedule of the entire workflow. A GA-based technique is employed in GWTSA to compute the optimal execution sub-schedule for each branch division that consists of a set of sequential tasks. In this technique, the chromosome represents a branch division, where each gene holds the id of the service provider chosen to execute the corresponding task in the branch; and the fitness function is formulated as a multi-objective function of time and cost, this gives users the ability to determine their requirements if speed against cost or vice versa, by changing the weighting coefficients in the fitness function. The paper also exhibits the experimental results of assessing the performance of GWTSA with workflow samples of different sizes.
AbstractList Grid computing is the aggregation of the power of heterogeneous, geographically distributed computing resources to provide high-performance computing. To benefit from the grid computing capabilities, effectual scheduling algorithms are primarily essential. This paper presents a GA-based approach, called Grid Workflow Tasks Scheduling Algorithm (GWTSA), for scheduling workflow tasks on grid services based on users’ QoS (quality of service) constraints in terms of cost and time. For a given set of inter-dependent workflow tasks, it generates an optimal schedule, which minimizes the execution time and cost, such that the optimized time be within the time constraints (deadline) imposed by the user. In GWTSA, the workflow tasks are modeled as a DAG, which is divided, then the optimal sub-schedules of all task divisions are computed and used to obtain the execution schedule of the entire workflow. A GA-based technique is employed in GWTSA to compute the optimal execution sub-schedule for each branch division that consists of a set of sequential tasks. In this technique, the chromosome represents a branch division, where each gene holds the id of the service provider chosen to execute the corresponding task in the branch; and the fitness function is formulated as a multi-objective function of time and cost, this gives users the ability to determine their requirements if speed against cost or vice versa, by changing the weighting coefficients in the fitness function. The paper also exhibits the experimental results of assessing the performance of GWTSA with workflow samples of different sizes.
Author Mahmoud, Tarek M.
Girgis, Moheb R.
Azzam, Hagar M.
Author_xml – sequence: 1
  givenname: Moheb R.
  surname: Girgis
  fullname: Girgis, Moheb R.
  organization: Department of Computer Science, Faculty of Science, Minia University
– sequence: 2
  givenname: Tarek M.
  surname: Mahmoud
  fullname: Mahmoud, Tarek M.
  organization: Department of Computer Science, Faculty of Computers and Artificial Intelligence, Sadat City University
– sequence: 3
  givenname: Hagar M.
  surname: Azzam
  fullname: Azzam, Hagar M.
  email: hagar126@mu.edu.eg
  organization: Department of Computer Science, Faculty of Science, Minia University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9F87dexFK1KoYh6DtnspG673dRkl-K_N7oFwUMPw8zheWaGd4JGrWsBoWtGbxml2V1glLGEUC5iUZmT5AyNKWcFEYylo-PMRJZdoEkIG0pZljI2Rs-LGSl1gAq_rF6JPmgP-OD81jbugIP5gKpv6naNncUV6CrOgDsdtgHXLV77usLG7fZ9F5lLdG51E-Dq2Kfo_eH-bf5IlqvF03y2JEakoiPccpvbgqfAUlPktpQFWCNAlpSCzcFynZUcigQ4T3OoZFWmOQdprITEAhVTdDPs3Xv32UPo1Mb1vo0nlaCyoAWVCYtUPlDGuxA8WGXqTne1azuv60Yxqn6SU0NyKianfpNTSVT5P3Xv6532X6clMUghwu0a_N9XJ6xv-2GCsw
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3457518
Cites_doi 10.1109/ICGCIoT.2015.7380654
10.1007/s12652-020-02255-w
10.1109/W-FiCloud.2016.71
10.1016/j.asoc.2018.05.032
10.1002/cpe.3003
10.1007/s00542-019-04673-z
10.1007/s10489-021-02625-7
10.1109/FUZZ-IEEE.2017.8015589
10.1007/978-3-642-04020-7_26
10.1007/s11227-014-1368-6
10.1504/IJWGS.2011.044697
10.3923/itj.2008.91.97
10.1109/WORKS.2006.5282330
10.1016/j.jss.2016.07.006
10.1080/08839514.2021.1987708
10.1007/978-3-319-25744-0_6
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10115-023-02048-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0219-3116
EndPage 2884
ExternalDocumentID 10_1007_s10115_023_02048_5
GrantInformation_xml – fundername: Minia University
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-2f2f8f926e16c98fb49efc3e4b00ef8ef2a7b2e95e2268ed4db682e4cf4e5fe03
IEDL.DBID AGYKE
ISSN 0219-1377
IngestDate Sat Aug 16 18:51:48 EDT 2025
Tue Jul 01 01:11:00 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Fri Feb 21 02:39:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Workflow tasks scheduling
Grid computing
Quality of service constraints
Genetic algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-2f2f8f926e16c98fb49efc3e4b00ef8ef2a7b2e95e2268ed4db682e4cf4e5fe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s10115-023-02048-5
PQID 3049090451
PQPubID 43394
PageCount 26
ParticipantIDs proquest_journals_3049090451
crossref_citationtrail_10_1007_s10115_023_02048_5
crossref_primary_10_1007_s10115_023_02048_5
springer_journals_10_1007_s10115_023_02048_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References BahnasawyNAKoutbMAMosaMOmaraFA new algorithm for static task scheduling for heterogeneous distributed computing systemsAfr J Math Comput Sci Res201146221234
Yu J, Buyya R (2006) A budget constrained scheduling of workflow applications on utility grids using genetic algorithms, In: Proceedings of the 15th IEEE International Symposium on High Performance Distributed Computing (HPDC’06), France, Jun 2006
Gabaldon E, Vila S, Guirado F, Lerida JL, Planes J (2017) Energy efficient scheduling on heterogeneous federated clusters using a fuzzy multi-objective meta-heuristics, In: IEEE international conference on fuzzy systems (FUZZ-IEEE), Naples, Italy
Chen R, Shiau D, Andlo SH (2009) Combined discrete particle swarm optimization and simulated annealing for grid computing scheduling problem, In: Lecture notes in computer science, vol. 57, Springer, Berlin, pp. 242–251
Ankita, Sahana SK (2019) Evolutionary based hybrid GA for solving multi-objective grid scheduling problem, Microsyst Technol 26:1405–1416.
GhoshTKDasSGhoshalNCastilloOJanaDGiriDAhmedAJob scheduling in computational grid using a hybrid algorithm based on genetic algorithm and particle swarm optimizationRecent advances in intelligent information systems and applied mathematics, ICITAM, Studies in Computational Intelligence2019New YorkSpringer
RahmanMHassanRRanjanRBuyyaRAdaptive workflow scheduling for dynamic grid and cloud computing environmentConcurr Comput Pract Experience2013251816184210.1002/cpe.3003
KeshanchiBSouriANavimipourNJAn improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testingJ Syst Softw201712412110.1016/j.jss.2016.07.006
YounisMTYangSHybrid meta-heuristic algorithms for independent job scheduling in grid computingAppl Soft Comput20187249851710.1016/j.asoc.2018.05.032
Shakya S, Prajapati U (2015.) Task scheduling in grid computing using genetic algorithm, In: International Conference on Green Computing and Internet of Things (ICGCIoT), Greater Noida, India, 2015, pp. 1245–1248
BoseABiswasTKuilaPTiwariSA novel genetic algorithm based scheduling for multi-core systemsSmart innovations in communication and computational sciences, advances in intelligent systems and computing2019New YorkSpringer851
JiangYChenMTask scheduling for grid computing systems using a genetic algorithmJ Supercomput20157141357137710.1007/s11227-014-1368-6
Aggarwal M, Kent RD, Ngom A (2005) Genetic algorithm based scheduler for computational grids, In: Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)
ChauhanPNitinNDecentralized scheduling algorithm for DAG based tasks on P2P gridJ Eng20141–142014
GargRSinghAKAdaptive workflow scheduling in grid computing based on dynamic resource availabilityEng Sci Technol Int J201518256269
BenedictSHVasudevanVImproving scheduling of scientific workflows using tabu search for computational gridsInf Technol J200871919710.3923/itj.2008.91.97
YousifAAn enhanced firefly algorithm for time shared grid task schedulingAppl Artif Intell202135151567158610.1080/08839514.2021.1987708
Ankita, Sahana SK (2022) A balanced PSO to solve multi-objective grid scheduling problem, J Appl Intell 52:4015–4027
GoldbergDEGenetic algorithms in search, optimization, and machine learning, reading1989MAAddison-Wesley
Bouali L, Oukfif K, Bouzefrane S, Oulebsir FB (2015) A hybrid algorithm for DAG application scheduling on computational grids, In: International Conference on Mobile, Secure and Programmable Networking (MSPN’2015), Paris, France, June 2015, pp. 63–77
HossamHSAbdel-GalilHBelalMWorkStealing algorithm for load balancing in grid computingInt J Adv Comput Sci Appl202112798104
YuJBuyyaRScheduling scientific workflow applications with deadline and budget constraints using genetic algorithmsSci Prog200614217230
Yu J, Buyya R, Tham CK (2005) QoS-based scheduling of workflow applications on service grids, In: Proceedings of the 1st IEEE International Conference on e-Science and Grid Computing (e-Science’05), Melbourne, Australia, December 2005.
Gabaldon E, Guirado F, Lerida JL, Planes J (2016) Particle swarm optimization scheduling for energy saving in cluster computing heterogeneous environments, In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Vienna, Austria, August 2016, pp 321–325
MeddeberMYagoubiBTasks assignment for grid computingInt J Web Grid Serv2011742744310.1504/IJWGS.2011.044697
ChhabraASinghGKahlonKSPerformance-aware energy-efficient parallel job scheduling in HPC grid using nature-inspired hybrid meta-heuristicsJ Ambient Intell Humaniz Comput2021121801183510.1007/s12652-020-02255-w
Bidgoli AM, Nezad ZM (2011) A new scheduling algorithm design for grid computing tasks, In: 5th Symposium on Advances in Science and Technology, Khavaran Higher-education Institute, Mashhad, Iran
A Bose (2048_CR14) 2019
J Yu (2048_CR4) 2006; 14
TK Ghosh (2048_CR11) 2019
2048_CR3
R Garg (2048_CR25) 2015; 18
2048_CR2
A Yousif (2048_CR16) 2021; 35
2048_CR7
MT Younis (2048_CR10) 2018; 72
2048_CR21
2048_CR5
2048_CR9
DE Goldberg (2048_CR1) 1989
2048_CR8
HS Hossam (2048_CR22) 2021; 12
P Chauhan (2048_CR24) 2014; 1–14
2048_CR26
NA Bahnasawy (2048_CR20) 2011; 4
A Chhabra (2048_CR12) 2021; 12
B Keshanchi (2048_CR27) 2017; 124
2048_CR13
2048_CR17
2048_CR15
Y Jiang (2048_CR6) 2015; 71
M Rahman (2048_CR23) 2013; 25
SH Benedict (2048_CR18) 2008; 7
M Meddeber (2048_CR19) 2011; 7
References_xml – reference: Aggarwal M, Kent RD, Ngom A (2005) Genetic algorithm based scheduler for computational grids, In: Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications (HPCS’05)
– reference: ChhabraASinghGKahlonKSPerformance-aware energy-efficient parallel job scheduling in HPC grid using nature-inspired hybrid meta-heuristicsJ Ambient Intell Humaniz Comput2021121801183510.1007/s12652-020-02255-w
– reference: ChauhanPNitinNDecentralized scheduling algorithm for DAG based tasks on P2P gridJ Eng20141–142014
– reference: Shakya S, Prajapati U (2015.) Task scheduling in grid computing using genetic algorithm, In: International Conference on Green Computing and Internet of Things (ICGCIoT), Greater Noida, India, 2015, pp. 1245–1248
– reference: Bidgoli AM, Nezad ZM (2011) A new scheduling algorithm design for grid computing tasks, In: 5th Symposium on Advances in Science and Technology, Khavaran Higher-education Institute, Mashhad, Iran
– reference: BoseABiswasTKuilaPTiwariSA novel genetic algorithm based scheduling for multi-core systemsSmart innovations in communication and computational sciences, advances in intelligent systems and computing2019New YorkSpringer851
– reference: Bouali L, Oukfif K, Bouzefrane S, Oulebsir FB (2015) A hybrid algorithm for DAG application scheduling on computational grids, In: International Conference on Mobile, Secure and Programmable Networking (MSPN’2015), Paris, France, June 2015, pp. 63–77
– reference: Gabaldon E, Guirado F, Lerida JL, Planes J (2016) Particle swarm optimization scheduling for energy saving in cluster computing heterogeneous environments, In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Vienna, Austria, August 2016, pp 321–325
– reference: HossamHSAbdel-GalilHBelalMWorkStealing algorithm for load balancing in grid computingInt J Adv Comput Sci Appl202112798104
– reference: Yu J, Buyya R (2006) A budget constrained scheduling of workflow applications on utility grids using genetic algorithms, In: Proceedings of the 15th IEEE International Symposium on High Performance Distributed Computing (HPDC’06), France, Jun 2006
– reference: RahmanMHassanRRanjanRBuyyaRAdaptive workflow scheduling for dynamic grid and cloud computing environmentConcurr Comput Pract Experience2013251816184210.1002/cpe.3003
– reference: GhoshTKDasSGhoshalNCastilloOJanaDGiriDAhmedAJob scheduling in computational grid using a hybrid algorithm based on genetic algorithm and particle swarm optimizationRecent advances in intelligent information systems and applied mathematics, ICITAM, Studies in Computational Intelligence2019New YorkSpringer
– reference: YousifAAn enhanced firefly algorithm for time shared grid task schedulingAppl Artif Intell202135151567158610.1080/08839514.2021.1987708
– reference: GoldbergDEGenetic algorithms in search, optimization, and machine learning, reading1989MAAddison-Wesley
– reference: Yu J, Buyya R, Tham CK (2005) QoS-based scheduling of workflow applications on service grids, In: Proceedings of the 1st IEEE International Conference on e-Science and Grid Computing (e-Science’05), Melbourne, Australia, December 2005.
– reference: Chen R, Shiau D, Andlo SH (2009) Combined discrete particle swarm optimization and simulated annealing for grid computing scheduling problem, In: Lecture notes in computer science, vol. 57, Springer, Berlin, pp. 242–251
– reference: YounisMTYangSHybrid meta-heuristic algorithms for independent job scheduling in grid computingAppl Soft Comput20187249851710.1016/j.asoc.2018.05.032
– reference: JiangYChenMTask scheduling for grid computing systems using a genetic algorithmJ Supercomput20157141357137710.1007/s11227-014-1368-6
– reference: Ankita, Sahana SK (2019) Evolutionary based hybrid GA for solving multi-objective grid scheduling problem, Microsyst Technol 26:1405–1416.
– reference: BenedictSHVasudevanVImproving scheduling of scientific workflows using tabu search for computational gridsInf Technol J200871919710.3923/itj.2008.91.97
– reference: YuJBuyyaRScheduling scientific workflow applications with deadline and budget constraints using genetic algorithmsSci Prog200614217230
– reference: MeddeberMYagoubiBTasks assignment for grid computingInt J Web Grid Serv2011742744310.1504/IJWGS.2011.044697
– reference: GargRSinghAKAdaptive workflow scheduling in grid computing based on dynamic resource availabilityEng Sci Technol Int J201518256269
– reference: Ankita, Sahana SK (2022) A balanced PSO to solve multi-objective grid scheduling problem, J Appl Intell 52:4015–4027
– reference: KeshanchiBSouriANavimipourNJAn improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testingJ Syst Softw201712412110.1016/j.jss.2016.07.006
– reference: BahnasawyNAKoutbMAMosaMOmaraFA new algorithm for static task scheduling for heterogeneous distributed computing systemsAfr J Math Comput Sci Res201146221234
– reference: Gabaldon E, Vila S, Guirado F, Lerida JL, Planes J (2017) Energy efficient scheduling on heterogeneous federated clusters using a fuzzy multi-objective meta-heuristics, In: IEEE international conference on fuzzy systems (FUZZ-IEEE), Naples, Italy
– ident: 2048_CR2
– ident: 2048_CR17
– ident: 2048_CR26
  doi: 10.1109/ICGCIoT.2015.7380654
– volume: 18
  start-page: 256
  year: 2015
  ident: 2048_CR25
  publication-title: Eng Sci Technol Int J
– volume: 1–14
  start-page: 2014
  year: 2014
  ident: 2048_CR24
  publication-title: J Eng
– volume-title: Genetic algorithms in search, optimization, and machine learning, reading
  year: 1989
  ident: 2048_CR1
– volume: 12
  start-page: 1801
  year: 2021
  ident: 2048_CR12
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02255-w
– ident: 2048_CR8
  doi: 10.1109/W-FiCloud.2016.71
– volume: 4
  start-page: 221
  issue: 6
  year: 2011
  ident: 2048_CR20
  publication-title: Afr J Math Comput Sci Res
– volume: 12
  start-page: 98
  issue: 7
  year: 2021
  ident: 2048_CR22
  publication-title: Int J Adv Comput Sci Appl
– start-page: 851
  volume-title: Smart innovations in communication and computational sciences, advances in intelligent systems and computing
  year: 2019
  ident: 2048_CR14
– ident: 2048_CR21
– volume: 72
  start-page: 498
  year: 2018
  ident: 2048_CR10
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.05.032
– volume: 25
  start-page: 1816
  year: 2013
  ident: 2048_CR23
  publication-title: Concurr Comput Pract Experience
  doi: 10.1002/cpe.3003
– ident: 2048_CR13
  doi: 10.1007/s00542-019-04673-z
– ident: 2048_CR15
  doi: 10.1007/s10489-021-02625-7
– ident: 2048_CR9
  doi: 10.1109/FUZZ-IEEE.2017.8015589
– ident: 2048_CR5
  doi: 10.1007/978-3-642-04020-7_26
– volume: 71
  start-page: 1357
  issue: 4
  year: 2015
  ident: 2048_CR6
  publication-title: J Supercomput
  doi: 10.1007/s11227-014-1368-6
– volume: 7
  start-page: 427
  year: 2011
  ident: 2048_CR19
  publication-title: Int J Web Grid Serv
  doi: 10.1504/IJWGS.2011.044697
– volume: 14
  start-page: 217
  year: 2006
  ident: 2048_CR4
  publication-title: Sci Prog
– volume: 7
  start-page: 91
  issue: 1
  year: 2008
  ident: 2048_CR18
  publication-title: Inf Technol J
  doi: 10.3923/itj.2008.91.97
– ident: 2048_CR3
  doi: 10.1109/WORKS.2006.5282330
– volume: 124
  start-page: 1
  year: 2017
  ident: 2048_CR27
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2016.07.006
– volume-title: Recent advances in intelligent information systems and applied mathematics, ICITAM, Studies in Computational Intelligence
  year: 2019
  ident: 2048_CR11
– volume: 35
  start-page: 1567
  issue: 15
  year: 2021
  ident: 2048_CR16
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2021.1987708
– ident: 2048_CR7
  doi: 10.1007/978-3-319-25744-0_6
SSID ssj0017611
Score 2.3836334
Snippet Grid computing is the aggregation of the power of heterogeneous, geographically distributed computing resources to provide high-performance computing. To...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2859
SubjectTerms Computer networks
Computer Science
Data Mining and Knowledge Discovery
Database Management
Distributed processing
Genetic algorithms
Geographical distribution
Information Storage and Retrieval
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
IT in Business
Quality of service
Regular Paper
Scheduling
Task scheduling
Workflow
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDI1gXLjwjRgMlAM3iFjSNKQnNCG2aRIgBJN2q9rUQYhpG2vR_j5Ol64CiZ2b-mDHec9xbBNy2YZAOd7LpLaCSSUzliZcMYGhg-QGY2jrAsXHJ9UfysEoHPkLt9w_q6zOxPKgzqbG3ZHfuHRQO3LdUO5mX8xNjXLZVT9CY5NscUQat891t7fKImCIXk7MQ69krrOeL5rxpXPIhRgiFnPloZqFv4GpZpt_EqQl7nT3yI4njLSztPA-2YDJAdmthjFQ75uHZNDrMAdJGX15fmXJIpkDdY-u7Hi6oBjCIqS4ynM6tTRDuzp2SYsk_8zpx4S-zz8yakqZuOaIDLsPb_d95gclMBOooGDCCqttJBRwZSJtUxmBNQFI9CmwGqxIblMBUQhItjRkMkuVFiCNlRBaaAfHpDGZTuCE0FDIlGvAsJVbGYBJudGcg0Krgc5k1CS80lJsfBdxN8xiHNf9j51mY9RsXGo2DpvkavXPbNlDY-3qVqX82PtTHtfWb5LryiD15_-lna6Xdka2BbKU5QvGFmkU8284R5ZRpBflVvoBifXK8w
  priority: 102
  providerName: ProQuest
Title GA-based QOS-aware workflow scheduling of deadline tasks in grid computing
URI https://link.springer.com/article/10.1007/s10115-023-02048-5
https://www.proquest.com/docview/3049090451
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60Xrz4FuuLPXjTle5ms26OtbQVxbcFPYVkMyuitNJGBH-9s2liVVTwkkAyWZLZmcw3zAtgp4GB9riXK-MkV1plPE2E5pJcByUs-dDOO4qnZ_qop45vw9uyKGxUZbtXIcniT_2p2I3QCycbw31Bp-HhNMyEwkSmBjPN7t1J-yN6QK55MSmPtJH7jnplsczPq3w1SBOU-S0wWtibzjz0qjcdp5k87r_k6b59-9bE8b-fsgBzJQBlzbHELMIU9pdgvhruwEpdX4bjbpN7E5exy_NrnrwmQ2Q-ics9DV4ZucRkonwlOxs4lpGceLTK8mT0OGIPfXY_fMiYLdYkmhXoddo3rSNeDl7gNtBBzqWTzrhIahTaRsalKkJnA1Sko-gMOpkcpBKjEAm8GcxUlmojUVmnMHTYCFah1h_0cQ1YKFUqDJIbLJwK0KbCGiFQkxSgyVRUB1FxP7ZlV3I_HOMpnvRT9syKiVlxwaw4rMPuxzPP454cf1JvVpsal_o5in1wsRH53jp12Kv2aHL799XW_0e-AbOSUNA4Q3ITavnwBbcIxeTpNkybTne7FF06H7bPLq7oaku36NiTzXeSqekU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6F5AAXyqOItKXsAU50RXa93q4PCJWSkr5S6EPqzdjrWVS1SkoSFPVP9Tcy49iNqERvOXs9h9nPM994XgDvOhhZ5r3SuKClsaaQeaas1BQ6GOUphg4cKB72be_M7J3H5w24rXthuKyytomloS6Gnv-Rf-R0UCfhaSifr39L3hrF2dV6hcYMFvt4M6WQbfxp9yvd73utd7qn2z1ZbRWQPrLRROqggwuJtqisT1zITYLBR2gIgBgcBp1t5hqTGImZOCxMkVun0fhgMA7YiUjuI2gZ7mhtQutLt__9-C5vsWnLjb_kOBPJs_yqNp2qWY_YlyQfKbkh1cn4X1c457f3UrKlp9t5Bk8riiq2Zph6Dg0cvIClev2DqKzBS9j7tiXZCRbix9GJzKbZCAWXeYWr4VRQ0ExOjHvdxTCIgpDEfFZMsvHlWFwMxK_RRSF8KZPOLMPZQpT4CpqD4QBfg4i1yZVDCpRVMBH6XHmnFFrCCbrCJG1QtZZSX80t5_UZV-l84jJrNiXNpqVm07gNH-7euZ5N7Xjw9Fqt_LT6gsfpHG9t2KgvZP74_9JWHpb2Fh73Tg8P0oPd_v4qPNHEkWb1k2vQnIz-4BviOJN8vQKWgJ-LxvJfiScLmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xkCoutFAQaaHsAU6wIrteb9aHCqHS8KZFgMTN2OtZhIoSmqSK-tf4dcw4NhFIcOPs9RxmP89843kBrDUxssx7pXFBS2NNIfNMWakpdDDKUwwdOFA8ObX7l-bwKr6agIe6F4bLKmubWBrqouv5H_kWp4OaCU9D2QpVWcTv3fb2_V_JG6Q401qv0xhB5Aj_Dyl8638_2KW7Xte6_fPix76sNgxIH9loIHXQwYVEW1TWJy7kJsHgIzQERgwOg85aucYkRmIpDgtT5NZpND4YjAM2I5I7CdOtqJVw4Ofae08ZjJYtd_-SC00kT_WrGnaqtj3iYZK8peTWVCfj505xzHRfJGdLn9f-BLMVWRU7I3TNwQR25uFjvQhCVHbhMxzu7Uh2h4U4-3Uus2HWQ8EFX-GuOxQUPpM746530Q2iIEwxsxWDrP-nL2474qZ3WwhfyqQzC3D5LipchKlOt4NLIGJtcuWQQmYVTIQ-V94phZYQg64wSQNUraXUVxPMeZHGXTqevcyaTUmzaanZNG7AxtM796P5HW-eXq6Vn1bfcj8dI68Bm_WFjB-_Lu3L29JW4QMhOD0-OD36CjOayNKokHIZpga9f7hCZGeQfytRJeD6vWH8CEJYDmk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GA-based+QOS-aware+workflow+scheduling+of+deadline+tasks+in+grid+computing&rft.jtitle=Knowledge+and+information+systems&rft.au=Girgis%2C+Moheb+R.&rft.au=Mahmoud%2C+Tarek+M.&rft.au=Azzam%2C+Hagar+M.&rft.date=2024-05-01&rft.pub=Springer+London&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=66&rft.issue=5&rft.spage=2859&rft.epage=2884&rft_id=info:doi/10.1007%2Fs10115-023-02048-5&rft.externalDocID=10_1007_s10115_023_02048_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon