ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks
Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection. Existing approaches have difficulties with three major issues: sparsity and nonlinearity capturing, residual modeling, and network smoothing....
Saved in:
Published in | Machine learning Vol. 111; no. 2; pp. 519 - 541 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0885-6125 1573-0565 |
DOI | 10.1007/s10994-021-06044-0 |
Cover
Abstract | Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection. Existing approaches have difficulties with three major issues: sparsity and nonlinearity capturing, residual modeling, and network smoothing. We propose Residual Graph Convolutional Network (ResGCN), an attention-based deep residual modeling approach that can tackle these issues: modeling the attributed networks with GCN allows to capture the sparsity and nonlinearity, utilizing a deep neural network allows direct residual ing from the input, and a residual-based attention mechanism reduces the adverse effect from anomalous nodes and prevents over-smoothing. Extensive experiments on several real-world attributed networks demonstrate the effectiveness of ResGCN in detecting anomalies. |
---|---|
AbstractList | Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection. Existing approaches have difficulties with three major issues: sparsity and nonlinearity capturing, residual modeling, and network smoothing. We propose Residual Graph Convolutional Network (ResGCN), an attention-based deep residual modeling approach that can tackle these issues: modeling the attributed networks with GCN allows to capture the sparsity and nonlinearity, utilizing a deep neural network allows direct residual ing from the input, and a residual-based attention mechanism reduces the adverse effect from anomalous nodes and prevents over-smoothing. Extensive experiments on several real-world attributed networks demonstrate the effectiveness of ResGCN in detecting anomalies. |
Author | Pei, Yulong van Ipenburg, Werner Huang, Tianjin Pechenizkiy, Mykola |
Author_xml | – sequence: 1 givenname: Yulong orcidid: 0000-0003-3739-5627 surname: Pei fullname: Pei, Yulong email: y.pei.1@tue.nl organization: Department of Mathematics and Computer Science, Eindhoven University of Technology – sequence: 2 givenname: Tianjin surname: Huang fullname: Huang, Tianjin organization: Department of Mathematics and Computer Science, Eindhoven University of Technology – sequence: 3 givenname: Werner surname: van Ipenburg fullname: van Ipenburg, Werner organization: Cooperatieve Rabobank U.A – sequence: 4 givenname: Mykola surname: Pechenizkiy fullname: Pechenizkiy, Mykola organization: Department of Mathematics and Computer Science, Eindhoven University of Technology |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8LnlfzsclmvUnRKoiC6MlDyGZny9ZtUpMs0n9v6gqCh8LAzOF9ZoZnhibWWUDonOBLgnF5FQiuqiLHlORY4CJNR2hKeMlyzAWfoCmWkueCUH6CZiGsMcZUSDFF7y8Qloun60zHCDZ2zua1DtBkDcA28xC6ZtB9tnEN9J1dZa3zmbZuo_tdikQweyRLlXjf1UNMqIX45fxHOEXHre4DnP32OXq7u31d3OePz8uHxc1jbphgMacAVDPRFrWpayrAkEqXbcWIKSWFVgrOqdQgBdRQUE05MboxoqpYKTSXnM3Rxbh3693nACGqtRu8TScVFQUVtCgYTik5pox3IXholemi3r8fve56RbDaq1SjSpVUqh-Vao_Sf-jWdxvtd4chNkIhhe0K_N9XB6hvSUWJTA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3398555 crossref_primary_10_32604_csse_2023_036352 crossref_primary_10_1016_j_ins_2023_03_022 crossref_primary_10_1016_j_knosys_2023_110589 crossref_primary_10_1007_s10618_023_00960_6 crossref_primary_10_1109_JSYST_2023_3347435 crossref_primary_10_1109_TKDE_2024_3501307 crossref_primary_10_1109_TMM_2023_3312931 crossref_primary_10_1007_s13042_024_02211_6 crossref_primary_10_1080_09540091_2022_2078281 crossref_primary_10_1007_s11517_024_03273_y crossref_primary_10_1016_j_neucom_2024_127761 crossref_primary_10_1109_ACCESS_2022_3211306 crossref_primary_10_1109_TGRS_2022_3145474 crossref_primary_10_1007_s00521_023_08964_5 crossref_primary_10_1109_TCE_2024_3355122 crossref_primary_10_1109_TKDE_2023_3250523 crossref_primary_10_1016_j_dsm_2024_09_002 crossref_primary_10_1016_j_eswa_2025_127311 crossref_primary_10_1016_j_knosys_2025_113144 crossref_primary_10_1007_s11036_024_02339_3 crossref_primary_10_1007_s11053_024_10448_9 crossref_primary_10_1109_ACCESS_2022_3201332 |
Cites_doi | 10.1109/TKDE.2013.184 10.1609/aaai.v33i01.330112 10.1109/SURV.2013.052213.00046 10.1146/annurev.soc.27.1.415 10.1109/TKDE.2018.2849727 10.1109/TKDE.2007.1009 10.1007/s10618-014-0365-y 10.24963/ijcai.2018/488 10.1137/1.9781611974348.24 10.1145/3289600.3291015 10.1109/ICDEW.2013.6547453 10.1145/3219819.3220052 10.1145/956750.956831 10.1145/1835804.1835907 10.1609/aaai.v32i1.11604 10.1609/aaai.v34i01.5409 10.1145/3018661.3018667 10.1137/1.9781611974973.55 10.1145/3184558.3191570 10.1145/2623330.2623682 10.1137/1.9781611975673.67 10.1145/2623330.2623733 10.1145/3357384.3358074 10.1145/3308560.3316587 10.1609/aaai.v32i1.11274 10.1145/3219819.3219968 10.1145/3289600.3290964 10.1145/3292500.3330851 10.1145/3159652.3159674 10.1137/1.9781611975321.18 10.1145/335191.335388 10.1007/s10618-020-00684-x 10.1137/1.9781611974973.71 10.24963/ijcai.2017/299 10.1145/3336191.3371788 10.1109/ICDMW.2007.91 10.1109/ISI.2007.379473 10.18653/v1/P19-1398 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10994-021-06044-0 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0565 |
EndPage | 541 |
ExternalDocumentID | 10_1007_s10994_021_06044_0 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-2ee2a36f4bcbb26ec19a7f931c782ef865528ae86ebe42a251cadc699376a5853 |
IEDL.DBID | U2A |
ISSN | 0885-6125 |
IngestDate | Fri Jul 25 03:23:12 EDT 2025 Thu Apr 24 23:07:47 EDT 2025 Tue Jul 01 00:46:07 EDT 2025 Fri Feb 21 02:47:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Anomaly Detection Graph Convolutional Network Attributed Networks Attention Mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-2ee2a36f4bcbb26ec19a7f931c782ef865528ae86ebe42a251cadc699376a5853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3739-5627 |
OpenAccessLink | https://link.springer.com/10.1007/s10994-021-06044-0 |
PQID | 2642624430 |
PQPubID | 54194 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2642624430 crossref_citationtrail_10_1007_s10994_021_06044_0 crossref_primary_10_1007_s10994_021_06044_0 springer_journals_10_1007_s10994_021_06044_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Machine learning |
PublicationTitleAbbrev | Mach Learn |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR19 CR18 CR17 CR39 Song, Wu, Jermaine, Ranka (CR43) 2007; 19 CR16 CR38 CR37 CR14 CR36 CR13 CR35 CR12 CR34 Bhuyan, Bhattacharyya, Kalita (CR5) 2013; 16 CR11 CR10 CR32 CR30 Bandyopadhyay, Lokesh, Murty (CR2) 2019; 33 CR4 CR3 CR6 CR7 CR29 CR28 CR9 CR27 CR26 CR48 CR25 CR47 CR24 CR46 CR23 CR45 Cui, Wang, Pei, Zhu (CR8) 2018; 31 CR22 CR44 CR21 CR20 CR42 Metsis, Androutsopoulos, Paliouras (CR33) 2006; 17 CR41 McPherson, Smith-Lovin, Cook (CR31) 2001; 27 CR40 Gupta, Gao, Aggarwal, Han (CR15) 2013; 26 Akoglu, Tong, Koutra (CR1) 2015; 29 P Cui (6044_CR8) 2018; 31 6044_CR9 MH Bhuyan (6044_CR5) 2013; 16 6044_CR7 6044_CR6 6044_CR4 6044_CR20 6044_CR42 6044_CR21 6044_CR40 6044_CR41 6044_CR24 6044_CR46 6044_CR25 6044_CR47 6044_CR22 6044_CR44 6044_CR23 6044_CR45 6044_CR28 6044_CR29 6044_CR26 6044_CR48 6044_CR27 M McPherson (6044_CR31) 2001; 27 X Song (6044_CR43) 2007; 19 V Metsis (6044_CR33) 2006; 17 L Akoglu (6044_CR1) 2015; 29 S Bandyopadhyay (6044_CR2) 2019; 33 6044_CR3 6044_CR10 6044_CR32 6044_CR30 6044_CR13 6044_CR35 6044_CR14 6044_CR36 6044_CR11 6044_CR12 6044_CR34 6044_CR17 6044_CR39 6044_CR18 6044_CR37 6044_CR16 6044_CR38 6044_CR19 M Gupta (6044_CR15) 2013; 26 |
References_xml | – ident: CR45 – ident: CR22 – ident: CR18 – ident: CR47 – volume: 17 start-page: 28 year: 2006 end-page: 69 ident: CR33 article-title: Spam filtering with naive bayes-which naive bayes? publication-title: CEAS, Mountain View, CA – ident: CR4 – ident: CR14 – ident: CR39 – ident: CR16 – ident: CR37 – ident: CR12 – volume: 26 start-page: 2250 issue: 9 year: 2013 end-page: 2267 ident: CR15 article-title: Outlier detection for temporal data: A survey publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2013.184 – ident: CR30 – ident: CR10 – ident: CR35 – ident: CR6 – ident: CR29 – ident: CR40 – ident: CR25 – ident: CR27 – ident: CR42 – ident: CR23 – ident: CR21 – ident: CR46 – ident: CR19 – ident: CR44 – ident: CR48 – volume: 33 start-page: 12 year: 2019 end-page: 19 ident: CR2 article-title: Outlier aware network embedding for attributed networks publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v33i01.330112 – ident: CR3 – ident: CR38 – ident: CR17 – ident: CR13 – ident: CR11 – volume: 16 start-page: 303 issue: 1 year: 2013 end-page: 336 ident: CR5 article-title: Network anomaly detection: methods, systems and tools publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/SURV.2013.052213.00046 – ident: CR9 – volume: 27 start-page: 415 issue: 1 year: 2001 end-page: 444 ident: CR31 article-title: Birds of a feather: Homophily in social networks publication-title: Annual review of sociology doi: 10.1146/annurev.soc.27.1.415 – ident: CR32 – ident: CR34 – ident: CR36 – ident: CR7 – volume: 31 start-page: 833 issue: 5 year: 2018 end-page: 852 ident: CR8 article-title: A survey on network embedding publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2849727 – volume: 19 start-page: 631 issue: 5 year: 2007 end-page: 645 ident: CR43 article-title: Conditional anomaly detection publication-title: IEEE Transactions on knowledge and Data Engineering doi: 10.1109/TKDE.2007.1009 – ident: CR28 – ident: CR41 – ident: CR26 – volume: 29 start-page: 626 issue: 3 year: 2015 end-page: 688 ident: CR1 article-title: Graph based anomaly detection and description: a survey publication-title: Data mining and knowledge discovery doi: 10.1007/s10618-014-0365-y – ident: CR24 – ident: CR20 – ident: 6044_CR17 – ident: 6044_CR21 – ident: 6044_CR38 doi: 10.24963/ijcai.2018/488 – ident: 6044_CR44 – ident: 6044_CR39 doi: 10.1137/1.9781611974348.24 – ident: 6044_CR23 – ident: 6044_CR32 doi: 10.1145/3289600.3291015 – ident: 6044_CR34 doi: 10.1109/ICDEW.2013.6547453 – ident: 6044_CR36 – volume: 19 start-page: 631 issue: 5 year: 2007 ident: 6044_CR43 publication-title: IEEE Transactions on knowledge and Data Engineering doi: 10.1109/TKDE.2007.1009 – ident: 6044_CR47 doi: 10.1145/3219819.3220052 – ident: 6044_CR35 doi: 10.1145/956750.956831 – ident: 6044_CR14 doi: 10.1145/1835804.1835907 – volume: 16 start-page: 303 issue: 1 year: 2013 ident: 6044_CR5 publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/SURV.2013.052213.00046 – ident: 6044_CR26 doi: 10.1609/aaai.v32i1.11604 – ident: 6044_CR16 doi: 10.1609/aaai.v34i01.5409 – ident: 6044_CR19 doi: 10.1145/3018661.3018667 – ident: 6044_CR20 doi: 10.1137/1.9781611974973.55 – ident: 6044_CR13 doi: 10.1145/3184558.3191570 – ident: 6044_CR40 doi: 10.1145/2623330.2623682 – ident: 6044_CR10 doi: 10.1137/1.9781611975673.67 – ident: 6044_CR45 – volume: 33 start-page: 12 year: 2019 ident: 6044_CR2 publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v33i01.330112 – ident: 6044_CR4 doi: 10.1145/2623330.2623733 – volume: 31 start-page: 833 issue: 5 year: 2018 ident: 6044_CR8 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2849727 – ident: 6044_CR22 – ident: 6044_CR28 doi: 10.1145/3357384.3358074 – ident: 6044_CR7 doi: 10.1145/3308560.3316587 – ident: 6044_CR27 doi: 10.1609/aaai.v32i1.11274 – ident: 6044_CR46 doi: 10.1145/3219819.3219968 – volume: 29 start-page: 626 issue: 3 year: 2015 ident: 6044_CR1 publication-title: Data mining and knowledge discovery doi: 10.1007/s10618-014-0365-y – volume: 26 start-page: 2250 issue: 9 year: 2013 ident: 6044_CR15 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2013.184 – ident: 6044_CR11 doi: 10.1145/3289600.3290964 – ident: 6044_CR30 – ident: 6044_CR48 doi: 10.1145/3292500.3330851 – ident: 6044_CR25 doi: 10.1145/3159652.3159674 – ident: 6044_CR29 doi: 10.1137/1.9781611975321.18 – ident: 6044_CR6 doi: 10.1145/335191.335388 – ident: 6044_CR37 doi: 10.1007/s10618-020-00684-x – ident: 6044_CR18 doi: 10.1137/1.9781611974973.71 – ident: 6044_CR24 doi: 10.24963/ijcai.2017/299 – ident: 6044_CR3 doi: 10.1145/3336191.3371788 – ident: 6044_CR12 doi: 10.1109/ICDMW.2007.91 – volume: 17 start-page: 28 year: 2006 ident: 6044_CR33 publication-title: CEAS, Mountain View, CA – ident: 6044_CR9 – ident: 6044_CR42 doi: 10.1109/ISI.2007.379473 – volume: 27 start-page: 415 issue: 1 year: 2001 ident: 6044_CR31 publication-title: Annual review of sociology doi: 10.1146/annurev.soc.27.1.415 – ident: 6044_CR41 doi: 10.18653/v1/P19-1398 |
SSID | ssj0002686 |
Score | 2.5138023 |
Snippet | Effectively detecting anomalous nodes in attributed networks is crucial for the success of many real-world applications such as fraud and intrusion detection.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 519 |
SubjectTerms | Anomalies Artificial Intelligence Artificial neural networks Computer Science Control Fraud Machine Learning Mechatronics Modelling Natural Language Processing (NLP) Nodes Nonlinearity Robotics Simulation and Modeling Smoothing Sparsity Special Issue: Foundations of Data Science |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA46L178LU6n5OBNg23SZokXEXEbgjuIg4GHkibpaXbT1oP_vS9ZuqLgoIdCkxTeS_K9l7z3PoQuUylM30pNAOsscQGMRAgTES3TtMjBG5PU5Q4_j_lokjxN02k4cKtCWGWzJ_qN2sy1OyO_AeCmHLCIRXeLD-JYo9ztaqDQ2ERbMSCNm-diMFztxJR7pkdYSClxSB6SZkLqnC-KS13cT5TA229gaq3NPxekHncGe2gnGIz4fqnhfbRhywO025Ax4LA2D9Hbi62GD-Nb7Apm-hBG4hDKYGPtAoNT7bOusGe-gR9hMFaxKufvavYNTWofkVVieKC_J8GCruUyRrw6QpPB4-vDiATmBKIZZzWh1lLFeJHkOs8ptzqWql9IFmswCGzhklGpUFZwUGFCFdg4WhnNna3CFTgQ7Bh1ynlpTxBWiaWxjnmeavC9qMwN1YURiU1UxKRmXRQ3Yst0KCvu2C1mWVsQ2Yk6A1FnXtRZ1EVXqz6LZVGNta17jTaysMCqrJ0OXXTdaKj9_P9op-tHO0Pb1CU4-LjsHurUn1_2HMyOOr_wc-sH-g7SVg priority: 102 providerName: ProQuest |
Title | ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks |
URI | https://link.springer.com/article/10.1007/s10994-021-06044-0 https://www.proquest.com/docview/2642624430 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uu3jxW5zOkYM3DbRJmzXetrJOFIsMBxMPJU3T0-yGnQf_e1-ydlNRQSik8JIU3uvL-z3yPhC68EWQ9bRQBGydJiaAkQRB5hAlfD9PwRsT1OQO38f8ZuLdTv1plRRW1tHu9ZWkPak_JbvZMrbUROo4Hrw1UMsH392o44T21-cv5ba_I6iPT4z9rlJlft7jqznaYMxv16LW2kR7aKeCibi_kus-2tLFAdqtWzDgSiMP0fNYl6MwvsamTKYNXCTGLmU403qBwZW2uVbY9ruBD2GAqFgW8xc5e4cpSxuHVWB4YL1tfQVLi1VkeHmEJtHwMbwhVb8EohhnS0K1ppLx3EtVmlKulStkLxfMVQADdG5SUGkgdcBBcB6VgGyUzBQ3CIVLcBvYMWoW80KfICw9TV3l8tRX4HFRkWZU5VngaU86TCjWRm7NtkRVxcRNT4tZsimDbFidAKsTy-rEaaPL9ZrFqpTGn7M7tTSSSq3KBNAb5QBIGJCvagltyL_vdvq_6Wdom5o0Bxud3UHN5eubPgfwsUy7qBFEoy5q9aPBIDbj6OluCONgGD-MgRrysGv_xw-N7tW0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwED_m9qAvfovTqXnQJw22aZu1gogf0-nmENlA8KGmafo0u2kn4j_l3-glax0K-jboQ6FJSi-X_O6a-90B7HqBH9dVIClinaI6gJH6fmxRGXheEqE3FjDNHb7t8GbPvXnwHkrwWXBhdFhlsSeajToeSP2P_BCBm3HEIsc6Gb5QXTVKn64WJTTGatFSH-_osmXH1xc4v3uMXTa6502aVxWg0uHOiDKlmHB44kYyihhX0g5EPQkcWyJYqkQTNZkvlM_x81wmEP-liCXXOM4FGtcOjjsDFVczWstQOWt07u6_937GTW1JXLoe1bZDTtPJyXomDS_TkUaWi3c_oXBi3_46kjVId7kI87mJSk7HOrUEJZUuw0JR_oHku8EKPN6r7Oq8c0R0ik4TNEk1JsYkVmpI0I03PC9iau3giwiax0Skg2fR_8AmIxMDlhK8sL8pu4Vd03FUerYKvalIdQ3K6SBV60CEq5gtbR55Er09FkQxk0nsu8oVlhNIpwp2IbZQ5onMdT2NfjhJwaxFHaKoQyPq0KrC_nef4TiNx7-ta8VshPmSzsKJAlbhoJihyeO_R9v4f7QdmG12b9th-7rT2oQ5pukVJiq8BuXR65vaQqNnFG3nmkbgadrK_QVfVhFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwED_8APHFb3E6NQ_6pME2abNGEBHndE6HiILgQ03T9Em76Sayf82_zkvWbijom9CHQpOUXi753TV39wPYCWWU1ozUFLHOUBvASKMo9aiWYZgl6I1JZnOHr9vi4j64fAgfJuCzzIWxYZXlnug26rSj7T_yAwRuJhCLuHeQFWERN_XGcfeVWgYpe9Ja0mkMVaRlBh_ovvWOmnWc613GGmd3pxe0YBigmgvep8wYprjIgkQnCRNG-1LVMsl9jcBpMpu0ySJlIoGfGjCFtoBWqRYW04VCQ5vjuJMwXeM1aR2_qHE-QgEmHMskLuKQWiuiSNgp0vZcQV5mY468AO--g-LY0v1xOOswr7EAc4WxSk6G2rUIEyZfgvmSCIIU-8IyPN6a3vlp-5DYYp0ufJJadExJakyXoEPvMr6IY93BFxE0lInKOy_qeYBN-i4aLCd4YX9HwIVd82F8em8F7v9FpqswlXdyswZEBYb52hdJqNHvYzJJmc7SKDCB8rjUvAJ-KbZYFyXNLbPGczwuxmxFHaOoYyfq2KvA3qhPd1jQ48_W1XI24mJx9-KxKlZgv5yh8ePfR1v_e7RtmEGVjq-a7dYGzDKbZ-HCw6sw1X97N5to_fSTLadmBJ7-W6-_AE3fFDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ResGCN%3A+attention-based+deep+residual+modeling+for+anomaly+detection+on+attributed+networks&rft.jtitle=Machine+learning&rft.au=Pei%2C+Yulong&rft.au=Huang%2C+Tianjin&rft.au=van+Ipenburg%2C+Werner&rft.au=Pechenizkiy%2C+Mykola&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=111&rft.issue=2&rft.spage=519&rft.epage=541&rft_id=info:doi/10.1007%2Fs10994-021-06044-0&rft.externalDocID=10_1007_s10994_021_06044_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |