Economic Optimal Control for Minimizing Fuel Consumption of Heavy-Duty Trucks in a Highway Environment
This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a highway environment, under a representative lead vehicle model informed by traffic data. These strategies fuse a global, off-line dynamic prog...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 28; no. 5; pp. 1652 - 1664 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a highway environment, under a representative lead vehicle model informed by traffic data. These strategies fuse a global, off-line dynamic programming (DP) optimization with online model predictive control (MPC). We then show how two of the three strategies can be adapted to accommodate the presence of traffic and optimally navigate signalized intersections using infrastructure-to-vehicular (I2V) communication. The MPC optimization, which is local in nature, makes refinements to a coarsely (but globally, subject to grid resolution) optimized target velocity profile from the DP optimization. The three candidate economic MPC formulations that are evaluated include a nonlinear time-based formulation that directly penalizes the predicted fuel consumption, a nonlinear time-based formulation that penalizes the braking effort as a surrogate for fuel consumption, and a linear distance-based convex formulation that maintains a tradeoff between energy expenditure and tracking of the coarsely optimized velocity profile obtained from DP. Using a medium-fidelity Simulink model, based on a Volvo truck's longitudinal and engine dynamics, we analyze the optimization's performance on four highway routes under various traffic scenarios. Results demonstrate 3.7%-8.3% fuel economy improvement on highway routes without traffic and 6.5%-10% on the same routes with traffic included. Furthermore, we present a detailed analysis of energy usage by "type" (aerodynamic losses, braking losses, and comparison of brake-specific fuel consumption), under each candidate control strategy. |
---|---|
AbstractList | This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a highway environment, under a representative lead vehicle model informed by traffic data. These strategies fuse a global, offline dynamic programming (DP) optimization with online model predictive control (MPC). We then show how two of the three strategies can be adapted to accommodate the presence of traffic and optimally navigate signalized intersections using infrastructure-to-vehicular (I2V) communication. The MPC optimization, which is local in nature, makes refinements to a coarsely (but globally, subject to grid resolution) optimized target velocity profile from the DP optimization. The three candidate economic MPC formulations that are evaluated include: a nonlinear time-based formulation that directly penalizes predicted fuel consumption, a nonlinear time-based formulation that penalizes braking effort as a surrogate for fuel consumption, and a linear distance-based convex formulation that maintains a tradeoff between energy expenditure and tracking of the coarsely optimized velocity profile obtained from DP. Using a medium-fidelity Simulink model, based on a Volvo truck's longitudinal and engine dynamics, we analyze the optimization's performance on four highway routes under various traffic scenarios. Results demonstrate 3.7-8.3% fuel economy improvement on highway routes without traffic and 6.5-10% on the same routes with traffic included. Furthermore, we present a detailed analysis of energy usage by "type" (aerodynamic losses, braking losses, and comparison of brake-specific fuel consumption), under each candidate control strategy. This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a highway environment, under a representative lead vehicle model informed by traffic data. These strategies fuse a global, off-line dynamic programming (DP) optimization with online model predictive control (MPC). We then show how two of the three strategies can be adapted to accommodate the presence of traffic and optimally navigate signalized intersections using infrastructure-to-vehicular (I2V) communication. The MPC optimization, which is local in nature, makes refinements to a coarsely (but globally, subject to grid resolution) optimized target velocity profile from the DP optimization. The three candidate economic MPC formulations that are evaluated include a nonlinear time-based formulation that directly penalizes the predicted fuel consumption, a nonlinear time-based formulation that penalizes the braking effort as a surrogate for fuel consumption, and a linear distance-based convex formulation that maintains a tradeoff between energy expenditure and tracking of the coarsely optimized velocity profile obtained from DP. Using a medium-fidelity Simulink model, based on a Volvo truck’s longitudinal and engine dynamics, we analyze the optimization’s performance on four highway routes under various traffic scenarios. Results demonstrate 3.7%–8.3% fuel economy improvement on highway routes without traffic and 6.5%–10% on the same routes with traffic included. Furthermore, we present a detailed analysis of energy usage by “type” (aerodynamic losses, braking losses, and comparison of brake-specific fuel consumption), under each candidate control strategy. |
Author | Groelke, Ben Earnhardt, Christian Vermillion, Chris Borek, John |
Author_xml | – sequence: 1 givenname: John orcidid: 0000-0002-5392-0906 surname: Borek fullname: Borek, John email: jborek@uncc.edu organization: Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC, USA – sequence: 2 givenname: Ben orcidid: 0000-0002-9056-5771 surname: Groelke fullname: Groelke, Ben email: bjgroelk@ncsu.edu organization: Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA – sequence: 3 givenname: Christian orcidid: 0000-0002-7603-7702 surname: Earnhardt fullname: Earnhardt, Christian email: clearnha@ncsu.edu organization: Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA – sequence: 4 givenname: Chris surname: Vermillion fullname: Vermillion, Chris email: cvermil@ncsu.edu organization: Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA |
BackLink | https://www.osti.gov/servlets/purl/1557265$$D View this record in Osti.gov |
BookMark | eNp9kD1PwzAQhi1UJNrCD0AsFswp_kjiZESlUKSiDmS3HNcuhsYutgMqvx6XIgYGFp-le97T3TMCA-usAuAcownGqL5upk_NhCBcT0iNq5yRIzDERVFlqCqLQfqjkmZlQcsTMArhBSGcF4QNgZ5JZ11nJFxuo-nEBk6djd5toHYePhprOvNp7Bre9eq7F_ougc5Cp-FcifdddtvHHWx8L18DNBYKODfr5w-xgzP7bryznbLxFBxrsQnq7KeOQXM3a6bzbLG8f5jeLDJJSxozIupC5JRojHNWKtHWqqW1KiuCCqSxXJWarJSURU7yVrda1mxVYc1oi1aEEToGl4exLkTDgzRRyed0oFUy8qSDkaRgDK4O0Na7t16FyF9c721ai5OcYobSUyWKHSjpXQheaZ6mif3l0Quz4RjxvXi-F8_34vmP-JTEf5Jbn8z63b-Zi0PGKKV--YpRxipEvwDZEpEA |
CODEN | IETTE2 |
CitedBy_id | crossref_primary_10_1115_1_4064089 crossref_primary_10_1002_rnc_5814 crossref_primary_10_3390_vehicles4040071 crossref_primary_10_1109_ACCESS_2021_3081184 crossref_primary_10_1109_TCST_2021_3082306 crossref_primary_10_1109_TTE_2020_2974588 crossref_primary_10_1109_TVT_2021_3123176 crossref_primary_10_1109_TVT_2023_3289632 crossref_primary_10_1109_TITS_2021_3112113 crossref_primary_10_1115_1_4062532 crossref_primary_10_23919_JSEE_2024_000108 crossref_primary_10_1115_1_4049544 crossref_primary_10_1109_TITS_2021_3076963 crossref_primary_10_1109_TTE_2022_3147214 crossref_primary_10_1177_0361198120941508 crossref_primary_10_1007_s11768_022_00090_2 crossref_primary_10_3390_en14217172 crossref_primary_10_1016_j_energy_2020_118496 crossref_primary_10_3390_s22030779 crossref_primary_10_4271_2021_01_0432 crossref_primary_10_1109_TITS_2021_3105964 crossref_primary_10_1109_TITS_2021_3128068 |
Cites_doi | 10.1016/j.conengprac.2008.07.005 10.1016/j.trd.2011.05.008 10.1109/TITS.2013.2263532 10.1109/ACC.2010.5531241 10.3182/20140824-6-ZA-1003.00286 10.1109/ITSC.2014.6957956 10.1016/0191-2607(88)90036-2 10.1016/j.ifacol.2015.11.277 10.1109/CCA.2010.5611196 10.1631/jzus.A0900374 10.1115/DSCC2015-9950 10.1016/j.trd.2012.12.001 10.1109/IEVC.2012.6183284 10.23919/ACC.2018.8431050 10.1109/TITS.2014.2319812 10.1016/j.ifacol.2017.08.425 10.1016/j.apenergy.2008.12.022 10.1109/TCST.2010.2047860 10.1109/CDC.2008.4738865 10.1109/ACC.2013.6580028 10.1016/0191-2615(81)90037-0 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
CorporateAuthor | Univ. of North Carolina, Charlotte, NC (United States) |
CorporateAuthor_xml | – name: Univ. of North Carolina, Charlotte, NC (United States) |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M OIOZB OTOTI |
DOI | 10.1109/TCST.2019.2918472 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1558-0865 |
EndPage | 1664 |
ExternalDocumentID | 1557265 10_1109_TCST_2019_2918472 8737780 |
Genre | orig-research |
GrantInformation_xml | – fundername: Advanced Research Projects Agency-Energy Next-Generation Energy Technologies for Connected and Automated On-Road Vehicles (NEXTCAR) Program, a part of the Maximizing Vehicle Fuel Economy through the Real-Time Collaborative, and Predictive Co-Optimization of Routing, Speed, Powertrain, and Engine Control Project funderid: 10.13039/100006133 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 L7M OIOZB OTOTI |
ID | FETCH-LOGICAL-c363t-2a95a432f11476eab9eb39e682050f1cd6f2decc5424bfbfc97d81f73b0d2723 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Thu May 18 22:33:05 EDT 2023 Sun Jun 29 13:34:42 EDT 2025 Tue Jul 01 02:36:01 EDT 2025 Thu Apr 24 23:03:33 EDT 2025 Wed Aug 27 02:31:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-2a95a432f11476eab9eb39e682050f1cd6f2decc5424bfbfc97d81f73b0d2723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Advanced Research Projects Agency - Energy (ARPA-E) AR0000801 |
ORCID | 0000-0002-9056-5771 0000-0002-5392-0906 0000-0002-7603-7702 0000000290565771 0000000276037702 0000000253920906 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1557265 |
PQID | 2431704318 |
PQPubID | 85425 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TCST_2019_2918472 proquest_journals_2431704318 osti_scitechconnect_1557265 ieee_primary_8737780 crossref_primary_10_1109_TCST_2019_2918472 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 (ref4) 2016; 81 ref11 ref10 ref19 ref18 ref24 ref23 ref25 persoons (ref16) 2009; 86 ref20 ref22 ref21 (ref1) 2016 ref8 ref7 ref9 (ref3) 2016 ref6 ref5 moran (ref17) 2011; 16 schittler (ref2) 2003 |
References_xml | – ident: ref9 doi: 10.1016/j.conengprac.2008.07.005 – volume: 16 start-page: 492 year: 2011 ident: ref17 article-title: Virginia tech comprehensive power-based fuel consumption model: Model development and testing publication-title: Transp Res D Transp Environ doi: 10.1016/j.trd.2011.05.008 – year: 2016 ident: ref3 publication-title: Inventory of U S greenhouse gas emissions and sinks 19902006 – ident: ref14 doi: 10.1109/TITS.2013.2263532 – ident: ref12 doi: 10.1109/ACC.2010.5531241 – volume: 81 start-page: 73478 year: 2016 ident: ref4 article-title: Greenhouse gas emissions and fuel efficiency standards for medium- and heavy-duty engines and vehicles, phase 2 publication-title: Fed Reg – ident: ref7 doi: 10.3182/20140824-6-ZA-1003.00286 – start-page: 1 year: 2003 ident: ref2 article-title: State-of-the-art and emerging truck engine technologies for optimized performance, emissions and life-cycle costing publication-title: Proc Diesel Engine Emissions Reduction Conf – ident: ref19 doi: 10.1109/ITSC.2014.6957956 – ident: ref5 doi: 10.1016/0191-2607(88)90036-2 – ident: ref24 doi: 10.1016/j.ifacol.2015.11.277 – ident: ref11 doi: 10.1109/CCA.2010.5611196 – ident: ref21 doi: 10.1631/jzus.A0900374 – ident: ref10 doi: 10.1115/DSCC2015-9950 – ident: ref18 doi: 10.1016/j.trd.2012.12.001 – ident: ref6 doi: 10.1109/IEVC.2012.6183284 – ident: ref20 doi: 10.23919/ACC.2018.8431050 – ident: ref8 doi: 10.1109/TITS.2014.2319812 – ident: ref23 doi: 10.1016/j.ifacol.2017.08.425 – volume: 86 start-page: 1582 year: 2009 ident: ref16 article-title: Minimization of the fuel consumption of a gasoline engine using dynamic optimization publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.12.022 – ident: ref15 doi: 10.1109/TCST.2010.2047860 – ident: ref13 doi: 10.1109/CDC.2008.4738865 – year: 2016 ident: ref1 publication-title: An Analysis of the Operational Costs of Trucking 2016 Update – ident: ref22 doi: 10.1109/ACC.2013.6580028 – ident: ref25 doi: 10.1016/0191-2615(81)90037-0 |
SSID | ssj0014527 |
Score | 2.458795 |
Snippet | This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a... |
SourceID | osti proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1652 |
SubjectTerms | ADVANCED PROPULSION SYSTEMS Aerodynamics Braking Consumption Dynamic programming Economics Energy consumption Fuel consumption Fuel economy Fuels Heavy duty trucks heavy-duty vehicles Intersections Mathematical model model predictive control Optimal control Optimization Predictive control Road transportation Traffic information Traffic models Vehicle dynamics Vehicle-to-infrastructure Velocity distribution |
Title | Economic Optimal Control for Minimizing Fuel Consumption of Heavy-Duty Trucks in a Highway Environment |
URI | https://ieeexplore.ieee.org/document/8737780 https://www.proquest.com/docview/2431704318 https://www.osti.gov/servlets/purl/1557265 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VXgoHoC2ItAX5wAk128R24viItl2tkBYOpFJvlp3Y0qo0i9ik1fbXd-wkCxSEOCWS7SjRjMfvZb4A3jPcfVJIE6eZy3wLsxTtoLOxZIlOE6ltHTz4i8_5_JJ_usquduB0mwtjrQ3BZ3bib4Mvv15Vnf9VdlYIJkSBBP0JErc-V2vrMeB9e1ZkOCzOg0syGuppnpXTr6UP4pITKpHQCPrbGRSaquBlhVvqD4McTpnZC1iM79cHl1xPutZMqvtHpRv_9wNewvMBbpKPvX7sw45tDmBvzEZeH8CzXwoSHoIbR8gXNCU3uHLah7ITxLZksWyWN8t7nElmnQ1jqMfB5pCVI3OrbzfxedduSIkac70my4Zo4iNJ7vSGXPxMqXsF5eyinM7joRNDXLGctTHVMtOcUYfsSeRWG4kcXNoc4UOWuLSqc0drVIaMU26ccZUUdZE6wUxSU0HZa9htVo19A4Sm2tQ850JLyw2iM8d0amxttSscdTyCZBSNqoYq5b5ZxjcV2EoilZem8tJUgzQj-LBd8r0v0fGvyYdeLNuJg0QiOPbyVwg7fO3cygcZVa1CsCVonkVwMqqFGrb4WlEPvXxpouLo7888hqfUk_MQkHYCu-2Pzr5FBNOad0F1HwCdg-y2 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5VA48GhBpC3gAydEtontxPERLV0t0C0HgtSbZSe2tGqbRWxStP31jJ1keQpxSiTbUaIZj78v8wJ4yXD3SSFNnGYu8y3MUrSDzsaSJTpNpLZ18OAvzvP5Z_7-IrvYgdfbXBhrbQg-sxN_G3z59arq_K-yk0IwIQok6Hfw3M_SPltr6zPgfYNW5DgszoNTMhoqap6U00-lD-OSEyqR0gj6yykU2qrgZYWb6g-THM6Z2QNYjG_Yh5dcTrrWTKrb34o3_u8nPIT7A-Akb3oNeQQ7ttmHvTEfeb0P934qSXgAbhwhH9GYXOPKaR_MThDdksWyWV4vb3EmmXU2jKEmB6tDVo7Mrb7ZxG-7dkNK1JnLNVk2RBMfS_JNb8jpj6S6x1DOTsvpPB56McQVy1kbUy0zzRl1yJ9EbrWRyMKlzRFAZIlLqzp3tEZ1yDjlxhlXSVEXqRPMJDUVlD2B3WbV2KdAaKpNzXMutLTcID5zTKfG1la7wlHHI0hG0ahqqFPu22VcqcBXEqm8NJWXphqkGcGr7ZIvfZGOf00-8GLZThwkEsGRl79C4OGr51Y-zKhqFcItQfMsguNRLdSwydeKevDlixMVh39_5gvYm5eLM3X27vzDEdylnqqH8LRj2G2_dvYZ4pnWPA9q_B0aM-__ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Economic+Optimal+Control+for+Minimizing+Fuel+Consumption+of+Heavy-Duty+Trucks+in+a+Highway+Environment&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Borek%2C+John&rft.au=Groelke%2C+Ben&rft.au=Earnhardt%2C+Christian&rft.au=Vermillion%2C+Chris&rft.date=2020-09-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=28&rft.issue=5&rft.spage=1652&rft.epage=1664&rft_id=info:doi/10.1109%2FTCST.2019.2918472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2019_2918472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |