Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models
Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out cross-validation (LOO-CV) requires that the observation model can be factorized into simple terms, but a lot of important models in temporal and...
Saved in:
Published in | Computational statistics Vol. 36; no. 2; pp. 1243 - 1261 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0943-4062 1613-9658 |
DOI | 10.1007/s00180-020-01045-4 |
Cover
Loading…
Abstract | Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out cross-validation (LOO-CV) requires that the observation model can be factorized into simple terms, but a lot of important models in temporal and spatial statistics do not have this property or are inefficient or unstable when forced into a factorized form. We derive how to efficiently compute and validate both exact and approximate LOO-CV for any Bayesian non-factorized model with a multivariate normal or Student-
t
distribution on the outcome values. We demonstrate the method using lagged simultaneously autoregressive (SAR) models as a case study. |
---|---|
AbstractList | Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out cross-validation (LOO-CV) requires that the observation model can be factorized into simple terms, but a lot of important models in temporal and spatial statistics do not have this property or are inefficient or unstable when forced into a factorized form. We derive how to efficiently compute and validate both exact and approximate LOO-CV for any Bayesian non-factorized model with a multivariate normal or Student-
$$t$$
t
distribution on the outcome values. We demonstrate the method using lagged simultaneously autoregressive (SAR) models as a case study. Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out cross-validation (LOO-CV) requires that the observation model can be factorized into simple terms, but a lot of important models in temporal and spatial statistics do not have this property or are inefficient or unstable when forced into a factorized form. We derive how to efficiently compute and validate both exact and approximate LOO-CV for any Bayesian non-factorized model with a multivariate normal or Student- t distribution on the outcome values. We demonstrate the method using lagged simultaneously autoregressive (SAR) models as a case study. Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out cross-validation (LOO-CV) requires that the observation model can be factorized into simple terms, but a lot of important models in temporal and spatial statistics do not have this property or are inefficient or unstable when forced into a factorized form. We derive how to efficiently compute and validate both exact and approximate LOO-CV for any Bayesian non-factorized model with a multivariate normal or Student-t distribution on the outcome values. We demonstrate the method using lagged simultaneously autoregressive (SAR) models as a case study. |
Author | Gabry, Jonah Bürkner, Paul-Christian Vehtari, Aki |
Author_xml | – sequence: 1 givenname: Paul-Christian orcidid: 0000-0001-5765-8995 surname: Bürkner fullname: Bürkner, Paul-Christian email: paul.buerkner@gmail.com organization: Department of Computer Science, Aalto University – sequence: 2 givenname: Jonah surname: Gabry fullname: Gabry, Jonah organization: Applied Statistics Center and ISERP, Columbia University – sequence: 3 givenname: Aki surname: Vehtari fullname: Vehtari, Aki organization: Department of Computer Science, Aalto University |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcDrqM3yUwys1SpDxBcqOuY5iEp00lN0kL99aatILhwcXNv4J5zkm-CRkMYLELnBC4JgLhKAKQFDLQUgbrB9REaE04Y7njTjtAYuprhGjg9QZOUFgCUCkrG6H3mnNfeDrnqrdpYXHxxWOdKx5AS3qjeG5V9GCoXYnWjtjZ5NVQlHjulc4j-y5pyjUvVV2ow1Utem-KGc7UMxvbpFB071Sd79tOn6O1u9nr7gJ-e7x9vr5-wZpxlTAWoVu0Org3nigI0jFmthdPUzcvUEceBWdGBE11tG-PE3HAQdG4a1bEpujj4rmL4XNuU5SKs41AiJW1o3XDRMlK26GFr_71onVxFv1RxKwnIHUl5ICkLSbknKesiav-ItM97KDkq3_8vZQdpKjnDh42_r_pH9Q0Jg4rJ |
CitedBy_id | crossref_primary_10_1287_mnsc_2022_4487 crossref_primary_10_3390_agriculture14112084 crossref_primary_10_1093_sysbio_syae044 crossref_primary_10_1016_j_spasta_2024_100843 crossref_primary_10_1098_rspb_2023_2345 crossref_primary_10_1214_23_SS145 crossref_primary_10_2139_ssrn_3674961 crossref_primary_10_1016_j_fcr_2022_108477 crossref_primary_10_1016_j_sste_2024_100698 crossref_primary_10_1111_ejn_16521 crossref_primary_10_3847_1538_3881_acab67 crossref_primary_10_1126_sciadv_abe5163 crossref_primary_10_1162_nol_a_00121 crossref_primary_10_1016_j_foodres_2022_111565 crossref_primary_10_1093_mnras_stac3532 crossref_primary_10_1371_journal_pone_0303309 crossref_primary_10_1002_ecm_1557 crossref_primary_10_3389_fmars_2022_834990 crossref_primary_10_3847_1538_4357_ac80bd crossref_primary_10_1016_j_procir_2024_10_032 crossref_primary_10_1080_00949655_2020_1783262 |
Cites_doi | 10.1109/MASSP.1986.1165342 10.1214/12-SS102 10.1080/01621459.1979.10481632 10.32614/RJ-2018-017 10.1080/17421772.2017.1300679 10.13053/cys-20-2-2083 10.1201/9781420064254 10.1162/08997660151134343 10.1214/aoms/1177729698 10.1017/CBO9780511754944 10.1214/aoms/1177729893 10.1007/s11222-016-9696-4 10.18637/jss.v063.i18 10.1016/j.ijforecast.2009.08.001 10.1007/978-94-015-7799-1 10.1214/ss/1009212519 10.1093/biomet/86.1.153 10.18637/jss.v080.i01 10.1111/j.1365-3121.1992.tb00605.x 10.1111/jors.12188 10.1093/biostatistics/4.1.11 10.18637/jss.v076.i01 10.1007/978-3-540-28650-9_4 10.1109/MLSP.2012.6349794 10.1007/s42113-018-0020-6 10.1111/j.2517-6161.1979.tb01090.x |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s00180-020-01045-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection (UHCL Subscription) ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1613-9658 |
EndPage | 1261 |
ExternalDocumentID | 10_1007_s00180_020_01045_4 |
GrantInformation_xml | – fundername: Acedemy of Finland grantid: 313122 – fundername: Technology Industries of Finland Centennial Foundation grantid: 70007503 – fundername: Academy of Finland grantid: 298742 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 88I 8C1 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c363t-270a8a70a86cd66a200533ecc7fc2fb3ec91f603e790f794e5df7bd6072bd5a93 |
IEDL.DBID | BENPR |
ISSN | 0943-4062 |
IngestDate | Fri Jul 25 19:09:26 EDT 2025 Tue Jul 01 04:23:17 EDT 2025 Thu Apr 24 22:50:19 EDT 2025 Fri Feb 21 02:48:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Non-factorized models Bayesian inference SAR models Cross-validation Pareto-smoothed importance-sampling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-270a8a70a86cd66a200533ecc7fc2fb3ec91f603e790f794e5df7bd6072bd5a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5765-8995 |
OpenAccessLink | https://link.springer.com/10.1007/s00180-020-01045-4 |
PQID | 2524567831 |
PQPubID | 54096 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2524567831 crossref_primary_10_1007_s00180_020_01045_4 crossref_citationtrail_10_1007_s00180_020_01045_4 springer_journals_10_1007_s00180_020_01045_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210600 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 6 year: 2021 text: 20210600 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Computational statistics |
PublicationTitleAbbrev | Comput Stat |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Haining, Haining (CR14) 2003 LeSage, Pace (CR18) 2009 Goulard, Laurent, Thomas-Agnan (CR13) 2017; 12 Zellner (CR33) 1976; 71 Bartlett (CR3) 1951; 22 Fernández, Steel (CR9) 1999; 86 CR34 Juárez-Ruiz, Cortés-Maldonado, Pérez-Rodríguez (CR17) 2016; 20 CR32 CR31 Cressie (CR8) 1992; 4 Vehtari, Ojanen (CR30) 2012; 6 Halleck Vega, Elhorst (CR15) 2015; 55 Sundararajan, Keerthi (CR26) 2001; 13 Bürkner (CR5) 2017; 80 Tong (CR27) 2012 Hoeting, Madigan, Raftery, Volinsky (CR16) 1999; 14 Vehtari, Gelman, Gabry (CR29) 2017; 27 Bivand, Piras (CR4) 2015; 63 Ando, Tsay (CR1) 2010; 26 O’Hagan (CR19) 1979; 41 CR7 CR28 Anselin (CR2) 1988 Rabiner, Juang (CR22) 1986; 3 CR24 CR23 Gelfand, Dey, Chang (CR11) 1992; 4 CR21 Bürkner (CR6) 2018; 10 CR20 Sherman, Morrison (CR25) 1950; 21 Geisser, Eddy (CR10) 1979; 74 Gelfand, Vounatsou (CR12) 2003; 4 A O’Hagan (1045_CR19) 1979; 41 YL Tong (1045_CR27) 2012 T Ando (1045_CR1) 2010; 26 1045_CR20 MS Bartlett (1045_CR3) 1951; 22 AE Gelfand (1045_CR12) 2003; 4 1045_CR21 S Sundararajan (1045_CR26) 2001; 13 1045_CR23 1045_CR24 S Halleck Vega (1045_CR15) 2015; 55 C Fernández (1045_CR9) 1999; 86 1045_CR28 N Cressie (1045_CR8) 1992; 4 J Sherman (1045_CR25) 1950; 21 1045_CR7 A Vehtari (1045_CR29) 2017; 27 P-C Bürkner (1045_CR6) 2018; 10 A Vehtari (1045_CR30) 2012; 6 A Gelfand (1045_CR11) 1992; 4 E Juárez-Ruiz (1045_CR17) 2016; 20 JP LeSage (1045_CR18) 2009 A Zellner (1045_CR33) 1976; 71 L Anselin (1045_CR2) 1988 RP Haining (1045_CR14) 2003 JA Hoeting (1045_CR16) 1999; 14 1045_CR31 1045_CR32 1045_CR34 L Rabiner (1045_CR22) 1986; 3 P-C Bürkner (1045_CR5) 2017; 80 M Goulard (1045_CR13) 2017; 12 R Bivand (1045_CR4) 2015; 63 S Geisser (1045_CR10) 1979; 74 |
References_xml | – volume: 3 start-page: 4 issue: 1 year: 1986 end-page: 16 ident: CR22 article-title: An introduction to hidden Markov models publication-title: IEEE ASSP Mag doi: 10.1109/MASSP.1986.1165342 – volume: 71 start-page: 400 issue: 354 year: 1976 end-page: 405 ident: CR33 article-title: Bayesian and non-Bayesian analysis of the regression model with multivariate Student-t error terms publication-title: J Am Stat Assoc – volume: 6 start-page: 142 year: 2012 end-page: 228 ident: CR30 article-title: A survey of Bayesian predictive methods for model assessment, selection and comparison publication-title: Stat Surv doi: 10.1214/12-SS102 – volume: 74 start-page: 153 issue: 365 year: 1979 end-page: 160 ident: CR10 article-title: A predictive approach to model selection publication-title: J Am Stat Assoc doi: 10.1080/01621459.1979.10481632 – volume: 10 start-page: 395 issue: 1 year: 2018 end-page: 411 ident: CR6 article-title: Advanced Bayesian multilevel modeling with the R package brms publication-title: R J doi: 10.32614/RJ-2018-017 – year: 2012 ident: CR27 publication-title: The multivariate normal distribution – volume: 12 start-page: 304 issue: 2–3 year: 2017 end-page: 325 ident: CR13 article-title: About predictions in spatial autoregressive models: optimal and almost optimal strategies publication-title: Spat Econ Anal doi: 10.1080/17421772.2017.1300679 – volume: 20 start-page: 251 issue: 2 year: 2016 end-page: 262 ident: CR17 article-title: Relationship between the inverses of a matrix and a submatrix publication-title: Computación y Sistemas doi: 10.13053/cys-20-2-2083 – year: 2009 ident: CR18 publication-title: Introduction to spatial econometrics doi: 10.1201/9781420064254 – volume: 13 start-page: 1103 issue: 5 year: 2001 end-page: 1118 ident: CR26 article-title: Predictive approaches for choosing hyperparameters in Gaussian processes publication-title: Neural Comput doi: 10.1162/08997660151134343 – volume: 22 start-page: 107 issue: 1 year: 1951 end-page: 111 ident: CR3 article-title: An inverse matrix adjustment arising in discriminant analysis publication-title: Ann Math Stat doi: 10.1214/aoms/1177729698 – year: 2003 ident: CR14 publication-title: Spatial data analysis: theory and practice doi: 10.1017/CBO9780511754944 – volume: 21 start-page: 124 issue: 1 year: 1950 end-page: 127 ident: CR25 article-title: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix publication-title: Ann Math Stat doi: 10.1214/aoms/1177729893 – volume: 27 start-page: 1413 issue: 5 year: 2017 end-page: 1432 ident: CR29 article-title: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC publication-title: Stat Comput doi: 10.1007/s11222-016-9696-4 – volume: 63 start-page: 1 issue: 18 year: 2015 end-page: 36 ident: CR4 article-title: Comparing implementations of estimation methods for spatial econometrics publication-title: J Stat Softw doi: 10.18637/jss.v063.i18 – volume: 26 start-page: 744 issue: 4 year: 2010 end-page: 763 ident: CR1 article-title: Predictive likelihood for Bayesian model selection and averaging publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2009.08.001 – ident: CR23 – ident: CR21 – year: 1988 ident: CR2 publication-title: Spatial econometrics: methods and models doi: 10.1007/978-94-015-7799-1 – volume: 14 start-page: 382 issue: 4 year: 1999 end-page: 417 ident: CR16 article-title: Bayesian model averaging: a tutorial publication-title: Stat Sci doi: 10.1214/ss/1009212519 – ident: CR31 – volume: 86 start-page: 153 issue: 1 year: 1999 end-page: 167 ident: CR9 article-title: Multivariate student-t regression models: pitfalls and inference publication-title: Biometrika doi: 10.1093/biomet/86.1.153 – ident: CR32 – volume: 80 start-page: 1 issue: 1 year: 2017 end-page: 28 ident: CR5 article-title: brms: an R package for Bayesian multilevel models using Stan publication-title: J Stat Softw doi: 10.18637/jss.v080.i01 – ident: CR34 – volume: 4 start-page: 613 issue: 5 year: 1992 end-page: 617 ident: CR8 article-title: Statistics for spatial data publication-title: Terra Nova doi: 10.1111/j.1365-3121.1992.tb00605.x – ident: CR7 – volume: 4 start-page: 147 year: 1992 end-page: 167 ident: CR11 article-title: Model determination using predictive distributions with implementation via sampling-based methods publication-title: Bayesian Stat – volume: 41 start-page: 358 issue: 3 year: 1979 end-page: 367 ident: CR19 article-title: On outlier rejection phenomena in Bayes inference publication-title: J R Stat Soc Ser B (Methodol) – volume: 55 start-page: 339 issue: 3 year: 2015 end-page: 363 ident: CR15 article-title: The slx model publication-title: J Region Sci doi: 10.1111/jors.12188 – ident: CR28 – volume: 4 start-page: 11 issue: 1 year: 2003 end-page: 15 ident: CR12 article-title: Proper multivariate conditional autoregressive models for spatial data analysis publication-title: Biostatistics doi: 10.1093/biostatistics/4.1.11 – ident: CR24 – ident: CR20 – volume: 22 start-page: 107 issue: 1 year: 1951 ident: 1045_CR3 publication-title: Ann Math Stat doi: 10.1214/aoms/1177729698 – volume: 74 start-page: 153 issue: 365 year: 1979 ident: 1045_CR10 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1979.10481632 – volume: 63 start-page: 1 issue: 18 year: 2015 ident: 1045_CR4 publication-title: J Stat Softw doi: 10.18637/jss.v063.i18 – volume: 71 start-page: 400 issue: 354 year: 1976 ident: 1045_CR33 publication-title: J Am Stat Assoc – volume: 13 start-page: 1103 issue: 5 year: 2001 ident: 1045_CR26 publication-title: Neural Comput doi: 10.1162/08997660151134343 – ident: 1045_CR31 – volume: 27 start-page: 1413 issue: 5 year: 2017 ident: 1045_CR29 publication-title: Stat Comput doi: 10.1007/s11222-016-9696-4 – volume-title: Spatial data analysis: theory and practice year: 2003 ident: 1045_CR14 doi: 10.1017/CBO9780511754944 – volume: 3 start-page: 4 issue: 1 year: 1986 ident: 1045_CR22 publication-title: IEEE ASSP Mag doi: 10.1109/MASSP.1986.1165342 – volume: 4 start-page: 613 issue: 5 year: 1992 ident: 1045_CR8 publication-title: Terra Nova doi: 10.1111/j.1365-3121.1992.tb00605.x – volume: 6 start-page: 142 year: 2012 ident: 1045_CR30 publication-title: Stat Surv doi: 10.1214/12-SS102 – volume: 55 start-page: 339 issue: 3 year: 2015 ident: 1045_CR15 publication-title: J Region Sci doi: 10.1111/jors.12188 – ident: 1045_CR24 – volume: 86 start-page: 153 issue: 1 year: 1999 ident: 1045_CR9 publication-title: Biometrika doi: 10.1093/biomet/86.1.153 – volume: 12 start-page: 304 issue: 2–3 year: 2017 ident: 1045_CR13 publication-title: Spat Econ Anal doi: 10.1080/17421772.2017.1300679 – volume: 4 start-page: 11 issue: 1 year: 2003 ident: 1045_CR12 publication-title: Biostatistics doi: 10.1093/biostatistics/4.1.11 – volume-title: The multivariate normal distribution year: 2012 ident: 1045_CR27 – ident: 1045_CR20 – volume: 80 start-page: 1 issue: 1 year: 2017 ident: 1045_CR5 publication-title: J Stat Softw doi: 10.18637/jss.v080.i01 – volume: 20 start-page: 251 issue: 2 year: 2016 ident: 1045_CR17 publication-title: Computación y Sistemas doi: 10.13053/cys-20-2-2083 – ident: 1045_CR7 doi: 10.18637/jss.v076.i01 – ident: 1045_CR34 – ident: 1045_CR32 – volume-title: Spatial econometrics: methods and models year: 1988 ident: 1045_CR2 doi: 10.1007/978-94-015-7799-1 – volume: 14 start-page: 382 issue: 4 year: 1999 ident: 1045_CR16 publication-title: Stat Sci doi: 10.1214/ss/1009212519 – ident: 1045_CR23 doi: 10.1007/978-3-540-28650-9_4 – volume: 21 start-page: 124 issue: 1 year: 1950 ident: 1045_CR25 publication-title: Ann Math Stat doi: 10.1214/aoms/1177729893 – ident: 1045_CR21 doi: 10.1109/MLSP.2012.6349794 – volume-title: Introduction to spatial econometrics year: 2009 ident: 1045_CR18 doi: 10.1201/9781420064254 – volume: 26 start-page: 744 issue: 4 year: 2010 ident: 1045_CR1 publication-title: Int J Forecast doi: 10.1016/j.ijforecast.2009.08.001 – volume: 4 start-page: 147 year: 1992 ident: 1045_CR11 publication-title: Bayesian Stat – volume: 10 start-page: 395 issue: 1 year: 2018 ident: 1045_CR6 publication-title: R J doi: 10.32614/RJ-2018-017 – ident: 1045_CR28 doi: 10.1007/s42113-018-0020-6 – volume: 41 start-page: 358 issue: 3 year: 1979 ident: 1045_CR19 publication-title: J R Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1979.tb01090.x |
SSID | ssj0022721 |
Score | 2.365504 |
Snippet | Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1243 |
SubjectTerms | Autoregressive models Bayesian analysis Economic Theory/Quantitative Economics/Mathematical Methods Mathematics and Statistics Model accuracy Original Paper Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Statistics |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L_MgOhWnU3LwpoE2bdL1OGVjCPOig91qkr7AYExxnaB_vS_px1BU8NDS0jQt7-Xj_ZL3e4-Qy1CbkOvUMCMUsDjhwFJwC_k8QECUKIi0IwpP7uV4Gt_NxKwiha1qb_d6S9KP1A3ZzeWPC5iDOw5DCBZvkx2B2N058k35oIFZPPFsK-cyh-hI8ooq83MdX6ejjY35bVvUzzajfbJXmYl0UOr1gGzBskN2J02M1VWHtJ2dWIZZPiRPQx8KAmcQugD1Bux5ice6oP6zDJvTvEyeRNFIpTfqHRx5kiL2Z2XGnfkH5HiLw_SCqmVOH8qYl6ygPlfO6ohMR8PH2zGrkicwE8mocDwz1VfuJE0upeKedYsKS6zhVuNVGloZRJCkgcVOCSK3ic5lkHCdC5VGx6SFPwEnhAZgNAQ5GhImiEOI-ylYMFJYq8PQ5rJLwlqGmakii7sEF4usiYns5Z6h3DMv9yzukqvmnZcyrsafpXu1arKqj60yLtymbdKPwi65rtW1efx7baf_K35G2tw5svillx5pFa9rOEdLpNAXvuF9AgB41FI priority: 102 providerName: Springer Nature |
Title | Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models |
URI | https://link.springer.com/article/10.1007/s00180-020-01045-4 https://www.proquest.com/docview/2524567831 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUeJsaH6DYqP_AGFrGTOMkT6qp2E2gTAiqNp-CPszSp6gbNJsFfz9lxWw2JPcTKl53ozj7fnX33A3gjjBXSNJbbUiMvKom8weDIlxkZRJXG3IRA4fMLdbYoPl6Wl8nhtk7bKjcyMQpqd22Dj_y9LMMSXVXn4sPNTx5Qo8LqaoLQ2IMhieC6HMDwZHbx-cvW5JJVjLwK2-fIUlIyhc3E4LmAR5fxYD4Fm6Tkxf2paadv_rNEGmee-VPYTyojm_Q8PoBHuHoGT863-VbXz-HHLGaCoAmELVHfIb9e0XHbsfglTr3pqsdOYqSjshP9G0PsJCPTn_eAO1d_0NElSekl0yvHvvYpL3nHIlTO-gUs5rNv0zOesBO4zVXehTAzXetQKOuU0jIG3RK_Km-lN3TWCK-yHKsm8zQmsXS-Mk5llTSu1E3-Egb0E_gKWIbWYOZIj7BZIbCoG_RoVem9EcI7NQKxIVtrU2LxgG-xbLcpkSOpWyJ1G0ndFiN4u61z06fVePDt4w032jTE1u2uQ4zg3YZDu8f_b-3w4daO4LEM-1aip-UYBt2vW3xNikdnxrBXT0Uo56djGE5Ov3-ajVOPo7tTNaVyISd_AV2F2bw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hOLQ9VEBbdQu0PrSn1mriJM7mUKFCFy2FXVUtSNyCP8YS0ioLbADRH8VvZOwku2oluHFIlCiJk4zHnhnbbx7Ax1ibWOjCcJMp5GkukBfoB_JFRAFRrjDRHig8GsvhcfrzJDtZgrsOC-OXVXZ9Yuio7dT4MfKvIvNTdHk_ibfPL7hnjfKzqx2FRqMWB3h7QyHb7Nv-D6rfT0LsDY52h7xlFeAmkUntAViqr_xOGiulEgGOSn-SOyOcpqMidjJKMC8iR9qKmXW5tjLKhbaZ8smXqMtfITejoFa0sjMY__o9D_FEHpBefrkeRWZStDCdANbz_HcR9-Gaj4Eynv5rChf-7X9TssHS7a3Cy9ZFZd8bnVqDJazW4cVont919gpOByHzBBksNkF1jXxa0XZVs_AmTtp71nA1MfKJ2Y66RY_VZNW04g3Bz9lftHRKVmHCVGXZnybFJq9ZoOaZvYbjJ5HqG1imj8C3wCI0GiNLfouJ0hjTfoEOjcyc03HsrOxB3ImtNG0ic8-nMSnnKZiDqEsSdRlEXaY9-Dx_5rxJ4_Ho3ZtdbZRtk56VCwXswZeuhhaXHy7t3eOlfYBnw6PRYXm4Pz7YgOfCr5kJozybsFxfXuEWOT21ft9qGoPTp1bue5yQEjc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9VAEN8QTIgejKLGJ6h7wJNuaLftbnswRIEXECEmSsKt7MdsQvLSh76CwT_Nv46ZbfteIIEbhzZt-j073ZnZnd_8GNtIrUulrZxwhQGRawmiAhrIlwkGRNpAZgkofHik9o7zbyfFyRL7P2BhKK1y6BNjR-2njsbIN2VBU3S6zNLN0KdF_NgZb53_FsQgRTOtA51GpyIHcPUXw7fZ5_0dbOsPUo53f23viZ5hQLhMZS2BsUxpaKWcV8rICE3Fr9LByWBxq0qDSjLQVRJQc6HwQVuvEi2tLwwVYsLu_5HOdEm0EeX2PL1ESh0xX5S4hzGakj1gJ8L2iAkvERS4UTRUiPymUVx4urcmZ6PNGz9jT3tnlX_ptOs5W4JmlT05nFd6nb1gp7uxBgWaLj4Bcwli2uBy0fL4JIF6fNaxNnH0jvlXcwWE2uTNtBEd1c_ZP_C4i_Zhwk3j-c-u2KZoeSTpmb1kxw8i01dsGV8CXjOegLOQePRgXJKnkJcVBHCqCMGmafBqxNJBbLXrS5oTs8aknhdjjqKuUdR1FHWdj9jH-TXnXUGPe89eH1qj7n_uWb1QxRH7NLTQ4vDdd3tz_93esxVU6fr7_tHBGnssKXkmDvess-X2zwW8Re-nte-imnF2-tB6fQ0c3hTJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+leave-one-out+cross-validation+for+Bayesian+non-factorized+normal+and+Student-t+models&rft.jtitle=Computational+statistics&rft.au=B%C3%BCrkner%2C+Paul-Christian&rft.au=Gabry%2C+Jonah&rft.au=Vehtari%2C+Aki&rft.date=2021-06-01&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=36&rft.issue=2&rft.spage=1243&rft.epage=1261&rft_id=info:doi/10.1007%2Fs00180-020-01045-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00180_020_01045_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |