Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models

Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out cross-validation (LOO-CV) requires that the observation model can be factorized into simple terms, but a lot of important models in temporal and...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics Vol. 36; no. 2; pp. 1243 - 1261
Main Authors Bürkner, Paul-Christian, Gabry, Jonah, Vehtari, Aki
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0943-4062
1613-9658
DOI10.1007/s00180-020-01045-4

Cover

Loading…
Abstract Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out cross-validation (LOO-CV) requires that the observation model can be factorized into simple terms, but a lot of important models in temporal and spatial statistics do not have this property or are inefficient or unstable when forced into a factorized form. We derive how to efficiently compute and validate both exact and approximate LOO-CV for any Bayesian non-factorized model with a multivariate normal or Student- t distribution on the outcome values. We demonstrate the method using lagged simultaneously autoregressive (SAR) models as a case study.
AbstractList Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out cross-validation (LOO-CV) requires that the observation model can be factorized into simple terms, but a lot of important models in temporal and spatial statistics do not have this property or are inefficient or unstable when forced into a factorized form. We derive how to efficiently compute and validate both exact and approximate LOO-CV for any Bayesian non-factorized model with a multivariate normal or Student- $$t$$ t distribution on the outcome values. We demonstrate the method using lagged simultaneously autoregressive (SAR) models as a case study.
Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out cross-validation (LOO-CV) requires that the observation model can be factorized into simple terms, but a lot of important models in temporal and spatial statistics do not have this property or are inefficient or unstable when forced into a factorized form. We derive how to efficiently compute and validate both exact and approximate LOO-CV for any Bayesian non-factorized model with a multivariate normal or Student- t distribution on the outcome values. We demonstrate the method using lagged simultaneously autoregressive (SAR) models as a case study.
Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out cross-validation (LOO-CV) requires that the observation model can be factorized into simple terms, but a lot of important models in temporal and spatial statistics do not have this property or are inefficient or unstable when forced into a factorized form. We derive how to efficiently compute and validate both exact and approximate LOO-CV for any Bayesian non-factorized model with a multivariate normal or Student-t distribution on the outcome values. We demonstrate the method using lagged simultaneously autoregressive (SAR) models as a case study.
Author Gabry, Jonah
Bürkner, Paul-Christian
Vehtari, Aki
Author_xml – sequence: 1
  givenname: Paul-Christian
  orcidid: 0000-0001-5765-8995
  surname: Bürkner
  fullname: Bürkner, Paul-Christian
  email: paul.buerkner@gmail.com
  organization: Department of Computer Science, Aalto University
– sequence: 2
  givenname: Jonah
  surname: Gabry
  fullname: Gabry, Jonah
  organization: Applied Statistics Center and ISERP, Columbia University
– sequence: 3
  givenname: Aki
  surname: Vehtari
  fullname: Vehtari, Aki
  organization: Department of Computer Science, Aalto University
BookMark eNp9kEtLAzEUhYNUsK3-AVcDrqM3yUwys1SpDxBcqOuY5iEp00lN0kL99aatILhwcXNv4J5zkm-CRkMYLELnBC4JgLhKAKQFDLQUgbrB9REaE04Y7njTjtAYuprhGjg9QZOUFgCUCkrG6H3mnNfeDrnqrdpYXHxxWOdKx5AS3qjeG5V9GCoXYnWjtjZ5NVQlHjulc4j-y5pyjUvVV2ow1Utem-KGc7UMxvbpFB071Sd79tOn6O1u9nr7gJ-e7x9vr5-wZpxlTAWoVu0Org3nigI0jFmthdPUzcvUEceBWdGBE11tG-PE3HAQdG4a1bEpujj4rmL4XNuU5SKs41AiJW1o3XDRMlK26GFr_71onVxFv1RxKwnIHUl5ICkLSbknKesiav-ItM97KDkq3_8vZQdpKjnDh42_r_pH9Q0Jg4rJ
CitedBy_id crossref_primary_10_1287_mnsc_2022_4487
crossref_primary_10_3390_agriculture14112084
crossref_primary_10_1093_sysbio_syae044
crossref_primary_10_1016_j_spasta_2024_100843
crossref_primary_10_1098_rspb_2023_2345
crossref_primary_10_1214_23_SS145
crossref_primary_10_2139_ssrn_3674961
crossref_primary_10_1016_j_fcr_2022_108477
crossref_primary_10_1016_j_sste_2024_100698
crossref_primary_10_1111_ejn_16521
crossref_primary_10_3847_1538_3881_acab67
crossref_primary_10_1126_sciadv_abe5163
crossref_primary_10_1162_nol_a_00121
crossref_primary_10_1016_j_foodres_2022_111565
crossref_primary_10_1093_mnras_stac3532
crossref_primary_10_1371_journal_pone_0303309
crossref_primary_10_1002_ecm_1557
crossref_primary_10_3389_fmars_2022_834990
crossref_primary_10_3847_1538_4357_ac80bd
crossref_primary_10_1016_j_procir_2024_10_032
crossref_primary_10_1080_00949655_2020_1783262
Cites_doi 10.1109/MASSP.1986.1165342
10.1214/12-SS102
10.1080/01621459.1979.10481632
10.32614/RJ-2018-017
10.1080/17421772.2017.1300679
10.13053/cys-20-2-2083
10.1201/9781420064254
10.1162/08997660151134343
10.1214/aoms/1177729698
10.1017/CBO9780511754944
10.1214/aoms/1177729893
10.1007/s11222-016-9696-4
10.18637/jss.v063.i18
10.1016/j.ijforecast.2009.08.001
10.1007/978-94-015-7799-1
10.1214/ss/1009212519
10.1093/biomet/86.1.153
10.18637/jss.v080.i01
10.1111/j.1365-3121.1992.tb00605.x
10.1111/jors.12188
10.1093/biostatistics/4.1.11
10.18637/jss.v076.i01
10.1007/978-3-540-28650-9_4
10.1109/MLSP.2012.6349794
10.1007/s42113-018-0020-6
10.1111/j.2517-6161.1979.tb01090.x
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00180-020-01045-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection (UHCL Subscription)
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1613-9658
EndPage 1261
ExternalDocumentID 10_1007_s00180_020_01045_4
GrantInformation_xml – fundername: Acedemy of Finland
  grantid: 313122
– fundername: Technology Industries of Finland Centennial Foundation
  grantid: 70007503
– fundername: Academy of Finland
  grantid: 298742
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
88I
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c363t-270a8a70a86cd66a200533ecc7fc2fb3ec91f603e790f794e5df7bd6072bd5a93
IEDL.DBID BENPR
ISSN 0943-4062
IngestDate Fri Jul 25 19:09:26 EDT 2025
Tue Jul 01 04:23:17 EDT 2025
Thu Apr 24 22:50:19 EDT 2025
Fri Feb 21 02:48:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Non-factorized models
Bayesian inference
SAR models
Cross-validation
Pareto-smoothed importance-sampling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-270a8a70a86cd66a200533ecc7fc2fb3ec91f603e790f794e5df7bd6072bd5a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5765-8995
OpenAccessLink https://link.springer.com/10.1007/s00180-020-01045-4
PQID 2524567831
PQPubID 54096
PageCount 19
ParticipantIDs proquest_journals_2524567831
crossref_primary_10_1007_s00180_020_01045_4
crossref_citationtrail_10_1007_s00180_020_01045_4
springer_journals_10_1007_s00180_020_01045_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210600
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational statistics
PublicationTitleAbbrev Comput Stat
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Haining, Haining (CR14) 2003
LeSage, Pace (CR18) 2009
Goulard, Laurent, Thomas-Agnan (CR13) 2017; 12
Zellner (CR33) 1976; 71
Bartlett (CR3) 1951; 22
Fernández, Steel (CR9) 1999; 86
CR34
Juárez-Ruiz, Cortés-Maldonado, Pérez-Rodríguez (CR17) 2016; 20
CR32
CR31
Cressie (CR8) 1992; 4
Vehtari, Ojanen (CR30) 2012; 6
Halleck Vega, Elhorst (CR15) 2015; 55
Sundararajan, Keerthi (CR26) 2001; 13
Bürkner (CR5) 2017; 80
Tong (CR27) 2012
Hoeting, Madigan, Raftery, Volinsky (CR16) 1999; 14
Vehtari, Gelman, Gabry (CR29) 2017; 27
Bivand, Piras (CR4) 2015; 63
Ando, Tsay (CR1) 2010; 26
O’Hagan (CR19) 1979; 41
CR7
CR28
Anselin (CR2) 1988
Rabiner, Juang (CR22) 1986; 3
CR24
CR23
Gelfand, Dey, Chang (CR11) 1992; 4
CR21
Bürkner (CR6) 2018; 10
CR20
Sherman, Morrison (CR25) 1950; 21
Geisser, Eddy (CR10) 1979; 74
Gelfand, Vounatsou (CR12) 2003; 4
A O’Hagan (1045_CR19) 1979; 41
YL Tong (1045_CR27) 2012
T Ando (1045_CR1) 2010; 26
1045_CR20
MS Bartlett (1045_CR3) 1951; 22
AE Gelfand (1045_CR12) 2003; 4
1045_CR21
S Sundararajan (1045_CR26) 2001; 13
1045_CR23
1045_CR24
S Halleck Vega (1045_CR15) 2015; 55
C Fernández (1045_CR9) 1999; 86
1045_CR28
N Cressie (1045_CR8) 1992; 4
J Sherman (1045_CR25) 1950; 21
1045_CR7
A Vehtari (1045_CR29) 2017; 27
P-C Bürkner (1045_CR6) 2018; 10
A Vehtari (1045_CR30) 2012; 6
A Gelfand (1045_CR11) 1992; 4
E Juárez-Ruiz (1045_CR17) 2016; 20
JP LeSage (1045_CR18) 2009
A Zellner (1045_CR33) 1976; 71
L Anselin (1045_CR2) 1988
RP Haining (1045_CR14) 2003
JA Hoeting (1045_CR16) 1999; 14
1045_CR31
1045_CR32
1045_CR34
L Rabiner (1045_CR22) 1986; 3
P-C Bürkner (1045_CR5) 2017; 80
M Goulard (1045_CR13) 2017; 12
R Bivand (1045_CR4) 2015; 63
S Geisser (1045_CR10) 1979; 74
References_xml – volume: 3
  start-page: 4
  issue: 1
  year: 1986
  end-page: 16
  ident: CR22
  article-title: An introduction to hidden Markov models
  publication-title: IEEE ASSP Mag
  doi: 10.1109/MASSP.1986.1165342
– volume: 71
  start-page: 400
  issue: 354
  year: 1976
  end-page: 405
  ident: CR33
  article-title: Bayesian and non-Bayesian analysis of the regression model with multivariate Student-t error terms
  publication-title: J Am Stat Assoc
– volume: 6
  start-page: 142
  year: 2012
  end-page: 228
  ident: CR30
  article-title: A survey of Bayesian predictive methods for model assessment, selection and comparison
  publication-title: Stat Surv
  doi: 10.1214/12-SS102
– volume: 74
  start-page: 153
  issue: 365
  year: 1979
  end-page: 160
  ident: CR10
  article-title: A predictive approach to model selection
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1979.10481632
– volume: 10
  start-page: 395
  issue: 1
  year: 2018
  end-page: 411
  ident: CR6
  article-title: Advanced Bayesian multilevel modeling with the R package brms
  publication-title: R J
  doi: 10.32614/RJ-2018-017
– year: 2012
  ident: CR27
  publication-title: The multivariate normal distribution
– volume: 12
  start-page: 304
  issue: 2–3
  year: 2017
  end-page: 325
  ident: CR13
  article-title: About predictions in spatial autoregressive models: optimal and almost optimal strategies
  publication-title: Spat Econ Anal
  doi: 10.1080/17421772.2017.1300679
– volume: 20
  start-page: 251
  issue: 2
  year: 2016
  end-page: 262
  ident: CR17
  article-title: Relationship between the inverses of a matrix and a submatrix
  publication-title: Computación y Sistemas
  doi: 10.13053/cys-20-2-2083
– year: 2009
  ident: CR18
  publication-title: Introduction to spatial econometrics
  doi: 10.1201/9781420064254
– volume: 13
  start-page: 1103
  issue: 5
  year: 2001
  end-page: 1118
  ident: CR26
  article-title: Predictive approaches for choosing hyperparameters in Gaussian processes
  publication-title: Neural Comput
  doi: 10.1162/08997660151134343
– volume: 22
  start-page: 107
  issue: 1
  year: 1951
  end-page: 111
  ident: CR3
  article-title: An inverse matrix adjustment arising in discriminant analysis
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729698
– year: 2003
  ident: CR14
  publication-title: Spatial data analysis: theory and practice
  doi: 10.1017/CBO9780511754944
– volume: 21
  start-page: 124
  issue: 1
  year: 1950
  end-page: 127
  ident: CR25
  article-title: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729893
– volume: 27
  start-page: 1413
  issue: 5
  year: 2017
  end-page: 1432
  ident: CR29
  article-title: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
  publication-title: Stat Comput
  doi: 10.1007/s11222-016-9696-4
– volume: 63
  start-page: 1
  issue: 18
  year: 2015
  end-page: 36
  ident: CR4
  article-title: Comparing implementations of estimation methods for spatial econometrics
  publication-title: J Stat Softw
  doi: 10.18637/jss.v063.i18
– volume: 26
  start-page: 744
  issue: 4
  year: 2010
  end-page: 763
  ident: CR1
  article-title: Predictive likelihood for Bayesian model selection and averaging
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2009.08.001
– ident: CR23
– ident: CR21
– year: 1988
  ident: CR2
  publication-title: Spatial econometrics: methods and models
  doi: 10.1007/978-94-015-7799-1
– volume: 14
  start-page: 382
  issue: 4
  year: 1999
  end-page: 417
  ident: CR16
  article-title: Bayesian model averaging: a tutorial
  publication-title: Stat Sci
  doi: 10.1214/ss/1009212519
– ident: CR31
– volume: 86
  start-page: 153
  issue: 1
  year: 1999
  end-page: 167
  ident: CR9
  article-title: Multivariate student-t regression models: pitfalls and inference
  publication-title: Biometrika
  doi: 10.1093/biomet/86.1.153
– ident: CR32
– volume: 80
  start-page: 1
  issue: 1
  year: 2017
  end-page: 28
  ident: CR5
  article-title: brms: an R package for Bayesian multilevel models using Stan
  publication-title: J Stat Softw
  doi: 10.18637/jss.v080.i01
– ident: CR34
– volume: 4
  start-page: 613
  issue: 5
  year: 1992
  end-page: 617
  ident: CR8
  article-title: Statistics for spatial data
  publication-title: Terra Nova
  doi: 10.1111/j.1365-3121.1992.tb00605.x
– ident: CR7
– volume: 4
  start-page: 147
  year: 1992
  end-page: 167
  ident: CR11
  article-title: Model determination using predictive distributions with implementation via sampling-based methods
  publication-title: Bayesian Stat
– volume: 41
  start-page: 358
  issue: 3
  year: 1979
  end-page: 367
  ident: CR19
  article-title: On outlier rejection phenomena in Bayes inference
  publication-title: J R Stat Soc Ser B (Methodol)
– volume: 55
  start-page: 339
  issue: 3
  year: 2015
  end-page: 363
  ident: CR15
  article-title: The slx model
  publication-title: J Region Sci
  doi: 10.1111/jors.12188
– ident: CR28
– volume: 4
  start-page: 11
  issue: 1
  year: 2003
  end-page: 15
  ident: CR12
  article-title: Proper multivariate conditional autoregressive models for spatial data analysis
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.1.11
– ident: CR24
– ident: CR20
– volume: 22
  start-page: 107
  issue: 1
  year: 1951
  ident: 1045_CR3
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729698
– volume: 74
  start-page: 153
  issue: 365
  year: 1979
  ident: 1045_CR10
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1979.10481632
– volume: 63
  start-page: 1
  issue: 18
  year: 2015
  ident: 1045_CR4
  publication-title: J Stat Softw
  doi: 10.18637/jss.v063.i18
– volume: 71
  start-page: 400
  issue: 354
  year: 1976
  ident: 1045_CR33
  publication-title: J Am Stat Assoc
– volume: 13
  start-page: 1103
  issue: 5
  year: 2001
  ident: 1045_CR26
  publication-title: Neural Comput
  doi: 10.1162/08997660151134343
– ident: 1045_CR31
– volume: 27
  start-page: 1413
  issue: 5
  year: 2017
  ident: 1045_CR29
  publication-title: Stat Comput
  doi: 10.1007/s11222-016-9696-4
– volume-title: Spatial data analysis: theory and practice
  year: 2003
  ident: 1045_CR14
  doi: 10.1017/CBO9780511754944
– volume: 3
  start-page: 4
  issue: 1
  year: 1986
  ident: 1045_CR22
  publication-title: IEEE ASSP Mag
  doi: 10.1109/MASSP.1986.1165342
– volume: 4
  start-page: 613
  issue: 5
  year: 1992
  ident: 1045_CR8
  publication-title: Terra Nova
  doi: 10.1111/j.1365-3121.1992.tb00605.x
– volume: 6
  start-page: 142
  year: 2012
  ident: 1045_CR30
  publication-title: Stat Surv
  doi: 10.1214/12-SS102
– volume: 55
  start-page: 339
  issue: 3
  year: 2015
  ident: 1045_CR15
  publication-title: J Region Sci
  doi: 10.1111/jors.12188
– ident: 1045_CR24
– volume: 86
  start-page: 153
  issue: 1
  year: 1999
  ident: 1045_CR9
  publication-title: Biometrika
  doi: 10.1093/biomet/86.1.153
– volume: 12
  start-page: 304
  issue: 2–3
  year: 2017
  ident: 1045_CR13
  publication-title: Spat Econ Anal
  doi: 10.1080/17421772.2017.1300679
– volume: 4
  start-page: 11
  issue: 1
  year: 2003
  ident: 1045_CR12
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.1.11
– volume-title: The multivariate normal distribution
  year: 2012
  ident: 1045_CR27
– ident: 1045_CR20
– volume: 80
  start-page: 1
  issue: 1
  year: 2017
  ident: 1045_CR5
  publication-title: J Stat Softw
  doi: 10.18637/jss.v080.i01
– volume: 20
  start-page: 251
  issue: 2
  year: 2016
  ident: 1045_CR17
  publication-title: Computación y Sistemas
  doi: 10.13053/cys-20-2-2083
– ident: 1045_CR7
  doi: 10.18637/jss.v076.i01
– ident: 1045_CR34
– ident: 1045_CR32
– volume-title: Spatial econometrics: methods and models
  year: 1988
  ident: 1045_CR2
  doi: 10.1007/978-94-015-7799-1
– volume: 14
  start-page: 382
  issue: 4
  year: 1999
  ident: 1045_CR16
  publication-title: Stat Sci
  doi: 10.1214/ss/1009212519
– ident: 1045_CR23
  doi: 10.1007/978-3-540-28650-9_4
– volume: 21
  start-page: 124
  issue: 1
  year: 1950
  ident: 1045_CR25
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729893
– ident: 1045_CR21
  doi: 10.1109/MLSP.2012.6349794
– volume-title: Introduction to spatial econometrics
  year: 2009
  ident: 1045_CR18
  doi: 10.1201/9781420064254
– volume: 26
  start-page: 744
  issue: 4
  year: 2010
  ident: 1045_CR1
  publication-title: Int J Forecast
  doi: 10.1016/j.ijforecast.2009.08.001
– volume: 4
  start-page: 147
  year: 1992
  ident: 1045_CR11
  publication-title: Bayesian Stat
– volume: 10
  start-page: 395
  issue: 1
  year: 2018
  ident: 1045_CR6
  publication-title: R J
  doi: 10.32614/RJ-2018-017
– ident: 1045_CR28
  doi: 10.1007/s42113-018-0020-6
– volume: 41
  start-page: 358
  issue: 3
  year: 1979
  ident: 1045_CR19
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1979.tb01090.x
SSID ssj0022721
Score 2.365504
Snippet Cross-validation can be used to measure a model’s predictive accuracy for the purpose of model comparison, averaging, or selection. Standard leave-one-out...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1243
SubjectTerms Autoregressive models
Bayesian analysis
Economic Theory/Quantitative Economics/Mathematical Methods
Mathematics and Statistics
Model accuracy
Original Paper
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L_MgOhWnU3LwpoE2bdL1OGVjCPOig91qkr7AYExxnaB_vS_px1BU8NDS0jQt7-Xj_ZL3e4-Qy1CbkOvUMCMUsDjhwFJwC_k8QECUKIi0IwpP7uV4Gt_NxKwiha1qb_d6S9KP1A3ZzeWPC5iDOw5DCBZvkx2B2N058k35oIFZPPFsK-cyh-hI8ooq83MdX6ejjY35bVvUzzajfbJXmYl0UOr1gGzBskN2J02M1VWHtJ2dWIZZPiRPQx8KAmcQugD1Bux5ice6oP6zDJvTvEyeRNFIpTfqHRx5kiL2Z2XGnfkH5HiLw_SCqmVOH8qYl6ygPlfO6ohMR8PH2zGrkicwE8mocDwz1VfuJE0upeKedYsKS6zhVuNVGloZRJCkgcVOCSK3ic5lkHCdC5VGx6SFPwEnhAZgNAQ5GhImiEOI-ylYMFJYq8PQ5rJLwlqGmakii7sEF4usiYns5Z6h3DMv9yzukqvmnZcyrsafpXu1arKqj60yLtymbdKPwi65rtW1efx7baf_K35G2tw5svillx5pFa9rOEdLpNAXvuF9AgB41FI
  priority: 102
  providerName: Springer Nature
Title Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models
URI https://link.springer.com/article/10.1007/s00180-020-01045-4
https://www.proquest.com/docview/2524567831
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUeJsaH6DYqP_AGFrGTOMkT6qp2E2gTAiqNp-CPszSp6gbNJsFfz9lxWw2JPcTKl53ozj7fnX33A3gjjBXSNJbbUiMvKom8weDIlxkZRJXG3IRA4fMLdbYoPl6Wl8nhtk7bKjcyMQpqd22Dj_y9LMMSXVXn4sPNTx5Qo8LqaoLQ2IMhieC6HMDwZHbx-cvW5JJVjLwK2-fIUlIyhc3E4LmAR5fxYD4Fm6Tkxf2paadv_rNEGmee-VPYTyojm_Q8PoBHuHoGT863-VbXz-HHLGaCoAmELVHfIb9e0XHbsfglTr3pqsdOYqSjshP9G0PsJCPTn_eAO1d_0NElSekl0yvHvvYpL3nHIlTO-gUs5rNv0zOesBO4zVXehTAzXetQKOuU0jIG3RK_Km-lN3TWCK-yHKsm8zQmsXS-Mk5llTSu1E3-Egb0E_gKWIbWYOZIj7BZIbCoG_RoVem9EcI7NQKxIVtrU2LxgG-xbLcpkSOpWyJ1G0ndFiN4u61z06fVePDt4w032jTE1u2uQ4zg3YZDu8f_b-3w4daO4LEM-1aip-UYBt2vW3xNikdnxrBXT0Uo56djGE5Ov3-ajVOPo7tTNaVyISd_AV2F2bw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hOLQ9VEBbdQu0PrSn1mriJM7mUKFCFy2FXVUtSNyCP8YS0ioLbADRH8VvZOwku2oluHFIlCiJk4zHnhnbbx7Ax1ibWOjCcJMp5GkukBfoB_JFRAFRrjDRHig8GsvhcfrzJDtZgrsOC-OXVXZ9Yuio7dT4MfKvIvNTdHk_ibfPL7hnjfKzqx2FRqMWB3h7QyHb7Nv-D6rfT0LsDY52h7xlFeAmkUntAViqr_xOGiulEgGOSn-SOyOcpqMidjJKMC8iR9qKmXW5tjLKhbaZ8smXqMtfITejoFa0sjMY__o9D_FEHpBefrkeRWZStDCdANbz_HcR9-Gaj4Eynv5rChf-7X9TssHS7a3Cy9ZFZd8bnVqDJazW4cVont919gpOByHzBBksNkF1jXxa0XZVs_AmTtp71nA1MfKJ2Y66RY_VZNW04g3Bz9lftHRKVmHCVGXZnybFJq9ZoOaZvYbjJ5HqG1imj8C3wCI0GiNLfouJ0hjTfoEOjcyc03HsrOxB3ImtNG0ic8-nMSnnKZiDqEsSdRlEXaY9-Dx_5rxJ4_Ho3ZtdbZRtk56VCwXswZeuhhaXHy7t3eOlfYBnw6PRYXm4Pz7YgOfCr5kJozybsFxfXuEWOT21ft9qGoPTp1bue5yQEjc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9VAEN8QTIgejKLGJ6h7wJNuaLftbnswRIEXECEmSsKt7MdsQvLSh76CwT_Nv46ZbfteIIEbhzZt-j073ZnZnd_8GNtIrUulrZxwhQGRawmiAhrIlwkGRNpAZgkofHik9o7zbyfFyRL7P2BhKK1y6BNjR-2njsbIN2VBU3S6zNLN0KdF_NgZb53_FsQgRTOtA51GpyIHcPUXw7fZ5_0dbOsPUo53f23viZ5hQLhMZS2BsUxpaKWcV8rICE3Fr9LByWBxq0qDSjLQVRJQc6HwQVuvEi2tLwwVYsLu_5HOdEm0EeX2PL1ESh0xX5S4hzGakj1gJ8L2iAkvERS4UTRUiPymUVx4urcmZ6PNGz9jT3tnlX_ptOs5W4JmlT05nFd6nb1gp7uxBgWaLj4Bcwli2uBy0fL4JIF6fNaxNnH0jvlXcwWE2uTNtBEd1c_ZP_C4i_Zhwk3j-c-u2KZoeSTpmb1kxw8i01dsGV8CXjOegLOQePRgXJKnkJcVBHCqCMGmafBqxNJBbLXrS5oTs8aknhdjjqKuUdR1FHWdj9jH-TXnXUGPe89eH1qj7n_uWb1QxRH7NLTQ4vDdd3tz_93esxVU6fr7_tHBGnssKXkmDvess-X2zwW8Re-nte-imnF2-tB6fQ0c3hTJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+leave-one-out+cross-validation+for+Bayesian+non-factorized+normal+and+Student-t+models&rft.jtitle=Computational+statistics&rft.au=B%C3%BCrkner%2C+Paul-Christian&rft.au=Gabry%2C+Jonah&rft.au=Vehtari%2C+Aki&rft.date=2021-06-01&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=36&rft.issue=2&rft.spage=1243&rft.epage=1261&rft_id=info:doi/10.1007%2Fs00180-020-01045-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00180_020_01045_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon