Economic Optimal Control for Minimizing Fuel Consumption of Heavy-Duty Trucks in a Highway Environment

This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a highway environment, under a representative lead vehicle model informed by traffic data. These strategies fuse a global, off-line dynamic prog...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 28; no. 5; pp. 1652 - 1664
Main Authors Borek, John, Groelke, Ben, Earnhardt, Christian, Vermillion, Chris
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a highway environment, under a representative lead vehicle model informed by traffic data. These strategies fuse a global, off-line dynamic programming (DP) optimization with online model predictive control (MPC). We then show how two of the three strategies can be adapted to accommodate the presence of traffic and optimally navigate signalized intersections using infrastructure-to-vehicular (I2V) communication. The MPC optimization, which is local in nature, makes refinements to a coarsely (but globally, subject to grid resolution) optimized target velocity profile from the DP optimization. The three candidate economic MPC formulations that are evaluated include a nonlinear time-based formulation that directly penalizes the predicted fuel consumption, a nonlinear time-based formulation that penalizes the braking effort as a surrogate for fuel consumption, and a linear distance-based convex formulation that maintains a tradeoff between energy expenditure and tracking of the coarsely optimized velocity profile obtained from DP. Using a medium-fidelity Simulink model, based on a Volvo truck's longitudinal and engine dynamics, we analyze the optimization's performance on four highway routes under various traffic scenarios. Results demonstrate 3.7%-8.3% fuel economy improvement on highway routes without traffic and 6.5%-10% on the same routes with traffic included. Furthermore, we present a detailed analysis of energy usage by "type" (aerodynamic losses, braking losses, and comparison of brake-specific fuel consumption), under each candidate control strategy.
AbstractList This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a highway environment, under a representative lead vehicle model informed by traffic data. These strategies fuse a global, offline dynamic programming (DP) optimization with online model predictive control (MPC). We then show how two of the three strategies can be adapted to accommodate the presence of traffic and optimally navigate signalized intersections using infrastructure-to-vehicular (I2V) communication. The MPC optimization, which is local in nature, makes refinements to a coarsely (but globally, subject to grid resolution) optimized target velocity profile from the DP optimization. The three candidate economic MPC formulations that are evaluated include: a nonlinear time-based formulation that directly penalizes predicted fuel consumption, a nonlinear time-based formulation that penalizes braking effort as a surrogate for fuel consumption, and a linear distance-based convex formulation that maintains a tradeoff between energy expenditure and tracking of the coarsely optimized velocity profile obtained from DP. Using a medium-fidelity Simulink model, based on a Volvo truck's longitudinal and engine dynamics, we analyze the optimization's performance on four highway routes under various traffic scenarios. Results demonstrate 3.7-8.3% fuel economy improvement on highway routes without traffic and 6.5-10% on the same routes with traffic included. Furthermore, we present a detailed analysis of energy usage by "type" (aerodynamic losses, braking losses, and comparison of brake-specific fuel consumption), under each candidate control strategy.
This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a highway environment, under a representative lead vehicle model informed by traffic data. These strategies fuse a global, off-line dynamic programming (DP) optimization with online model predictive control (MPC). We then show how two of the three strategies can be adapted to accommodate the presence of traffic and optimally navigate signalized intersections using infrastructure-to-vehicular (I2V) communication. The MPC optimization, which is local in nature, makes refinements to a coarsely (but globally, subject to grid resolution) optimized target velocity profile from the DP optimization. The three candidate economic MPC formulations that are evaluated include a nonlinear time-based formulation that directly penalizes the predicted fuel consumption, a nonlinear time-based formulation that penalizes the braking effort as a surrogate for fuel consumption, and a linear distance-based convex formulation that maintains a tradeoff between energy expenditure and tracking of the coarsely optimized velocity profile obtained from DP. Using a medium-fidelity Simulink model, based on a Volvo truck’s longitudinal and engine dynamics, we analyze the optimization’s performance on four highway routes under various traffic scenarios. Results demonstrate 3.7%–8.3% fuel economy improvement on highway routes without traffic and 6.5%–10% on the same routes with traffic included. Furthermore, we present a detailed analysis of energy usage by “type” (aerodynamic losses, braking losses, and comparison of brake-specific fuel consumption), under each candidate control strategy.
Author Groelke, Ben
Earnhardt, Christian
Vermillion, Chris
Borek, John
Author_xml – sequence: 1
  givenname: John
  orcidid: 0000-0002-5392-0906
  surname: Borek
  fullname: Borek, John
  email: jborek@uncc.edu
  organization: Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC, USA
– sequence: 2
  givenname: Ben
  orcidid: 0000-0002-9056-5771
  surname: Groelke
  fullname: Groelke, Ben
  email: bjgroelk@ncsu.edu
  organization: Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
– sequence: 3
  givenname: Christian
  orcidid: 0000-0002-7603-7702
  surname: Earnhardt
  fullname: Earnhardt, Christian
  email: clearnha@ncsu.edu
  organization: Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
– sequence: 4
  givenname: Chris
  surname: Vermillion
  fullname: Vermillion, Chris
  email: cvermil@ncsu.edu
  organization: Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
BackLink https://www.osti.gov/servlets/purl/1557265$$D View this record in Osti.gov
BookMark eNp9kD1PwzAQhi1UJNrCD0AsFswp_kjiZESlUKSiDmS3HNcuhsYutgMqvx6XIgYGFp-le97T3TMCA-usAuAcownGqL5upk_NhCBcT0iNq5yRIzDERVFlqCqLQfqjkmZlQcsTMArhBSGcF4QNgZ5JZ11nJFxuo-nEBk6djd5toHYePhprOvNp7Bre9eq7F_ougc5Cp-FcifdddtvHHWx8L18DNBYKODfr5w-xgzP7bryznbLxFBxrsQnq7KeOQXM3a6bzbLG8f5jeLDJJSxozIupC5JRojHNWKtHWqqW1KiuCCqSxXJWarJSURU7yVrda1mxVYc1oi1aEEToGl4exLkTDgzRRyed0oFUy8qSDkaRgDK4O0Na7t16FyF9c721ai5OcYobSUyWKHSjpXQheaZ6mif3l0Quz4RjxvXi-F8_34vmP-JTEf5Jbn8z63b-Zi0PGKKV--YpRxipEvwDZEpEA
CODEN IETTE2
CitedBy_id crossref_primary_10_1115_1_4064089
crossref_primary_10_1002_rnc_5814
crossref_primary_10_3390_vehicles4040071
crossref_primary_10_1109_ACCESS_2021_3081184
crossref_primary_10_1109_TCST_2021_3082306
crossref_primary_10_1109_TTE_2020_2974588
crossref_primary_10_1109_TVT_2021_3123176
crossref_primary_10_1109_TVT_2023_3289632
crossref_primary_10_1109_TITS_2021_3112113
crossref_primary_10_1115_1_4062532
crossref_primary_10_23919_JSEE_2024_000108
crossref_primary_10_1115_1_4049544
crossref_primary_10_1109_TITS_2021_3076963
crossref_primary_10_1109_TTE_2022_3147214
crossref_primary_10_1177_0361198120941508
crossref_primary_10_1007_s11768_022_00090_2
crossref_primary_10_3390_en14217172
crossref_primary_10_1016_j_energy_2020_118496
crossref_primary_10_3390_s22030779
crossref_primary_10_4271_2021_01_0432
crossref_primary_10_1109_TITS_2021_3105964
crossref_primary_10_1109_TITS_2021_3128068
Cites_doi 10.1016/j.conengprac.2008.07.005
10.1016/j.trd.2011.05.008
10.1109/TITS.2013.2263532
10.1109/ACC.2010.5531241
10.3182/20140824-6-ZA-1003.00286
10.1109/ITSC.2014.6957956
10.1016/0191-2607(88)90036-2
10.1016/j.ifacol.2015.11.277
10.1109/CCA.2010.5611196
10.1631/jzus.A0900374
10.1115/DSCC2015-9950
10.1016/j.trd.2012.12.001
10.1109/IEVC.2012.6183284
10.23919/ACC.2018.8431050
10.1109/TITS.2014.2319812
10.1016/j.ifacol.2017.08.425
10.1016/j.apenergy.2008.12.022
10.1109/TCST.2010.2047860
10.1109/CDC.2008.4738865
10.1109/ACC.2013.6580028
10.1016/0191-2615(81)90037-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
CorporateAuthor Univ. of North Carolina, Charlotte, NC (United States)
CorporateAuthor_xml – name: Univ. of North Carolina, Charlotte, NC (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
OIOZB
OTOTI
DOI 10.1109/TCST.2019.2918472
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1558-0865
EndPage 1664
ExternalDocumentID 1557265
10_1109_TCST_2019_2918472
8737780
Genre orig-research
GrantInformation_xml – fundername: Advanced Research Projects Agency-Energy Next-Generation Energy Technologies for Connected and Automated On-Road Vehicles (NEXTCAR) Program, a part of the Maximizing Vehicle Fuel Economy through the Real-Time Collaborative, and Predictive Co-Optimization of Routing, Speed, Powertrain, and Engine Control Project
  funderid: 10.13039/100006133
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
L7M
OIOZB
OTOTI
ID FETCH-LOGICAL-c363t-2a95a432f11476eab9eb39e682050f1cd6f2decc5424bfbfc97d81f73b0d2723
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Thu May 18 22:33:05 EDT 2023
Sun Jun 29 13:34:42 EDT 2025
Tue Jul 01 02:36:01 EDT 2025
Thu Apr 24 23:03:33 EDT 2025
Wed Aug 27 02:31:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-2a95a432f11476eab9eb39e682050f1cd6f2decc5424bfbfc97d81f73b0d2723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
AR0000801
ORCID 0000-0002-9056-5771
0000-0002-5392-0906
0000-0002-7603-7702
0000000290565771
0000000276037702
0000000253920906
OpenAccessLink https://www.osti.gov/servlets/purl/1557265
PQID 2431704318
PQPubID 85425
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCST_2019_2918472
proquest_journals_2431704318
osti_scitechconnect_1557265
ieee_primary_8737780
crossref_primary_10_1109_TCST_2019_2918472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
(ref4) 2016; 81
ref11
ref10
ref19
ref18
ref24
ref23
ref25
persoons (ref16) 2009; 86
ref20
ref22
ref21
(ref1) 2016
ref8
ref7
ref9
(ref3) 2016
ref6
ref5
moran (ref17) 2011; 16
schittler (ref2) 2003
References_xml – ident: ref9
  doi: 10.1016/j.conengprac.2008.07.005
– volume: 16
  start-page: 492
  year: 2011
  ident: ref17
  article-title: Virginia tech comprehensive power-based fuel consumption model: Model development and testing
  publication-title: Transp Res D Transp Environ
  doi: 10.1016/j.trd.2011.05.008
– year: 2016
  ident: ref3
  publication-title: Inventory of U S greenhouse gas emissions and sinks 19902006
– ident: ref14
  doi: 10.1109/TITS.2013.2263532
– ident: ref12
  doi: 10.1109/ACC.2010.5531241
– volume: 81
  start-page: 73478
  year: 2016
  ident: ref4
  article-title: Greenhouse gas emissions and fuel efficiency standards for medium- and heavy-duty engines and vehicles, phase 2
  publication-title: Fed Reg
– ident: ref7
  doi: 10.3182/20140824-6-ZA-1003.00286
– start-page: 1
  year: 2003
  ident: ref2
  article-title: State-of-the-art and emerging truck engine technologies for optimized performance, emissions and life-cycle costing
  publication-title: Proc Diesel Engine Emissions Reduction Conf
– ident: ref19
  doi: 10.1109/ITSC.2014.6957956
– ident: ref5
  doi: 10.1016/0191-2607(88)90036-2
– ident: ref24
  doi: 10.1016/j.ifacol.2015.11.277
– ident: ref11
  doi: 10.1109/CCA.2010.5611196
– ident: ref21
  doi: 10.1631/jzus.A0900374
– ident: ref10
  doi: 10.1115/DSCC2015-9950
– ident: ref18
  doi: 10.1016/j.trd.2012.12.001
– ident: ref6
  doi: 10.1109/IEVC.2012.6183284
– ident: ref20
  doi: 10.23919/ACC.2018.8431050
– ident: ref8
  doi: 10.1109/TITS.2014.2319812
– ident: ref23
  doi: 10.1016/j.ifacol.2017.08.425
– volume: 86
  start-page: 1582
  year: 2009
  ident: ref16
  article-title: Minimization of the fuel consumption of a gasoline engine using dynamic optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.12.022
– ident: ref15
  doi: 10.1109/TCST.2010.2047860
– ident: ref13
  doi: 10.1109/CDC.2008.4738865
– year: 2016
  ident: ref1
  publication-title: An Analysis of the Operational Costs of Trucking 2016 Update
– ident: ref22
  doi: 10.1109/ACC.2013.6580028
– ident: ref25
  doi: 10.1016/0191-2615(81)90037-0
SSID ssj0014527
Score 2.458795
Snippet This paper provides a comparative assessment of three economic optimal control strategies, aimed at minimizing the fuel consumption of heavy-duty trucks in a...
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1652
SubjectTerms ADVANCED PROPULSION SYSTEMS
Aerodynamics
Braking
Consumption
Dynamic programming
Economics
Energy consumption
Fuel consumption
Fuel economy
Fuels
Heavy duty trucks
heavy-duty vehicles
Intersections
Mathematical model
model predictive control
Optimal control
Optimization
Predictive control
Road transportation
Traffic information
Traffic models
Vehicle dynamics
Vehicle-to-infrastructure
Velocity distribution
Title Economic Optimal Control for Minimizing Fuel Consumption of Heavy-Duty Trucks in a Highway Environment
URI https://ieeexplore.ieee.org/document/8737780
https://www.proquest.com/docview/2431704318
https://www.osti.gov/servlets/purl/1557265
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VXgoHoC2ItAX5wAk128R24viItl2tkBYOpFJvlp3Y0qo0i9ik1fbXd-wkCxSEOCWS7SjRjMfvZb4A3jPcfVJIE6eZy3wLsxTtoLOxZIlOE6ltHTz4i8_5_JJ_usquduB0mwtjrQ3BZ3bib4Mvv15Vnf9VdlYIJkSBBP0JErc-V2vrMeB9e1ZkOCzOg0syGuppnpXTr6UP4pITKpHQCPrbGRSaquBlhVvqD4McTpnZC1iM79cHl1xPutZMqvtHpRv_9wNewvMBbpKPvX7sw45tDmBvzEZeH8CzXwoSHoIbR8gXNCU3uHLah7ITxLZksWyWN8t7nElmnQ1jqMfB5pCVI3OrbzfxedduSIkac70my4Zo4iNJ7vSGXPxMqXsF5eyinM7joRNDXLGctTHVMtOcUYfsSeRWG4kcXNoc4UOWuLSqc0drVIaMU26ccZUUdZE6wUxSU0HZa9htVo19A4Sm2tQ850JLyw2iM8d0amxttSscdTyCZBSNqoYq5b5ZxjcV2EoilZem8tJUgzQj-LBd8r0v0fGvyYdeLNuJg0QiOPbyVwg7fO3cygcZVa1CsCVonkVwMqqFGrb4WlEPvXxpouLo7888hqfUk_MQkHYCu-2Pzr5FBNOad0F1HwCdg-y2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5VA48GhBpC3gAydEtontxPERLV0t0C0HgtSbZSe2tGqbRWxStP31jJ1keQpxSiTbUaIZj78v8wJ4yXD3SSFNnGYu8y3MUrSDzsaSJTpNpLZ18OAvzvP5Z_7-IrvYgdfbXBhrbQg-sxN_G3z59arq_K-yk0IwIQok6Hfw3M_SPltr6zPgfYNW5DgszoNTMhoqap6U00-lD-OSEyqR0gj6yykU2qrgZYWb6g-THM6Z2QNYjG_Yh5dcTrrWTKrb34o3_u8nPIT7A-Akb3oNeQQ7ttmHvTEfeb0P934qSXgAbhwhH9GYXOPKaR_MThDdksWyWV4vb3EmmXU2jKEmB6tDVo7Mrb7ZxG-7dkNK1JnLNVk2RBMfS_JNb8jpj6S6x1DOTsvpPB56McQVy1kbUy0zzRl1yJ9EbrWRyMKlzRFAZIlLqzp3tEZ1yDjlxhlXSVEXqRPMJDUVlD2B3WbV2KdAaKpNzXMutLTcID5zTKfG1la7wlHHI0hG0ahqqFPu22VcqcBXEqm8NJWXphqkGcGr7ZIvfZGOf00-8GLZThwkEsGRl79C4OGr51Y-zKhqFcItQfMsguNRLdSwydeKevDlixMVh39_5gvYm5eLM3X27vzDEdylnqqH8LRj2G2_dvYZ4pnWPA9q_B0aM-__
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Economic+Optimal+Control+for+Minimizing+Fuel+Consumption+of+Heavy-Duty+Trucks+in+a+Highway+Environment&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Borek%2C+John&rft.au=Groelke%2C+Ben&rft.au=Earnhardt%2C+Christian&rft.au=Vermillion%2C+Chris&rft.date=2020-09-01&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=28&rft.issue=5&rft.spage=1652&rft.epage=1664&rft_id=info:doi/10.1109%2FTCST.2019.2918472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCST_2019_2918472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon