Application of electrical power measurements for process monitoring in ultrasonic metal welding
For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is well-established process of choice. These electrical applications require high quality for every single connection; single points of failure and no possibility of...
Saved in:
Published in | Welding in the world Vol. 67; no. 2; pp. 395 - 415 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0043-2288 1878-6669 |
DOI | 10.1007/s40194-022-01428-9 |
Cover
Loading…
Abstract | For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is well-established process of choice. These electrical applications require high quality for every single connection; single points of failure and no possibility of repair after installation or commissioning are state of the art. At present, the prevailing binding mechanisms and their sensitivity to the numerous process influencing variables like base material hardness, surface, and cleanliness are still the subject of research. In order to ensure sufficient quality despite the lack of process understanding, random destructive testing is carried out during ongoing production. The welding systems’ internal monitoring methods are currently not sufficient to make a prediction of the joint quality achieved. To determine process phases and extract features regarding the joint formation, the observation of process vibrations at the horn, anvil, and the components using laser-doppler-vibrometry, laser triangulation sensors or other suitable external measurement technology is common. These methods require external accessibility to the measurement position, not given in the industrial production environment. In this study, measurements of the high-frequency power signal of the welding system are conducted, and several machine learning models for quality prediction are set up. To ensure the robustness, several disturbances, e.g., changing material hardness and cleanliness, are taken into account. Thus, it will be evaluated to what extent an industrially suitable quality monitoring can be implemented by means of electrical measuring technology and how much more accurate such an external measuring system is compared to the possibilities already available in the welding system. |
---|---|
AbstractList | For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is well-established process of choice. These electrical applications require high quality for every single connection; single points of failure and no possibility of repair after installation or commissioning are state of the art. At present, the prevailing binding mechanisms and their sensitivity to the numerous process influencing variables like base material hardness, surface, and cleanliness are still the subject of research. In order to ensure sufficient quality despite the lack of process understanding, random destructive testing is carried out during ongoing production. The welding systems’ internal monitoring methods are currently not sufficient to make a prediction of the joint quality achieved. To determine process phases and extract features regarding the joint formation, the observation of process vibrations at the horn, anvil, and the components using laser-doppler-vibrometry, laser triangulation sensors or other suitable external measurement technology is common. These methods require external accessibility to the measurement position, not given in the industrial production environment. In this study, measurements of the high-frequency power signal of the welding system are conducted, and several machine learning models for quality prediction are set up. To ensure the robustness, several disturbances, e.g., changing material hardness and cleanliness, are taken into account. Thus, it will be evaluated to what extent an industrially suitable quality monitoring can be implemented by means of electrical measuring technology and how much more accurate such an external measuring system is compared to the possibilities already available in the welding system. Abstract For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is well-established process of choice. These electrical applications require high quality for every single connection; single points of failure and no possibility of repair after installation or commissioning are state of the art. At present, the prevailing binding mechanisms and their sensitivity to the numerous process influencing variables like base material hardness, surface, and cleanliness are still the subject of research. In order to ensure sufficient quality despite the lack of process understanding, random destructive testing is carried out during ongoing production. The welding systems’ internal monitoring methods are currently not sufficient to make a prediction of the joint quality achieved. To determine process phases and extract features regarding the joint formation, the observation of process vibrations at the horn, anvil, and the components using laser-doppler-vibrometry, laser triangulation sensors or other suitable external measurement technology is common. These methods require external accessibility to the measurement position, not given in the industrial production environment. In this study, measurements of the high-frequency power signal of the welding system are conducted, and several machine learning models for quality prediction are set up. To ensure the robustness, several disturbances, e.g., changing material hardness and cleanliness, are taken into account. Thus, it will be evaluated to what extent an industrially suitable quality monitoring can be implemented by means of electrical measuring technology and how much more accurate such an external measuring system is compared to the possibilities already available in the welding system. |
Author | Schiebahn, Alexander Reisgen, Uwe Chen, Chun-Yu Müller, Florian W. |
Author_xml | – sequence: 1 givenname: Florian W. orcidid: 0000-0001-7435-2357 surname: Müller fullname: Müller, Florian W. email: florian.mueller@isf.rwth-aachen.de organization: Welding and Joining Institute, RWTH Aachen University – sequence: 2 givenname: Chun-Yu orcidid: 0000-0002-8880-3021 surname: Chen fullname: Chen, Chun-Yu organization: Welding and Joining Institute, RWTH Aachen University, Division of Advanced Manufacturing, Tsinghua University Shenzhen International Graduate School – sequence: 3 givenname: Alexander orcidid: 0000-0001-8427-6765 surname: Schiebahn fullname: Schiebahn, Alexander organization: Welding and Joining Institute, RWTH Aachen University – sequence: 4 givenname: Uwe orcidid: 0000-0003-4920-2351 surname: Reisgen fullname: Reisgen, Uwe organization: Welding and Joining Institute, RWTH Aachen University |
BookMark | eNp9kE1rAyEQhqWk0CTtH-hJ6HnbWTWrHkPoFwR6ac-irls27K5bdQn99zVJodBDDiLMzOO8Pgs0G_zgELot4b4E4A-RQSlZAYQUUDIiCnmB5qXgoqiqSs7QHIDRghAhrtAixh0AyHzmSK3HsWutTq0fsG-w65xNIRc6PPq9C7h3Ok7B9W5IETc-4DF462LEvR_a5EM7fOJ2wFOXgo65ZDORMr13XZ171-iy0V10N7_3En08Pb5vXort2_PrZr0tLK1oKgg3ldGcrzQTxlICdc0J0UbWUDpCAah1jhpitTBmVQGxhnO5kkw2kgto6BLdnd7N8b4mF5Pa-SkMeaUinAMIBoznKXKassHHGFyjxtD2OnyrEtRBpDqJVFmkOopUMkPiH2TbdBSWv9x251F6QuN4EOXCX6oz1A-loYtP |
CitedBy_id | crossref_primary_10_1016_j_jajp_2024_100204 crossref_primary_10_1007_s40194_024_01905_3 crossref_primary_10_1080_10426914_2023_2236186 crossref_primary_10_1155_je_8941576 crossref_primary_10_1515_htmp_2022_0298 crossref_primary_10_3390_met14080892 crossref_primary_10_1177_02670836231215651 crossref_primary_10_1177_14644207241245431 crossref_primary_10_3390_met13101661 |
Cites_doi | 10.1177/2041297510393664 10.1016/j.jajp.2021.100086 10.1007/s40194-019-00788-z 10.1007/s00170-010-2627-1 10.18154/RWTH-2020-08744 10.37544/1436-4980-2002-9-436 10.31030/2251682 10.1016/j.jmapro.2022.02.057 10.1007/s00170-012-3920-y 10.1016/j.neucom.2018.03.067 10.6100/IR161561 10.1016/j.jestch.2015.04.00 10.1088/1742-6596/382/1/012013 10.1007/s40194-021-01222-z 10.1016/J.JMATPROTEC.2016.01.006 10.1115/1.4028059 10.1016/j.jajp.2020.100005 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s40194-022-01428-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-6669 |
EndPage | 415 |
ExternalDocumentID | 10_1007_s40194_022_01428_9 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: 470052705 – fundername: RWTH Aachen University (3131) |
GroupedDBID | --K -EM 06D 0R~ 1B1 203 2LR 30V 4.4 406 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HMJXF HRMNR HZ~ IHE IKXTQ ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M41 M4Y NPVJJ NQ- NQJWS NU0 O9- O93 O9J P2P PT4 RIG ROL RPZ RSV SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 XPP Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z85 ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-27b6ba775a48bc320dd722ab9d01e23003cee3b2ca8bb5602cb7795949f9780f3 |
IEDL.DBID | AGYKE |
ISSN | 0043-2288 |
IngestDate | Fri Jul 25 09:16:25 EDT 2025 Thu Apr 24 22:57:04 EDT 2025 Tue Jul 01 04:25:38 EDT 2025 Fri Feb 21 02:44:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Gaussian process regression Quality prediction Ultrasonic metal welding |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-27b6ba775a48bc320dd722ab9d01e23003cee3b2ca8bb5602cb7795949f9780f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7435-2357 0000-0001-8427-6765 0000-0002-8880-3021 0000-0003-4920-2351 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s40194-022-01428-9 |
PQID | 2770084047 |
PQPubID | 2043671 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2770084047 crossref_primary_10_1007_s40194_022_01428_9 crossref_citationtrail_10_1007_s40194_022_01428_9 springer_journals_10_1007_s40194_022_01428_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | The International Journal of Materials Joining |
PublicationTitle | Welding in the world |
PublicationTitleAbbrev | Weld World |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Müller FW, Mirz C, Weil S, Reisgen U, Schiebahn A, Corves B (2021) Schlussbericht zum Vorhaben IGF-Nr.: 20.161N / Systemidentifikation und Monitoring von Metall-Ultraschallschweißprozessen. DVS Forschungsvereinigung Müller FW, Schiebahn A, Reisgen U (2019) Untersuchungen zum Störeinfluss von Werkstoff- und Oberflächeneigenschaften auf Cu-Cu Metall-Ultraschallschweißverbindungen. METALL, 73. Jahrgang, pp 463–467 Elangovan S, Anand K, Prakasan K (2012) Parametric optimization of ultrasonic metal welding using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 63(5):561–572. https://doi.org/10.1007/s00170-012-3920-y Rozenberg L, Mitskevich A (1973) Ultrasonic welding of metals. Physical Principles of Ultrasonic Technology, V.1, Part 2, Acoustic Institute Acadamy of Sciences of the USSR, Moscow, USSR, Plenum Press, New York Balz I, Abi Raad E, Rosenthal E, Lohoff R, Schiebahn A, Reisgen U, Vorländer M (2020) Process monitoring of ultrasonic metal welding of battery tabs using external sensor data. J Adv Join Process 1. https://doi.org/10.1016/j.jajp.2020.100005 DIN EN 13599 “Copper and copper alloys - Copper plate, sheet and strip for electrical purposes; German version EN 13599:2014“ https://doi.org/10.31030/2251682 Harthoorn JL (1978) Ultrasonic metal welding. Technische Hogeschool Eindhoven, Eindhoven. https://doi.org/10.6100/IR161561 Müller FW, Schiebahn A, Reisgen U (2022) Quality prediction of disturbed ultrasonic metal welds. Journal of Advanced Joining Processes 5:100086. https://doi.org/10.1016/j.jajp.2021.100086 Al-Sarraf Z, Lucas M (2012) A study of weld quality in ultrasonic spot welding of similar and dissimilar metals. MPSVA, International Conference on Modern Practice in Stress and Vibration Analysis. Journal of Physics: Conference Series (Online), 382:012013/1–6. https://doi.org/10.1088/1742-6596/382/1/012013 SchwarzEBleierFGuenterFMikutRBergmannJImproving process monitoring of ultrasonic metal welding using classical machine learning methods and process-informed time series evaluationJ Manuf Process202277546210.1016/j.jmapro.2022.02.057 GesterAWagnerGPöthigPAnalysis of the oscillation behavior during ultrasonic welding of EN AW-1070 wire strands and EN CW004A terminalsWeld World20226656757610.1007/s40194-021-01222-z Schunk Sonosystems GmbH, Wettenberg. https://www.schunk-sonosystems.com/en/sonosystems-use-case/detailpulse-inverter-module-with-ultrasonically-welded-power-contacts~sa11785. Accessed 10.07.2022 DiFinizio T (2005) Ultrasonic intelligence. In: Wire and Cable Technology International, Band 33 Heft 5, pp 88–90 KimWArgentoAGrimaASchollDWardSThermo-mechanical analysis of frictional heating in ultra-sonic spot welding of aluminium platesProc Inst Mech Eng, Part B (Jour-nal of Engineering Manufacture)20112257109311031:CAS:528:DC%2BC38XlsFSjsrg%3D10.1177/2041297510393664 Greitmann MJ, Adam T, Holzweißig HG et al (2003) Gegenwärtiger Stand und zukunftsaussichten der Sonderschweißverfahren - Ultraschallschweißen. Schweißen und Schneiden, Band 55 Heft 6, pp 306–308,310,312–314 Lee SS, Shao C, Kim TH, Hu SJ, Kannatey-Asibu E, Cai WW et al (2014) Characterization of ultrasonic metal welding by correlating online sensor signals with weld attributes. J Manuf Sci E T ASME 136(5):051019. https://doi.org/10.1115/1.4028059 Balz I (2020) Prozessanalyse der thermo-mechanischen Vorgänge während der Verbindungsbildung beim Metall-Ultraschallschweißen. Dissertation. Aachener Berichte Fügetechnik, Band 3/2020, pp 1–149. https://doi.org/10.18154/RWTH-2020-08744 ElangovanSPrakasanKJaiganeshVOptimization of ultrasonic welding parameters for copper to copper joints using design of experimentsInt J Adv Manuf Technol20105116317110.1007/s00170-010-2627-1 ChristMBraunNNeufferJKempa-LiehrAWTime Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package)Neurocomputing2018307727710.1016/j.neucom.2018.03.067 De Vries E (2004) Mechanics and mechanisms of ultrasonic metal welding. Dissertation. Ohio State University, Columbus, Ohio Wodara J (2004) Ultraschallfügen und -trennen. Grundlagen der Fügetechnik. Verlag für Schweißen und verwandte Verfahren, Fachbuchreihe Schweißtechnik, Band 151/1, Düsseldorf LuYSongHTaberGAFosterDRDaehnGSZhangWIn-situ measurement of relative motion during ultrasonic spot welding of aluminum alloy using photonic Doppler velocimetryJ Mater Process Technol20162314314401:CAS:528:DC%2BC28XhslSqs7s%3D10.1016/J.JMATPROTEC.2016.01.006 Balz I, Rosenthal E, Reimer A, Turiaux M, Schiebahn A, Reisgen U (2019) Analysis of the thermo-mechanical mechanism during ultrasonic welding of battery tabs using high-speed image capturing. Weld World 63:1573–1582. https://doi.org/10.1007/s40194-019-00788-z Balle F, Wagner G, Eifler D (2009) Charakterisierung des Ultraschallschweißprozesses durch hochauflösende Laser-Doppler-Vibrometrie. In: InFocus – Magazin für Optische Messsysteme, Ausgabe 1/2009 – ISSN 1864–9181 Zäh MF, Mosandl T, Schlickenrieder K (2002) Ultraschall-Metallschweißen. Steigerung der Prozesssicherheit für das Ultraschall-Metallschweißen. In: wt Werkstattstechnik online 92(9):436–440 Adam T (1999) Ultraschallschweißen ausgewählter Aluminiumlegierungen mit erhöhter Festigkeit. Dissertation. Otto-von-Guericke-Universität, Magdeburg Reisgen U, Stein L (2016) Fundamentals of joining technology welding, brazing and adhesive bonding, English edn. DVS Media, Band 13, Düsseldorf Müller FW, Mirz C, Weil S, Reisgen U, Schiebahn A, Corves B (2022) Systemidentifikation und Monitoring von Metall-Ultraschallschweißprozessen. SCHWEISSEN und SCHNEIDEN, Ausgabe 5, 2022, ISSN 0036–7184. DVS-Media GmbH SAE/USCAR-38–1:2016–04. Performance specification for ultrasonically welded wire terminations. Berlin: Beuth Verlag GmbH 2016 Lee S (2013) Process and quality characterization for ultrasonic welding of lithium-ion batteries. Dissertation. University of Michigan, Michigan. hdl.handle.net/2027.42/99803 SatpathyMPMoharanaBRDewanganSSahooSK Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approachEngineering Science and Technology, an International Journal201518463464710.1016/j.jestch.2015.04.00 Adam T, Martinek I, Wodara J (2004) Einsatz des Ultraschall-Metallschweißens für innovative Werkstoffe und interessante Problemstellungen der Wirtschaft. Schweißen und Schneiden 2004, DVS-Berichte Band 232; 171–176 S Elangovan (1428_CR21) 2010; 51 1428_CR13 1428_CR12 1428_CR10 1428_CR31 1428_CR30 W Kim (1428_CR28) 2011; 225 1428_CR19 1428_CR18 1428_CR17 1428_CR16 1428_CR15 1428_CR14 1428_CR6 1428_CR5 1428_CR8 1428_CR7 1428_CR9 A Gester (1428_CR25) 2022; 66 M Christ (1428_CR32) 2018; 307 E Schwarz (1428_CR24) 2022; 77 Y Lu (1428_CR11) 2016; 231 1428_CR23 MP Satpathy (1428_CR22) 2015; 18 1428_CR20 1428_CR29 1428_CR2 1428_CR1 1428_CR27 1428_CR4 1428_CR26 1428_CR3 |
References_xml | – reference: Al-Sarraf Z, Lucas M (2012) A study of weld quality in ultrasonic spot welding of similar and dissimilar metals. MPSVA, International Conference on Modern Practice in Stress and Vibration Analysis. Journal of Physics: Conference Series (Online), 382:012013/1–6. https://doi.org/10.1088/1742-6596/382/1/012013 – reference: Zäh MF, Mosandl T, Schlickenrieder K (2002) Ultraschall-Metallschweißen. Steigerung der Prozesssicherheit für das Ultraschall-Metallschweißen. In: wt Werkstattstechnik online 92(9):436–440 – reference: Adam T, Martinek I, Wodara J (2004) Einsatz des Ultraschall-Metallschweißens für innovative Werkstoffe und interessante Problemstellungen der Wirtschaft. Schweißen und Schneiden 2004, DVS-Berichte Band 232; 171–176 – reference: De Vries E (2004) Mechanics and mechanisms of ultrasonic metal welding. Dissertation. Ohio State University, Columbus, Ohio – reference: Lee S (2013) Process and quality characterization for ultrasonic welding of lithium-ion batteries. Dissertation. University of Michigan, Michigan. hdl.handle.net/2027.42/99803 – reference: SAE/USCAR-38–1:2016–04. Performance specification for ultrasonically welded wire terminations. Berlin: Beuth Verlag GmbH 2016 – reference: ElangovanSPrakasanKJaiganeshVOptimization of ultrasonic welding parameters for copper to copper joints using design of experimentsInt J Adv Manuf Technol20105116317110.1007/s00170-010-2627-1 – reference: Lee SS, Shao C, Kim TH, Hu SJ, Kannatey-Asibu E, Cai WW et al (2014) Characterization of ultrasonic metal welding by correlating online sensor signals with weld attributes. J Manuf Sci E T ASME 136(5):051019. https://doi.org/10.1115/1.4028059 – reference: GesterAWagnerGPöthigPAnalysis of the oscillation behavior during ultrasonic welding of EN AW-1070 wire strands and EN CW004A terminalsWeld World20226656757610.1007/s40194-021-01222-z – reference: Balle F, Wagner G, Eifler D (2009) Charakterisierung des Ultraschallschweißprozesses durch hochauflösende Laser-Doppler-Vibrometrie. In: InFocus – Magazin für Optische Messsysteme, Ausgabe 1/2009 – ISSN 1864–9181 – reference: Balz I, Abi Raad E, Rosenthal E, Lohoff R, Schiebahn A, Reisgen U, Vorländer M (2020) Process monitoring of ultrasonic metal welding of battery tabs using external sensor data. J Adv Join Process 1. https://doi.org/10.1016/j.jajp.2020.100005 – reference: Müller FW, Mirz C, Weil S, Reisgen U, Schiebahn A, Corves B (2022) Systemidentifikation und Monitoring von Metall-Ultraschallschweißprozessen. SCHWEISSEN und SCHNEIDEN, Ausgabe 5, 2022, ISSN 0036–7184. DVS-Media GmbH – reference: Balz I, Rosenthal E, Reimer A, Turiaux M, Schiebahn A, Reisgen U (2019) Analysis of the thermo-mechanical mechanism during ultrasonic welding of battery tabs using high-speed image capturing. Weld World 63:1573–1582. https://doi.org/10.1007/s40194-019-00788-z – reference: ChristMBraunNNeufferJKempa-LiehrAWTime Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package)Neurocomputing2018307727710.1016/j.neucom.2018.03.067 – reference: Harthoorn JL (1978) Ultrasonic metal welding. Technische Hogeschool Eindhoven, Eindhoven. https://doi.org/10.6100/IR161561 – reference: Müller FW, Schiebahn A, Reisgen U (2019) Untersuchungen zum Störeinfluss von Werkstoff- und Oberflächeneigenschaften auf Cu-Cu Metall-Ultraschallschweißverbindungen. METALL, 73. Jahrgang, pp 463–467 – reference: Adam T (1999) Ultraschallschweißen ausgewählter Aluminiumlegierungen mit erhöhter Festigkeit. Dissertation. Otto-von-Guericke-Universität, Magdeburg – reference: Reisgen U, Stein L (2016) Fundamentals of joining technology welding, brazing and adhesive bonding, English edn. DVS Media, Band 13, Düsseldorf – reference: Müller FW, Schiebahn A, Reisgen U (2022) Quality prediction of disturbed ultrasonic metal welds. Journal of Advanced Joining Processes 5:100086. https://doi.org/10.1016/j.jajp.2021.100086 – reference: KimWArgentoAGrimaASchollDWardSThermo-mechanical analysis of frictional heating in ultra-sonic spot welding of aluminium platesProc Inst Mech Eng, Part B (Jour-nal of Engineering Manufacture)20112257109311031:CAS:528:DC%2BC38XlsFSjsrg%3D10.1177/2041297510393664 – reference: Wodara J (2004) Ultraschallfügen und -trennen. Grundlagen der Fügetechnik. Verlag für Schweißen und verwandte Verfahren, Fachbuchreihe Schweißtechnik, Band 151/1, Düsseldorf – reference: Schunk Sonosystems GmbH, Wettenberg. https://www.schunk-sonosystems.com/en/sonosystems-use-case/detailpulse-inverter-module-with-ultrasonically-welded-power-contacts~sa11785. Accessed 10.07.2022 – reference: Müller FW, Mirz C, Weil S, Reisgen U, Schiebahn A, Corves B (2021) Schlussbericht zum Vorhaben IGF-Nr.: 20.161N / Systemidentifikation und Monitoring von Metall-Ultraschallschweißprozessen. DVS Forschungsvereinigung – reference: SchwarzEBleierFGuenterFMikutRBergmannJImproving process monitoring of ultrasonic metal welding using classical machine learning methods and process-informed time series evaluationJ Manuf Process202277546210.1016/j.jmapro.2022.02.057 – reference: Elangovan S, Anand K, Prakasan K (2012) Parametric optimization of ultrasonic metal welding using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 63(5):561–572. https://doi.org/10.1007/s00170-012-3920-y – reference: Balz I (2020) Prozessanalyse der thermo-mechanischen Vorgänge während der Verbindungsbildung beim Metall-Ultraschallschweißen. Dissertation. Aachener Berichte Fügetechnik, Band 3/2020, pp 1–149. https://doi.org/10.18154/RWTH-2020-08744 – reference: LuYSongHTaberGAFosterDRDaehnGSZhangWIn-situ measurement of relative motion during ultrasonic spot welding of aluminum alloy using photonic Doppler velocimetryJ Mater Process Technol20162314314401:CAS:528:DC%2BC28XhslSqs7s%3D10.1016/J.JMATPROTEC.2016.01.006 – reference: Greitmann MJ, Adam T, Holzweißig HG et al (2003) Gegenwärtiger Stand und zukunftsaussichten der Sonderschweißverfahren - Ultraschallschweißen. Schweißen und Schneiden, Band 55 Heft 6, pp 306–308,310,312–314 – reference: SatpathyMPMoharanaBRDewanganSSahooSK Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approachEngineering Science and Technology, an International Journal201518463464710.1016/j.jestch.2015.04.00 – reference: Rozenberg L, Mitskevich A (1973) Ultrasonic welding of metals. Physical Principles of Ultrasonic Technology, V.1, Part 2, Acoustic Institute Acadamy of Sciences of the USSR, Moscow, USSR, Plenum Press, New York – reference: DiFinizio T (2005) Ultrasonic intelligence. In: Wire and Cable Technology International, Band 33 Heft 5, pp 88–90 – reference: DIN EN 13599 “Copper and copper alloys - Copper plate, sheet and strip for electrical purposes; German version EN 13599:2014“ https://doi.org/10.31030/2251682 – ident: 1428_CR10 – volume: 225 start-page: 1093 issue: 7 year: 2011 ident: 1428_CR28 publication-title: Proc Inst Mech Eng, Part B (Jour-nal of Engineering Manufacture) doi: 10.1177/2041297510393664 – ident: 1428_CR4 doi: 10.1016/j.jajp.2021.100086 – ident: 1428_CR27 doi: 10.1007/s40194-019-00788-z – ident: 1428_CR29 – volume: 51 start-page: 163 year: 2010 ident: 1428_CR21 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-010-2627-1 – ident: 1428_CR6 doi: 10.18154/RWTH-2020-08744 – ident: 1428_CR1 – ident: 1428_CR18 – ident: 1428_CR9 doi: 10.37544/1436-4980-2002-9-436 – ident: 1428_CR12 – ident: 1428_CR14 – ident: 1428_CR16 – ident: 1428_CR5 – ident: 1428_CR31 doi: 10.31030/2251682 – ident: 1428_CR3 – volume: 77 start-page: 54 year: 2022 ident: 1428_CR24 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2022.02.057 – ident: 1428_CR23 doi: 10.1007/s00170-012-3920-y – volume: 307 start-page: 72 year: 2018 ident: 1428_CR32 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.067 – ident: 1428_CR7 – ident: 1428_CR15 doi: 10.6100/IR161561 – volume: 18 start-page: 634 issue: 4 year: 2015 ident: 1428_CR22 publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2015.04.00 – ident: 1428_CR8 doi: 10.1088/1742-6596/382/1/012013 – volume: 66 start-page: 567 year: 2022 ident: 1428_CR25 publication-title: Weld World doi: 10.1007/s40194-021-01222-z – volume: 231 start-page: 431 year: 2016 ident: 1428_CR11 publication-title: J Mater Process Technol doi: 10.1016/J.JMATPROTEC.2016.01.006 – ident: 1428_CR2 – ident: 1428_CR20 doi: 10.1115/1.4028059 – ident: 1428_CR26 doi: 10.1016/j.jajp.2020.100005 – ident: 1428_CR13 – ident: 1428_CR19 – ident: 1428_CR17 – ident: 1428_CR30 |
SSID | ssj0009000 |
Score | 2.3516407 |
Snippet | For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is well-established... Abstract For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 395 |
SubjectTerms | Chemistry and Materials Science Cleanliness Destructive testing Feature extraction Hardness Laser beam welding Machine learning Materials Science Metallic Materials Monitoring Position measurement Power measurement Research Paper Solid Mechanics Theoretical and Applied Mechanics Triangulation Wiring harnesses |
Title | Application of electrical power measurements for process monitoring in ultrasonic metal welding |
URI | https://link.springer.com/article/10.1007/s40194-022-01428-9 https://www.proquest.com/docview/2770084047 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOjBbyN-kB686UjXlnU7AgGJJpwkwdPSdltihEHYiIl_ve0-mBI14by22fpe21_33vv9AO4o0yDVCYlFmfIsxo2QexR4lilNswWmBsWabIuxM5qwp2lnWhSFJWW2exmSzHbqTbGbvgkYGltiUgk0aLa8GjQ0_sCsDo3u4-vzoCLbxWXpCbUIcd2iWOb3UX4eSBXK3AqMZufN8Agm5ZvmaSbv7XUq2-pzi8Rx1085hsMCgKJu7jEnsBfGp3DwjZbwDPxuFdVGiwjlUjnGmmhpRNXQvPqxmCCNetEyLzdA82yHMKOgtxitZ-lKJIZ7V_fQIB99hFmo6xwmw8FLf2QVQgyWog5NLcKlIwXnHcFcqSjBQcAJEdILsB3qOwym-qilkijhSqkhFFGSGw1z5kWG4CiiF1CPF3F4CSjkgjLBAsF4pLEEF9yJHEWlrXBAO5Fsgl1aw1cFS7kRy5j5G37lbPJ8PXl-Nnm-14T7TZ9lztHxb-ub0sh-sV4Tn3BulAUw4014KG1WPf57tKvdml_DvtGrz9O-b6CertbhrUY1qWxpJx72euNW4cwtqPWd_hdlmu48 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTywQURqu3EyVhWoQOnUSt0s20kkpDatmlT8fXz5aKACJObYN9zFumff3XsAt4xbkOpF1GHcBA4XKOQeh4GDo2lt5TJEsdhtMfT6Y_4y6UxKmhychdmo3z-kFv8jeS3FBgILlZ1gG3a4vSlj-17P69UEu241bsIcSn2_HJD52cb3JFQjy41iaJ5jng7hoASHpFtE8wi2ouQY9r9QBp6A7NYVZzKPSSFjg54mCxQ8I7P60S8lFpGSRTEKQGb56UUr5D0hq2m2VCny4todFoCTjygvQ53C-Olx1Os7pUiCY5jHMocK7WklREdxXxtG3TAUlCodhG47svcLl9k0yDQ1ytfawhtqtEB9cR7ESD4UszNoJPMkOgcSCcW44qHiIrZ5XijhxZ5hum3ckHVi3YR25TVpSgZxFLKYyjX3ce5paT0tc0_LoAl36z2Lgj_jz9WtKhiyPEuppEIg67_LRRPuqwDVn3-3dvG_5Tew2x-9DeTgefh6CXuoK1-0Z7egkS1X0ZVFH5m-zn-7T4Vpzbs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46QfQg_sTp1By8aViXZE17HNMxfzA8ONgtJG0DguvK1uG_b17arlNU8Nwkh5eG9yXvfd-H0DXjFqT6CSWMRyHhAozcTRwSoKZ1lMcAxUK3xcgfjvnjpDtZY_G7bveqJFlwGkClKc3bWWzaK-KbvRWApC2FtgILoEm4ibbsTcUVavt-v5bd9SoSCiOUBkFJm_l5ja-pqcab30qkLvMM9tFeCRlxr9jjA7SRpIdod01I8AjJXl2HxjODC3MbiD_OwAYNT-unwAW2OBVnBUEAT92ZhlXwW4qX7_lcLUAt186wsBx_JK44dYzGg_vX_pCU1gkkYj7LCRXa10qIruKBjhj14lhQqnQYe53E3jo8ZpMj0zRSgdYW9NBIC3Ad56EBSSLDTlAjnaXJKcKJUIwrHisujM3-Qgnf-BHTnciLWdfoJupUUZNRqSsO9hbvcqWI7CItbaSli7QMm-hmNScrVDX-HN2qNkOWJ2whqRDgBeBx0US31QbVn39f7ex_w6_Q9svdQD4_jJ7O0Q6YzRc92y3UyOfL5MJCklxfur_uEzLH1gI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+electrical+power+measurements+for+process+monitoring+in+ultrasonic+metal+welding&rft.jtitle=Welding+in+the+world&rft.au=M%C3%BCller%2C+Florian+W&rft.au=Chun-Yu%2C+Chen&rft.au=Schiebahn+Alexander&rft.au=Reisgen+Uwe&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0043-2288&rft.eissn=1878-6669&rft.volume=67&rft.issue=2&rft.spage=395&rft.epage=415&rft_id=info:doi/10.1007%2Fs40194-022-01428-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-2288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-2288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-2288&client=summon |