A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images
Numerous medical studies have shown that Alzheimer’s disease (AD) was present decades before the clinical diagnosis of dementia. As a result of the development of these studies with the discovery of many ideal biomarkers of symptoms of Alzheimer’s disease, it became clear that early diagnosis requir...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 2; pp. 3767 - 3799 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-023-15738-7 |
Cover
Loading…
Abstract | Numerous medical studies have shown that Alzheimer’s disease (AD) was present decades before the clinical diagnosis of dementia. As a result of the development of these studies with the discovery of many ideal biomarkers of symptoms of Alzheimer’s disease, it became clear that early diagnosis requires a high-performance computational tool to handle such large amounts of data, as early diagnosis of Alzheimer’s disease provides us with a healthy opportunity to benefit from treatment. The main objective of this paper is to establish a complete framework that is based on deep learning approaches and convolutional neural networks (CNN). Four stages of AD, such as (I) preprocessing and data preparation, (II) data augmentation, (III) cross-validation, and (IV) classification and feature extraction based on deep learning for medical image classification, are implemented. In these stages, two methods are implemented. The first method uses a simple CNN architecture. In the second method, the VGG16 model is the pre-trained model that is trained on the ImageNet dataset but applies the same model to the different datasets. We apply transfer learning, meaning, and fine-tuning to take advantage of the pre-trained models. Seven performance metrics are used to evaluate and compare the two methods. Compared to the most recent effort, the proposed method is proficient of analyzing AD, moreover, entails less labeled training samples and minimal domain prior knowledge. A significant performance gain on classification of all diagnosis groups was achieved in our experiments. The experimental findings demonstrate that the suggested designs are appropriate for basic structures with minimal computational complexity, overfitting, memory consumption, and temporal regulation. Besides, they achieve a promising accuracy, 99.95% and 99.99% for the proposed CNN model in the classification of the AD stage. The VGG16 pre-trained model is fine-tuned and achieved an accuracy of 97.44% for AD stage classifications. |
---|---|
AbstractList | Numerous medical studies have shown that Alzheimer’s disease (AD) was present decades before the clinical diagnosis of dementia. As a result of the development of these studies with the discovery of many ideal biomarkers of symptoms of Alzheimer’s disease, it became clear that early diagnosis requires a high-performance computational tool to handle such large amounts of data, as early diagnosis of Alzheimer’s disease provides us with a healthy opportunity to benefit from treatment. The main objective of this paper is to establish a complete framework that is based on deep learning approaches and convolutional neural networks (CNN). Four stages of AD, such as (I) preprocessing and data preparation, (II) data augmentation, (III) cross-validation, and (IV) classification and feature extraction based on deep learning for medical image classification, are implemented. In these stages, two methods are implemented. The first method uses a simple CNN architecture. In the second method, the VGG16 model is the pre-trained model that is trained on the ImageNet dataset but applies the same model to the different datasets. We apply transfer learning, meaning, and fine-tuning to take advantage of the pre-trained models. Seven performance metrics are used to evaluate and compare the two methods. Compared to the most recent effort, the proposed method is proficient of analyzing AD, moreover, entails less labeled training samples and minimal domain prior knowledge. A significant performance gain on classification of all diagnosis groups was achieved in our experiments. The experimental findings demonstrate that the suggested designs are appropriate for basic structures with minimal computational complexity, overfitting, memory consumption, and temporal regulation. Besides, they achieve a promising accuracy, 99.95% and 99.99% for the proposed CNN model in the classification of the AD stage. The VGG16 pre-trained model is fine-tuned and achieved an accuracy of 97.44% for AD stage classifications. |
Author | Ali, Hesham A. Moustafa, Hossam El-Din Ali-Eldin, Amr M. T. Saraya, Sabry F. Arafa, Doaa Ahmed |
Author_xml | – sequence: 1 givenname: Doaa Ahmed orcidid: 0000-0003-3340-6472 surname: Arafa fullname: Arafa, Doaa Ahmed email: doaaarafa@mans.edu.eg organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University – sequence: 2 givenname: Hossam El-Din surname: Moustafa fullname: Moustafa, Hossam El-Din organization: Electronics and Communication Engineering Department, Faculty of Engineering, Mansoura University – sequence: 3 givenname: Hesham A. surname: Ali fullname: Ali, Hesham A. organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Faculty Artificial Intelligence, Delta University for Science and Technology – sequence: 4 givenname: Amr M. T. surname: Ali-Eldin fullname: Ali-Eldin, Amr M. T. organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University – sequence: 5 givenname: Sabry F. surname: Saraya fullname: Saraya, Sabry F. organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University |
BookMark | eNp9kM1KAzEQx4NUsK2-gKeA59VMspvdHkvxo1ARpJ5DdjtZt26TmmyRevI1fD2fxNQKgoeeZpj5_-bjPyA96ywScg7sEhjLrwIAS3nCuEggy0WR5Eekv8uSPOfQi7koWJJnDE7IIIQlYyAznvbJfEwXiGvaova2sTU1Xq_wzfkXapynsdpu6aLRtXWhCdQZOm7fn7FZof_6-AyxFVAHpM7S-8cpbVa6xnBKjo1uA579xiF5urmeT-6S2cPtdDKeJZWQoks4YCbNSENhKm4kE6URpWQllFUsZ6XJJJey1GkhACuZFbwqFylDDiaL_6AYkov93LV3rxsMnVq6jbdxpeIjAOA5H4moKvaqyrsQPBpVNZ3uGmc7r5tWAVM7D9XeQxU9VD8eqjyi_B-69vFFvz0MiT0UotjW6P-uOkB9A3qghlU |
CitedBy_id | crossref_primary_10_1016_j_measurement_2024_115513 crossref_primary_10_1016_j_bspc_2024_107384 crossref_primary_10_1007_s10489_024_05663_z crossref_primary_10_1007_s11227_025_06924_5 crossref_primary_10_3390_diagnostics15060717 crossref_primary_10_1093_cercor_bhae195 crossref_primary_10_1109_ACCESS_2024_3484928 crossref_primary_10_1002_nbm_5323 crossref_primary_10_1016_j_bspc_2024_107422 crossref_primary_10_3390_computers14020036 crossref_primary_10_1016_j_abst_2024_08_004 crossref_primary_10_3390_bioengineering11111153 crossref_primary_10_1016_j_imu_2024_101584 crossref_primary_10_1007_s42600_024_00394_z crossref_primary_10_2196_59370 crossref_primary_10_1080_0954898X_2024_2435491 crossref_primary_10_1016_j_bspc_2024_106920 crossref_primary_10_1016_j_neucom_2024_128119 crossref_primary_10_1007_s10796_024_10541_7 crossref_primary_10_1002_jemt_24727 crossref_primary_10_1007_s11042_024_18253_5 crossref_primary_10_1038_s41598_024_62712_w crossref_primary_10_3390_w17030323 crossref_primary_10_26636_jtit_2024_4_1815 crossref_primary_10_3390_jimaging10060141 crossref_primary_10_3390_diagnostics15060789 crossref_primary_10_32628_CSEIT24103123 |
Cites_doi | 10.1007/s00500-022-06762-0 10.1007/s00521-021-05799-w 10.1007/s10278-019-00265-5 10.1016/J.BSPC.2021.103455 10.1155/2021/6690539 10.1007/s11042-022-11925-0 10.1212/wnl.36.6.750 10.1155/2022/5261942 10.1007/s13369-021-06131-3 10.1016/j.beproc.2018.01.004 10.32604/csse.2022.018520 10.1016/J.CMPB.2021.106032 10.1161/STROKEAHA.119.025373 10.1007/s11277-022-09640-y 10.1016/j.eswa.2022.116622 10.1016/J.BSPC.2022.103565 10.1016/j.bspc.2021.103217 10.1016/j.jalz.2016.02.002 10.1007/s00521-022-07263-9 10.1109/ACCESS.2021.3090474 10.3389/fninf.2022.856295 10.1007/s11063-021-10514-w 10.1109/ICCES51560.2020.9334594 10.1007/978-3-030-68763-2_43 10.1109/ICICS52457.2021.9464543 10.1007/978-981-19-3575-6_22 10.1007/s00521-021-06149-6 10.1109/CAIS.2019.8769473 10.48550/arXiv.1607.06583 10.1016/B978-0-12-809633-8.20349-X |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-023-15738-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 3799 |
ExternalDocumentID | 10_1007_s11042_023_15738_7 |
GrantInformation_xml | – fundername: Mansoura University |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c363t-21e56f9a18fc2f603bf3b60b1bc6f95bf56266ba4831ec6582cbd40e21f5138e3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 22:50:23 EDT 2025 Tue Jul 01 04:13:22 EDT 2025 Thu Apr 24 23:10:54 EDT 2025 Fri Feb 21 02:40:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Convolution Neural Network (CNN) Alzheimer’s Disease (AD) Imaging Pre-processing Deep Learning (DL) Transfer Learning (TL) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-21e56f9a18fc2f603bf3b60b1bc6f95bf56266ba4831ec6582cbd40e21f5138e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3340-6472 |
OpenAccessLink | https://link.springer.com/10.1007/s11042-023-15738-7 |
PQID | 2911127293 |
PQPubID | 54626 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2911127293 crossref_citationtrail_10_1007_s11042_023_15738_7 crossref_primary_10_1007_s11042_023_15738_7 springer_journals_10_1007_s11042_023_15738_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240100 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Arafa, Moustafa, Ali-Eldin, Ali (CR7) 2022; 81 Savaş (CR32) 2022; 47 Dubois (CR13) 2016; 12 Ruuska, Hämäläinen, Kajava, Mughal, Matilainen, Mononen (CR30) 2018; 148 Wu (CR40) 2019; 50 El-Sappagh, Saleh, Ali, Amer, Abuhmed (CR15) 2022; 34 CR19 CR18 CR17 Kong, Zhang, Zhu, Yi, Wang, Zhang (CR22) 2022; 75 CR39 CR16 CR38 CR37 CR14 CR12 CR11 CR31 Theodore, Dorwart, Holmes, Porter, DiChiro (CR34) 1986; 36 Bhangale, Kothandaraman (CR9) 2022; 125 Al-Adhaileh (CR2) 2022; 26 Murugan (CR27) 2021; 9 CR4 Liu, Li, Luo, Yang, Li, Bi (CR23) 2021; 203 CR6 CR5 CR8 CR29 Kamal (CR21) 2022; 2022 CR26 Shanmugam, Duraisamy, Simon, Bhaskaran (CR33) 2022; 71 Al-Khuzaie, Bayat, Duru (CR3) 2021; 2021 CR20 CR41 Deepa, Chokkalingam (CR10) 2022; 74 Tufail, Ma, Zhang (CR35) 2020; 33 Meng, Wu, Liu, Wang, Xu, Jiao (CR25) 2022; 16 Turkson, Qu, Mawuli, Eghan (CR36) 2021; 53 Mehmood, Abugabah, AlZubi, Sanzogni (CR24) 2022; 43 AbdulAzeem, Bahgat, Badawy (CR1) 2021; 33 Poloni, Ferrari (CR28) 2022; 195 MH Al-Adhaileh (15738_CR2) 2022; 26 N Deepa (15738_CR10) 2022; 74 X Meng (15738_CR25) 2022; 16 RE Turkson (15738_CR36) 2021; 53 AB Tufail (15738_CR35) 2020; 33 KB Bhangale (15738_CR9) 2022; 125 S El-Sappagh (15738_CR15) 2022; 34 S Murugan (15738_CR27) 2021; 9 WH Theodore (15738_CR34) 1986; 36 DA Arafa (15738_CR7) 2022; 81 15738_CR8 15738_CR31 15738_CR6 15738_CR12 15738_CR11 A Mehmood (15738_CR24) 2022; 43 15738_CR14 M Kamal (15738_CR21) 2022; 2022 S Ruuska (15738_CR30) 2018; 148 15738_CR16 Z Kong (15738_CR22) 2022; 75 15738_CR38 O Wu (15738_CR40) 2019; 50 15738_CR37 15738_CR18 15738_CR17 15738_CR39 FEK Al-Khuzaie (15738_CR3) 2021; 2021 15738_CR19 B Dubois (15738_CR13) 2016; 12 15738_CR4 Y AbdulAzeem (15738_CR1) 2021; 33 15738_CR5 S Savaş (15738_CR32) 2022; 47 J Liu (15738_CR23) 2021; 203 KM Poloni (15738_CR28) 2022; 195 15738_CR41 15738_CR20 JV Shanmugam (15738_CR33) 2022; 71 15738_CR26 15738_CR29 |
References_xml | – volume: 26 start-page: 7751 year: 2022 end-page: 7762 ident: CR2 article-title: Diagnosis and classification of Alzheimer’s disease by using a convolution neural network algorithm publication-title: Soft Comput doi: 10.1007/s00500-022-06762-0 – volume: 33 start-page: 10415 issue: 16 year: 2021 end-page: 10428 ident: CR1 article-title: A CNN based framework for classification of Alzheimer’s disease publication-title: Neural Comput Applic doi: 10.1007/s00521-021-05799-w – ident: CR18 – volume: 33 start-page: 1073 issue: 5 year: 2020 end-page: 1090 ident: CR35 article-title: Binary Classification of Alzheimer’s Disease Using sMRI Imaging Modality and Deep Learning publication-title: J Digit Imaging doi: 10.1007/s10278-019-00265-5 – ident: CR4 – volume: 74 start-page: 103455 year: 2022 ident: CR10 article-title: Optimization of VGG16 utilizing the Arithmetic Optimization Algorithm for early detection of Alzheimer’s disease publication-title: Biomed Signal Process Control doi: 10.1016/J.BSPC.2021.103455 – ident: CR14 – ident: CR39 – volume: 2021 start-page: 1 year: 2021 end-page: 9 ident: CR3 article-title: Diagnosis of Alzheimer Disease Using 2D MRI Slices by Convolutional Neural Network publication-title: Appl Bionics Biomech doi: 10.1155/2021/6690539 – ident: CR16 – ident: CR37 – volume: 81 start-page: 23735 year: 2022 end-page: 23776 ident: CR7 article-title: Early detection of Alzheimer’s disease based on the state-of-the-art deep learning approach: a comprehensive survey publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-11925-0 – ident: CR12 – ident: CR6 – ident: CR29 – ident: CR8 – volume: 36 start-page: 750 issue: 6 year: 1986 end-page: 759 ident: CR34 article-title: Neuroimaging in refractory partial seizures: Comparison of PET, CT, and MRI publication-title: Neurology doi: 10.1212/wnl.36.6.750 – volume: 2022 start-page: 1 year: 2022 end-page: 8 ident: CR21 article-title: Machine Learning and Image Processing Enabled Evolutionary Framework for Brain MRI Analysis for Alzheimer’s Disease Detection publication-title: Comput Intell Neurosci doi: 10.1155/2022/5261942 – volume: 47 start-page: 2201 issue: 2 year: 2022 end-page: 2218 ident: CR32 article-title: Detecting the Stages of Alzheimer’s Disease with Pre-trained Deep Learning Architectures publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-06131-3 – volume: 148 start-page: 56 year: 2018 end-page: 62 ident: CR30 article-title: Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle publication-title: Behav Process doi: 10.1016/j.beproc.2018.01.004 – volume: 43 start-page: 305 issue: 1 year: 2022 end-page: 315 ident: CR24 article-title: Early Diagnosis of Alzheimer’s Disease Based on Convolutional Neural Networks publication-title: Comput Syst Sci Eng doi: 10.32604/csse.2022.018520 – ident: CR19 – volume: 203 year: 2021 ident: CR23 article-title: Alzheimer’s disease detection using depthwise separable convolutional neural networks publication-title: Comput Methods Prog Biomed doi: 10.1016/J.CMPB.2021.106032 – ident: CR38 – volume: 50 start-page: 1734 issue: 7 year: 2019 end-page: 1741 ident: CR40 article-title: Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data publication-title: Stroke doi: 10.1161/STROKEAHA.119.025373 – volume: 125 start-page: 1913 year: 2022 end-page: 1949 ident: CR9 article-title: Survey of Deep Learning Paradigms for Speech Processing publication-title: Wirel Pers Commun doi: 10.1007/s11277-022-09640-y – volume: 195 start-page: 116622 year: 2022 ident: CR28 article-title: A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer’s diagnosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116622 – ident: CR17 – volume: 75 start-page: 103565 year: 2022 ident: CR22 article-title: Multi-modal data Alzheimer’s disease detection based on 3D convolution publication-title: Biomed Signal Process Control doi: 10.1016/J.BSPC.2022.103565 – ident: CR31 – volume: 71 start-page: 103217 year: 2022 ident: CR33 article-title: Alzheimer’s disease classification using pre-trained deep networks publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103217 – volume: 12 start-page: 292 issue: 3 year: 2016 end-page: 323 ident: CR13 article-title: Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria publication-title: Alzheimer’s Demen doi: 10.1016/j.jalz.2016.02.002 – ident: CR11 – volume: 34 start-page: 14487 year: 2022 end-page: 14509 ident: CR15 article-title: Two-stage deep learning model for Alzheimer’s disease detection and prediction of the mild cognitive impairment time publication-title: Neural Comput Applic doi: 10.1007/s00521-022-07263-9 – ident: CR5 – volume: 9 start-page: 90319 year: 2021 end-page: 90329 ident: CR27 article-title: DEMNET: A Deep Learning Model for Early Diagnosis of Alzheimer Diseases and Dementia from MR Images publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090474 – volume: 16 start-page: 856295 year: 2022 ident: CR25 article-title: Research on Voxel-Based Features Detection and Analysis of Alzheimer’s Disease Using Random Survey Support Vector Machine publication-title: Front Neuroinform doi: 10.3389/fninf.2022.856295 – volume: 53 start-page: 2649 issue: 4 year: 2021 end-page: 2663 ident: CR36 article-title: Classification of Alzheimer’s Disease Using Deep Convolutional Spiking Neural Network publication-title: Neural Process Lett doi: 10.1007/s11063-021-10514-w – ident: CR41 – ident: CR26 – ident: CR20 – volume: 47 start-page: 2201 issue: 2 year: 2022 ident: 15738_CR32 publication-title: Arab J Sci Eng doi: 10.1007/s13369-021-06131-3 – volume: 195 start-page: 116622 year: 2022 ident: 15738_CR28 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116622 – volume: 33 start-page: 10415 issue: 16 year: 2021 ident: 15738_CR1 publication-title: Neural Comput Applic doi: 10.1007/s00521-021-05799-w – volume: 2021 start-page: 1 year: 2021 ident: 15738_CR3 publication-title: Appl Bionics Biomech doi: 10.1155/2021/6690539 – ident: 15738_CR14 doi: 10.1109/ICCES51560.2020.9334594 – volume: 43 start-page: 305 issue: 1 year: 2022 ident: 15738_CR24 publication-title: Comput Syst Sci Eng doi: 10.32604/csse.2022.018520 – ident: 15738_CR11 doi: 10.1007/978-3-030-68763-2_43 – ident: 15738_CR38 – volume: 34 start-page: 14487 year: 2022 ident: 15738_CR15 publication-title: Neural Comput Applic doi: 10.1007/s00521-022-07263-9 – ident: 15738_CR18 – ident: 15738_CR26 doi: 10.1109/ICICS52457.2021.9464543 – ident: 15738_CR6 doi: 10.1007/978-981-19-3575-6_22 – ident: 15738_CR41 doi: 10.1007/s00521-021-06149-6 – volume: 81 start-page: 23735 year: 2022 ident: 15738_CR7 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-11925-0 – ident: 15738_CR20 doi: 10.1109/CAIS.2019.8769473 – volume: 12 start-page: 292 issue: 3 year: 2016 ident: 15738_CR13 publication-title: Alzheimer’s Demen doi: 10.1016/j.jalz.2016.02.002 – ident: 15738_CR5 – volume: 125 start-page: 1913 year: 2022 ident: 15738_CR9 publication-title: Wirel Pers Commun doi: 10.1007/s11277-022-09640-y – volume: 16 start-page: 856295 year: 2022 ident: 15738_CR25 publication-title: Front Neuroinform doi: 10.3389/fninf.2022.856295 – volume: 26 start-page: 7751 year: 2022 ident: 15738_CR2 publication-title: Soft Comput doi: 10.1007/s00500-022-06762-0 – ident: 15738_CR31 doi: 10.48550/arXiv.1607.06583 – volume: 75 start-page: 103565 year: 2022 ident: 15738_CR22 publication-title: Biomed Signal Process Control doi: 10.1016/J.BSPC.2022.103565 – volume: 53 start-page: 2649 issue: 4 year: 2021 ident: 15738_CR36 publication-title: Neural Process Lett doi: 10.1007/s11063-021-10514-w – ident: 15738_CR12 – volume: 36 start-page: 750 issue: 6 year: 1986 ident: 15738_CR34 publication-title: Neurology doi: 10.1212/wnl.36.6.750 – ident: 15738_CR39 – ident: 15738_CR16 – volume: 74 start-page: 103455 year: 2022 ident: 15738_CR10 publication-title: Biomed Signal Process Control doi: 10.1016/J.BSPC.2021.103455 – ident: 15738_CR19 – ident: 15738_CR37 – ident: 15738_CR17 – volume: 148 start-page: 56 year: 2018 ident: 15738_CR30 publication-title: Behav Process doi: 10.1016/j.beproc.2018.01.004 – volume: 71 start-page: 103217 year: 2022 ident: 15738_CR33 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103217 – volume: 33 start-page: 1073 issue: 5 year: 2020 ident: 15738_CR35 publication-title: J Digit Imaging doi: 10.1007/s10278-019-00265-5 – ident: 15738_CR8 doi: 10.1016/B978-0-12-809633-8.20349-X – volume: 9 start-page: 90319 year: 2021 ident: 15738_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090474 – volume: 50 start-page: 1734 issue: 7 year: 2019 ident: 15738_CR40 publication-title: Stroke doi: 10.1161/STROKEAHA.119.025373 – ident: 15738_CR4 – volume: 2022 start-page: 1 year: 2022 ident: 15738_CR21 publication-title: Comput Intell Neurosci doi: 10.1155/2022/5261942 – volume: 203 year: 2021 ident: 15738_CR23 publication-title: Comput Methods Prog Biomed doi: 10.1016/J.CMPB.2021.106032 – ident: 15738_CR29 |
SSID | ssj0016524 |
Score | 2.5855575 |
Snippet | Numerous medical studies have shown that Alzheimer’s disease (AD) was present decades before the clinical diagnosis of dementia. As a result of the development... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3767 |
SubjectTerms | Accuracy Alzheimer's disease Artificial neural networks Biomarkers Classification Computer Communication Networks Computer Science Data augmentation Data Structures and Information Theory Datasets Deep learning Diagnosis Feature extraction Image classification Machine learning Magnetic resonance imaging Medical diagnosis Medical imaging Multimedia Information Systems Performance measurement Signs and symptoms Software Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLWgLDDwKCAKBXlgg0hxHDvuGCGqglQG1ErdovoFlUpaNWVh4jf4Pb6Em8RpAAESa2J7uM9j3xdC50QqQPVWedII7oU6Ku2gp7i2UehrcEr500D_jveG4e2IjVxRWFZlu1chycJS18VuJC8lAR_jERaBmkbraIPld3eQ4mEQr2IHnLlRtsL3wB8SVyrz8xlf3VGNMb-FRQtv091F2w4m4rjk6x5aM2kT7VQjGLDTyCba-tRPcB8NYqyNmWM3CuIB2yr1CgM2xSZvZox1mVw3yfDM4nj68mgmT2bx_vqWYRetwbMU9-9v8OQJjE12gIbd68FVz3NjEzxFOV16ATGM286YCKsCy30qLZXcl8AW-MykBcjDuRyHghKjAIEESurQNwGxDIhm6CFqpLPUHCGstOxoZqk2AAMEXCaEVMIA0rVRpBUVLUQq6iXK9RTPR1tMk7obck7xBCieFBRPoha6WO2Zlx01_lzdrpiSOO3KkiC30AFcC2gLXVaMqn__ftrx_5afoE2Qr7B8cWmjxnLxbE4BgyzlWSFyH-v50XY priority: 102 providerName: Springer Nature |
Title | A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images |
URI | https://link.springer.com/article/10.1007/s11042-023-15738-7 https://www.proquest.com/docview/2911127293 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NThsxEB4BuZQDLX8iLY186K1YrNe7XudULVECBQUhRCR6WuE_iARJmk0vPfU1eD2ehHHWSwCpuezBu-vDjGfm84w9H8A3pjSieqepslLQxGSVH6RaGJclkcGg5FMD_XNxMkhOr9PrkHArw7HK2ifOHbUZa58jP4y9VcYIBfmPyW_qWaN8dTVQaKxCA12wxM1X46h7fnH5UkcQaaC1lRHF2MjCtZnq8hzzV1MwZlGWZmj22dvQtMCb70qk88jT-wQbATKSvNLxJqzY0RZ8rOkYSLDOLVh_1VtwG65yYqydkEALcUtcfQyLIE4l1jc2JqY6aDcsydiR_P7vnR0-2OnTv8eShMoNGY9I__InGT6g4yl3YNDrXnVOaKBQoJoLPqMxs6lw7RsmnY6diLhyXIlIoYpwOFUO4Y8Q6iaRnFmNaCTWyiSRjZlLUWiW78LaaDyye0C0UW2TOm4sQgKJGwuptLSIel2WGc1lE1gtvUKH_uKe5uK-WHRG9hIvUOLFXOJF1oTvL_9Mqu4aS7_er5VSBEsri8W6aMJBrajF6__P9nn5bF_gQ4z4pcq27MPabPrHfkX8MVMtWJW94xY08uNfZ91WWHI42hEdfA7i_BmR7top |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB5ReqA9tOWnIgVaH-DUWqztXa9zQFVUmiZAOFRB4rbgvxIJkpRNVdFTX4OX6EP1STrOeglFghvX3bW1Go9nPnt-PoBNpg2iem-odkrS1OaVHaRGWp-niUWnFK4Geoeyc5TuHWfHc_CnroUJaZW1TZwaajsy4Y58m4ddyREKio_j7zSwRoXoak2hUanFvrv6iUe2cqe7i-u7xXn7c_9Th0ZWAWqEFBPKmcukb54y5Q33MhHaCy0TjX-NjzPtERFIqU9TJZgz6KC50TZNHGc-Y0I5gfM-gaepEM2wo1T7y03UQmaRRFclFD0xi0U6VakeC4Uw6CEpy3I0Mvn_jnCGbu8EZKd-rv0KXkSASlqVRi3CnBsuwcua_IFEW7AEz291MlyGfotY58YkklB8I75O-iKIiokLbZSJrdL6BiUZedI6_3XmBhfu8u_v65LEOBEZDUnva5cMLtDMlStw9CiifQ3zw9HQrQIxVjdt5oV1CEAUHmOUNsohxvZ5bo1QDWC19AoTu5kHUo3zYtaHOUi8QIkXU4kXeQPe34wZV708Hvx6vV6UIu7rsphpYQM-1As1e33_bG8enu0dLHT6vYPioHu4vwbPOCKn6p5nHeYnlz_cBiKfiX47VTcCJ4-t3_8AmXARjg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RIFXl0AdQNQWKD3AqFmt712sOVZUCESkQIQQStwW_2kiQBDZVRU_9G_0r_Tn9JR1nvQSQ4MZ1H5Y8Hs989jw-gBWmDaJ6b6h2StLU5pUdpEZan6eJRacUrgb2u3LnOP16kp1Mwd-6FiakVdY2cWyo7cCEO_J1HnYlRygo1n1MizjYan8eXtLAIBUirTWdRqUiu-76Jx7fyk-dLVzrVc7b20ebOzQyDFAjpBhRzlwm_cYZU95wLxOhvdAy0TgDfJxpj-hASn2WKsGcQWfNjbZp4jjzGRPKCRz3GUzjpPKkAdNftrsHhzcxDJlFSl2VUPTLLJbsVIV7LJTFoL-kLMvR5OR33eIE694Lz469Xvs1vIxwlbQq_XoDU64_C69qKggSLcMszNzqazgHRy1inRuSSEnxjfg6BYwgRiYuNFUmtkry65Vk4Enr_Nd317twV_9-_ylJjBqRQZ_sH3ZI7wKNXjkPx08i3LfQ6A_67h0QY_WGzbywDuGIwkON0kY5RNw-z60Rqgmsll5hYm_zQLFxXky6MgeJFyjxYizxIm_Cx5t_hlVnj0e_XqwXpYi7vCwmOtmEtXqhJq8fHu3946Mtw3PU7WKv091dgBccYVR16bMIjdHVD7eEMGikP0R9I3D61Cr-HwVUFyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+framework+for+early+diagnosis+of+Alzheimer%E2%80%99s+disease+on+MRI+images&rft.jtitle=Multimedia+tools+and+applications&rft.au=Arafa%2C+Doaa+Ahmed&rft.au=Moustafa%2C+Hossam+El-Din&rft.au=Ali%2C+Hesham+A.&rft.au=Ali-Eldin%2C+Amr+M.+T.&rft.date=2024-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=2&rft.spage=3767&rft.epage=3799&rft_id=info:doi/10.1007%2Fs11042-023-15738-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15738_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |