Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems
Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality. In the current presentation, we devise a mesh-free data-based approximation method for the value function of optimal control problems, which partially mitigates...
Saved in:
Published in | Advances in computational mathematics Vol. 50; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality. In the current presentation, we devise a mesh-free data-based approximation method for the value function of optimal control problems, which partially mitigates the dimensionality problem. The method is based on a greedy Hermite kernel interpolation scheme and incorporates context knowledge by its structure. Especially, the value function surrogate is elegantly enforced to be 0 in the target state, non-negative and constructed as a correction of a linearized model. The algorithm allows formulation in a matrix-free way which ensures efficient offline and online evaluation of the surrogate, circumventing the large-matrix problem for multivariate Hermite interpolation. Additionally, an incremental Cholesky factorization is utilized in the offline generation of the surrogate. For finite time horizons, both convergence of the surrogate to the value function and for the surrogate vs. the optimal controlled dynamical system are proven. Experiments support the effectiveness of the scheme, using among others a new academic model with an explicitly given value function. It may also be useful for the community to validate other optimal control approaches. |
---|---|
AbstractList | Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality. In the current presentation, we devise a mesh-free data-based approximation method for the value function of optimal control problems, which partially mitigates the dimensionality problem. The method is based on a greedy Hermite kernel interpolation scheme and incorporates context knowledge by its structure. Especially, the value function surrogate is elegantly enforced to be 0 in the target state, non-negative and constructed as a correction of a linearized model. The algorithm allows formulation in a matrix-free way which ensures efficient offline and online evaluation of the surrogate, circumventing the large-matrix problem for multivariate Hermite interpolation. Additionally, an incremental Cholesky factorization is utilized in the offline generation of the surrogate. For finite time horizons, both convergence of the surrogate to the value function and for the surrogate vs. the optimal controlled dynamical system are proven. Experiments support the effectiveness of the scheme, using among others a new academic model with an explicitly given value function. It may also be useful for the community to validate other optimal control approaches. |
ArticleNumber | 36 |
Author | Ehring, Tobias Haasdonk, Bernard |
Author_xml | – sequence: 1 givenname: Tobias orcidid: 0009-0000-4378-1757 surname: Ehring fullname: Ehring, Tobias email: ehringts@mathematik.uni-stuttgart.de organization: Institute of Applied Analysis and Numerical Simulation, University of Stuttgart – sequence: 2 givenname: Bernard surname: Haasdonk fullname: Haasdonk, Bernard organization: Institute of Applied Analysis and Numerical Simulation, University of Stuttgart |
BookMark | eNp9kM1OAyEUhYnRRFt9AVckrtHLAMPM0jT-JU3cuCfM9NKOTqECY-LbS62JiQtXkMv5uOecGTn2wSMhlxyuOYC-SRyklAwqyTjwqmHqiJxxpSvWlofjcgfeMs3r5pTMUnoFgLbW6oysHzFuh4z0DaPHkaYpxrC2GRN1IdK8Qfphxwmpm3yfh-BpcHQzrDdsNWzRpzKxIy1uxsGjjTTs8rAtkz74HMNIdzF0I27TOTlxdkx48XPOycv93cvikS2fH54Wt0vWi1pkVul-VYOzEpVohLONaPoOoFOqc6rSrcBVZVsheC0kuhLaQi-l01UtO6GFmJOrw7dl7_uEKZvXMMViMRkBstFKtQ0UVXNQ9TGkFNGZfsh2ny5HO4yGg9m3ag6tmtKq-W7VqIJWf9BdLIHj5_-QOECpiP0a46-rf6gvxAKNSQ |
CitedBy_id | crossref_primary_10_1007_s13235_024_00610_6 crossref_primary_10_1016_j_matcom_2024_12_020 crossref_primary_10_1051_m2an_2024074 |
Cites_doi | 10.1007/978-3-319-78384-0 10.1515/9781400874668 10.2514/1.33117 10.1007/s10444-020-09744-8 10.48550/ARXIV.2302.13122 10.1007/s10444-022-09998-4 10.1002/nla.2463 10.4064/fm-22-1-77-108 10.1137/19M1288802 10.23967/coupled.2021.026 10.1017/CBO9780511617539 10.48550/ARXIV.2208.14120 10.1109/TSMC.1979.4310171 10.1016/j.apnum.2019.11.023 10.1016/j.automatica.2011.01.085 10.1007/BF01442644 10.2307/1912772 10.48550/ARXIV.2302.09878 10.1137/1.9781611973051 10.1137/19M1305136 10.1007/s10589-017-9910-0 10.2307/1910417 10.1137/18M1203900 10.3182/20080706-5-KR-1001.00635 10.1051/cocv/2021009 10.1070/RM9915 10.1137/17M1116635 10.1109/TCYB.2014.2314612 10.1007/s00365-022-09592-3 10.1007/s11006-005-0147-3 10.1137/130932284 10.1016/j.ifacol.2022.09.116 10.1016/j.anihpc.2019.01.001 10.2307/1967124 10.1109/LCSYS.2021.3086697 10.1007/s10915-023-02208-3 10.1137/21m1412190 10.1016/j.ifacol.2018.03.053 10.1007/978-3-030-91745-6 10.1007/978-0-85729-501-9 10.1007/978-3-0348-7964-4 10.1007/s10915-012-9648-x 10.1007/s10444-004-1829-1 10.1137/19M1262139 10.2307/2525753 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10444-024-10128-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_024_10128_5 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: EXC2075 - 390740016; GRK 2198 funderid: http://dx.doi.org/10.13039/501100001659 |
GroupedDBID | -52 -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-27cd60fa4e5383fa838cb00b55bf52793ed2a9331634ef104a0c44f7264b3733 |
IEDL.DBID | C6C |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 11:07:03 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 Tue Jul 01 02:55:36 EDT 2025 Fri Feb 21 02:40:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Kernel methods 93C10 Hermite interpolation 93C15 Optimal feedback control 30C40 Surrogate modeling 49N35 93B52 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-27cd60fa4e5383fa838cb00b55bf52793ed2a9331634ef104a0c44f7264b3733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0000-4378-1757 |
OpenAccessLink | https://doi.org/10.1007/s10444-024-10128-5 |
PQID | 3048755980 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_3048755980 crossref_citationtrail_10_1007_s10444_024_10128_5 crossref_primary_10_1007_s10444_024_10128_5 springer_journals_10_1007_s10444_024_10128_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationTitleAbbrev | Adv Comput Math |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | BenvenisteLMScheinkmanJAOn the differentiability of the value function in dynamic models of economicsEconometrica197947372773253308110.2307/1910417 KaliseDKunischKPolynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEsSIAM J. Sci. Comput.2018402629652376970510.1137/17M1116635 Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Annals of Mathematics, 292–296 (1919) Freeman, R.A., Kokotovic, P.V.: Optimal nonlinear controllers for feedback linearizable systems. In: Proceedings of the American Control Conference, vol. 4, pp. 2722–2726 (1995). IEEE Inc Nakamura-ZimmererTGongQKangWAdaptive deep learning for high-dimensional Hamilton-Jacobi-Bellman equationsSIAM J. Sci. Comput.202143212211247424119010.1137/19M1288802 SchmidtAHaasdonkBReduced basis approximation of large scale parametric algebraic Riccati equationsESAIM: Control Optim. Calculus Var.20182411291513764137 Kunisch, K., Vásquez-Varas, D., Walter, D.: Learning optimal feedback operators and their polynomial approximation (2022). https://doi.org/10.48550/ARXIV.2208.14120 AllaAHaasdonkBSchmidtAFeedback control of parametrized PDEs via model order reduction and dynamic programming principleAdv. Comput. Math.20204619406437210.1007/s10444-020-09744-8 BardiMCapuzzo-DolcettaIOptimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations2008Birkhäuser BostonModern Birkhäuser Classics BreitenTKunischKPfeifferLTaylor expansions of the value function associated with a bilinear optimal control problemAnnales de l’Institut Henri Poincaré C, Analyse non linéaire201936513611399398554710.1016/j.anihpc.2019.01.001 Ehring, T., Haasdonk, B.: Greedy sampling and approximation for realizing feedback control for high dimensional nonlinear systems. IFAC-PapersOnLine 55(20), 325–330 (2022). https://doi.org/10.1016/j.ifacol.2022.09.116. 10th Vienna International Conference on Mathematical Modelling MATHMOD 2022 DolgovSKaliseDKunischKTensor decomposition methods for high-dimensional Hamilton-Jacobi-Bellman equationsSIAM J. Sci. Comput.202143316251650425498310.1137/19M1305136 GargDHagerWWRaoAVPseudospectral methods for solving infinite-horizon optimal control problemsAutomatica2011474829837287834710.1016/j.automatica.2011.01.085 Eigel, M., Schneider, R., Sommer, D.: Dynamical low-rank approximations of solutions to the Hamilton–Jacobi–Bellman equation. Num. Linear Algebra Appl. 30(3) (2022). https://doi.org/10.1002/nla.2463 DmitrukAVKuz’kinaNVExistence theorem in the optimal control problem on an infinite time intervalMath. Notes2005783466480222672510.1007/s11006-005-0147-3 SaridisGNLeeCGAn approximation theory of optimal control for trainable manipulatorsIEEE Trans. Syst. Man Cybern.19799315215952113310.1109/TSMC.1979.4310171 Kunisch, K., Walter, D.: Optimal feedback control of dynamical systems via value-function approximation (2023). https://doi.org/10.48550/ARXIV.2302.13122 Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton—Jacobi equations. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). https://doi.org/10.1137/1.9781611973051 BellmanRA Markovian decision processJournal of Mathematics and Mechanics19576567968491859 Alla, A., Saluzzi, L.: A HJB-POD approach for the control of nonlinear PDEs on a tree structure. Applied Numerical Mathematics 155 (2019). https://doi.org/10.1016/j.apnum.2019.11.023 Khalil, H.: Nonlinear systems: Pearson New, vol. 3, International Pearson Education, Limited, Harlow (2013) Wenzel, T., Santin, G., Haasdonk, B.: Analysis of target data-dependent greedy kernel algorithms: convergence rates for f-,f·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document}P-and f / P-greedy. Constructive Approximation, 1–30 (2022) De MarchiSSchabackRWendlandHNear-optimal data-independent point locations for radial basis function interpolationAdv. Comput. Math.200523317330213654310.1007/s10444-004-1829-1 HeydariARevisiting approximate dynamic programming and its convergenceIEEE Trans. Cybern.201444122733274310.1109/TCYB.2014.2314612 WirtzDHaasdonkBA vectorial kernel orthogonal greedy algorithmDolomites Res. Note Approximation2013683100 RaoAVA survey of numerical methods for optimal controlAdv. Astronaut. Sci.20091351497528 Ehring, T., Haasdonk, B.: Feedback control for a coupled soft tissue system by kernel surrogates. In: Proceedings of COUPLED 2021. Scipedia (2021). https://doi.org/10.23967/coupled.2021.026 AseevSMVeliovVMAnother view of the maximum principle for infinite-horizon optimal control problems in economicsRuss. Math. Surv.2019746963403676910.1070/RM9915 AllaAFalconeMSaluzziLAn efficient DP algorithm on a tree-structure for finite horizon optimal control problemsSIAM J. Sci. Comput.201941423842406398431110.1137/18M1203900 Gilding, B.H., Kersner, R.: Travelling waves in nonlinear diffusion-convection reaction vol. 60. Springer (2004) Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Interscience (1962) Seierstad, A., Sydsaeter, K.: Sufficient conditions in optimal control theory. International Economic Review 18(2), 367. https://doi.org/10.2307/2525753 AzmiBKaliseDKunischKOptimal feedback law recovery by gradient-augmented sparse polynomial regressionJ. Mach. Learn. Res.202122481324253741 Michel, P.: On the transversality condition in infinite horizon optimal problems. Econometrica: Journal of the Econometric Society, 975–985 (1982) Kamalapurkar, R., Walters, P., Rosenfeld, J., Dixon, W.: Reinforcement learning for optimal feedback control: a Lyapunov-based approach (communications and control engineering). Springer (2018). 3319783831 Schmidt, A., Haasdonk, B.: Data-driven surrogates of value functions and applications to feedback control for dynamical systems. IFAC-PapersOnLine 51(2), 307–312 (2018). 9th Vienna International Conference on Mathematical Modelling KirszbraunMÜber die zusammenziehende und Lipschitzsche TransformationenFundam. Math.19342217710810.4064/fm-22-1-77-108 Sethi, S.P.: Optimal control theory: applications to management science and economics. Springer (2021). https://doi.org/10.1007/978-3-030-91745-6 Kunisch, K., Walter, D.: Semiglobal optimal feedback stabilization of autonomous systems via deep neural network approximation. ESAIM: Control Optim. Calculus Var. 27, 16. https://doi.org/10.1051/cocv/2021009 Çimen, T.: State-dependent Riccati equation (SDRE) control: a survey. IFAC Proc. Vol. 41(2), 3761–3775 (2008). https://doi.org/10.3182/20080706-5-KR-1001.00635. 17th IFAC World Congress AlbiGBicegoSKaliseDGradient-augmented supervised learning of optimal feedback laws using state-dependent Riccati equationsIEEE Control Syst. Lett.20226836841446972110.1109/LCSYS.2021.3086697 KaliseDKunduSKunischKRobust feedback control of nonlinear PDEs by numerical approximation of high-dimensional Hamilton-Jacobi-Isaacs equationsSIAM J. Appl. Dyn. Syst.202019214961524410900810.1137/19M1262139 GrüneLPannekJNonlinear model predictive control: theory and algorithms2011Communications and Control EngineeringSpringer10.1007/978-0-85729-501-9 AllaAKaliseDSimonciniVState-dependent Riccati equation feedback stabilization for nonlinear PDEsAdv. Comput. Math.20234919454736010.1007/s10444-022-09998-4 Bellman, R.E.: Adaptive control processes: a guided tour. Princeton University Press (1961) FalconeMA numerical approach to the infinite horizon problem of deterministic control theoryAppl. Math. Optim.198715111386616410.1007/BF01442644 AllaAFalconeMSaluzziLA tree structure algorithm for optimal control problems with state constraintsRendiconti di Matematica e delle sue Applicazioni202051932214194615 AllaAFalconeMKaliseDAn efficient policy iteration algorithm for dynamic programming equationsSIAM J. Sci. Comput.2015371181200330131110.1137/130932284 FahrooFRossIMPseudospectral methods for infinite-horizon nonlinear optimal control problemsJ. Guid. Control. Dyn.200831492793610.2514/1.33117 Wendland, H.: Scattered data approximation vol. 17. Cambridge university press (2004) Alla, A., Oliveira, H., Santin, G.: HJB-RBF based approach for the control of PDEs. J. Sci. Comput. 96(1) (2023). https://doi.org/10.1007/s10915-023-02208-3 Kunisch, K., Vásquez-Varas, D.: Optimal polynomial feedback laws for finite horizon control problems (2023). https://doi.org/10.48550/ARXIV.2302.09878 KangWWilcoxLCMitigating the curse of dimensionality: sparse grid characteristics method for optimal feedback control and HJB equationsComput. Optim. Appl.2017682289315369477010.1007/s10589-017-9910-0 Bellman, R.E.: A dynamic programming. Princeton University Press (1957) BokanowskiOGarckeJGriebelMKlompmakerIAn adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equationsJ. Sci. Comput.2013553575605304570410.1007/s10915-012-9648-x OsterMSallandtLSchneiderRApproximating optimal feedback controllers of finite horizon control problems using hierarchical tensor formatsSIAM J. Sci. Comput.2022443746770444244510.1137/21m1412190 Sontag, E.D.: Mathematical control theory: deterministic finite dimensional systems vol. 6. Springer (2013) B Azmi (10128_CR36) 2021; 22 10128_CR46 10128_CR47 10128_CR42 D Kalise (10128_CR15) 2018; 40 10128_CR40 A Alla (10128_CR57) 2023; 49 T Nakamura-Zimmerer (10128_CR35) 2021; 43 A Alla (10128_CR22) 2015; 37 LM Benveniste (10128_CR44) 1979; 47 W Kang (10128_CR37) 2017; 68 10128_CR13 10128_CR14 10128_CR11 10128_CR55 10128_CR56 D Garg (10128_CR49) 2011; 47 S De Marchi (10128_CR50) 2005; 23 GN Saridis (10128_CR21) 1979; 9 10128_CR54 10128_CR51 10128_CR52 AV Dmitruk (10128_CR2) 2005; 78 O Bokanowski (10128_CR5) 2013; 55 A Schmidt (10128_CR25) 2018; 24 10128_CR29 10128_CR27 10128_CR24 10128_CR20 A Alla (10128_CR6) 2019; 41 M Bardi (10128_CR43) 2008 10128_CR8 S Dolgov (10128_CR17) 2021; 43 T Breiten (10128_CR26) 2019; 36 A Alla (10128_CR18) 2020; 46 M Oster (10128_CR19) 2022; 44 G Albi (10128_CR28) 2022; 6 SM Aseev (10128_CR45) 2019; 74 L Grüne (10128_CR23) 2011 R Bellman (10128_CR9) 1957; 6 10128_CR39 10128_CR38 10128_CR4 M Kirszbraun (10128_CR53) 1934; 22 10128_CR34 10128_CR31 10128_CR3 10128_CR32 A Heydari (10128_CR12) 2014; 44 10128_CR1 10128_CR30 A Alla (10128_CR7) 2020; 5 D Kalise (10128_CR16) 2020; 19 AV Rao (10128_CR33) 2009; 135 M Falcone (10128_CR10) 1987; 15 D Wirtz (10128_CR41) 2013; 6 F Fahroo (10128_CR48) 2008; 31 |
References_xml | – reference: Ehring, T., Haasdonk, B.: Feedback control for a coupled soft tissue system by kernel surrogates. In: Proceedings of COUPLED 2021. Scipedia (2021). https://doi.org/10.23967/coupled.2021.026 – reference: Çimen, T.: State-dependent Riccati equation (SDRE) control: a survey. IFAC Proc. Vol. 41(2), 3761–3775 (2008). https://doi.org/10.3182/20080706-5-KR-1001.00635. 17th IFAC World Congress – reference: Bellman, R.E.: A dynamic programming. Princeton University Press (1957) – reference: KirszbraunMÜber die zusammenziehende und Lipschitzsche TransformationenFundam. Math.19342217710810.4064/fm-22-1-77-108 – reference: Khalil, H.: Nonlinear systems: Pearson New, vol. 3, International Pearson Education, Limited, Harlow (2013) – reference: Seierstad, A., Sydsaeter, K.: Sufficient conditions in optimal control theory. International Economic Review 18(2), 367. https://doi.org/10.2307/2525753 – reference: AllaAFalconeMSaluzziLAn efficient DP algorithm on a tree-structure for finite horizon optimal control problemsSIAM J. Sci. Comput.201941423842406398431110.1137/18M1203900 – reference: SchmidtAHaasdonkBReduced basis approximation of large scale parametric algebraic Riccati equationsESAIM: Control Optim. Calculus Var.20182411291513764137 – reference: FahrooFRossIMPseudospectral methods for infinite-horizon nonlinear optimal control problemsJ. Guid. Control. Dyn.200831492793610.2514/1.33117 – reference: BokanowskiOGarckeJGriebelMKlompmakerIAn adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equationsJ. Sci. Comput.2013553575605304570410.1007/s10915-012-9648-x – reference: KangWWilcoxLCMitigating the curse of dimensionality: sparse grid characteristics method for optimal feedback control and HJB equationsComput. Optim. Appl.2017682289315369477010.1007/s10589-017-9910-0 – reference: Alla, A., Oliveira, H., Santin, G.: HJB-RBF based approach for the control of PDEs. J. Sci. Comput. 96(1) (2023). https://doi.org/10.1007/s10915-023-02208-3 – reference: SaridisGNLeeCGAn approximation theory of optimal control for trainable manipulatorsIEEE Trans. Syst. Man Cybern.19799315215952113310.1109/TSMC.1979.4310171 – reference: Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Interscience (1962) – reference: BellmanRA Markovian decision processJournal of Mathematics and Mechanics19576567968491859 – reference: KaliseDKunduSKunischKRobust feedback control of nonlinear PDEs by numerical approximation of high-dimensional Hamilton-Jacobi-Isaacs equationsSIAM J. Appl. Dyn. Syst.202019214961524410900810.1137/19M1262139 – reference: Kamalapurkar, R., Walters, P., Rosenfeld, J., Dixon, W.: Reinforcement learning for optimal feedback control: a Lyapunov-based approach (communications and control engineering). Springer (2018). 3319783831 – reference: AllaAKaliseDSimonciniVState-dependent Riccati equation feedback stabilization for nonlinear PDEsAdv. Comput. Math.20234919454736010.1007/s10444-022-09998-4 – reference: Gilding, B.H., Kersner, R.: Travelling waves in nonlinear diffusion-convection reaction vol. 60. Springer (2004) – reference: AllaAHaasdonkBSchmidtAFeedback control of parametrized PDEs via model order reduction and dynamic programming principleAdv. Comput. Math.20204619406437210.1007/s10444-020-09744-8 – reference: KaliseDKunischKPolynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEsSIAM J. Sci. Comput.2018402629652376970510.1137/17M1116635 – reference: Sethi, S.P.: Optimal control theory: applications to management science and economics. Springer (2021). https://doi.org/10.1007/978-3-030-91745-6 – reference: BreitenTKunischKPfeifferLTaylor expansions of the value function associated with a bilinear optimal control problemAnnales de l’Institut Henri Poincaré C, Analyse non linéaire201936513611399398554710.1016/j.anihpc.2019.01.001 – reference: DolgovSKaliseDKunischKTensor decomposition methods for high-dimensional Hamilton-Jacobi-Bellman equationsSIAM J. Sci. Comput.202143316251650425498310.1137/19M1305136 – reference: Kunisch, K., Vásquez-Varas, D., Walter, D.: Learning optimal feedback operators and their polynomial approximation (2022). https://doi.org/10.48550/ARXIV.2208.14120 – reference: Kunisch, K., Walter, D.: Semiglobal optimal feedback stabilization of autonomous systems via deep neural network approximation. ESAIM: Control Optim. Calculus Var. 27, 16. https://doi.org/10.1051/cocv/2021009 – reference: Wenzel, T., Santin, G., Haasdonk, B.: Analysis of target data-dependent greedy kernel algorithms: convergence rates for f-,f·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document}P-and f / P-greedy. Constructive Approximation, 1–30 (2022) – reference: AseevSMVeliovVMAnother view of the maximum principle for infinite-horizon optimal control problems in economicsRuss. Math. Surv.2019746963403676910.1070/RM9915 – reference: BenvenisteLMScheinkmanJAOn the differentiability of the value function in dynamic models of economicsEconometrica197947372773253308110.2307/1910417 – reference: FalconeMA numerical approach to the infinite horizon problem of deterministic control theoryAppl. Math. Optim.198715111386616410.1007/BF01442644 – reference: AzmiBKaliseDKunischKOptimal feedback law recovery by gradient-augmented sparse polynomial regressionJ. Mach. Learn. Res.202122481324253741 – reference: Kunisch, K., Vásquez-Varas, D.: Optimal polynomial feedback laws for finite horizon control problems (2023). https://doi.org/10.48550/ARXIV.2302.09878 – reference: GargDHagerWWRaoAVPseudospectral methods for solving infinite-horizon optimal control problemsAutomatica2011474829837287834710.1016/j.automatica.2011.01.085 – reference: GrüneLPannekJNonlinear model predictive control: theory and algorithms2011Communications and Control EngineeringSpringer10.1007/978-0-85729-501-9 – reference: AllaAFalconeMSaluzziLA tree structure algorithm for optimal control problems with state constraintsRendiconti di Matematica e delle sue Applicazioni202051932214194615 – reference: Freeman, R.A., Kokotovic, P.V.: Optimal nonlinear controllers for feedback linearizable systems. In: Proceedings of the American Control Conference, vol. 4, pp. 2722–2726 (1995). IEEE Inc – reference: Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton—Jacobi equations. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). https://doi.org/10.1137/1.9781611973051 – reference: DmitrukAVKuz’kinaNVExistence theorem in the optimal control problem on an infinite time intervalMath. Notes2005783466480222672510.1007/s11006-005-0147-3 – reference: AlbiGBicegoSKaliseDGradient-augmented supervised learning of optimal feedback laws using state-dependent Riccati equationsIEEE Control Syst. Lett.20226836841446972110.1109/LCSYS.2021.3086697 – reference: BardiMCapuzzo-DolcettaIOptimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations2008Birkhäuser BostonModern Birkhäuser Classics – reference: Schmidt, A., Haasdonk, B.: Data-driven surrogates of value functions and applications to feedback control for dynamical systems. IFAC-PapersOnLine 51(2), 307–312 (2018). 9th Vienna International Conference on Mathematical Modelling – reference: Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Annals of Mathematics, 292–296 (1919) – reference: OsterMSallandtLSchneiderRApproximating optimal feedback controllers of finite horizon control problems using hierarchical tensor formatsSIAM J. Sci. Comput.2022443746770444244510.1137/21m1412190 – reference: WirtzDHaasdonkBA vectorial kernel orthogonal greedy algorithmDolomites Res. Note Approximation2013683100 – reference: Wendland, H.: Scattered data approximation vol. 17. Cambridge university press (2004) – reference: Sontag, E.D.: Mathematical control theory: deterministic finite dimensional systems vol. 6. Springer (2013) – reference: Nakamura-ZimmererTGongQKangWAdaptive deep learning for high-dimensional Hamilton-Jacobi-Bellman equationsSIAM J. Sci. Comput.202143212211247424119010.1137/19M1288802 – reference: Michel, P.: On the transversality condition in infinite horizon optimal problems. Econometrica: Journal of the Econometric Society, 975–985 (1982) – reference: Kunisch, K., Walter, D.: Optimal feedback control of dynamical systems via value-function approximation (2023). https://doi.org/10.48550/ARXIV.2302.13122 – reference: Alla, A., Saluzzi, L.: A HJB-POD approach for the control of nonlinear PDEs on a tree structure. Applied Numerical Mathematics 155 (2019). https://doi.org/10.1016/j.apnum.2019.11.023 – reference: Eigel, M., Schneider, R., Sommer, D.: Dynamical low-rank approximations of solutions to the Hamilton–Jacobi–Bellman equation. Num. Linear Algebra Appl. 30(3) (2022). https://doi.org/10.1002/nla.2463 – reference: AllaAFalconeMKaliseDAn efficient policy iteration algorithm for dynamic programming equationsSIAM J. Sci. Comput.2015371181200330131110.1137/130932284 – reference: Bellman, R.E.: Adaptive control processes: a guided tour. Princeton University Press (1961) – reference: HeydariARevisiting approximate dynamic programming and its convergenceIEEE Trans. Cybern.201444122733274310.1109/TCYB.2014.2314612 – reference: Ehring, T., Haasdonk, B.: Greedy sampling and approximation for realizing feedback control for high dimensional nonlinear systems. IFAC-PapersOnLine 55(20), 325–330 (2022). https://doi.org/10.1016/j.ifacol.2022.09.116. 10th Vienna International Conference on Mathematical Modelling MATHMOD 2022 – reference: RaoAVA survey of numerical methods for optimal controlAdv. Astronaut. Sci.20091351497528 – reference: De MarchiSSchabackRWendlandHNear-optimal data-independent point locations for radial basis function interpolationAdv. Comput. Math.200523317330213654310.1007/s10444-004-1829-1 – ident: 10128_CR13 doi: 10.1007/978-3-319-78384-0 – ident: 10128_CR3 doi: 10.1515/9781400874668 – ident: 10128_CR52 – volume: 31 start-page: 927 issue: 4 year: 2008 ident: 10128_CR48 publication-title: J. Guid. Control. Dyn. doi: 10.2514/1.33117 – volume: 46 start-page: 9 issue: 1 year: 2020 ident: 10128_CR18 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-020-09744-8 – ident: 10128_CR29 doi: 10.48550/ARXIV.2302.13122 – volume: 49 start-page: 9 issue: 1 year: 2023 ident: 10128_CR57 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-022-09998-4 – volume: 22 start-page: 1 issue: 48 year: 2021 ident: 10128_CR36 publication-title: J. Mach. Learn. Res. – volume-title: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations year: 2008 ident: 10128_CR43 – volume: 135 start-page: 497 issue: 1 year: 2009 ident: 10128_CR33 publication-title: Adv. Astronaut. Sci. – ident: 10128_CR20 doi: 10.1002/nla.2463 – volume: 22 start-page: 77 issue: 1 year: 1934 ident: 10128_CR53 publication-title: Fundam. Math. doi: 10.4064/fm-22-1-77-108 – volume: 43 start-page: 1221 issue: 2 year: 2021 ident: 10128_CR35 publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1288802 – ident: 10128_CR39 doi: 10.23967/coupled.2021.026 – ident: 10128_CR51 doi: 10.1017/CBO9780511617539 – ident: 10128_CR32 doi: 10.48550/ARXIV.2208.14120 – volume: 9 start-page: 152 issue: 3 year: 1979 ident: 10128_CR21 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310171 – volume: 6 start-page: 83 year: 2013 ident: 10128_CR41 publication-title: Dolomites Res. Note Approximation – ident: 10128_CR8 doi: 10.1016/j.apnum.2019.11.023 – ident: 10128_CR34 – volume: 5 start-page: 193 year: 2020 ident: 10128_CR7 publication-title: Rendiconti di Matematica e delle sue Applicazioni – ident: 10128_CR55 – volume: 47 start-page: 829 issue: 4 year: 2011 ident: 10128_CR49 publication-title: Automatica doi: 10.1016/j.automatica.2011.01.085 – ident: 10128_CR14 – volume: 15 start-page: 1 issue: 1 year: 1987 ident: 10128_CR10 publication-title: Appl. Math. Optim. doi: 10.1007/BF01442644 – ident: 10128_CR46 doi: 10.2307/1912772 – ident: 10128_CR24 – ident: 10128_CR31 doi: 10.48550/ARXIV.2302.09878 – ident: 10128_CR4 doi: 10.1137/1.9781611973051 – volume: 43 start-page: 1625 issue: 3 year: 2021 ident: 10128_CR17 publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1305136 – volume: 68 start-page: 289 issue: 2 year: 2017 ident: 10128_CR37 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-017-9910-0 – volume: 47 start-page: 727 issue: 3 year: 1979 ident: 10128_CR44 publication-title: Econometrica doi: 10.2307/1910417 – volume: 41 start-page: 2384 issue: 4 year: 2019 ident: 10128_CR6 publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1203900 – ident: 10128_CR27 doi: 10.3182/20080706-5-KR-1001.00635 – ident: 10128_CR30 doi: 10.1051/cocv/2021009 – volume: 74 start-page: 963 issue: 6 year: 2019 ident: 10128_CR45 publication-title: Russ. Math. Surv. doi: 10.1070/RM9915 – volume: 40 start-page: 629 issue: 2 year: 2018 ident: 10128_CR15 publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1116635 – volume: 44 start-page: 2733 issue: 12 year: 2014 ident: 10128_CR12 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2314612 – ident: 10128_CR42 doi: 10.1007/s00365-022-09592-3 – volume: 78 start-page: 466 issue: 3 year: 2005 ident: 10128_CR2 publication-title: Math. Notes doi: 10.1007/s11006-005-0147-3 – volume: 37 start-page: 181 issue: 1 year: 2015 ident: 10128_CR22 publication-title: SIAM J. Sci. Comput. doi: 10.1137/130932284 – ident: 10128_CR40 doi: 10.1016/j.ifacol.2022.09.116 – volume: 36 start-page: 1361 issue: 5 year: 2019 ident: 10128_CR26 publication-title: Annales de l’Institut Henri Poincaré C, Analyse non linéaire doi: 10.1016/j.anihpc.2019.01.001 – volume: 6 start-page: 679 issue: 5 year: 1957 ident: 10128_CR9 publication-title: Journal of Mathematics and Mechanics – ident: 10128_CR54 doi: 10.2307/1967124 – volume: 6 start-page: 836 year: 2022 ident: 10128_CR28 publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2021.3086697 – ident: 10128_CR11 doi: 10.1007/s10915-023-02208-3 – volume: 44 start-page: 746 issue: 3 year: 2022 ident: 10128_CR19 publication-title: SIAM J. Sci. Comput. doi: 10.1137/21m1412190 – ident: 10128_CR38 doi: 10.1016/j.ifacol.2018.03.053 – ident: 10128_CR1 doi: 10.1007/978-3-030-91745-6 – volume-title: Nonlinear model predictive control: theory and algorithms year: 2011 ident: 10128_CR23 doi: 10.1007/978-0-85729-501-9 – volume: 24 start-page: 129 issue: 1 year: 2018 ident: 10128_CR25 publication-title: ESAIM: Control Optim. Calculus Var. – ident: 10128_CR56 doi: 10.1007/978-3-0348-7964-4 – volume: 55 start-page: 575 issue: 3 year: 2013 ident: 10128_CR5 publication-title: J. Sci. Comput. doi: 10.1007/s10915-012-9648-x – volume: 23 start-page: 317 year: 2005 ident: 10128_CR50 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-004-1829-1 – volume: 19 start-page: 1496 issue: 2 year: 2020 ident: 10128_CR16 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/19M1262139 – ident: 10128_CR47 doi: 10.2307/2525753 |
SSID | ssj0009675 |
Score | 2.3842483 |
Snippet | Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality. In the current... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Cholesky factorization Computational Mathematics and Numerical Analysis Computational Science and Engineering Feedback control Finite element method Interpolation Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics MORe 2022 Nonlinear control Numerical methods Optimal control Visualization |
Title | Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems |
URI | https://link.springer.com/article/10.1007/s10444-024-10128-5 https://www.proquest.com/docview/3048755980 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOjBD9SIIunBmzYZa7t1R0JQosETJHhatq71IILZxv_v61YgEjXx0izdW5f09fX9-vF-D-A2ZSkCbyOptAVXUuFTllE_0qmUKlGiChQevwSjKX-aiZmjybGxMDvn9zbEjXNO0ZNQy0QlqdiHpuix0KZpGASDLcFuUJHqolBEcQ0gXYDMz218d0JbZLlzGFr5mIcTOHLgkPRrbZ7Cnl604NgBReLMsGjB4XhDtlqcwdvIXmgpNXnX-ULPSbHK86XdHSsIIlKCksRSemtifZjVA1kaYmmKaWap_WtaDrKoOTOSnCxxFvnAGneLnbicM8U5TB6Gk8GIuvwJVLGAldQPVRZ4JuEaZzVmEsmkQitLhUiN8NEwdeYnEWMIybg22EmJpzg3IWKklIWMXUAD_60vgWQ-V74XIlrxNOeZkKkJexm6dh1ihdFt6K37M1aOW9ymuJjHW1Zkq4MYdRBXOohFG-4233zWzBp_SnfWaoqdlRUx8-xyS0TSa8P9WnXb17-3dvU_8Ws48O3oqTZfOtAo85W-QSxSpl1o9h9fn4fdajBiOfX7X7Ww1ps |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1hKYztxxwpRBWg7tVK3KHFsBqBFSfv_OSdOCwiQWKLIuSSSn8_3_HHPANcpS5F4G0mlvXAlFd5lGfW7OpVSJUqUicLDURBN-ONUTF1SWFHvdq-XJMue-lOyG-ecYkyhVpNKUrEJW0gGpG3LE7-3ltoNSnldNOpSHA1Ilyrz8ze-hqM1x_y2LFpGm_4B7DmaSHoVroewoWdN2HeUkTiHLJqwO1zJrhZH8BzZrS0LTV50PtOvpFjm-dzOkxUEuSlBS2LFvTWx0cwiQuaGWMFimlmR_0qgg8wq9YwkJ3PsT96wxO1nJ-70meIYxv378V1E3UkKVLGALagfqizwTMI19m_MJJJJhf6WCpEa4aOL6sxPuowhOePaYCUlnuLchMiWUhYydgIN_Lc-BZL5XPleiLzF05xnQqYm7GQY5HWIBUa3oFPXZ6ycyrg97OI1XusjWwxixCAuMYhFC25W77xXGht_WrdrmGLnb0XMPDvwEl3pteC2hm79-Pevnf3P_Aq2o_FwEA8eRk_nsOPbllROybShsciX-gIZyiK9LBvkBy1j2zU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqI8vTABhZpbCfuiApVeRQxFIktSvxgAFqUpP-fc-LSggCJJYqciy35fL7vbN9ngJOMZQi8raTSPbiSCt-0pmHHZFKqVIkqUXhwH_Uf-c2TeJrL4q9Ou0-3JOucBsfSNCrP37U9n0t845xT9C_U8VNJKhZhCSOVtgu_ulF3RrsbVVS7KNShGBlInzbzcx1fXdMMb37bIq08T28D1jxkJBe1jjdhwYyasO7hI_HGWTRhdfBJwVpswXPfHXMpDXkx-ci8kmKS52O3ZlYQxKkEJYkj-jbEeTanHTK2xJEXU-0I_2uyDjKqmTTSnIxxbnnDEn-2nfibaIptGPauht0-9bcqUMUiVtIwVjoKbMoNznXMppJJhbaXCZFZEaK5Gh2mHcYQqHFjsZPSQHFuY0ROGYsZ24EGtm12geiQqzCIEcMEhnMtZGbjtkaHb2IssKYF7Wl_JsozjruLL16TGVey00GCOkgqHSSiBaef_7zXfBt_Sh9M1ZR42ysSFrggTHRk0IKzqepmn3-vbe9_4sew_HDZS-6u72_3YSV0A6lanTmARplPzCGClTI7qsbjB-Qz31s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hermite+kernel+surrogates+for+the+value+function+of+high-dimensional+nonlinear+optimal+control+problems&rft.jtitle=Advances+in+computational+mathematics&rft.au=Ehring+Tobias&rft.au=Haasdonk%2C+Bernard&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=3&rft_id=info:doi/10.1007%2Fs10444-024-10128-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |