Application of electrical power measurements for process monitoring in ultrasonic metal welding

For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is well-established process of choice. These electrical applications require high quality for every single connection; single points of failure and no possibility of...

Full description

Saved in:
Bibliographic Details
Published inWelding in the world Vol. 67; no. 2; pp. 395 - 415
Main Authors Müller, Florian W., Chen, Chun-Yu, Schiebahn, Alexander, Reisgen, Uwe
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0043-2288
1878-6669
DOI10.1007/s40194-022-01428-9

Cover

Loading…
Abstract For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is well-established process of choice. These electrical applications require high quality for every single connection; single points of failure and no possibility of repair after installation or commissioning are state of the art. At present, the prevailing binding mechanisms and their sensitivity to the numerous process influencing variables like base material hardness, surface, and cleanliness are still the subject of research. In order to ensure sufficient quality despite the lack of process understanding, random destructive testing is carried out during ongoing production. The welding systems’ internal monitoring methods are currently not sufficient to make a prediction of the joint quality achieved. To determine process phases and extract features regarding the joint formation, the observation of process vibrations at the horn, anvil, and the components using laser-doppler-vibrometry, laser triangulation sensors or other suitable external measurement technology is common. These methods require external accessibility to the measurement position, not given in the industrial production environment. In this study, measurements of the high-frequency power signal of the welding system are conducted, and several machine learning models for quality prediction are set up. To ensure the robustness, several disturbances, e.g., changing material hardness and cleanliness, are taken into account. Thus, it will be evaluated to what extent an industrially suitable quality monitoring can be implemented by means of electrical measuring technology and how much more accurate such an external measuring system is compared to the possibilities already available in the welding system.
AbstractList For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is well-established process of choice. These electrical applications require high quality for every single connection; single points of failure and no possibility of repair after installation or commissioning are state of the art. At present, the prevailing binding mechanisms and their sensitivity to the numerous process influencing variables like base material hardness, surface, and cleanliness are still the subject of research. In order to ensure sufficient quality despite the lack of process understanding, random destructive testing is carried out during ongoing production. The welding systems’ internal monitoring methods are currently not sufficient to make a prediction of the joint quality achieved. To determine process phases and extract features regarding the joint formation, the observation of process vibrations at the horn, anvil, and the components using laser-doppler-vibrometry, laser triangulation sensors or other suitable external measurement technology is common. These methods require external accessibility to the measurement position, not given in the industrial production environment. In this study, measurements of the high-frequency power signal of the welding system are conducted, and several machine learning models for quality prediction are set up. To ensure the robustness, several disturbances, e.g., changing material hardness and cleanliness, are taken into account. Thus, it will be evaluated to what extent an industrially suitable quality monitoring can be implemented by means of electrical measuring technology and how much more accurate such an external measuring system is compared to the possibilities already available in the welding system.
Abstract For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is well-established process of choice. These electrical applications require high quality for every single connection; single points of failure and no possibility of repair after installation or commissioning are state of the art. At present, the prevailing binding mechanisms and their sensitivity to the numerous process influencing variables like base material hardness, surface, and cleanliness are still the subject of research. In order to ensure sufficient quality despite the lack of process understanding, random destructive testing is carried out during ongoing production. The welding systems’ internal monitoring methods are currently not sufficient to make a prediction of the joint quality achieved. To determine process phases and extract features regarding the joint formation, the observation of process vibrations at the horn, anvil, and the components using laser-doppler-vibrometry, laser triangulation sensors or other suitable external measurement technology is common. These methods require external accessibility to the measurement position, not given in the industrial production environment. In this study, measurements of the high-frequency power signal of the welding system are conducted, and several machine learning models for quality prediction are set up. To ensure the robustness, several disturbances, e.g., changing material hardness and cleanliness, are taken into account. Thus, it will be evaluated to what extent an industrially suitable quality monitoring can be implemented by means of electrical measuring technology and how much more accurate such an external measuring system is compared to the possibilities already available in the welding system.
Author Schiebahn, Alexander
Reisgen, Uwe
Chen, Chun-Yu
Müller, Florian W.
Author_xml – sequence: 1
  givenname: Florian W.
  orcidid: 0000-0001-7435-2357
  surname: Müller
  fullname: Müller, Florian W.
  email: florian.mueller@isf.rwth-aachen.de
  organization: Welding and Joining Institute, RWTH Aachen University
– sequence: 2
  givenname: Chun-Yu
  orcidid: 0000-0002-8880-3021
  surname: Chen
  fullname: Chen, Chun-Yu
  organization: Welding and Joining Institute, RWTH Aachen University, Division of Advanced Manufacturing, Tsinghua University Shenzhen International Graduate School
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0001-8427-6765
  surname: Schiebahn
  fullname: Schiebahn, Alexander
  organization: Welding and Joining Institute, RWTH Aachen University
– sequence: 4
  givenname: Uwe
  orcidid: 0000-0003-4920-2351
  surname: Reisgen
  fullname: Reisgen, Uwe
  organization: Welding and Joining Institute, RWTH Aachen University
BookMark eNp9kE1rAyEQhqWk0CTtH-hJ6HnbWTWrHkPoFwR6ac-irls27K5bdQn99zVJodBDDiLMzOO8Pgs0G_zgELot4b4E4A-RQSlZAYQUUDIiCnmB5qXgoqiqSs7QHIDRghAhrtAixh0AyHzmSK3HsWutTq0fsG-w65xNIRc6PPq9C7h3Ok7B9W5IETc-4DF462LEvR_a5EM7fOJ2wFOXgo65ZDORMr13XZ171-iy0V10N7_3En08Pb5vXort2_PrZr0tLK1oKgg3ldGcrzQTxlICdc0J0UbWUDpCAah1jhpitTBmVQGxhnO5kkw2kgto6BLdnd7N8b4mF5Pa-SkMeaUinAMIBoznKXKassHHGFyjxtD2OnyrEtRBpDqJVFmkOopUMkPiH2TbdBSWv9x251F6QuN4EOXCX6oz1A-loYtP
CitedBy_id crossref_primary_10_1016_j_jajp_2024_100204
crossref_primary_10_1007_s40194_024_01905_3
crossref_primary_10_1080_10426914_2023_2236186
crossref_primary_10_1155_je_8941576
crossref_primary_10_1515_htmp_2022_0298
crossref_primary_10_3390_met14080892
crossref_primary_10_1177_02670836231215651
crossref_primary_10_1177_14644207241245431
crossref_primary_10_3390_met13101661
Cites_doi 10.1177/2041297510393664
10.1016/j.jajp.2021.100086
10.1007/s40194-019-00788-z
10.1007/s00170-010-2627-1
10.18154/RWTH-2020-08744
10.37544/1436-4980-2002-9-436
10.31030/2251682
10.1016/j.jmapro.2022.02.057
10.1007/s00170-012-3920-y
10.1016/j.neucom.2018.03.067
10.6100/IR161561
10.1016/j.jestch.2015.04.00
10.1088/1742-6596/382/1/012013
10.1007/s40194-021-01222-z
10.1016/J.JMATPROTEC.2016.01.006
10.1115/1.4028059
10.1016/j.jajp.2020.100005
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s40194-022-01428-9
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-6669
EndPage 415
ExternalDocumentID 10_1007_s40194_022_01428_9
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: 470052705
– fundername: RWTH Aachen University (3131)
GroupedDBID --K
-EM
06D
0R~
1B1
203
2LR
30V
4.4
406
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
IHE
IKXTQ
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M41
M4Y
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9J
P2P
PT4
RIG
ROL
RPZ
RSV
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XPP
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z85
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-27b6ba775a48bc320dd722ab9d01e23003cee3b2ca8bb5602cb7795949f9780f3
IEDL.DBID AGYKE
ISSN 0043-2288
IngestDate Fri Jul 25 09:16:25 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Tue Jul 01 04:25:38 EDT 2025
Fri Feb 21 02:44:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Gaussian process regression
Quality prediction
Ultrasonic metal welding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-27b6ba775a48bc320dd722ab9d01e23003cee3b2ca8bb5602cb7795949f9780f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7435-2357
0000-0001-8427-6765
0000-0002-8880-3021
0000-0003-4920-2351
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s40194-022-01428-9
PQID 2770084047
PQPubID 2043671
PageCount 21
ParticipantIDs proquest_journals_2770084047
crossref_primary_10_1007_s40194_022_01428_9
crossref_citationtrail_10_1007_s40194_022_01428_9
springer_journals_10_1007_s40194_022_01428_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle The International Journal of Materials Joining
PublicationTitle Welding in the world
PublicationTitleAbbrev Weld World
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Müller FW, Mirz C, Weil S, Reisgen U, Schiebahn A, Corves B (2021) Schlussbericht zum Vorhaben IGF-Nr.: 20.161N / Systemidentifikation und Monitoring von Metall-Ultraschallschweißprozessen. DVS Forschungsvereinigung
Müller FW, Schiebahn A, Reisgen U (2019) Untersuchungen zum Störeinfluss von Werkstoff- und Oberflächeneigenschaften auf Cu-Cu Metall-Ultraschallschweißverbindungen. METALL, 73. Jahrgang, pp 463–467
Elangovan S, Anand K, Prakasan K (2012) Parametric optimization of ultrasonic metal welding using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 63(5):561–572. https://doi.org/10.1007/s00170-012-3920-y
Rozenberg L, Mitskevich A (1973) Ultrasonic welding of metals. Physical Principles of Ultrasonic Technology, V.1, Part 2, Acoustic Institute Acadamy of Sciences of the USSR, Moscow, USSR, Plenum Press, New York
Balz I, Abi Raad E, Rosenthal E, Lohoff R, Schiebahn A, Reisgen U, Vorländer M (2020) Process monitoring of ultrasonic metal welding of battery tabs using external sensor data. J Adv Join Process 1. https://doi.org/10.1016/j.jajp.2020.100005
DIN EN 13599 “Copper and copper alloys - Copper plate, sheet and strip for electrical purposes; German version EN 13599:2014“ https://doi.org/10.31030/2251682
Harthoorn JL (1978) Ultrasonic metal welding. Technische Hogeschool Eindhoven, Eindhoven. https://doi.org/10.6100/IR161561
Müller FW, Schiebahn A, Reisgen U (2022) Quality prediction of disturbed ultrasonic metal welds. Journal of Advanced Joining Processes 5:100086. https://doi.org/10.1016/j.jajp.2021.100086
Al-Sarraf Z, Lucas M (2012) A study of weld quality in ultrasonic spot welding of similar and dissimilar metals. MPSVA, International Conference on Modern Practice in Stress and Vibration Analysis. Journal of Physics: Conference Series (Online), 382:012013/1–6. https://doi.org/10.1088/1742-6596/382/1/012013
SchwarzEBleierFGuenterFMikutRBergmannJImproving process monitoring of ultrasonic metal welding using classical machine learning methods and process-informed time series evaluationJ Manuf Process202277546210.1016/j.jmapro.2022.02.057
GesterAWagnerGPöthigPAnalysis of the oscillation behavior during ultrasonic welding of EN AW-1070 wire strands and EN CW004A terminalsWeld World20226656757610.1007/s40194-021-01222-z
Schunk Sonosystems GmbH, Wettenberg. https://www.schunk-sonosystems.com/en/sonosystems-use-case/detailpulse-inverter-module-with-ultrasonically-welded-power-contacts~sa11785. Accessed 10.07.2022
DiFinizio T (2005) Ultrasonic intelligence. In: Wire and Cable Technology International, Band 33 Heft 5, pp 88–90
KimWArgentoAGrimaASchollDWardSThermo-mechanical analysis of frictional heating in ultra-sonic spot welding of aluminium platesProc Inst Mech Eng, Part B (Jour-nal of Engineering Manufacture)20112257109311031:CAS:528:DC%2BC38XlsFSjsrg%3D10.1177/2041297510393664
Greitmann MJ, Adam T, Holzweißig HG et al (2003) Gegenwärtiger Stand und zukunftsaussichten der Sonderschweißverfahren - Ultraschallschweißen. Schweißen und Schneiden, Band 55 Heft 6, pp 306–308,310,312–314
Lee SS, Shao C, Kim TH, Hu SJ, Kannatey-Asibu E, Cai WW et al (2014) Characterization of ultrasonic metal welding by correlating online sensor signals with weld attributes. J Manuf Sci E T ASME 136(5):051019. https://doi.org/10.1115/1.4028059
Balz I (2020) Prozessanalyse der thermo-mechanischen Vorgänge während der Verbindungsbildung beim Metall-Ultraschallschweißen. Dissertation. Aachener Berichte Fügetechnik, Band 3/2020, pp 1–149. https://doi.org/10.18154/RWTH-2020-08744
ElangovanSPrakasanKJaiganeshVOptimization of ultrasonic welding parameters for copper to copper joints using design of experimentsInt J Adv Manuf Technol20105116317110.1007/s00170-010-2627-1
ChristMBraunNNeufferJKempa-LiehrAWTime Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package)Neurocomputing2018307727710.1016/j.neucom.2018.03.067
De Vries E (2004) Mechanics and mechanisms of ultrasonic metal welding. Dissertation. Ohio State University, Columbus, Ohio
Wodara J (2004) Ultraschallfügen und -trennen. Grundlagen der Fügetechnik. Verlag für Schweißen und verwandte Verfahren, Fachbuchreihe Schweißtechnik, Band 151/1, Düsseldorf
LuYSongHTaberGAFosterDRDaehnGSZhangWIn-situ measurement of relative motion during ultrasonic spot welding of aluminum alloy using photonic Doppler velocimetryJ Mater Process Technol20162314314401:CAS:528:DC%2BC28XhslSqs7s%3D10.1016/J.JMATPROTEC.2016.01.006
Balz I, Rosenthal E, Reimer A, Turiaux M, Schiebahn A, Reisgen U (2019) Analysis of the thermo-mechanical mechanism during ultrasonic welding of battery tabs using high-speed image capturing. Weld World 63:1573–1582. https://doi.org/10.1007/s40194-019-00788-z
Balle F, Wagner G, Eifler D (2009) Charakterisierung des Ultraschallschweißprozesses durch hochauflösende Laser-Doppler-Vibrometrie. In: InFocus – Magazin für Optische Messsysteme, Ausgabe 1/2009 – ISSN 1864–9181
Zäh MF, Mosandl T, Schlickenrieder K (2002) Ultraschall-Metallschweißen. Steigerung der Prozesssicherheit für das Ultraschall-Metallschweißen. In: wt Werkstattstechnik online 92(9):436–440
Adam T (1999) Ultraschallschweißen ausgewählter Aluminiumlegierungen mit erhöhter Festigkeit. Dissertation. Otto-von-Guericke-Universität, Magdeburg
Reisgen U, Stein L (2016) Fundamentals of joining technology welding, brazing and adhesive bonding, English edn. DVS Media, Band 13, Düsseldorf
Müller FW, Mirz C, Weil S, Reisgen U, Schiebahn A, Corves B (2022) Systemidentifikation und Monitoring von Metall-Ultraschallschweißprozessen. SCHWEISSEN und SCHNEIDEN, Ausgabe 5, 2022, ISSN 0036–7184. DVS-Media GmbH
SAE/USCAR-38–1:2016–04. Performance specification for ultrasonically welded wire terminations. Berlin: Beuth Verlag GmbH 2016
Lee S (2013) Process and quality characterization for ultrasonic welding of lithium-ion batteries. Dissertation. University of Michigan, Michigan. hdl.handle.net/2027.42/99803
SatpathyMPMoharanaBRDewanganSSahooSK Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approachEngineering Science and Technology, an International Journal201518463464710.1016/j.jestch.2015.04.00
Adam T, Martinek I, Wodara J (2004) Einsatz des Ultraschall-Metallschweißens für innovative Werkstoffe und interessante Problemstellungen der Wirtschaft. Schweißen und Schneiden 2004, DVS-Berichte Band 232; 171–176
S Elangovan (1428_CR21) 2010; 51
1428_CR13
1428_CR12
1428_CR10
1428_CR31
1428_CR30
W Kim (1428_CR28) 2011; 225
1428_CR19
1428_CR18
1428_CR17
1428_CR16
1428_CR15
1428_CR14
1428_CR6
1428_CR5
1428_CR8
1428_CR7
1428_CR9
A Gester (1428_CR25) 2022; 66
M Christ (1428_CR32) 2018; 307
E Schwarz (1428_CR24) 2022; 77
Y Lu (1428_CR11) 2016; 231
1428_CR23
MP Satpathy (1428_CR22) 2015; 18
1428_CR20
1428_CR29
1428_CR2
1428_CR1
1428_CR27
1428_CR4
1428_CR26
1428_CR3
References_xml – reference: Al-Sarraf Z, Lucas M (2012) A study of weld quality in ultrasonic spot welding of similar and dissimilar metals. MPSVA, International Conference on Modern Practice in Stress and Vibration Analysis. Journal of Physics: Conference Series (Online), 382:012013/1–6. https://doi.org/10.1088/1742-6596/382/1/012013
– reference: Zäh MF, Mosandl T, Schlickenrieder K (2002) Ultraschall-Metallschweißen. Steigerung der Prozesssicherheit für das Ultraschall-Metallschweißen. In: wt Werkstattstechnik online 92(9):436–440
– reference: Adam T, Martinek I, Wodara J (2004) Einsatz des Ultraschall-Metallschweißens für innovative Werkstoffe und interessante Problemstellungen der Wirtschaft. Schweißen und Schneiden 2004, DVS-Berichte Band 232; 171–176
– reference: De Vries E (2004) Mechanics and mechanisms of ultrasonic metal welding. Dissertation. Ohio State University, Columbus, Ohio
– reference: Lee S (2013) Process and quality characterization for ultrasonic welding of lithium-ion batteries. Dissertation. University of Michigan, Michigan. hdl.handle.net/2027.42/99803
– reference: SAE/USCAR-38–1:2016–04. Performance specification for ultrasonically welded wire terminations. Berlin: Beuth Verlag GmbH 2016
– reference: ElangovanSPrakasanKJaiganeshVOptimization of ultrasonic welding parameters for copper to copper joints using design of experimentsInt J Adv Manuf Technol20105116317110.1007/s00170-010-2627-1
– reference: Lee SS, Shao C, Kim TH, Hu SJ, Kannatey-Asibu E, Cai WW et al (2014) Characterization of ultrasonic metal welding by correlating online sensor signals with weld attributes. J Manuf Sci E T ASME 136(5):051019. https://doi.org/10.1115/1.4028059
– reference: GesterAWagnerGPöthigPAnalysis of the oscillation behavior during ultrasonic welding of EN AW-1070 wire strands and EN CW004A terminalsWeld World20226656757610.1007/s40194-021-01222-z
– reference: Balle F, Wagner G, Eifler D (2009) Charakterisierung des Ultraschallschweißprozesses durch hochauflösende Laser-Doppler-Vibrometrie. In: InFocus – Magazin für Optische Messsysteme, Ausgabe 1/2009 – ISSN 1864–9181
– reference: Balz I, Abi Raad E, Rosenthal E, Lohoff R, Schiebahn A, Reisgen U, Vorländer M (2020) Process monitoring of ultrasonic metal welding of battery tabs using external sensor data. J Adv Join Process 1. https://doi.org/10.1016/j.jajp.2020.100005
– reference: Müller FW, Mirz C, Weil S, Reisgen U, Schiebahn A, Corves B (2022) Systemidentifikation und Monitoring von Metall-Ultraschallschweißprozessen. SCHWEISSEN und SCHNEIDEN, Ausgabe 5, 2022, ISSN 0036–7184. DVS-Media GmbH
– reference: Balz I, Rosenthal E, Reimer A, Turiaux M, Schiebahn A, Reisgen U (2019) Analysis of the thermo-mechanical mechanism during ultrasonic welding of battery tabs using high-speed image capturing. Weld World 63:1573–1582. https://doi.org/10.1007/s40194-019-00788-z
– reference: ChristMBraunNNeufferJKempa-LiehrAWTime Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package)Neurocomputing2018307727710.1016/j.neucom.2018.03.067
– reference: Harthoorn JL (1978) Ultrasonic metal welding. Technische Hogeschool Eindhoven, Eindhoven. https://doi.org/10.6100/IR161561
– reference: Müller FW, Schiebahn A, Reisgen U (2019) Untersuchungen zum Störeinfluss von Werkstoff- und Oberflächeneigenschaften auf Cu-Cu Metall-Ultraschallschweißverbindungen. METALL, 73. Jahrgang, pp 463–467
– reference: Adam T (1999) Ultraschallschweißen ausgewählter Aluminiumlegierungen mit erhöhter Festigkeit. Dissertation. Otto-von-Guericke-Universität, Magdeburg
– reference: Reisgen U, Stein L (2016) Fundamentals of joining technology welding, brazing and adhesive bonding, English edn. DVS Media, Band 13, Düsseldorf
– reference: Müller FW, Schiebahn A, Reisgen U (2022) Quality prediction of disturbed ultrasonic metal welds. Journal of Advanced Joining Processes 5:100086. https://doi.org/10.1016/j.jajp.2021.100086
– reference: KimWArgentoAGrimaASchollDWardSThermo-mechanical analysis of frictional heating in ultra-sonic spot welding of aluminium platesProc Inst Mech Eng, Part B (Jour-nal of Engineering Manufacture)20112257109311031:CAS:528:DC%2BC38XlsFSjsrg%3D10.1177/2041297510393664
– reference: Wodara J (2004) Ultraschallfügen und -trennen. Grundlagen der Fügetechnik. Verlag für Schweißen und verwandte Verfahren, Fachbuchreihe Schweißtechnik, Band 151/1, Düsseldorf
– reference: Schunk Sonosystems GmbH, Wettenberg. https://www.schunk-sonosystems.com/en/sonosystems-use-case/detailpulse-inverter-module-with-ultrasonically-welded-power-contacts~sa11785. Accessed 10.07.2022
– reference: Müller FW, Mirz C, Weil S, Reisgen U, Schiebahn A, Corves B (2021) Schlussbericht zum Vorhaben IGF-Nr.: 20.161N / Systemidentifikation und Monitoring von Metall-Ultraschallschweißprozessen. DVS Forschungsvereinigung
– reference: SchwarzEBleierFGuenterFMikutRBergmannJImproving process monitoring of ultrasonic metal welding using classical machine learning methods and process-informed time series evaluationJ Manuf Process202277546210.1016/j.jmapro.2022.02.057
– reference: Elangovan S, Anand K, Prakasan K (2012) Parametric optimization of ultrasonic metal welding using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 63(5):561–572. https://doi.org/10.1007/s00170-012-3920-y
– reference: Balz I (2020) Prozessanalyse der thermo-mechanischen Vorgänge während der Verbindungsbildung beim Metall-Ultraschallschweißen. Dissertation. Aachener Berichte Fügetechnik, Band 3/2020, pp 1–149. https://doi.org/10.18154/RWTH-2020-08744
– reference: LuYSongHTaberGAFosterDRDaehnGSZhangWIn-situ measurement of relative motion during ultrasonic spot welding of aluminum alloy using photonic Doppler velocimetryJ Mater Process Technol20162314314401:CAS:528:DC%2BC28XhslSqs7s%3D10.1016/J.JMATPROTEC.2016.01.006
– reference: Greitmann MJ, Adam T, Holzweißig HG et al (2003) Gegenwärtiger Stand und zukunftsaussichten der Sonderschweißverfahren - Ultraschallschweißen. Schweißen und Schneiden, Band 55 Heft 6, pp 306–308,310,312–314
– reference: SatpathyMPMoharanaBRDewanganSSahooSK Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approachEngineering Science and Technology, an International Journal201518463464710.1016/j.jestch.2015.04.00
– reference: Rozenberg L, Mitskevich A (1973) Ultrasonic welding of metals. Physical Principles of Ultrasonic Technology, V.1, Part 2, Acoustic Institute Acadamy of Sciences of the USSR, Moscow, USSR, Plenum Press, New York
– reference: DiFinizio T (2005) Ultrasonic intelligence. In: Wire and Cable Technology International, Band 33 Heft 5, pp 88–90
– reference: DIN EN 13599 “Copper and copper alloys - Copper plate, sheet and strip for electrical purposes; German version EN 13599:2014“ https://doi.org/10.31030/2251682
– ident: 1428_CR10
– volume: 225
  start-page: 1093
  issue: 7
  year: 2011
  ident: 1428_CR28
  publication-title: Proc Inst Mech Eng, Part B (Jour-nal of Engineering Manufacture)
  doi: 10.1177/2041297510393664
– ident: 1428_CR4
  doi: 10.1016/j.jajp.2021.100086
– ident: 1428_CR27
  doi: 10.1007/s40194-019-00788-z
– ident: 1428_CR29
– volume: 51
  start-page: 163
  year: 2010
  ident: 1428_CR21
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-010-2627-1
– ident: 1428_CR6
  doi: 10.18154/RWTH-2020-08744
– ident: 1428_CR1
– ident: 1428_CR18
– ident: 1428_CR9
  doi: 10.37544/1436-4980-2002-9-436
– ident: 1428_CR12
– ident: 1428_CR14
– ident: 1428_CR16
– ident: 1428_CR5
– ident: 1428_CR31
  doi: 10.31030/2251682
– ident: 1428_CR3
– volume: 77
  start-page: 54
  year: 2022
  ident: 1428_CR24
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2022.02.057
– ident: 1428_CR23
  doi: 10.1007/s00170-012-3920-y
– volume: 307
  start-page: 72
  year: 2018
  ident: 1428_CR32
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.067
– ident: 1428_CR7
– ident: 1428_CR15
  doi: 10.6100/IR161561
– volume: 18
  start-page: 634
  issue: 4
  year: 2015
  ident: 1428_CR22
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2015.04.00
– ident: 1428_CR8
  doi: 10.1088/1742-6596/382/1/012013
– volume: 66
  start-page: 567
  year: 2022
  ident: 1428_CR25
  publication-title: Weld World
  doi: 10.1007/s40194-021-01222-z
– volume: 231
  start-page: 431
  year: 2016
  ident: 1428_CR11
  publication-title: J Mater Process Technol
  doi: 10.1016/J.JMATPROTEC.2016.01.006
– ident: 1428_CR2
– ident: 1428_CR20
  doi: 10.1115/1.4028059
– ident: 1428_CR26
  doi: 10.1016/j.jajp.2020.100005
– ident: 1428_CR13
– ident: 1428_CR19
– ident: 1428_CR17
– ident: 1428_CR30
SSID ssj0009000
Score 2.3516407
Snippet For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is well-established...
Abstract For the production of e-mobility components such as cable harnesses, battery cells, power electronics, etc., ultrasonic metal welding is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 395
SubjectTerms Chemistry and Materials Science
Cleanliness
Destructive testing
Feature extraction
Hardness
Laser beam welding
Machine learning
Materials Science
Metallic Materials
Monitoring
Position measurement
Power measurement
Research Paper
Solid Mechanics
Theoretical and Applied Mechanics
Triangulation
Wiring harnesses
Title Application of electrical power measurements for process monitoring in ultrasonic metal welding
URI https://link.springer.com/article/10.1007/s40194-022-01428-9
https://www.proquest.com/docview/2770084047
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8RuOjBbyN-kB686UjXlnU7AgGJJpwkwdPSdltihEHYiIl_ve0-mBI14by22fpe21_33vv9AO4o0yDVCYlFmfIsxo2QexR4lilNswWmBsWabIuxM5qwp2lnWhSFJWW2exmSzHbqTbGbvgkYGltiUgk0aLa8GjQ0_sCsDo3u4-vzoCLbxWXpCbUIcd2iWOb3UX4eSBXK3AqMZufN8Agm5ZvmaSbv7XUq2-pzi8Rx1085hsMCgKJu7jEnsBfGp3DwjZbwDPxuFdVGiwjlUjnGmmhpRNXQvPqxmCCNetEyLzdA82yHMKOgtxitZ-lKJIZ7V_fQIB99hFmo6xwmw8FLf2QVQgyWog5NLcKlIwXnHcFcqSjBQcAJEdILsB3qOwym-qilkijhSqkhFFGSGw1z5kWG4CiiF1CPF3F4CSjkgjLBAsF4pLEEF9yJHEWlrXBAO5Fsgl1aw1cFS7kRy5j5G37lbPJ8PXl-Nnm-14T7TZ9lztHxb-ub0sh-sV4Tn3BulAUw4014KG1WPf57tKvdml_DvtGrz9O-b6CertbhrUY1qWxpJx72euNW4cwtqPWd_hdlmu48
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SkKBTywQURqu3EyVhWoQOnUSt0s20kkpDatmlT8fXz5aKACJObYN9zFumff3XsAt4xbkOpF1GHcBA4XKOQeh4GDo2lt5TJEsdhtMfT6Y_4y6UxKmhychdmo3z-kFv8jeS3FBgILlZ1gG3a4vSlj-17P69UEu241bsIcSn2_HJD52cb3JFQjy41iaJ5jng7hoASHpFtE8wi2ouQY9r9QBp6A7NYVZzKPSSFjg54mCxQ8I7P60S8lFpGSRTEKQGb56UUr5D0hq2m2VCny4todFoCTjygvQ53C-Olx1Os7pUiCY5jHMocK7WklREdxXxtG3TAUlCodhG47svcLl9k0yDQ1ytfawhtqtEB9cR7ESD4UszNoJPMkOgcSCcW44qHiIrZ5XijhxZ5hum3ckHVi3YR25TVpSgZxFLKYyjX3ce5paT0tc0_LoAl36z2Lgj_jz9WtKhiyPEuppEIg67_LRRPuqwDVn3-3dvG_5Tew2x-9DeTgefh6CXuoK1-0Z7egkS1X0ZVFH5m-zn-7T4Vpzbs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46QfQg_sTp1By8aViXZE17HNMxfzA8ONgtJG0DguvK1uG_b17arlNU8Nwkh5eG9yXvfd-H0DXjFqT6CSWMRyHhAozcTRwSoKZ1lMcAxUK3xcgfjvnjpDtZY_G7bveqJFlwGkClKc3bWWzaK-KbvRWApC2FtgILoEm4ibbsTcUVavt-v5bd9SoSCiOUBkFJm_l5ja-pqcab30qkLvMM9tFeCRlxr9jjA7SRpIdod01I8AjJXl2HxjODC3MbiD_OwAYNT-unwAW2OBVnBUEAT92ZhlXwW4qX7_lcLUAt186wsBx_JK44dYzGg_vX_pCU1gkkYj7LCRXa10qIruKBjhj14lhQqnQYe53E3jo8ZpMj0zRSgdYW9NBIC3Ad56EBSSLDTlAjnaXJKcKJUIwrHisujM3-Qgnf-BHTnciLWdfoJupUUZNRqSsO9hbvcqWI7CItbaSli7QMm-hmNScrVDX-HN2qNkOWJ2whqRDgBeBx0US31QbVn39f7ex_w6_Q9svdQD4_jJ7O0Q6YzRc92y3UyOfL5MJCklxfur_uEzLH1gI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+electrical+power+measurements+for+process+monitoring+in+ultrasonic+metal+welding&rft.jtitle=Welding+in+the+world&rft.au=M%C3%BCller%2C+Florian+W&rft.au=Chun-Yu%2C+Chen&rft.au=Schiebahn+Alexander&rft.au=Reisgen+Uwe&rft.date=2023-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0043-2288&rft.eissn=1878-6669&rft.volume=67&rft.issue=2&rft.spage=395&rft.epage=415&rft_id=info:doi/10.1007%2Fs40194-022-01428-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-2288&client=summon