ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks

Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection. Existing approaches have difficulties with three major issues: sparsity and nonlinearity capturing, residual modeling, and network smoothing....

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 111; no. 2; pp. 519 - 541
Main Authors Pei, Yulong, Huang, Tianjin, van Ipenburg, Werner, Pechenizkiy, Mykola
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0885-6125
1573-0565
DOI10.1007/s10994-021-06044-0

Cover

Abstract Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection. Existing approaches have difficulties with three major issues: sparsity and nonlinearity capturing, residual modeling, and network smoothing. We propose Residual Graph Convolutional Network (ResGCN), an attention-based deep residual modeling approach that can tackle these issues: modeling the attributed networks with GCN allows to capture the sparsity and nonlinearity, utilizing a deep neural network allows direct residual ing from the input, and a residual-based attention mechanism reduces the adverse effect from anomalous nodes and prevents over-smoothing. Extensive experiments on several real-world attributed networks demonstrate the effectiveness of ResGCN in detecting anomalies.
AbstractList Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection. Existing approaches have difficulties with three major issues: sparsity and nonlinearity capturing, residual modeling, and network smoothing. We propose Residual Graph Convolutional Network (ResGCN), an attention-based deep residual modeling approach that can tackle these issues: modeling the attributed networks with GCN allows to capture the sparsity and nonlinearity, utilizing a deep neural network allows direct residual ing from the input, and a residual-based attention mechanism reduces the adverse effect from anomalous nodes and prevents over-smoothing. Extensive experiments on several real-world attributed networks demonstrate the effectiveness of ResGCN in detecting anomalies.
Author Pei, Yulong
van Ipenburg, Werner
Huang, Tianjin
Pechenizkiy, Mykola
Author_xml – sequence: 1
  givenname: Yulong
  orcidid: 0000-0003-3739-5627
  surname: Pei
  fullname: Pei, Yulong
  email: y.pei.1@tue.nl
  organization: Department of Mathematics and Computer Science, Eindhoven University of Technology
– sequence: 2
  givenname: Tianjin
  surname: Huang
  fullname: Huang, Tianjin
  organization: Department of Mathematics and Computer Science, Eindhoven University of Technology
– sequence: 3
  givenname: Werner
  surname: van Ipenburg
  fullname: van Ipenburg, Werner
  organization: Cooperatieve Rabobank U.A
– sequence: 4
  givenname: Mykola
  surname: Pechenizkiy
  fullname: Pechenizkiy, Mykola
  organization: Department of Mathematics and Computer Science, Eindhoven University of Technology
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnlfzsclmvUnRKoiC6MlDyGZny9ZtUpMs0n9v6gqCh8LAzOF9ZoZnhibWWUDonOBLgnF5FQiuqiLHlORY4CJNR2hKeMlyzAWfoCmWkueCUH6CZiGsMcZUSDFF7y8Qloun60zHCDZ2zua1DtBkDcA28xC6ZtB9tnEN9J1dZa3zmbZuo_tdikQweyRLlXjf1UNMqIX45fxHOEXHre4DnP32OXq7u31d3OePz8uHxc1jbphgMacAVDPRFrWpayrAkEqXbcWIKSWFVgrOqdQgBdRQUE05MboxoqpYKTSXnM3Rxbh3693nACGqtRu8TScVFQUVtCgYTik5pox3IXholemi3r8fve56RbDaq1SjSpVUqh-Vao_Sf-jWdxvtd4chNkIhhe0K_N9XB6hvSUWJTA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3398555
crossref_primary_10_32604_csse_2023_036352
crossref_primary_10_1016_j_ins_2023_03_022
crossref_primary_10_1016_j_knosys_2023_110589
crossref_primary_10_1007_s10618_023_00960_6
crossref_primary_10_1109_JSYST_2023_3347435
crossref_primary_10_1109_TKDE_2024_3501307
crossref_primary_10_1109_TMM_2023_3312931
crossref_primary_10_1007_s13042_024_02211_6
crossref_primary_10_1080_09540091_2022_2078281
crossref_primary_10_1007_s11517_024_03273_y
crossref_primary_10_1016_j_neucom_2024_127761
crossref_primary_10_1109_ACCESS_2022_3211306
crossref_primary_10_1109_TGRS_2022_3145474
crossref_primary_10_1007_s00521_023_08964_5
crossref_primary_10_1109_TCE_2024_3355122
crossref_primary_10_1109_TKDE_2023_3250523
crossref_primary_10_1016_j_dsm_2024_09_002
crossref_primary_10_1016_j_eswa_2025_127311
crossref_primary_10_1016_j_knosys_2025_113144
crossref_primary_10_1007_s11036_024_02339_3
crossref_primary_10_1007_s11053_024_10448_9
crossref_primary_10_1109_ACCESS_2022_3201332
Cites_doi 10.1109/TKDE.2013.184
10.1609/aaai.v33i01.330112
10.1109/SURV.2013.052213.00046
10.1146/annurev.soc.27.1.415
10.1109/TKDE.2018.2849727
10.1109/TKDE.2007.1009
10.1007/s10618-014-0365-y
10.24963/ijcai.2018/488
10.1137/1.9781611974348.24
10.1145/3289600.3291015
10.1109/ICDEW.2013.6547453
10.1145/3219819.3220052
10.1145/956750.956831
10.1145/1835804.1835907
10.1609/aaai.v32i1.11604
10.1609/aaai.v34i01.5409
10.1145/3018661.3018667
10.1137/1.9781611974973.55
10.1145/3184558.3191570
10.1145/2623330.2623682
10.1137/1.9781611975673.67
10.1145/2623330.2623733
10.1145/3357384.3358074
10.1145/3308560.3316587
10.1609/aaai.v32i1.11274
10.1145/3219819.3219968
10.1145/3289600.3290964
10.1145/3292500.3330851
10.1145/3159652.3159674
10.1137/1.9781611975321.18
10.1145/335191.335388
10.1007/s10618-020-00684-x
10.1137/1.9781611974973.71
10.24963/ijcai.2017/299
10.1145/3336191.3371788
10.1109/ICDMW.2007.91
10.1109/ISI.2007.379473
10.18653/v1/P19-1398
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10994-021-06044-0
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 541
ExternalDocumentID 10_1007_s10994_021_06044_0
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-2ee2a36f4bcbb26ec19a7f931c782ef865528ae86ebe42a251cadc699376a5853
IEDL.DBID U2A
ISSN 0885-6125
IngestDate Fri Jul 25 03:23:12 EDT 2025
Thu Apr 24 23:07:47 EDT 2025
Tue Jul 01 00:46:07 EDT 2025
Fri Feb 21 02:47:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Anomaly Detection
Graph Convolutional Network
Attributed Networks
Attention Mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-2ee2a36f4bcbb26ec19a7f931c782ef865528ae86ebe42a251cadc699376a5853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3739-5627
OpenAccessLink https://link.springer.com/10.1007/s10994-021-06044-0
PQID 2642624430
PQPubID 54194
PageCount 23
ParticipantIDs proquest_journals_2642624430
crossref_citationtrail_10_1007_s10994_021_06044_0
crossref_primary_10_1007_s10994_021_06044_0
springer_journals_10_1007_s10994_021_06044_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR19
CR18
CR17
CR39
Song, Wu, Jermaine, Ranka (CR43) 2007; 19
CR16
CR38
CR37
CR14
CR36
CR13
CR35
CR12
CR34
Bhuyan, Bhattacharyya, Kalita (CR5) 2013; 16
CR11
CR10
CR32
CR30
Bandyopadhyay, Lokesh, Murty (CR2) 2019; 33
CR4
CR3
CR6
CR7
CR29
CR28
CR9
CR27
CR26
CR48
CR25
CR47
CR24
CR46
CR23
CR45
Cui, Wang, Pei, Zhu (CR8) 2018; 31
CR22
CR44
CR21
CR20
CR42
Metsis, Androutsopoulos, Paliouras (CR33) 2006; 17
CR41
McPherson, Smith-Lovin, Cook (CR31) 2001; 27
CR40
Gupta, Gao, Aggarwal, Han (CR15) 2013; 26
Akoglu, Tong, Koutra (CR1) 2015; 29
P Cui (6044_CR8) 2018; 31
6044_CR9
MH Bhuyan (6044_CR5) 2013; 16
6044_CR7
6044_CR6
6044_CR4
6044_CR20
6044_CR42
6044_CR21
6044_CR40
6044_CR41
6044_CR24
6044_CR46
6044_CR25
6044_CR47
6044_CR22
6044_CR44
6044_CR23
6044_CR45
6044_CR28
6044_CR29
6044_CR26
6044_CR48
6044_CR27
M McPherson (6044_CR31) 2001; 27
X Song (6044_CR43) 2007; 19
V Metsis (6044_CR33) 2006; 17
L Akoglu (6044_CR1) 2015; 29
S Bandyopadhyay (6044_CR2) 2019; 33
6044_CR3
6044_CR10
6044_CR32
6044_CR30
6044_CR13
6044_CR35
6044_CR14
6044_CR36
6044_CR11
6044_CR12
6044_CR34
6044_CR17
6044_CR39
6044_CR18
6044_CR37
6044_CR16
6044_CR38
6044_CR19
M Gupta (6044_CR15) 2013; 26
References_xml – ident: CR45
– ident: CR22
– ident: CR18
– ident: CR47
– volume: 17
  start-page: 28
  year: 2006
  end-page: 69
  ident: CR33
  article-title: Spam filtering with naive bayes-which naive bayes?
  publication-title: CEAS, Mountain View, CA
– ident: CR4
– ident: CR14
– ident: CR39
– ident: CR16
– ident: CR37
– ident: CR12
– volume: 26
  start-page: 2250
  issue: 9
  year: 2013
  end-page: 2267
  ident: CR15
  article-title: Outlier detection for temporal data: A survey
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.184
– ident: CR30
– ident: CR10
– ident: CR35
– ident: CR6
– ident: CR29
– ident: CR40
– ident: CR25
– ident: CR27
– ident: CR42
– ident: CR23
– ident: CR21
– ident: CR46
– ident: CR19
– ident: CR44
– ident: CR48
– volume: 33
  start-page: 12
  year: 2019
  end-page: 19
  ident: CR2
  article-title: Outlier aware network embedding for attributed networks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v33i01.330112
– ident: CR3
– ident: CR38
– ident: CR17
– ident: CR13
– ident: CR11
– volume: 16
  start-page: 303
  issue: 1
  year: 2013
  end-page: 336
  ident: CR5
  article-title: Network anomaly detection: methods, systems and tools
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/SURV.2013.052213.00046
– ident: CR9
– volume: 27
  start-page: 415
  issue: 1
  year: 2001
  end-page: 444
  ident: CR31
  article-title: Birds of a feather: Homophily in social networks
  publication-title: Annual review of sociology
  doi: 10.1146/annurev.soc.27.1.415
– ident: CR32
– ident: CR34
– ident: CR36
– ident: CR7
– volume: 31
  start-page: 833
  issue: 5
  year: 2018
  end-page: 852
  ident: CR8
  article-title: A survey on network embedding
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2849727
– volume: 19
  start-page: 631
  issue: 5
  year: 2007
  end-page: 645
  ident: CR43
  article-title: Conditional anomaly detection
  publication-title: IEEE Transactions on knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.1009
– ident: CR28
– ident: CR41
– ident: CR26
– volume: 29
  start-page: 626
  issue: 3
  year: 2015
  end-page: 688
  ident: CR1
  article-title: Graph based anomaly detection and description: a survey
  publication-title: Data mining and knowledge discovery
  doi: 10.1007/s10618-014-0365-y
– ident: CR24
– ident: CR20
– ident: 6044_CR17
– ident: 6044_CR21
– ident: 6044_CR38
  doi: 10.24963/ijcai.2018/488
– ident: 6044_CR44
– ident: 6044_CR39
  doi: 10.1137/1.9781611974348.24
– ident: 6044_CR23
– ident: 6044_CR32
  doi: 10.1145/3289600.3291015
– ident: 6044_CR34
  doi: 10.1109/ICDEW.2013.6547453
– ident: 6044_CR36
– volume: 19
  start-page: 631
  issue: 5
  year: 2007
  ident: 6044_CR43
  publication-title: IEEE Transactions on knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.1009
– ident: 6044_CR47
  doi: 10.1145/3219819.3220052
– ident: 6044_CR35
  doi: 10.1145/956750.956831
– ident: 6044_CR14
  doi: 10.1145/1835804.1835907
– volume: 16
  start-page: 303
  issue: 1
  year: 2013
  ident: 6044_CR5
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/SURV.2013.052213.00046
– ident: 6044_CR26
  doi: 10.1609/aaai.v32i1.11604
– ident: 6044_CR16
  doi: 10.1609/aaai.v34i01.5409
– ident: 6044_CR19
  doi: 10.1145/3018661.3018667
– ident: 6044_CR20
  doi: 10.1137/1.9781611974973.55
– ident: 6044_CR13
  doi: 10.1145/3184558.3191570
– ident: 6044_CR40
  doi: 10.1145/2623330.2623682
– ident: 6044_CR10
  doi: 10.1137/1.9781611975673.67
– ident: 6044_CR45
– volume: 33
  start-page: 12
  year: 2019
  ident: 6044_CR2
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v33i01.330112
– ident: 6044_CR4
  doi: 10.1145/2623330.2623733
– volume: 31
  start-page: 833
  issue: 5
  year: 2018
  ident: 6044_CR8
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2849727
– ident: 6044_CR22
– ident: 6044_CR28
  doi: 10.1145/3357384.3358074
– ident: 6044_CR7
  doi: 10.1145/3308560.3316587
– ident: 6044_CR27
  doi: 10.1609/aaai.v32i1.11274
– ident: 6044_CR46
  doi: 10.1145/3219819.3219968
– volume: 29
  start-page: 626
  issue: 3
  year: 2015
  ident: 6044_CR1
  publication-title: Data mining and knowledge discovery
  doi: 10.1007/s10618-014-0365-y
– volume: 26
  start-page: 2250
  issue: 9
  year: 2013
  ident: 6044_CR15
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.184
– ident: 6044_CR11
  doi: 10.1145/3289600.3290964
– ident: 6044_CR30
– ident: 6044_CR48
  doi: 10.1145/3292500.3330851
– ident: 6044_CR25
  doi: 10.1145/3159652.3159674
– ident: 6044_CR29
  doi: 10.1137/1.9781611975321.18
– ident: 6044_CR6
  doi: 10.1145/335191.335388
– ident: 6044_CR37
  doi: 10.1007/s10618-020-00684-x
– ident: 6044_CR18
  doi: 10.1137/1.9781611974973.71
– ident: 6044_CR24
  doi: 10.24963/ijcai.2017/299
– ident: 6044_CR3
  doi: 10.1145/3336191.3371788
– ident: 6044_CR12
  doi: 10.1109/ICDMW.2007.91
– volume: 17
  start-page: 28
  year: 2006
  ident: 6044_CR33
  publication-title: CEAS, Mountain View, CA
– ident: 6044_CR9
– ident: 6044_CR42
  doi: 10.1109/ISI.2007.379473
– volume: 27
  start-page: 415
  issue: 1
  year: 2001
  ident: 6044_CR31
  publication-title: Annual review of sociology
  doi: 10.1146/annurev.soc.27.1.415
– ident: 6044_CR41
  doi: 10.18653/v1/P19-1398
SSID ssj0002686
Score 2.5138023
Snippet Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 519
SubjectTerms Anomalies
Artificial Intelligence
Artificial neural networks
Computer Science
Control
Fraud
Machine Learning
Mechatronics
Modelling
Natural Language Processing (NLP)
Nodes
Nonlinearity
Robotics
Simulation and Modeling
Smoothing
Sparsity
Special Issue: Foundations of Data Science
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46L178LU6n5OBNg23SZokXEXEbgjuIg4GHkibpaXbT1oP_vS9ZuqLgoIdCkxTeS_K9l7z3PoQuUylM30pNAOsscQGMRAgTES3TtMjBG5PU5Q4_j_lokjxN02k4cKtCWGWzJ_qN2sy1OyO_AeCmHLCIRXeLD-JYo9ztaqDQ2ERbMSCNm-diMFztxJR7pkdYSClxSB6SZkLqnC-KS13cT5TA229gaq3NPxekHncGe2gnGIz4fqnhfbRhywO025Ax4LA2D9Hbi62GD-Nb7Apm-hBG4hDKYGPtAoNT7bOusGe-gR9hMFaxKufvavYNTWofkVVieKC_J8GCruUyRrw6QpPB4-vDiATmBKIZZzWh1lLFeJHkOs8ptzqWql9IFmswCGzhklGpUFZwUGFCFdg4WhnNna3CFTgQ7Bh1ynlpTxBWiaWxjnmeavC9qMwN1YURiU1UxKRmXRQ3Yst0KCvu2C1mWVsQ2Yk6A1FnXtRZ1EVXqz6LZVGNta17jTaysMCqrJ0OXXTdaKj9_P9op-tHO0Pb1CU4-LjsHurUn1_2HMyOOr_wc-sH-g7SVg
  priority: 102
  providerName: ProQuest
Title ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks
URI https://link.springer.com/article/10.1007/s10994-021-06044-0
https://www.proquest.com/docview/2642624430
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uu3jxW5zOkYM3DbRJmzXetrJOFIsMBxMPJU3T0-yGnQf_e1-ydlNRQSik8JIU3uvL-z3yPhC68EWQ9bRQBGydJiaAkQRB5hAlfD9PwRsT1OQO38f8ZuLdTv1plRRW1tHu9ZWkPak_JbvZMrbUROo4Hrw1UMsH392o44T21-cv5ba_I6iPT4z9rlJlft7jqznaYMxv16LW2kR7aKeCibi_kus-2tLFAdqtWzDgSiMP0fNYl6MwvsamTKYNXCTGLmU403qBwZW2uVbY9ruBD2GAqFgW8xc5e4cpSxuHVWB4YL1tfQVLi1VkeHmEJtHwMbwhVb8EohhnS0K1ppLx3EtVmlKulStkLxfMVQADdG5SUGkgdcBBcB6VgGyUzBQ3CIVLcBvYMWoW80KfICw9TV3l8tRX4HFRkWZU5VngaU86TCjWRm7NtkRVxcRNT4tZsimDbFidAKsTy-rEaaPL9ZrFqpTGn7M7tTSSSq3KBNAb5QBIGJCvagltyL_vdvq_6Wdom5o0Bxud3UHN5eubPgfwsUy7qBFEoy5q9aPBIDbj6OluCONgGD-MgRrysGv_xw-N7tW0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwED_m9qAvfovTqXnQJw22aZu1gogf0-nmENlA8KGmafo0u2kn4j_l3-glax0K-jboQ6FJSi-X_O6a-90B7HqBH9dVIClinaI6gJH6fmxRGXheEqE3FjDNHb7t8GbPvXnwHkrwWXBhdFhlsSeajToeSP2P_BCBm3HEIsc6Gb5QXTVKn64WJTTGatFSH-_osmXH1xc4v3uMXTa6502aVxWg0uHOiDKlmHB44kYyihhX0g5EPQkcWyJYqkQTNZkvlM_x81wmEP-liCXXOM4FGtcOjjsDFVczWstQOWt07u6_937GTW1JXLoe1bZDTtPJyXomDS_TkUaWi3c_oXBi3_46kjVId7kI87mJSk7HOrUEJZUuw0JR_oHku8EKPN6r7Oq8c0R0ik4TNEk1JsYkVmpI0I03PC9iau3giwiax0Skg2fR_8AmIxMDlhK8sL8pu4Vd03FUerYKvalIdQ3K6SBV60CEq5gtbR55Er09FkQxk0nsu8oVlhNIpwp2IbZQ5onMdT2NfjhJwaxFHaKoQyPq0KrC_nef4TiNx7-ta8VshPmSzsKJAlbhoJihyeO_R9v4f7QdmG12b9th-7rT2oQ5pukVJiq8BuXR65vaQqNnFG3nmkbgadrK_QVfVhFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwED_8APHFb3E6NQ_6pME2abNGEBHndE6HiILgQ03T9Em76Sayf82_zkvWbijom9CHQpOUXi753TV39wPYCWWU1ozUFLHOUBvASKMo9aiWYZgl6I1JZnOHr9vi4j64fAgfJuCzzIWxYZXlnug26rSj7T_yAwRuJhCLuHeQFWERN_XGcfeVWgYpe9Ja0mkMVaRlBh_ovvWOmnWc613GGmd3pxe0YBigmgvep8wYprjIgkQnCRNG-1LVMsl9jcBpMpu0ySJlIoGfGjCFtoBWqRYW04VCQ5vjuJMwXeM1aR2_qHE-QgEmHMskLuKQWiuiSNgp0vZcQV5mY468AO--g-LY0v1xOOswr7EAc4WxSk6G2rUIEyZfgvmSCIIU-8IyPN6a3vlp-5DYYp0ufJJadExJakyXoEPvMr6IY93BFxE0lInKOy_qeYBN-i4aLCd4YX9HwIVd82F8em8F7v9FpqswlXdyswZEBYb52hdJqNHvYzJJmc7SKDCB8rjUvAJ-KbZYFyXNLbPGczwuxmxFHaOoYyfq2KvA3qhPd1jQ48_W1XI24mJx9-KxKlZgv5yh8ePfR1v_e7RtmEGVjq-a7dYGzDKbZ-HCw6sw1X97N5to_fSTLadmBJ7-W6-_AE3fFDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ResGCN%3A+attention-based+deep+residual+modeling+for+anomaly+detection+on+attributed+networks&rft.jtitle=Machine+learning&rft.au=Pei%2C+Yulong&rft.au=Huang%2C+Tianjin&rft.au=van+Ipenburg%2C+Werner&rft.au=Pechenizkiy%2C+Mykola&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=2&rft.spage=519&rft.epage=541&rft_id=info:doi/10.1007%2Fs10994-021-06044-0&rft.externalDocID=10_1007_s10994_021_06044_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon