A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images

Numerous medical studies have shown that Alzheimer’s disease (AD) was present decades before the clinical diagnosis of dementia. As a result of the development of these studies with the discovery of many ideal biomarkers of symptoms of Alzheimer’s disease, it became clear that early diagnosis requir...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 2; pp. 3767 - 3799
Main Authors Arafa, Doaa Ahmed, Moustafa, Hossam El-Din, Ali, Hesham A., Ali-Eldin, Amr M. T., Saraya, Sabry F.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-023-15738-7

Cover

Loading…
Abstract Numerous medical studies have shown that Alzheimer’s disease (AD) was present decades before the clinical diagnosis of dementia. As a result of the development of these studies with the discovery of many ideal biomarkers of symptoms of Alzheimer’s disease, it became clear that early diagnosis requires a high-performance computational tool to handle such large amounts of data, as early diagnosis of Alzheimer’s disease provides us with a healthy opportunity to benefit from treatment. The main objective of this paper is to establish a complete framework that is based on deep learning approaches and convolutional neural networks (CNN). Four stages of AD, such as (I) preprocessing and data preparation, (II) data augmentation, (III) cross-validation, and (IV) classification and feature extraction based on deep learning for medical image classification, are implemented. In these stages, two methods are implemented. The first method uses a simple CNN architecture. In the second method, the VGG16 model is the pre-trained model that is trained on the ImageNet dataset but applies the same model to the different datasets. We apply transfer learning, meaning, and fine-tuning to take advantage of the pre-trained models. Seven performance metrics are used to evaluate and compare the two methods. Compared to the most recent effort, the proposed method is proficient of analyzing AD, moreover, entails less labeled training samples and minimal domain prior knowledge. A significant performance gain on classification of all diagnosis groups was achieved in our experiments. The experimental findings demonstrate that the suggested designs are appropriate for basic structures with minimal computational complexity, overfitting, memory consumption, and temporal regulation. Besides, they achieve a promising accuracy, 99.95% and 99.99% for the proposed CNN model in the classification of the AD stage. The VGG16 pre-trained model is fine-tuned and achieved an accuracy of 97.44% for AD stage classifications.
AbstractList Numerous medical studies have shown that Alzheimer’s disease (AD) was present decades before the clinical diagnosis of dementia. As a result of the development of these studies with the discovery of many ideal biomarkers of symptoms of Alzheimer’s disease, it became clear that early diagnosis requires a high-performance computational tool to handle such large amounts of data, as early diagnosis of Alzheimer’s disease provides us with a healthy opportunity to benefit from treatment. The main objective of this paper is to establish a complete framework that is based on deep learning approaches and convolutional neural networks (CNN). Four stages of AD, such as (I) preprocessing and data preparation, (II) data augmentation, (III) cross-validation, and (IV) classification and feature extraction based on deep learning for medical image classification, are implemented. In these stages, two methods are implemented. The first method uses a simple CNN architecture. In the second method, the VGG16 model is the pre-trained model that is trained on the ImageNet dataset but applies the same model to the different datasets. We apply transfer learning, meaning, and fine-tuning to take advantage of the pre-trained models. Seven performance metrics are used to evaluate and compare the two methods. Compared to the most recent effort, the proposed method is proficient of analyzing AD, moreover, entails less labeled training samples and minimal domain prior knowledge. A significant performance gain on classification of all diagnosis groups was achieved in our experiments. The experimental findings demonstrate that the suggested designs are appropriate for basic structures with minimal computational complexity, overfitting, memory consumption, and temporal regulation. Besides, they achieve a promising accuracy, 99.95% and 99.99% for the proposed CNN model in the classification of the AD stage. The VGG16 pre-trained model is fine-tuned and achieved an accuracy of 97.44% for AD stage classifications.
Author Ali, Hesham A.
Moustafa, Hossam El-Din
Ali-Eldin, Amr M. T.
Saraya, Sabry F.
Arafa, Doaa Ahmed
Author_xml – sequence: 1
  givenname: Doaa Ahmed
  orcidid: 0000-0003-3340-6472
  surname: Arafa
  fullname: Arafa, Doaa Ahmed
  email: doaaarafa@mans.edu.eg
  organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University
– sequence: 2
  givenname: Hossam El-Din
  surname: Moustafa
  fullname: Moustafa, Hossam El-Din
  organization: Electronics and Communication Engineering Department, Faculty of Engineering, Mansoura University
– sequence: 3
  givenname: Hesham A.
  surname: Ali
  fullname: Ali, Hesham A.
  organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Faculty Artificial Intelligence, Delta University for Science and Technology
– sequence: 4
  givenname: Amr M. T.
  surname: Ali-Eldin
  fullname: Ali-Eldin, Amr M. T.
  organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University
– sequence: 5
  givenname: Sabry F.
  surname: Saraya
  fullname: Saraya, Sabry F.
  organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University
BookMark eNp9kM1KAzEQx4NUsK2-gKeA59VMspvdHkvxo1ARpJ5DdjtZt26TmmyRevI1fD2fxNQKgoeeZpj5_-bjPyA96ywScg7sEhjLrwIAS3nCuEggy0WR5Eekv8uSPOfQi7koWJJnDE7IIIQlYyAznvbJfEwXiGvaova2sTU1Xq_wzfkXapynsdpu6aLRtXWhCdQZOm7fn7FZof_6-AyxFVAHpM7S-8cpbVa6xnBKjo1uA579xiF5urmeT-6S2cPtdDKeJZWQoks4YCbNSENhKm4kE6URpWQllFUsZ6XJJJey1GkhACuZFbwqFylDDiaL_6AYkov93LV3rxsMnVq6jbdxpeIjAOA5H4moKvaqyrsQPBpVNZ3uGmc7r5tWAVM7D9XeQxU9VD8eqjyi_B-69vFFvz0MiT0UotjW6P-uOkB9A3qghlU
CitedBy_id crossref_primary_10_1016_j_measurement_2024_115513
crossref_primary_10_1016_j_bspc_2024_107384
crossref_primary_10_1007_s10489_024_05663_z
crossref_primary_10_1007_s11227_025_06924_5
crossref_primary_10_3390_diagnostics15060717
crossref_primary_10_1093_cercor_bhae195
crossref_primary_10_1109_ACCESS_2024_3484928
crossref_primary_10_1002_nbm_5323
crossref_primary_10_1016_j_bspc_2024_107422
crossref_primary_10_3390_computers14020036
crossref_primary_10_1016_j_abst_2024_08_004
crossref_primary_10_3390_bioengineering11111153
crossref_primary_10_1016_j_imu_2024_101584
crossref_primary_10_1007_s42600_024_00394_z
crossref_primary_10_2196_59370
crossref_primary_10_1080_0954898X_2024_2435491
crossref_primary_10_1016_j_bspc_2024_106920
crossref_primary_10_1016_j_neucom_2024_128119
crossref_primary_10_1007_s10796_024_10541_7
crossref_primary_10_1002_jemt_24727
crossref_primary_10_1007_s11042_024_18253_5
crossref_primary_10_1038_s41598_024_62712_w
crossref_primary_10_3390_w17030323
crossref_primary_10_26636_jtit_2024_4_1815
crossref_primary_10_3390_jimaging10060141
crossref_primary_10_3390_diagnostics15060789
crossref_primary_10_32628_CSEIT24103123
Cites_doi 10.1007/s00500-022-06762-0
10.1007/s00521-021-05799-w
10.1007/s10278-019-00265-5
10.1016/J.BSPC.2021.103455
10.1155/2021/6690539
10.1007/s11042-022-11925-0
10.1212/wnl.36.6.750
10.1155/2022/5261942
10.1007/s13369-021-06131-3
10.1016/j.beproc.2018.01.004
10.32604/csse.2022.018520
10.1016/J.CMPB.2021.106032
10.1161/STROKEAHA.119.025373
10.1007/s11277-022-09640-y
10.1016/j.eswa.2022.116622
10.1016/J.BSPC.2022.103565
10.1016/j.bspc.2021.103217
10.1016/j.jalz.2016.02.002
10.1007/s00521-022-07263-9
10.1109/ACCESS.2021.3090474
10.3389/fninf.2022.856295
10.1007/s11063-021-10514-w
10.1109/ICCES51560.2020.9334594
10.1007/978-3-030-68763-2_43
10.1109/ICICS52457.2021.9464543
10.1007/978-981-19-3575-6_22
10.1007/s00521-021-06149-6
10.1109/CAIS.2019.8769473
10.48550/arXiv.1607.06583
10.1016/B978-0-12-809633-8.20349-X
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-15738-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 3799
ExternalDocumentID 10_1007_s11042_023_15738_7
GrantInformation_xml – fundername: Mansoura University
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-21e56f9a18fc2f603bf3b60b1bc6f95bf56266ba4831ec6582cbd40e21f5138e3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 22:50:23 EDT 2025
Tue Jul 01 04:13:22 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 21 02:40:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Convolution Neural Network (CNN)
Alzheimer’s Disease (AD)
Imaging Pre-processing
Deep Learning (DL)
Transfer Learning (TL)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-21e56f9a18fc2f603bf3b60b1bc6f95bf56266ba4831ec6582cbd40e21f5138e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3340-6472
OpenAccessLink https://link.springer.com/10.1007/s11042-023-15738-7
PQID 2911127293
PQPubID 54626
PageCount 33
ParticipantIDs proquest_journals_2911127293
crossref_citationtrail_10_1007_s11042_023_15738_7
crossref_primary_10_1007_s11042_023_15738_7
springer_journals_10_1007_s11042_023_15738_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Arafa, Moustafa, Ali-Eldin, Ali (CR7) 2022; 81
Savaş (CR32) 2022; 47
Dubois (CR13) 2016; 12
Ruuska, Hämäläinen, Kajava, Mughal, Matilainen, Mononen (CR30) 2018; 148
Wu (CR40) 2019; 50
El-Sappagh, Saleh, Ali, Amer, Abuhmed (CR15) 2022; 34
CR19
CR18
CR17
Kong, Zhang, Zhu, Yi, Wang, Zhang (CR22) 2022; 75
CR39
CR16
CR38
CR37
CR14
CR12
CR11
CR31
Theodore, Dorwart, Holmes, Porter, DiChiro (CR34) 1986; 36
Bhangale, Kothandaraman (CR9) 2022; 125
Al-Adhaileh (CR2) 2022; 26
Murugan (CR27) 2021; 9
CR4
Liu, Li, Luo, Yang, Li, Bi (CR23) 2021; 203
CR6
CR5
CR8
CR29
Kamal (CR21) 2022; 2022
CR26
Shanmugam, Duraisamy, Simon, Bhaskaran (CR33) 2022; 71
Al-Khuzaie, Bayat, Duru (CR3) 2021; 2021
CR20
CR41
Deepa, Chokkalingam (CR10) 2022; 74
Tufail, Ma, Zhang (CR35) 2020; 33
Meng, Wu, Liu, Wang, Xu, Jiao (CR25) 2022; 16
Turkson, Qu, Mawuli, Eghan (CR36) 2021; 53
Mehmood, Abugabah, AlZubi, Sanzogni (CR24) 2022; 43
AbdulAzeem, Bahgat, Badawy (CR1) 2021; 33
Poloni, Ferrari (CR28) 2022; 195
MH Al-Adhaileh (15738_CR2) 2022; 26
N Deepa (15738_CR10) 2022; 74
X Meng (15738_CR25) 2022; 16
RE Turkson (15738_CR36) 2021; 53
AB Tufail (15738_CR35) 2020; 33
KB Bhangale (15738_CR9) 2022; 125
S El-Sappagh (15738_CR15) 2022; 34
S Murugan (15738_CR27) 2021; 9
WH Theodore (15738_CR34) 1986; 36
DA Arafa (15738_CR7) 2022; 81
15738_CR8
15738_CR31
15738_CR6
15738_CR12
15738_CR11
A Mehmood (15738_CR24) 2022; 43
15738_CR14
M Kamal (15738_CR21) 2022; 2022
S Ruuska (15738_CR30) 2018; 148
15738_CR16
Z Kong (15738_CR22) 2022; 75
15738_CR38
O Wu (15738_CR40) 2019; 50
15738_CR37
15738_CR18
15738_CR17
15738_CR39
FEK Al-Khuzaie (15738_CR3) 2021; 2021
15738_CR19
B Dubois (15738_CR13) 2016; 12
15738_CR4
Y AbdulAzeem (15738_CR1) 2021; 33
15738_CR5
S Savaş (15738_CR32) 2022; 47
J Liu (15738_CR23) 2021; 203
KM Poloni (15738_CR28) 2022; 195
15738_CR41
15738_CR20
JV Shanmugam (15738_CR33) 2022; 71
15738_CR26
15738_CR29
References_xml – volume: 26
  start-page: 7751
  year: 2022
  end-page: 7762
  ident: CR2
  article-title: Diagnosis and classification of Alzheimer’s disease by using a convolution neural network algorithm
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-06762-0
– volume: 33
  start-page: 10415
  issue: 16
  year: 2021
  end-page: 10428
  ident: CR1
  article-title: A CNN based framework for classification of Alzheimer’s disease
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-021-05799-w
– ident: CR18
– volume: 33
  start-page: 1073
  issue: 5
  year: 2020
  end-page: 1090
  ident: CR35
  article-title: Binary Classification of Alzheimer’s Disease Using sMRI Imaging Modality and Deep Learning
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00265-5
– ident: CR4
– volume: 74
  start-page: 103455
  year: 2022
  ident: CR10
  article-title: Optimization of VGG16 utilizing the Arithmetic Optimization Algorithm for early detection of Alzheimer’s disease
  publication-title: Biomed Signal Process Control
  doi: 10.1016/J.BSPC.2021.103455
– ident: CR14
– ident: CR39
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR3
  article-title: Diagnosis of Alzheimer Disease Using 2D MRI Slices by Convolutional Neural Network
  publication-title: Appl Bionics Biomech
  doi: 10.1155/2021/6690539
– ident: CR16
– ident: CR37
– volume: 81
  start-page: 23735
  year: 2022
  end-page: 23776
  ident: CR7
  article-title: Early detection of Alzheimer’s disease based on the state-of-the-art deep learning approach: a comprehensive survey
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-11925-0
– ident: CR12
– ident: CR6
– ident: CR29
– ident: CR8
– volume: 36
  start-page: 750
  issue: 6
  year: 1986
  end-page: 759
  ident: CR34
  article-title: Neuroimaging in refractory partial seizures: Comparison of PET, CT, and MRI
  publication-title: Neurology
  doi: 10.1212/wnl.36.6.750
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 8
  ident: CR21
  article-title: Machine Learning and Image Processing Enabled Evolutionary Framework for Brain MRI Analysis for Alzheimer’s Disease Detection
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/5261942
– volume: 47
  start-page: 2201
  issue: 2
  year: 2022
  end-page: 2218
  ident: CR32
  article-title: Detecting the Stages of Alzheimer’s Disease with Pre-trained Deep Learning Architectures
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-06131-3
– volume: 148
  start-page: 56
  year: 2018
  end-page: 62
  ident: CR30
  article-title: Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle
  publication-title: Behav Process
  doi: 10.1016/j.beproc.2018.01.004
– volume: 43
  start-page: 305
  issue: 1
  year: 2022
  end-page: 315
  ident: CR24
  article-title: Early Diagnosis of Alzheimer’s Disease Based on Convolutional Neural Networks
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2022.018520
– ident: CR19
– volume: 203
  year: 2021
  ident: CR23
  article-title: Alzheimer’s disease detection using depthwise separable convolutional neural networks
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/J.CMPB.2021.106032
– ident: CR38
– volume: 50
  start-page: 1734
  issue: 7
  year: 2019
  end-page: 1741
  ident: CR40
  article-title: Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.025373
– volume: 125
  start-page: 1913
  year: 2022
  end-page: 1949
  ident: CR9
  article-title: Survey of Deep Learning Paradigms for Speech Processing
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-022-09640-y
– volume: 195
  start-page: 116622
  year: 2022
  ident: CR28
  article-title: A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer’s diagnosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116622
– ident: CR17
– volume: 75
  start-page: 103565
  year: 2022
  ident: CR22
  article-title: Multi-modal data Alzheimer’s disease detection based on 3D convolution
  publication-title: Biomed Signal Process Control
  doi: 10.1016/J.BSPC.2022.103565
– ident: CR31
– volume: 71
  start-page: 103217
  year: 2022
  ident: CR33
  article-title: Alzheimer’s disease classification using pre-trained deep networks
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103217
– volume: 12
  start-page: 292
  issue: 3
  year: 2016
  end-page: 323
  ident: CR13
  article-title: Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria
  publication-title: Alzheimer’s Demen
  doi: 10.1016/j.jalz.2016.02.002
– ident: CR11
– volume: 34
  start-page: 14487
  year: 2022
  end-page: 14509
  ident: CR15
  article-title: Two-stage deep learning model for Alzheimer’s disease detection and prediction of the mild cognitive impairment time
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-022-07263-9
– ident: CR5
– volume: 9
  start-page: 90319
  year: 2021
  end-page: 90329
  ident: CR27
  article-title: DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia from MR Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090474
– volume: 16
  start-page: 856295
  year: 2022
  ident: CR25
  article-title: Research on Voxel-Based Features Detection and Analysis of Alzheimer’s Disease Using Random Survey Support Vector Machine
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2022.856295
– volume: 53
  start-page: 2649
  issue: 4
  year: 2021
  end-page: 2663
  ident: CR36
  article-title: Classification of Alzheimer’s Disease Using Deep Convolutional Spiking Neural Network
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-021-10514-w
– ident: CR41
– ident: CR26
– ident: CR20
– volume: 47
  start-page: 2201
  issue: 2
  year: 2022
  ident: 15738_CR32
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-021-06131-3
– volume: 195
  start-page: 116622
  year: 2022
  ident: 15738_CR28
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116622
– volume: 33
  start-page: 10415
  issue: 16
  year: 2021
  ident: 15738_CR1
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-021-05799-w
– volume: 2021
  start-page: 1
  year: 2021
  ident: 15738_CR3
  publication-title: Appl Bionics Biomech
  doi: 10.1155/2021/6690539
– ident: 15738_CR14
  doi: 10.1109/ICCES51560.2020.9334594
– volume: 43
  start-page: 305
  issue: 1
  year: 2022
  ident: 15738_CR24
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2022.018520
– ident: 15738_CR11
  doi: 10.1007/978-3-030-68763-2_43
– ident: 15738_CR38
– volume: 34
  start-page: 14487
  year: 2022
  ident: 15738_CR15
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-022-07263-9
– ident: 15738_CR18
– ident: 15738_CR26
  doi: 10.1109/ICICS52457.2021.9464543
– ident: 15738_CR6
  doi: 10.1007/978-981-19-3575-6_22
– ident: 15738_CR41
  doi: 10.1007/s00521-021-06149-6
– volume: 81
  start-page: 23735
  year: 2022
  ident: 15738_CR7
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-11925-0
– ident: 15738_CR20
  doi: 10.1109/CAIS.2019.8769473
– volume: 12
  start-page: 292
  issue: 3
  year: 2016
  ident: 15738_CR13
  publication-title: Alzheimer’s Demen
  doi: 10.1016/j.jalz.2016.02.002
– ident: 15738_CR5
– volume: 125
  start-page: 1913
  year: 2022
  ident: 15738_CR9
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-022-09640-y
– volume: 16
  start-page: 856295
  year: 2022
  ident: 15738_CR25
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2022.856295
– volume: 26
  start-page: 7751
  year: 2022
  ident: 15738_CR2
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-06762-0
– ident: 15738_CR31
  doi: 10.48550/arXiv.1607.06583
– volume: 75
  start-page: 103565
  year: 2022
  ident: 15738_CR22
  publication-title: Biomed Signal Process Control
  doi: 10.1016/J.BSPC.2022.103565
– volume: 53
  start-page: 2649
  issue: 4
  year: 2021
  ident: 15738_CR36
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-021-10514-w
– ident: 15738_CR12
– volume: 36
  start-page: 750
  issue: 6
  year: 1986
  ident: 15738_CR34
  publication-title: Neurology
  doi: 10.1212/wnl.36.6.750
– ident: 15738_CR39
– ident: 15738_CR16
– volume: 74
  start-page: 103455
  year: 2022
  ident: 15738_CR10
  publication-title: Biomed Signal Process Control
  doi: 10.1016/J.BSPC.2021.103455
– ident: 15738_CR19
– ident: 15738_CR37
– ident: 15738_CR17
– volume: 148
  start-page: 56
  year: 2018
  ident: 15738_CR30
  publication-title: Behav Process
  doi: 10.1016/j.beproc.2018.01.004
– volume: 71
  start-page: 103217
  year: 2022
  ident: 15738_CR33
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103217
– volume: 33
  start-page: 1073
  issue: 5
  year: 2020
  ident: 15738_CR35
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00265-5
– ident: 15738_CR8
  doi: 10.1016/B978-0-12-809633-8.20349-X
– volume: 9
  start-page: 90319
  year: 2021
  ident: 15738_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090474
– volume: 50
  start-page: 1734
  issue: 7
  year: 2019
  ident: 15738_CR40
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.025373
– ident: 15738_CR4
– volume: 2022
  start-page: 1
  year: 2022
  ident: 15738_CR21
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/5261942
– volume: 203
  year: 2021
  ident: 15738_CR23
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/J.CMPB.2021.106032
– ident: 15738_CR29
SSID ssj0016524
Score 2.5855575
Snippet Numerous medical studies have shown that Alzheimer’s disease (AD) was present decades before the clinical diagnosis of dementia. As a result of the development...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3767
SubjectTerms Accuracy
Alzheimer's disease
Artificial neural networks
Biomarkers
Classification
Computer Communication Networks
Computer Science
Data augmentation
Data Structures and Information Theory
Datasets
Deep learning
Diagnosis
Feature extraction
Image classification
Machine learning
Magnetic resonance imaging
Medical diagnosis
Medical imaging
Multimedia Information Systems
Performance measurement
Signs and symptoms
Software
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgLDDwKCAKBXlgg0hxHDvuGCGqglQG1ErdovoFlUpaNWVh4jf4Pb6Em8RpAAESa2J7uM9j3xdC50QqQPVWedII7oU6Ku2gp7i2UehrcEr500D_jveG4e2IjVxRWFZlu1chycJS18VuJC8lAR_jERaBmkbraIPld3eQ4mEQr2IHnLlRtsL3wB8SVyrz8xlf3VGNMb-FRQtv091F2w4m4rjk6x5aM2kT7VQjGLDTyCba-tRPcB8NYqyNmWM3CuIB2yr1CgM2xSZvZox1mVw3yfDM4nj68mgmT2bx_vqWYRetwbMU9-9v8OQJjE12gIbd68FVz3NjEzxFOV16ATGM286YCKsCy30qLZXcl8AW-MykBcjDuRyHghKjAIEESurQNwGxDIhm6CFqpLPUHCGstOxoZqk2AAMEXCaEVMIA0rVRpBUVLUQq6iXK9RTPR1tMk7obck7xBCieFBRPoha6WO2Zlx01_lzdrpiSOO3KkiC30AFcC2gLXVaMqn__ftrx_5afoE2Qr7B8cWmjxnLxbE4BgyzlWSFyH-v50XY
  priority: 102
  providerName: Springer Nature
Title A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images
URI https://link.springer.com/article/10.1007/s11042-023-15738-7
https://www.proquest.com/docview/2911127293
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NThsxEB4BuZQDLX8iLY186K1YrNe7XudULVECBQUhRCR6WuE_iARJmk0vPfU1eD2ehHHWSwCpuezBu-vDjGfm84w9H8A3pjSieqepslLQxGSVH6RaGJclkcGg5FMD_XNxMkhOr9PrkHArw7HK2ifOHbUZa58jP4y9VcYIBfmPyW_qWaN8dTVQaKxCA12wxM1X46h7fnH5UkcQaaC1lRHF2MjCtZnq8hzzV1MwZlGWZmj22dvQtMCb70qk88jT-wQbATKSvNLxJqzY0RZ8rOkYSLDOLVh_1VtwG65yYqydkEALcUtcfQyLIE4l1jc2JqY6aDcsydiR_P7vnR0-2OnTv8eShMoNGY9I__InGT6g4yl3YNDrXnVOaKBQoJoLPqMxs6lw7RsmnY6diLhyXIlIoYpwOFUO4Y8Q6iaRnFmNaCTWyiSRjZlLUWiW78LaaDyye0C0UW2TOm4sQgKJGwuptLSIel2WGc1lE1gtvUKH_uKe5uK-WHRG9hIvUOLFXOJF1oTvL_9Mqu4aS7_er5VSBEsri8W6aMJBrajF6__P9nn5bF_gQ4z4pcq27MPabPrHfkX8MVMtWJW94xY08uNfZ91WWHI42hEdfA7i_BmR7top
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB5ReqA9tOWnIgVaH-DUWqztXa9zQFVUmiZAOFRB4rbgvxIJkpRNVdFTX4OX6EP1STrOeglFghvX3bW1Go9nPnt-PoBNpg2iem-odkrS1OaVHaRGWp-niUWnFK4Geoeyc5TuHWfHc_CnroUJaZW1TZwaajsy4Y58m4ddyREKio_j7zSwRoXoak2hUanFvrv6iUe2cqe7i-u7xXn7c_9Th0ZWAWqEFBPKmcukb54y5Q33MhHaCy0TjX-NjzPtERFIqU9TJZgz6KC50TZNHGc-Y0I5gfM-gaepEM2wo1T7y03UQmaRRFclFD0xi0U6VakeC4Uw6CEpy3I0Mvn_jnCGbu8EZKd-rv0KXkSASlqVRi3CnBsuwcua_IFEW7AEz291MlyGfotY58YkklB8I75O-iKIiokLbZSJrdL6BiUZedI6_3XmBhfu8u_v65LEOBEZDUnva5cMLtDMlStw9CiifQ3zw9HQrQIxVjdt5oV1CEAUHmOUNsohxvZ5bo1QDWC19AoTu5kHUo3zYtaHOUi8QIkXU4kXeQPe34wZV708Hvx6vV6UIu7rsphpYQM-1As1e33_bG8enu0dLHT6vYPioHu4vwbPOCKn6p5nHeYnlz_cBiKfiX47VTcCJ4-t3_8AmXARjg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RIFXl0AdQNQWKD3AqFmt712sOVZUCESkQIQQStwW_2kiQBDZVRU_9G_0r_Tn9JR1nvQSQ4MZ1H5Y8Hs989jw-gBWmDaJ6b6h2StLU5pUdpEZan6eJRacUrgb2u3LnOP16kp1Mwd-6FiakVdY2cWyo7cCEO_J1HnYlRygo1n1MizjYan8eXtLAIBUirTWdRqUiu-76Jx7fyk-dLVzrVc7b20ebOzQyDFAjpBhRzlwm_cYZU95wLxOhvdAy0TgDfJxpj-hASn2WKsGcQWfNjbZp4jjzGRPKCRz3GUzjpPKkAdNftrsHhzcxDJlFSl2VUPTLLJbsVIV7LJTFoL-kLMvR5OR33eIE694Lz469Xvs1vIxwlbQq_XoDU64_C69qKggSLcMszNzqazgHRy1inRuSSEnxjfg6BYwgRiYuNFUmtkry65Vk4Enr_Nd317twV_9-_ylJjBqRQZ_sH3ZI7wKNXjkPx08i3LfQ6A_67h0QY_WGzbywDuGIwkON0kY5RNw-z60Rqgmsll5hYm_zQLFxXky6MgeJFyjxYizxIm_Cx5t_hlVnj0e_XqwXpYi7vCwmOtmEtXqhJq8fHu3946Mtw3PU7WKv091dgBccYVR16bMIjdHVD7eEMGikP0R9I3D61Cr-HwVUFyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+framework+for+early+diagnosis+of+Alzheimer%E2%80%99s+disease+on+MRI+images&rft.jtitle=Multimedia+tools+and+applications&rft.au=Arafa%2C+Doaa+Ahmed&rft.au=Moustafa%2C+Hossam+El-Din&rft.au=Ali%2C+Hesham+A.&rft.au=Ali-Eldin%2C+Amr+M.+T.&rft.date=2024-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=2&rft.spage=3767&rft.epage=3799&rft_id=info:doi/10.1007%2Fs11042-023-15738-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15738_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon