Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems

Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality. In the current presentation, we devise a mesh-free data-based approximation method for the value function of optimal control problems, which partially mitigates...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 50; no. 3
Main Authors Ehring, Tobias, Haasdonk, Bernard
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality. In the current presentation, we devise a mesh-free data-based approximation method for the value function of optimal control problems, which partially mitigates the dimensionality problem. The method is based on a greedy Hermite kernel interpolation scheme and incorporates context knowledge by its structure. Especially, the value function surrogate is elegantly enforced to be 0 in the target state, non-negative and constructed as a correction of a linearized model. The algorithm allows formulation in a matrix-free way which ensures efficient offline and online evaluation of the surrogate, circumventing the large-matrix problem for multivariate Hermite interpolation. Additionally, an incremental Cholesky factorization is utilized in the offline generation of the surrogate. For finite time horizons, both convergence of the surrogate to the value function and for the surrogate vs. the optimal controlled dynamical system are proven. Experiments support the effectiveness of the scheme, using among others a new academic model with an explicitly given value function. It may also be useful for the community to validate other optimal control approaches.
AbstractList Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality. In the current presentation, we devise a mesh-free data-based approximation method for the value function of optimal control problems, which partially mitigates the dimensionality problem. The method is based on a greedy Hermite kernel interpolation scheme and incorporates context knowledge by its structure. Especially, the value function surrogate is elegantly enforced to be 0 in the target state, non-negative and constructed as a correction of a linearized model. The algorithm allows formulation in a matrix-free way which ensures efficient offline and online evaluation of the surrogate, circumventing the large-matrix problem for multivariate Hermite interpolation. Additionally, an incremental Cholesky factorization is utilized in the offline generation of the surrogate. For finite time horizons, both convergence of the surrogate to the value function and for the surrogate vs. the optimal controlled dynamical system are proven. Experiments support the effectiveness of the scheme, using among others a new academic model with an explicitly given value function. It may also be useful for the community to validate other optimal control approaches.
ArticleNumber 36
Author Ehring, Tobias
Haasdonk, Bernard
Author_xml – sequence: 1
  givenname: Tobias
  orcidid: 0009-0000-4378-1757
  surname: Ehring
  fullname: Ehring, Tobias
  email: ehringts@mathematik.uni-stuttgart.de
  organization: Institute of Applied Analysis and Numerical Simulation, University of Stuttgart
– sequence: 2
  givenname: Bernard
  surname: Haasdonk
  fullname: Haasdonk, Bernard
  organization: Institute of Applied Analysis and Numerical Simulation, University of Stuttgart
BookMark eNp9kM1OAyEUhYnRRFt9AVckrtHLAMPM0jT-JU3cuCfM9NKOTqECY-LbS62JiQtXkMv5uOecGTn2wSMhlxyuOYC-SRyklAwqyTjwqmHqiJxxpSvWlofjcgfeMs3r5pTMUnoFgLbW6oysHzFuh4z0DaPHkaYpxrC2GRN1IdK8Qfphxwmpm3yfh-BpcHQzrDdsNWzRpzKxIy1uxsGjjTTs8rAtkz74HMNIdzF0I27TOTlxdkx48XPOycv93cvikS2fH54Wt0vWi1pkVul-VYOzEpVohLONaPoOoFOqc6rSrcBVZVsheC0kuhLaQi-l01UtO6GFmJOrw7dl7_uEKZvXMMViMRkBstFKtQ0UVXNQ9TGkFNGZfsh2ny5HO4yGg9m3ag6tmtKq-W7VqIJWf9BdLIHj5_-QOECpiP0a46-rf6gvxAKNSQ
CitedBy_id crossref_primary_10_1007_s13235_024_00610_6
crossref_primary_10_1016_j_matcom_2024_12_020
crossref_primary_10_1051_m2an_2024074
Cites_doi 10.1007/978-3-319-78384-0
10.1515/9781400874668
10.2514/1.33117
10.1007/s10444-020-09744-8
10.48550/ARXIV.2302.13122
10.1007/s10444-022-09998-4
10.1002/nla.2463
10.4064/fm-22-1-77-108
10.1137/19M1288802
10.23967/coupled.2021.026
10.1017/CBO9780511617539
10.48550/ARXIV.2208.14120
10.1109/TSMC.1979.4310171
10.1016/j.apnum.2019.11.023
10.1016/j.automatica.2011.01.085
10.1007/BF01442644
10.2307/1912772
10.48550/ARXIV.2302.09878
10.1137/1.9781611973051
10.1137/19M1305136
10.1007/s10589-017-9910-0
10.2307/1910417
10.1137/18M1203900
10.3182/20080706-5-KR-1001.00635
10.1051/cocv/2021009
10.1070/RM9915
10.1137/17M1116635
10.1109/TCYB.2014.2314612
10.1007/s00365-022-09592-3
10.1007/s11006-005-0147-3
10.1137/130932284
10.1016/j.ifacol.2022.09.116
10.1016/j.anihpc.2019.01.001
10.2307/1967124
10.1109/LCSYS.2021.3086697
10.1007/s10915-023-02208-3
10.1137/21m1412190
10.1016/j.ifacol.2018.03.053
10.1007/978-3-030-91745-6
10.1007/978-0-85729-501-9
10.1007/978-3-0348-7964-4
10.1007/s10915-012-9648-x
10.1007/s10444-004-1829-1
10.1137/19M1262139
10.2307/2525753
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10444-024-10128-5
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_024_10128_5
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: EXC2075 - 390740016; GRK 2198
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-27cd60fa4e5383fa838cb00b55bf52793ed2a9331634ef104a0c44f7264b3733
IEDL.DBID C6C
ISSN 1019-7168
IngestDate Fri Jul 25 11:07:03 EDT 2025
Thu Apr 24 22:53:12 EDT 2025
Tue Jul 01 02:55:36 EDT 2025
Fri Feb 21 02:40:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Kernel methods
93C10
Hermite interpolation
93C15
Optimal feedback control
30C40
Surrogate modeling
49N35
93B52
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-27cd60fa4e5383fa838cb00b55bf52793ed2a9331634ef104a0c44f7264b3733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-4378-1757
OpenAccessLink https://doi.org/10.1007/s10444-024-10128-5
PQID 3048755980
PQPubID 2043875
ParticipantIDs proquest_journals_3048755980
crossref_citationtrail_10_1007_s10444_024_10128_5
crossref_primary_10_1007_s10444_024_10128_5
springer_journals_10_1007_s10444_024_10128_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BenvenisteLMScheinkmanJAOn the differentiability of the value function in dynamic models of economicsEconometrica197947372773253308110.2307/1910417
KaliseDKunischKPolynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEsSIAM J. Sci. Comput.2018402629652376970510.1137/17M1116635
Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Annals of Mathematics, 292–296 (1919)
Freeman, R.A., Kokotovic, P.V.: Optimal nonlinear controllers for feedback linearizable systems. In: Proceedings of the American Control Conference, vol. 4, pp. 2722–2726 (1995). IEEE Inc
Nakamura-ZimmererTGongQKangWAdaptive deep learning for high-dimensional Hamilton-Jacobi-Bellman equationsSIAM J. Sci. Comput.202143212211247424119010.1137/19M1288802
SchmidtAHaasdonkBReduced basis approximation of large scale parametric algebraic Riccati equationsESAIM: Control Optim. Calculus Var.20182411291513764137
Kunisch, K., Vásquez-Varas, D., Walter, D.: Learning optimal feedback operators and their polynomial approximation (2022). https://doi.org/10.48550/ARXIV.2208.14120
AllaAHaasdonkBSchmidtAFeedback control of parametrized PDEs via model order reduction and dynamic programming principleAdv. Comput. Math.20204619406437210.1007/s10444-020-09744-8
BardiMCapuzzo-DolcettaIOptimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations2008Birkhäuser BostonModern Birkhäuser Classics
BreitenTKunischKPfeifferLTaylor expansions of the value function associated with a bilinear optimal control problemAnnales de l’Institut Henri Poincaré C, Analyse non linéaire201936513611399398554710.1016/j.anihpc.2019.01.001
Ehring, T., Haasdonk, B.: Greedy sampling and approximation for realizing feedback control for high dimensional nonlinear systems. IFAC-PapersOnLine 55(20), 325–330 (2022). https://doi.org/10.1016/j.ifacol.2022.09.116. 10th Vienna International Conference on Mathematical Modelling MATHMOD 2022
DolgovSKaliseDKunischKTensor decomposition methods for high-dimensional Hamilton-Jacobi-Bellman equationsSIAM J. Sci. Comput.202143316251650425498310.1137/19M1305136
GargDHagerWWRaoAVPseudospectral methods for solving infinite-horizon optimal control problemsAutomatica2011474829837287834710.1016/j.automatica.2011.01.085
Eigel, M., Schneider, R., Sommer, D.: Dynamical low-rank approximations of solutions to the Hamilton–Jacobi–Bellman equation. Num. Linear Algebra Appl. 30(3) (2022). https://doi.org/10.1002/nla.2463
DmitrukAVKuz’kinaNVExistence theorem in the optimal control problem on an infinite time intervalMath. Notes2005783466480222672510.1007/s11006-005-0147-3
SaridisGNLeeCGAn approximation theory of optimal control for trainable manipulatorsIEEE Trans. Syst. Man Cybern.19799315215952113310.1109/TSMC.1979.4310171
Kunisch, K., Walter, D.: Optimal feedback control of dynamical systems via value-function approximation (2023). https://doi.org/10.48550/ARXIV.2302.13122
Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton—Jacobi equations. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). https://doi.org/10.1137/1.9781611973051
BellmanRA Markovian decision processJournal of Mathematics and Mechanics19576567968491859
Alla, A., Saluzzi, L.: A HJB-POD approach for the control of nonlinear PDEs on a tree structure. Applied Numerical Mathematics 155 (2019). https://doi.org/10.1016/j.apnum.2019.11.023
Khalil, H.: Nonlinear systems: Pearson New, vol. 3, International Pearson Education, Limited, Harlow (2013)
Wenzel, T., Santin, G., Haasdonk, B.: Analysis of target data-dependent greedy kernel algorithms: convergence rates for f-,f·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document}P-and f / P-greedy. Constructive Approximation, 1–30 (2022)
De MarchiSSchabackRWendlandHNear-optimal data-independent point locations for radial basis function interpolationAdv. Comput. Math.200523317330213654310.1007/s10444-004-1829-1
HeydariARevisiting approximate dynamic programming and its convergenceIEEE Trans. Cybern.201444122733274310.1109/TCYB.2014.2314612
WirtzDHaasdonkBA vectorial kernel orthogonal greedy algorithmDolomites Res. Note Approximation2013683100
RaoAVA survey of numerical methods for optimal controlAdv. Astronaut. Sci.20091351497528
Ehring, T., Haasdonk, B.: Feedback control for a coupled soft tissue system by kernel surrogates. In: Proceedings of COUPLED 2021. Scipedia (2021). https://doi.org/10.23967/coupled.2021.026
AseevSMVeliovVMAnother view of the maximum principle for infinite-horizon optimal control problems in economicsRuss. Math. Surv.2019746963403676910.1070/RM9915
AllaAFalconeMSaluzziLAn efficient DP algorithm on a tree-structure for finite horizon optimal control problemsSIAM J. Sci. Comput.201941423842406398431110.1137/18M1203900
Gilding, B.H., Kersner, R.: Travelling waves in nonlinear diffusion-convection reaction vol. 60. Springer (2004)
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Interscience (1962)
Seierstad, A., Sydsaeter, K.: Sufficient conditions in optimal control theory. International Economic Review 18(2), 367. https://doi.org/10.2307/2525753
AzmiBKaliseDKunischKOptimal feedback law recovery by gradient-augmented sparse polynomial regressionJ. Mach. Learn. Res.202122481324253741
Michel, P.: On the transversality condition in infinite horizon optimal problems. Econometrica: Journal of the Econometric Society, 975–985 (1982)
Kamalapurkar, R., Walters, P., Rosenfeld, J., Dixon, W.: Reinforcement learning for optimal feedback control: a Lyapunov-based approach (communications and control engineering). Springer (2018). 3319783831
Schmidt, A., Haasdonk, B.: Data-driven surrogates of value functions and applications to feedback control for dynamical systems. IFAC-PapersOnLine 51(2), 307–312 (2018). 9th Vienna International Conference on Mathematical Modelling
KirszbraunMÜber die zusammenziehende und Lipschitzsche TransformationenFundam. Math.19342217710810.4064/fm-22-1-77-108
Sethi, S.P.: Optimal control theory: applications to management science and economics. Springer (2021). https://doi.org/10.1007/978-3-030-91745-6
Kunisch, K., Walter, D.: Semiglobal optimal feedback stabilization of autonomous systems via deep neural network approximation. ESAIM: Control Optim. Calculus Var. 27, 16. https://doi.org/10.1051/cocv/2021009
Çimen, T.: State-dependent Riccati equation (SDRE) control: a survey. IFAC Proc. Vol. 41(2), 3761–3775 (2008). https://doi.org/10.3182/20080706-5-KR-1001.00635. 17th IFAC World Congress
AlbiGBicegoSKaliseDGradient-augmented supervised learning of optimal feedback laws using state-dependent Riccati equationsIEEE Control Syst. Lett.20226836841446972110.1109/LCSYS.2021.3086697
KaliseDKunduSKunischKRobust feedback control of nonlinear PDEs by numerical approximation of high-dimensional Hamilton-Jacobi-Isaacs equationsSIAM J. Appl. Dyn. Syst.202019214961524410900810.1137/19M1262139
GrüneLPannekJNonlinear model predictive control: theory and algorithms2011Communications and Control EngineeringSpringer10.1007/978-0-85729-501-9
AllaAKaliseDSimonciniVState-dependent Riccati equation feedback stabilization for nonlinear PDEsAdv. Comput. Math.20234919454736010.1007/s10444-022-09998-4
Bellman, R.E.: Adaptive control processes: a guided tour. Princeton University Press (1961)
FalconeMA numerical approach to the infinite horizon problem of deterministic control theoryAppl. Math. Optim.198715111386616410.1007/BF01442644
AllaAFalconeMSaluzziLA tree structure algorithm for optimal control problems with state constraintsRendiconti di Matematica e delle sue Applicazioni202051932214194615
AllaAFalconeMKaliseDAn efficient policy iteration algorithm for dynamic programming equationsSIAM J. Sci. Comput.2015371181200330131110.1137/130932284
FahrooFRossIMPseudospectral methods for infinite-horizon nonlinear optimal control problemsJ. Guid. Control. Dyn.200831492793610.2514/1.33117
Wendland, H.: Scattered data approximation vol. 17. Cambridge university press (2004)
Alla, A., Oliveira, H., Santin, G.: HJB-RBF based approach for the control of PDEs. J. Sci. Comput. 96(1) (2023). https://doi.org/10.1007/s10915-023-02208-3
Kunisch, K., Vásquez-Varas, D.: Optimal polynomial feedback laws for finite horizon control problems (2023). https://doi.org/10.48550/ARXIV.2302.09878
KangWWilcoxLCMitigating the curse of dimensionality: sparse grid characteristics method for optimal feedback control and HJB equationsComput. Optim. Appl.2017682289315369477010.1007/s10589-017-9910-0
Bellman, R.E.: A dynamic programming. Princeton University Press (1957)
BokanowskiOGarckeJGriebelMKlompmakerIAn adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equationsJ. Sci. Comput.2013553575605304570410.1007/s10915-012-9648-x
OsterMSallandtLSchneiderRApproximating optimal feedback controllers of finite horizon control problems using hierarchical tensor formatsSIAM J. Sci. Comput.2022443746770444244510.1137/21m1412190
Sontag, E.D.: Mathematical control theory: deterministic finite dimensional systems vol. 6. Springer (2013)
B Azmi (10128_CR36) 2021; 22
10128_CR46
10128_CR47
10128_CR42
D Kalise (10128_CR15) 2018; 40
10128_CR40
A Alla (10128_CR57) 2023; 49
T Nakamura-Zimmerer (10128_CR35) 2021; 43
A Alla (10128_CR22) 2015; 37
LM Benveniste (10128_CR44) 1979; 47
W Kang (10128_CR37) 2017; 68
10128_CR13
10128_CR14
10128_CR11
10128_CR55
10128_CR56
D Garg (10128_CR49) 2011; 47
S De Marchi (10128_CR50) 2005; 23
GN Saridis (10128_CR21) 1979; 9
10128_CR54
10128_CR51
10128_CR52
AV Dmitruk (10128_CR2) 2005; 78
O Bokanowski (10128_CR5) 2013; 55
A Schmidt (10128_CR25) 2018; 24
10128_CR29
10128_CR27
10128_CR24
10128_CR20
A Alla (10128_CR6) 2019; 41
M Bardi (10128_CR43) 2008
10128_CR8
S Dolgov (10128_CR17) 2021; 43
T Breiten (10128_CR26) 2019; 36
A Alla (10128_CR18) 2020; 46
M Oster (10128_CR19) 2022; 44
G Albi (10128_CR28) 2022; 6
SM Aseev (10128_CR45) 2019; 74
L Grüne (10128_CR23) 2011
R Bellman (10128_CR9) 1957; 6
10128_CR39
10128_CR38
10128_CR4
M Kirszbraun (10128_CR53) 1934; 22
10128_CR34
10128_CR31
10128_CR3
10128_CR32
A Heydari (10128_CR12) 2014; 44
10128_CR1
10128_CR30
A Alla (10128_CR7) 2020; 5
D Kalise (10128_CR16) 2020; 19
AV Rao (10128_CR33) 2009; 135
M Falcone (10128_CR10) 1987; 15
D Wirtz (10128_CR41) 2013; 6
F Fahroo (10128_CR48) 2008; 31
References_xml – reference: Ehring, T., Haasdonk, B.: Feedback control for a coupled soft tissue system by kernel surrogates. In: Proceedings of COUPLED 2021. Scipedia (2021). https://doi.org/10.23967/coupled.2021.026
– reference: Çimen, T.: State-dependent Riccati equation (SDRE) control: a survey. IFAC Proc. Vol. 41(2), 3761–3775 (2008). https://doi.org/10.3182/20080706-5-KR-1001.00635. 17th IFAC World Congress
– reference: Bellman, R.E.: A dynamic programming. Princeton University Press (1957)
– reference: KirszbraunMÜber die zusammenziehende und Lipschitzsche TransformationenFundam. Math.19342217710810.4064/fm-22-1-77-108
– reference: Khalil, H.: Nonlinear systems: Pearson New, vol. 3, International Pearson Education, Limited, Harlow (2013)
– reference: Seierstad, A., Sydsaeter, K.: Sufficient conditions in optimal control theory. International Economic Review 18(2), 367. https://doi.org/10.2307/2525753
– reference: AllaAFalconeMSaluzziLAn efficient DP algorithm on a tree-structure for finite horizon optimal control problemsSIAM J. Sci. Comput.201941423842406398431110.1137/18M1203900
– reference: SchmidtAHaasdonkBReduced basis approximation of large scale parametric algebraic Riccati equationsESAIM: Control Optim. Calculus Var.20182411291513764137
– reference: FahrooFRossIMPseudospectral methods for infinite-horizon nonlinear optimal control problemsJ. Guid. Control. Dyn.200831492793610.2514/1.33117
– reference: BokanowskiOGarckeJGriebelMKlompmakerIAn adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equationsJ. Sci. Comput.2013553575605304570410.1007/s10915-012-9648-x
– reference: KangWWilcoxLCMitigating the curse of dimensionality: sparse grid characteristics method for optimal feedback control and HJB equationsComput. Optim. Appl.2017682289315369477010.1007/s10589-017-9910-0
– reference: Alla, A., Oliveira, H., Santin, G.: HJB-RBF based approach for the control of PDEs. J. Sci. Comput. 96(1) (2023). https://doi.org/10.1007/s10915-023-02208-3
– reference: SaridisGNLeeCGAn approximation theory of optimal control for trainable manipulatorsIEEE Trans. Syst. Man Cybern.19799315215952113310.1109/TSMC.1979.4310171
– reference: Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Interscience (1962)
– reference: BellmanRA Markovian decision processJournal of Mathematics and Mechanics19576567968491859
– reference: KaliseDKunduSKunischKRobust feedback control of nonlinear PDEs by numerical approximation of high-dimensional Hamilton-Jacobi-Isaacs equationsSIAM J. Appl. Dyn. Syst.202019214961524410900810.1137/19M1262139
– reference: Kamalapurkar, R., Walters, P., Rosenfeld, J., Dixon, W.: Reinforcement learning for optimal feedback control: a Lyapunov-based approach (communications and control engineering). Springer (2018). 3319783831
– reference: AllaAKaliseDSimonciniVState-dependent Riccati equation feedback stabilization for nonlinear PDEsAdv. Comput. Math.20234919454736010.1007/s10444-022-09998-4
– reference: Gilding, B.H., Kersner, R.: Travelling waves in nonlinear diffusion-convection reaction vol. 60. Springer (2004)
– reference: AllaAHaasdonkBSchmidtAFeedback control of parametrized PDEs via model order reduction and dynamic programming principleAdv. Comput. Math.20204619406437210.1007/s10444-020-09744-8
– reference: KaliseDKunischKPolynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEsSIAM J. Sci. Comput.2018402629652376970510.1137/17M1116635
– reference: Sethi, S.P.: Optimal control theory: applications to management science and economics. Springer (2021). https://doi.org/10.1007/978-3-030-91745-6
– reference: BreitenTKunischKPfeifferLTaylor expansions of the value function associated with a bilinear optimal control problemAnnales de l’Institut Henri Poincaré C, Analyse non linéaire201936513611399398554710.1016/j.anihpc.2019.01.001
– reference: DolgovSKaliseDKunischKTensor decomposition methods for high-dimensional Hamilton-Jacobi-Bellman equationsSIAM J. Sci. Comput.202143316251650425498310.1137/19M1305136
– reference: Kunisch, K., Vásquez-Varas, D., Walter, D.: Learning optimal feedback operators and their polynomial approximation (2022). https://doi.org/10.48550/ARXIV.2208.14120
– reference: Kunisch, K., Walter, D.: Semiglobal optimal feedback stabilization of autonomous systems via deep neural network approximation. ESAIM: Control Optim. Calculus Var. 27, 16. https://doi.org/10.1051/cocv/2021009
– reference: Wenzel, T., Santin, G., Haasdonk, B.: Analysis of target data-dependent greedy kernel algorithms: convergence rates for f-,f·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document}P-and f / P-greedy. Constructive Approximation, 1–30 (2022)
– reference: AseevSMVeliovVMAnother view of the maximum principle for infinite-horizon optimal control problems in economicsRuss. Math. Surv.2019746963403676910.1070/RM9915
– reference: BenvenisteLMScheinkmanJAOn the differentiability of the value function in dynamic models of economicsEconometrica197947372773253308110.2307/1910417
– reference: FalconeMA numerical approach to the infinite horizon problem of deterministic control theoryAppl. Math. Optim.198715111386616410.1007/BF01442644
– reference: AzmiBKaliseDKunischKOptimal feedback law recovery by gradient-augmented sparse polynomial regressionJ. Mach. Learn. Res.202122481324253741
– reference: Kunisch, K., Vásquez-Varas, D.: Optimal polynomial feedback laws for finite horizon control problems (2023). https://doi.org/10.48550/ARXIV.2302.09878
– reference: GargDHagerWWRaoAVPseudospectral methods for solving infinite-horizon optimal control problemsAutomatica2011474829837287834710.1016/j.automatica.2011.01.085
– reference: GrüneLPannekJNonlinear model predictive control: theory and algorithms2011Communications and Control EngineeringSpringer10.1007/978-0-85729-501-9
– reference: AllaAFalconeMSaluzziLA tree structure algorithm for optimal control problems with state constraintsRendiconti di Matematica e delle sue Applicazioni202051932214194615
– reference: Freeman, R.A., Kokotovic, P.V.: Optimal nonlinear controllers for feedback linearizable systems. In: Proceedings of the American Control Conference, vol. 4, pp. 2722–2726 (1995). IEEE Inc
– reference: Falcone, M., Ferretti, R.: Semi-Lagrangian approximation schemes for linear and Hamilton—Jacobi equations. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). https://doi.org/10.1137/1.9781611973051
– reference: DmitrukAVKuz’kinaNVExistence theorem in the optimal control problem on an infinite time intervalMath. Notes2005783466480222672510.1007/s11006-005-0147-3
– reference: AlbiGBicegoSKaliseDGradient-augmented supervised learning of optimal feedback laws using state-dependent Riccati equationsIEEE Control Syst. Lett.20226836841446972110.1109/LCSYS.2021.3086697
– reference: BardiMCapuzzo-DolcettaIOptimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations2008Birkhäuser BostonModern Birkhäuser Classics
– reference: Schmidt, A., Haasdonk, B.: Data-driven surrogates of value functions and applications to feedback control for dynamical systems. IFAC-PapersOnLine 51(2), 307–312 (2018). 9th Vienna International Conference on Mathematical Modelling
– reference: Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Annals of Mathematics, 292–296 (1919)
– reference: OsterMSallandtLSchneiderRApproximating optimal feedback controllers of finite horizon control problems using hierarchical tensor formatsSIAM J. Sci. Comput.2022443746770444244510.1137/21m1412190
– reference: WirtzDHaasdonkBA vectorial kernel orthogonal greedy algorithmDolomites Res. Note Approximation2013683100
– reference: Wendland, H.: Scattered data approximation vol. 17. Cambridge university press (2004)
– reference: Sontag, E.D.: Mathematical control theory: deterministic finite dimensional systems vol. 6. Springer (2013)
– reference: Nakamura-ZimmererTGongQKangWAdaptive deep learning for high-dimensional Hamilton-Jacobi-Bellman equationsSIAM J. Sci. Comput.202143212211247424119010.1137/19M1288802
– reference: Michel, P.: On the transversality condition in infinite horizon optimal problems. Econometrica: Journal of the Econometric Society, 975–985 (1982)
– reference: Kunisch, K., Walter, D.: Optimal feedback control of dynamical systems via value-function approximation (2023). https://doi.org/10.48550/ARXIV.2302.13122
– reference: Alla, A., Saluzzi, L.: A HJB-POD approach for the control of nonlinear PDEs on a tree structure. Applied Numerical Mathematics 155 (2019). https://doi.org/10.1016/j.apnum.2019.11.023
– reference: Eigel, M., Schneider, R., Sommer, D.: Dynamical low-rank approximations of solutions to the Hamilton–Jacobi–Bellman equation. Num. Linear Algebra Appl. 30(3) (2022). https://doi.org/10.1002/nla.2463
– reference: AllaAFalconeMKaliseDAn efficient policy iteration algorithm for dynamic programming equationsSIAM J. Sci. Comput.2015371181200330131110.1137/130932284
– reference: Bellman, R.E.: Adaptive control processes: a guided tour. Princeton University Press (1961)
– reference: HeydariARevisiting approximate dynamic programming and its convergenceIEEE Trans. Cybern.201444122733274310.1109/TCYB.2014.2314612
– reference: Ehring, T., Haasdonk, B.: Greedy sampling and approximation for realizing feedback control for high dimensional nonlinear systems. IFAC-PapersOnLine 55(20), 325–330 (2022). https://doi.org/10.1016/j.ifacol.2022.09.116. 10th Vienna International Conference on Mathematical Modelling MATHMOD 2022
– reference: RaoAVA survey of numerical methods for optimal controlAdv. Astronaut. Sci.20091351497528
– reference: De MarchiSSchabackRWendlandHNear-optimal data-independent point locations for radial basis function interpolationAdv. Comput. Math.200523317330213654310.1007/s10444-004-1829-1
– ident: 10128_CR13
  doi: 10.1007/978-3-319-78384-0
– ident: 10128_CR3
  doi: 10.1515/9781400874668
– ident: 10128_CR52
– volume: 31
  start-page: 927
  issue: 4
  year: 2008
  ident: 10128_CR48
  publication-title: J. Guid. Control. Dyn.
  doi: 10.2514/1.33117
– volume: 46
  start-page: 9
  issue: 1
  year: 2020
  ident: 10128_CR18
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-020-09744-8
– ident: 10128_CR29
  doi: 10.48550/ARXIV.2302.13122
– volume: 49
  start-page: 9
  issue: 1
  year: 2023
  ident: 10128_CR57
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-022-09998-4
– volume: 22
  start-page: 1
  issue: 48
  year: 2021
  ident: 10128_CR36
  publication-title: J. Mach. Learn. Res.
– volume-title: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
  year: 2008
  ident: 10128_CR43
– volume: 135
  start-page: 497
  issue: 1
  year: 2009
  ident: 10128_CR33
  publication-title: Adv. Astronaut. Sci.
– ident: 10128_CR20
  doi: 10.1002/nla.2463
– volume: 22
  start-page: 77
  issue: 1
  year: 1934
  ident: 10128_CR53
  publication-title: Fundam. Math.
  doi: 10.4064/fm-22-1-77-108
– volume: 43
  start-page: 1221
  issue: 2
  year: 2021
  ident: 10128_CR35
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1288802
– ident: 10128_CR39
  doi: 10.23967/coupled.2021.026
– ident: 10128_CR51
  doi: 10.1017/CBO9780511617539
– ident: 10128_CR32
  doi: 10.48550/ARXIV.2208.14120
– volume: 9
  start-page: 152
  issue: 3
  year: 1979
  ident: 10128_CR21
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310171
– volume: 6
  start-page: 83
  year: 2013
  ident: 10128_CR41
  publication-title: Dolomites Res. Note Approximation
– ident: 10128_CR8
  doi: 10.1016/j.apnum.2019.11.023
– ident: 10128_CR34
– volume: 5
  start-page: 193
  year: 2020
  ident: 10128_CR7
  publication-title: Rendiconti di Matematica e delle sue Applicazioni
– ident: 10128_CR55
– volume: 47
  start-page: 829
  issue: 4
  year: 2011
  ident: 10128_CR49
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.01.085
– ident: 10128_CR14
– volume: 15
  start-page: 1
  issue: 1
  year: 1987
  ident: 10128_CR10
  publication-title: Appl. Math. Optim.
  doi: 10.1007/BF01442644
– ident: 10128_CR46
  doi: 10.2307/1912772
– ident: 10128_CR24
– ident: 10128_CR31
  doi: 10.48550/ARXIV.2302.09878
– ident: 10128_CR4
  doi: 10.1137/1.9781611973051
– volume: 43
  start-page: 1625
  issue: 3
  year: 2021
  ident: 10128_CR17
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1305136
– volume: 68
  start-page: 289
  issue: 2
  year: 2017
  ident: 10128_CR37
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9910-0
– volume: 47
  start-page: 727
  issue: 3
  year: 1979
  ident: 10128_CR44
  publication-title: Econometrica
  doi: 10.2307/1910417
– volume: 41
  start-page: 2384
  issue: 4
  year: 2019
  ident: 10128_CR6
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1203900
– ident: 10128_CR27
  doi: 10.3182/20080706-5-KR-1001.00635
– ident: 10128_CR30
  doi: 10.1051/cocv/2021009
– volume: 74
  start-page: 963
  issue: 6
  year: 2019
  ident: 10128_CR45
  publication-title: Russ. Math. Surv.
  doi: 10.1070/RM9915
– volume: 40
  start-page: 629
  issue: 2
  year: 2018
  ident: 10128_CR15
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1116635
– volume: 44
  start-page: 2733
  issue: 12
  year: 2014
  ident: 10128_CR12
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2314612
– ident: 10128_CR42
  doi: 10.1007/s00365-022-09592-3
– volume: 78
  start-page: 466
  issue: 3
  year: 2005
  ident: 10128_CR2
  publication-title: Math. Notes
  doi: 10.1007/s11006-005-0147-3
– volume: 37
  start-page: 181
  issue: 1
  year: 2015
  ident: 10128_CR22
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130932284
– ident: 10128_CR40
  doi: 10.1016/j.ifacol.2022.09.116
– volume: 36
  start-page: 1361
  issue: 5
  year: 2019
  ident: 10128_CR26
  publication-title: Annales de l’Institut Henri Poincaré C, Analyse non linéaire
  doi: 10.1016/j.anihpc.2019.01.001
– volume: 6
  start-page: 679
  issue: 5
  year: 1957
  ident: 10128_CR9
  publication-title: Journal of Mathematics and Mechanics
– ident: 10128_CR54
  doi: 10.2307/1967124
– volume: 6
  start-page: 836
  year: 2022
  ident: 10128_CR28
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2021.3086697
– ident: 10128_CR11
  doi: 10.1007/s10915-023-02208-3
– volume: 44
  start-page: 746
  issue: 3
  year: 2022
  ident: 10128_CR19
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/21m1412190
– ident: 10128_CR38
  doi: 10.1016/j.ifacol.2018.03.053
– ident: 10128_CR1
  doi: 10.1007/978-3-030-91745-6
– volume-title: Nonlinear model predictive control: theory and algorithms
  year: 2011
  ident: 10128_CR23
  doi: 10.1007/978-0-85729-501-9
– volume: 24
  start-page: 129
  issue: 1
  year: 2018
  ident: 10128_CR25
  publication-title: ESAIM: Control Optim. Calculus Var.
– ident: 10128_CR56
  doi: 10.1007/978-3-0348-7964-4
– volume: 55
  start-page: 575
  issue: 3
  year: 2013
  ident: 10128_CR5
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-012-9648-x
– volume: 23
  start-page: 317
  year: 2005
  ident: 10128_CR50
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-004-1829-1
– volume: 19
  start-page: 1496
  issue: 2
  year: 2020
  ident: 10128_CR16
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/19M1262139
– ident: 10128_CR47
  doi: 10.2307/2525753
SSID ssj0009675
Score 2.3842483
Snippet Numerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality. In the current...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Cholesky factorization
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Feedback control
Finite element method
Interpolation
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
MORe 2022
Nonlinear control
Numerical methods
Optimal control
Visualization
Title Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems
URI https://link.springer.com/article/10.1007/s10444-024-10128-5
https://www.proquest.com/docview/3048755980
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOjBD9SIIunBmzYZa7t1R0JQosETJHhatq71IILZxv_v61YgEjXx0izdW5f09fX9-vF-D-A2ZSkCbyOptAVXUuFTllE_0qmUKlGiChQevwSjKX-aiZmjybGxMDvn9zbEjXNO0ZNQy0QlqdiHpuix0KZpGASDLcFuUJHqolBEcQ0gXYDMz218d0JbZLlzGFr5mIcTOHLgkPRrbZ7Cnl604NgBReLMsGjB4XhDtlqcwdvIXmgpNXnX-ULPSbHK86XdHSsIIlKCksRSemtifZjVA1kaYmmKaWap_WtaDrKoOTOSnCxxFvnAGneLnbicM8U5TB6Gk8GIuvwJVLGAldQPVRZ4JuEaZzVmEsmkQitLhUiN8NEwdeYnEWMIybg22EmJpzg3IWKklIWMXUAD_60vgWQ-V74XIlrxNOeZkKkJexm6dh1ihdFt6K37M1aOW9ymuJjHW1Zkq4MYdRBXOohFG-4233zWzBp_SnfWaoqdlRUx8-xyS0TSa8P9WnXb17-3dvU_8Ws48O3oqTZfOtAo85W-QSxSpl1o9h9fn4fdajBiOfX7X7Ww1ps
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYCBjwKiUMADG1hKYztxxwpRBWg7tVK3KHFsBqBFSfv_OSdOCwiQWKLIuSSSn8_3_HHPANcpS5F4G0mlvXAlFd5lGfW7OpVSJUqUicLDURBN-ONUTF1SWFHvdq-XJMue-lOyG-ecYkyhVpNKUrEJW0gGpG3LE7-3ltoNSnldNOpSHA1Ilyrz8ze-hqM1x_y2LFpGm_4B7DmaSHoVroewoWdN2HeUkTiHLJqwO1zJrhZH8BzZrS0LTV50PtOvpFjm-dzOkxUEuSlBS2LFvTWx0cwiQuaGWMFimlmR_0qgg8wq9YwkJ3PsT96wxO1nJ-70meIYxv378V1E3UkKVLGALagfqizwTMI19m_MJJJJhf6WCpEa4aOL6sxPuowhOePaYCUlnuLchMiWUhYydgIN_Lc-BZL5XPleiLzF05xnQqYm7GQY5HWIBUa3oFPXZ6ycyrg97OI1XusjWwxixCAuMYhFC25W77xXGht_WrdrmGLnb0XMPDvwEl3pteC2hm79-Pevnf3P_Aq2o_FwEA8eRk_nsOPbllROybShsciX-gIZyiK9LBvkBy1j2zU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BkRAMPAqI8vTABhZpbCfuiApVeRQxFIktSvxgAFqUpP-fc-LSggCJJYqciy35fL7vbN9ngJOMZQi8raTSPbiSCt-0pmHHZFKqVIkqUXhwH_Uf-c2TeJrL4q9Ou0-3JOucBsfSNCrP37U9n0t845xT9C_U8VNJKhZhCSOVtgu_ulF3RrsbVVS7KNShGBlInzbzcx1fXdMMb37bIq08T28D1jxkJBe1jjdhwYyasO7hI_HGWTRhdfBJwVpswXPfHXMpDXkx-ci8kmKS52O3ZlYQxKkEJYkj-jbEeTanHTK2xJEXU-0I_2uyDjKqmTTSnIxxbnnDEn-2nfibaIptGPauht0-9bcqUMUiVtIwVjoKbMoNznXMppJJhbaXCZFZEaK5Gh2mHcYQqHFjsZPSQHFuY0ROGYsZ24EGtm12geiQqzCIEcMEhnMtZGbjtkaHb2IssKYF7Wl_JsozjruLL16TGVey00GCOkgqHSSiBaef_7zXfBt_Sh9M1ZR42ysSFrggTHRk0IKzqepmn3-vbe9_4sew_HDZS-6u72_3YSV0A6lanTmARplPzCGClTI7qsbjB-Qz31s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hermite+kernel+surrogates+for+the+value+function+of+high-dimensional+nonlinear+optimal+control+problems&rft.jtitle=Advances+in+computational+mathematics&rft.au=Ehring+Tobias&rft.au=Haasdonk%2C+Bernard&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=50&rft.issue=3&rft_id=info:doi/10.1007%2Fs10444-024-10128-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon