Accelerating effects of biochar for pyrite-catalyzed Fenton-like oxidation of herbicide 2,4-D
[Display omitted] •Biochar accelerated 2,4-D degradation using pyrite as the Fenton-like catalyst.•Biochar increased the production of OH in the Fenton-like system.•The mechanism related to the increased production of OH was investigated.•The Fenton-like oxidation of 2,4-dichlorophenol was also acce...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 391; p. 123605 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Biochar accelerated 2,4-D degradation using pyrite as the Fenton-like catalyst.•Biochar increased the production of OH in the Fenton-like system.•The mechanism related to the increased production of OH was investigated.•The Fenton-like oxidation of 2,4-dichlorophenol was also accelerated by biochar.
Biochar was mixed with natural pyrite to catalyze the Fenton-like oxidation of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), so as to accelerate the degradation reaction. The accelerating effects of two biochars with different adsorption capacities were compared. The biochar’s functions on accelerating the oxidation were investigated by using radical scavengers, electron spin resonance (ESR), and the chemical probe method. The results indicated that the rate constant (kobs) for the degradation reaction of 2,4-D was enhanced 1.98–2.39 times after the addition of 0.1 g/L of biochar in the pyrite (1.5 g/L) catalyzed system. However, the biochar with the higher adsorption capacity did not outperform the other biochar in accelerating the reaction. Biochar did not influence the Fe lixiviation from pyrite; instead, it accelerated the Fenton oxidation of 2,4-D catalyzed by the dissolved Fe2+. Hydroxyl radicals (OH) were proved to be the major reactive species contributing to the oxidation of 2,4-D, and the addition of biochar increased the cumulative production of OH 2.72 times that in the pyrite-catalyzed system. The mechanism is related to the transformation of O2− to OH by biochar, in which the quinone-like structure acts as the electron shuttle. Based on the identified intermediates and products by gas chromatography-mass spectrometry (GC–MS), high performance liquid chromatography (HPLC), and ion chromatography (IC), as well as the released Cl−, a reaction pathway was summarized for mineralization of 2,4-D. Furthermore, the degradation of 2,4-dichlorophenol (2,4-DCP) was accelerated by biochar as well, indicating the wide feasibility of biochar for accelerating the Fenton-like oxidation of organic pollutants. |
---|---|
AbstractList | [Display omitted]
•Biochar accelerated 2,4-D degradation using pyrite as the Fenton-like catalyst.•Biochar increased the production of OH in the Fenton-like system.•The mechanism related to the increased production of OH was investigated.•The Fenton-like oxidation of 2,4-dichlorophenol was also accelerated by biochar.
Biochar was mixed with natural pyrite to catalyze the Fenton-like oxidation of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), so as to accelerate the degradation reaction. The accelerating effects of two biochars with different adsorption capacities were compared. The biochar’s functions on accelerating the oxidation were investigated by using radical scavengers, electron spin resonance (ESR), and the chemical probe method. The results indicated that the rate constant (kobs) for the degradation reaction of 2,4-D was enhanced 1.98–2.39 times after the addition of 0.1 g/L of biochar in the pyrite (1.5 g/L) catalyzed system. However, the biochar with the higher adsorption capacity did not outperform the other biochar in accelerating the reaction. Biochar did not influence the Fe lixiviation from pyrite; instead, it accelerated the Fenton oxidation of 2,4-D catalyzed by the dissolved Fe2+. Hydroxyl radicals (OH) were proved to be the major reactive species contributing to the oxidation of 2,4-D, and the addition of biochar increased the cumulative production of OH 2.72 times that in the pyrite-catalyzed system. The mechanism is related to the transformation of O2− to OH by biochar, in which the quinone-like structure acts as the electron shuttle. Based on the identified intermediates and products by gas chromatography-mass spectrometry (GC–MS), high performance liquid chromatography (HPLC), and ion chromatography (IC), as well as the released Cl−, a reaction pathway was summarized for mineralization of 2,4-D. Furthermore, the degradation of 2,4-dichlorophenol (2,4-DCP) was accelerated by biochar as well, indicating the wide feasibility of biochar for accelerating the Fenton-like oxidation of organic pollutants. |
ArticleNumber | 123605 |
Author | Li, Yimin Xie, Bin Li, Jianfa Zhu, Xiaoxiao Feng, Dongqing |
Author_xml | – sequence: 1 givenname: Xiaoxiao surname: Zhu fullname: Zhu, Xiaoxiao – sequence: 2 givenname: Jianfa orcidid: 0000-0002-0876-4094 surname: Li fullname: Li, Jianfa email: ljf@usx.edu.cn – sequence: 3 givenname: Bin surname: Xie fullname: Xie, Bin – sequence: 4 givenname: Dongqing surname: Feng fullname: Feng, Dongqing – sequence: 5 givenname: Yimin orcidid: 0000-0003-1012-3330 surname: Li fullname: Li, Yimin email: liym@usx.edu.cn |
BookMark | eNp90L1OwzAQwHELFYm28ABsfgAc_JE4iZiqQgGpEguMyHLPZ-oS4sqJEOXpSSkTQ6e75XfS_Sdk1MYWCbkUPBNc6OtNBrjJJBd1JqTSvDghY1GViikp5GjYVVWwqs7LMzLpug3nXNeiHpPXGQA2mGwf2jeK3iP0HY2erkKEtU3Ux0S3uxR6ZGB72-y-0dEFtn1sWRPekcav4AYd271aY1oFCA6pvMrZ7Tk59bbp8OJvTsnL4u55_sCWT_eP89mSgdKqZwJLpV2tlRZVob2AKtdVLi2U4DUoWRW-dso5723uOUdRglopXmNdyKKUhZoScbgLKXZdQm-2KXzYtDOCm30fszFDH7PvYw59BlP-MxD630f6ZENzVN4cJA4vfQZMpoOALaALachnXAxH9A_w6oFS |
CitedBy_id | crossref_primary_10_1039_D4CY01211A crossref_primary_10_1371_journal_pone_0291398 crossref_primary_10_1016_j_jhazmat_2021_126514 crossref_primary_10_1016_j_jwpe_2024_105362 crossref_primary_10_1016_j_molliq_2023_121259 crossref_primary_10_1016_j_watres_2022_118048 crossref_primary_10_1016_j_envpol_2021_117957 crossref_primary_10_1016_j_jece_2023_110156 crossref_primary_10_1016_j_cej_2023_141700 crossref_primary_10_1016_j_cej_2024_152080 crossref_primary_10_1016_j_jwpe_2025_107141 crossref_primary_10_1016_j_seppur_2024_130868 crossref_primary_10_3724_j_1000_4734_2024_44_071 crossref_primary_10_1016_j_jwpe_2022_102605 crossref_primary_10_1016_j_materresbull_2023_112261 crossref_primary_10_1039_D2AY01694J crossref_primary_10_1016_j_jhazmat_2022_129741 crossref_primary_10_1016_j_jece_2020_104677 crossref_primary_10_1016_j_jscs_2023_101684 crossref_primary_10_1007_s44246_024_00166_5 crossref_primary_10_1016_j_jece_2021_105647 crossref_primary_10_1016_j_jece_2023_111097 crossref_primary_10_1016_j_chemosphere_2020_128197 crossref_primary_10_1007_s10653_025_02357_4 crossref_primary_10_1007_s11356_023_28308_z crossref_primary_10_1016_j_cej_2022_138466 crossref_primary_10_1016_j_cej_2024_156198 crossref_primary_10_1021_acsaem_1c00371 crossref_primary_10_1007_s11270_022_05629_2 crossref_primary_10_1016_j_jenvman_2023_118196 crossref_primary_10_1007_s11356_021_13730_y crossref_primary_10_1016_j_jece_2021_105730 crossref_primary_10_1016_j_jhazmat_2023_132377 crossref_primary_10_1016_j_micromeso_2021_111632 crossref_primary_10_1016_j_cej_2025_161166 crossref_primary_10_1016_j_envres_2025_120936 crossref_primary_10_1016_j_jgsce_2022_204867 crossref_primary_10_1016_j_cej_2021_128628 crossref_primary_10_1016_j_jece_2024_112872 crossref_primary_10_1021_acs_langmuir_4c03683 crossref_primary_10_1111_1758_2229_13187 crossref_primary_10_1016_j_cej_2021_129238 crossref_primary_10_1016_j_jconhyd_2024_104412 crossref_primary_10_1016_j_apcatb_2021_120734 crossref_primary_10_1016_j_chemosphere_2024_142731 crossref_primary_10_1016_j_jece_2023_111384 crossref_primary_10_2166_wst_2021_135 crossref_primary_10_1016_j_jclepro_2022_134459 crossref_primary_10_1007_s11356_022_22127_4 crossref_primary_10_1016_j_scitotenv_2020_142104 crossref_primary_10_1016_j_cej_2021_134435 crossref_primary_10_1016_j_envpol_2023_122208 crossref_primary_10_1016_j_catcom_2023_106626 crossref_primary_10_1016_j_ecoenv_2023_115794 crossref_primary_10_1016_j_colsurfa_2022_128574 crossref_primary_10_1016_j_jenvman_2023_118497 crossref_primary_10_1021_acsomega_3c07525 crossref_primary_10_1016_j_fuel_2021_122510 crossref_primary_10_1016_j_jhazmat_2022_130075 crossref_primary_10_1080_00222348_2023_2272366 crossref_primary_10_1016_j_cej_2025_161869 crossref_primary_10_1016_j_jece_2022_109015 crossref_primary_10_1016_j_chemosphere_2022_134963 crossref_primary_10_3390_catal9121062 crossref_primary_10_1016_j_jenvman_2021_113753 crossref_primary_10_1080_09593330_2025_2450557 crossref_primary_10_1016_j_chemosphere_2022_136427 crossref_primary_10_1021_acsagscitech_2c00222 crossref_primary_10_1039_D2RA01647H |
Cites_doi | 10.1021/ez5002209 10.1016/j.chemosphere.2018.08.033 10.1016/j.cej.2018.12.098 10.1016/j.biortech.2014.01.120 10.1016/j.apcatb.2017.05.036 10.1016/j.chemosphere.2018.10.080 10.1016/j.carbon.2018.01.036 10.1016/j.apcatb.2012.12.031 10.1016/j.seppur.2017.05.016 10.1016/j.cej.2018.05.133 10.1016/j.apsusc.2014.11.157 10.1016/j.jcis.2014.09.082 10.1016/j.jhazmat.2015.04.062 10.1021/acs.est.5b04323 10.1016/j.chemosphere.2016.11.038 10.1016/j.jphotochem.2006.09.005 10.1016/j.biortech.2014.11.032 10.1016/j.chemosphere.2017.10.026 10.1016/j.molliq.2018.10.142 10.1021/acs.est.7b02740 10.1016/j.cej.2015.03.114 10.1021/acsami.7b03310 10.1016/j.jhazmat.2016.12.045 10.1016/j.watres.2015.02.006 10.1016/j.chemosphere.2019.04.103 10.1016/j.watres.2016.02.042 10.1016/j.apcatb.2018.03.016 10.1016/j.apcatb.2019.117752 10.1016/j.jhazmat.2017.09.025 10.1016/j.scitotenv.2018.11.013 10.1016/j.biortech.2018.05.041 10.1016/j.cej.2015.03.016 10.1016/j.watres.2018.09.051 10.1021/acs.est.7b06487 10.1021/es5061512 10.1016/j.jhazmat.2010.10.055 10.1021/cr900136g 10.1021/acs.est.5b04314 10.1016/j.cej.2015.08.033 10.1016/j.cej.2017.03.036 10.1016/j.scitotenv.2016.06.092 10.1016/j.cej.2014.01.088 10.1016/j.cattod.2017.12.028 10.1016/j.cej.2015.03.079 10.1021/acs.est.5b04042 10.1016/j.apcatb.2017.05.019 10.1016/j.cej.2017.08.013 10.1016/j.cej.2016.02.097 10.1016/j.cej.2008.07.013 10.1016/j.jenvman.2016.01.002 10.1039/C6RA11850J 10.1021/acsami.5b09919 10.1016/j.chemosphere.2017.09.019 10.1016/j.watres.2018.03.012 10.1016/j.watres.2008.10.045 10.1021/acs.accounts.7b00187 10.1016/S0926-3373(00)00149-1 10.1016/j.cej.2016.12.075 10.1016/j.cej.2012.04.058 10.1016/j.electacta.2018.02.153 10.1016/j.jhazmat.2006.03.035 10.1016/j.cej.2019.122518 10.1016/S1001-0742(08)62161-0 10.1080/10643380500326564 10.1016/j.jenvman.2016.11.005 10.1016/j.cej.2017.09.175 10.1016/j.jtice.2015.06.015 10.1016/S0891-5849(01)00824-3 10.1016/j.biortech.2017.03.109 10.1016/j.biortech.2017.10.030 10.1016/S0045-6535(99)00061-2 10.1016/j.gca.2017.08.032 10.1016/j.gca.2015.10.015 10.1016/j.biortech.2014.10.103 10.1021/es4048126 10.1016/j.ultsonch.2016.07.028 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2019.123605 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2019_123605 S1385894719330207 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c363t-1e736d96361856f1c846842ac7cf6c3285f9d3ddffa4f00e17c3b309e95257253 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 03:52:32 EDT 2025 Thu Apr 24 23:07:51 EDT 2025 Fri Feb 23 02:46:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Degradation Fenton reaction Organic pollutants Iron sulfide Biochar |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-1e736d96361856f1c846842ac7cf6c3285f9d3ddffa4f00e17c3b309e95257253 |
ORCID | 0000-0003-1012-3330 0000-0002-0876-4094 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2019_123605 crossref_citationtrail_10_1016_j_cej_2019_123605 elsevier_sciencedirect_doi_10_1016_j_cej_2019_123605 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 2020-07-00 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Zhu, Shi, Li, Li, Lü, Li (b0110) 2017; 235 Brillas, Sirés, Oturan (b0330) 2009; 109 Arienzo (b0025) 1999; 39 Jaafarzadeh, Ghanbari, Ahmadi (b0205) 2017; 320 Fu, Liu, Mao, Chu, Li, Alvarez, Qu, Zhu (b0350) 2016; 50 Diao, Xu, Jiang, Li, Liu, Kong, Zuo (b0090) 2017; 327 Xiao, Chen, Chen, Zhu, Schnoor (b0105) 2018; 52 Qin, Li, Gao, Zhang, Ok, An (b0155) 2018; 137 Seo, Lee, Lee, Kim, Lee, Kim, Lee (b0185) 2015; 273 Yan, Han, Gao, Xue, Chen (b0115) 2015; 175 Duan, Liu, Yin, Bai, Qi (b0010) 2016; 283 Zhang, Xue, Chen, Li (b0120) 2018; 191 Fathinia, Fathinia, Rahmani, Khataee (b0285) 2015; 327 Chen, Zhang, Yang, Yang, Li, Bai (b0300) 2015; 273 Yang, Pan, Li, Liao, Zhang, Wu, Xing (b0150) 2015; 50 Fang, Liu, Gao, Dionysiou, Zhou (b0165) 2015; 49 Jaafarzadeh, Ghanbari, Ahmadi (b0200) 2017; 169 Park, Wang, Xiao, Tafti, DeLaune, Seo (b0265) 2018; 249 Kappler, Wuestner, Ruecker, Harter, Halama, Behrens (b0130) 2014; 1 Fan, Gu, Wu, Liu (b0290) 2018; 333 Labiadh, Oturan, Panizza, Hamadi, Ammar (b0060) 2015; 297 Khabbaz, Entezari (b0075) 2017; 187 Xin, Xian, Chiu (b0140) 2019; 215 Yi, Tu, Tsang, Fang (b0125) 2020; 380 Bae, Kim, Lee (b0275) 2013; 134 Yang, Zhang, Wang, Li, Zhao, Liang, Xie (b0095) 2019; 255 Mohan, Sarswat, Ok, Pittman (b0100) 2014; 160 Chen, Zhang, Feng, Liu, Wang, Yang, Hu (b0195) 2017; 313 Zhu, Zhao, Kalyanaraman, Frei (b0340) 2002; 32 Zhang, Yuan (b0325) 2017; 218 Giri, Ozaki, Takanami, Taniguchi (b0365) 2008; 20 Bandala, Peláez, Dionysiou, Gelover, Garcia, Macías (b0225) 2007; 186 Huang, Wang, Zhang, Zeng, Lai, Wan, Qin, Zeng (b0255) 2016; 6 Huang, Luo, Zhang, Zeng, Lai, Cheng, Wang, Deng, Xue, Gong, Guo, Li (b0270) 2018; 361 Zhang, Xu, Cao, Ok, Cao (b0135) 2018; 211 Qin, Zhang, An (b0190) 2017; 9 Llanos, Raschitor, Cañizares, Rodrigo (b0220) 2018; 269 Badellino, Rodrigues, Bertazzoli (b0370) 2006; 137 Conte, Schenone, Alfano (b0230) 2016; 170 Kemmou, Frontistis, Vakros, Manariotis, Mantzavinos (b0170) 2018; 313 Tong, Yuan, Ma, Jin, Liu, Cheng, Liu, Gan, Wang (b0245) 2016; 50 Fang, Gao, Liu, Dionysiou, Wang, Zhou (b0145) 2014; 48 Ammar, Oturan, Labiadh, Guersalli, Abdelhedi, Oturan, Brillas (b0035) 2015; 74 Piera, Calpe, Brillas, Domènech, Peral (b0360) 2000; 27 Zhang, Zhang, Dai, Zhou, Si (b0005) 2014; 244 Zhang, Yuan, Liao (b0320) 2016; 172 Rastogi, Al-Abed, Dionysiou (b0375) 2009; 43 Che, Bae, Lee (b0045) 2011; 185 Chen, Huang, Hou, Ai, Zhang (b0250) 2017; 51 Qian, Ren, Fang, Kan, Yue, Bian, Li, Jia, Zhao (b0355) 2018; 231 Khataee, Gholami, Sheydaei (b0295) 2016; 58 Zeng, Gong, Dan, Li, Zhang, Pu, Yang (b0070) 2019; 228 Fang, Liu, Wang, Dionysiou, Zhou (b0180) 2017; 214 Lü, Li, Li, Chen, Dong, Shou, Li (b0235) 2018; 349 Zhang, Sun, Faye, Zhang (b0345) 2018; 130 Wu, Chen, Zhang, Feng, Liu, Fan, Zhang (b0055) 2016; 294 Aziz, Miessner, Mueller, Mahyar, Kalass, Moeller, Khorshid, Rashid (b0210) 2018; 343 Li, Zhu, He, Fang, Dong, Lü, Li, Li (b0280) 2019; 274 Qin, Cheng, Sun, Yan, Shen (b0315) 2016; 569 Khataee, Fathinia, Fathinia (b0080) 2017; 34 Li, Pan, Yu, Xie, Li, Lai, Li, You, Wang (b0260) 2019; 654 Gao, Zheng, Jiang, Yu (b0085) 2017; 50 Fontmorin, Huguet, Fourcade, Geneste, Floner, Amrane (b0215) 2012; 195 Sun, Li, Meng, Zhang, Song, Ren (b0160) 2018; 147 Fang, Zhu, Dionysiou, Gao, Zhou (b0175) 2015; 176 Pignatello, Oliveros, MacKay (b0335) 2006; 36 Zhu, Li, Li, Xie, Lü, Li (b0240) 2018; 263 Li, Gao, Jin, Chen, Megharaj, Naidu (b0380) 2015; 438 Matta, Hanna, Kone, Chiron (b0020) 2008; 144 Barhoumi, Oturan, Olvera-Vargas, Brillas, Gadri, Ammar, Oturan (b0065) 2016; 94 Qin, Chen, Sun, Sun, Shen (b0310) 2017; 330 Diao, Liu, Hu, Kong, Jiang, Xu (b0305) 2017; 184 Liu, Wang, Ai, Zhang (b0040) 2015; 7 Zhao, Chen, Liu, Luo, Wu (b0050) 2017; 188 Liu, Liu, Zhao, Dionysiou (b0015) 2017; 213 Zhang, Tran, Hussain, Zhong, Huang (b0030) 2015; 279 Xin (10.1016/j.cej.2019.123605_b0140) 2019; 215 Ammar (10.1016/j.cej.2019.123605_b0035) 2015; 74 Diao (10.1016/j.cej.2019.123605_b0090) 2017; 327 Tong (10.1016/j.cej.2019.123605_b0245) 2016; 50 Fang (10.1016/j.cej.2019.123605_b0145) 2014; 48 Labiadh (10.1016/j.cej.2019.123605_b0060) 2015; 297 Li (10.1016/j.cej.2019.123605_b0260) 2019; 654 Khataee (10.1016/j.cej.2019.123605_b0295) 2016; 58 Zhu (10.1016/j.cej.2019.123605_b0240) 2018; 263 Aziz (10.1016/j.cej.2019.123605_b0210) 2018; 343 Khabbaz (10.1016/j.cej.2019.123605_b0075) 2017; 187 Gao (10.1016/j.cej.2019.123605_b0085) 2017; 50 Chen (10.1016/j.cej.2019.123605_b0195) 2017; 313 Rastogi (10.1016/j.cej.2019.123605_b0375) 2009; 43 Badellino (10.1016/j.cej.2019.123605_b0370) 2006; 137 Fang (10.1016/j.cej.2019.123605_b0175) 2015; 176 Qian (10.1016/j.cej.2019.123605_b0355) 2018; 231 Sun (10.1016/j.cej.2019.123605_b0160) 2018; 147 Qin (10.1016/j.cej.2019.123605_b0315) 2016; 569 Zhang (10.1016/j.cej.2019.123605_b0320) 2016; 172 Zhang (10.1016/j.cej.2019.123605_b0135) 2018; 211 Yi (10.1016/j.cej.2019.123605_b0125) 2020; 380 Zhang (10.1016/j.cej.2019.123605_b0120) 2018; 191 Jaafarzadeh (10.1016/j.cej.2019.123605_b0205) 2017; 320 Liu (10.1016/j.cej.2019.123605_b0040) 2015; 7 Pignatello (10.1016/j.cej.2019.123605_b0335) 2006; 36 Che (10.1016/j.cej.2019.123605_b0045) 2011; 185 Diao (10.1016/j.cej.2019.123605_b0305) 2017; 184 Zhang (10.1016/j.cej.2019.123605_b0345) 2018; 130 Huang (10.1016/j.cej.2019.123605_b0270) 2018; 361 Zhang (10.1016/j.cej.2019.123605_b0030) 2015; 279 Xiao (10.1016/j.cej.2019.123605_b0105) 2018; 52 Conte (10.1016/j.cej.2019.123605_b0230) 2016; 170 Qin (10.1016/j.cej.2019.123605_b0310) 2017; 330 Bandala (10.1016/j.cej.2019.123605_b0225) 2007; 186 Zhao (10.1016/j.cej.2019.123605_b0050) 2017; 188 Fu (10.1016/j.cej.2019.123605_b0350) 2016; 50 Yan (10.1016/j.cej.2019.123605_b0115) 2015; 175 Zeng (10.1016/j.cej.2019.123605_b0070) 2019; 228 Li (10.1016/j.cej.2019.123605_b0280) 2019; 274 Fathinia (10.1016/j.cej.2019.123605_b0285) 2015; 327 Matta (10.1016/j.cej.2019.123605_b0020) 2008; 144 Yang (10.1016/j.cej.2019.123605_b0095) 2019; 255 Seo (10.1016/j.cej.2019.123605_b0185) 2015; 273 Llanos (10.1016/j.cej.2019.123605_b0220) 2018; 269 Arienzo (10.1016/j.cej.2019.123605_b0025) 1999; 39 Chen (10.1016/j.cej.2019.123605_b0300) 2015; 273 Khataee (10.1016/j.cej.2019.123605_b0080) 2017; 34 Zhang (10.1016/j.cej.2019.123605_b0110) 2017; 235 Fang (10.1016/j.cej.2019.123605_b0165) 2015; 49 Chen (10.1016/j.cej.2019.123605_b0250) 2017; 51 Zhang (10.1016/j.cej.2019.123605_b0005) 2014; 244 Zhu (10.1016/j.cej.2019.123605_b0340) 2002; 32 Liu (10.1016/j.cej.2019.123605_b0015) 2017; 213 Li (10.1016/j.cej.2019.123605_b0380) 2015; 438 Barhoumi (10.1016/j.cej.2019.123605_b0065) 2016; 94 Wu (10.1016/j.cej.2019.123605_b0055) 2016; 294 Kemmou (10.1016/j.cej.2019.123605_b0170) 2018; 313 Lü (10.1016/j.cej.2019.123605_b0235) 2018; 349 Fontmorin (10.1016/j.cej.2019.123605_b0215) 2012; 195 Duan (10.1016/j.cej.2019.123605_b0010) 2016; 283 Qin (10.1016/j.cej.2019.123605_b0190) 2017; 9 Fan (10.1016/j.cej.2019.123605_b0290) 2018; 333 Huang (10.1016/j.cej.2019.123605_b0255) 2016; 6 Piera (10.1016/j.cej.2019.123605_b0360) 2000; 27 Yang (10.1016/j.cej.2019.123605_b0150) 2015; 50 Brillas (10.1016/j.cej.2019.123605_b0330) 2009; 109 Kappler (10.1016/j.cej.2019.123605_b0130) 2014; 1 Zhang (10.1016/j.cej.2019.123605_b0325) 2017; 218 Bae (10.1016/j.cej.2019.123605_b0275) 2013; 134 Mohan (10.1016/j.cej.2019.123605_b0100) 2014; 160 Fang (10.1016/j.cej.2019.123605_b0180) 2017; 214 Giri (10.1016/j.cej.2019.123605_b0365) 2008; 20 Qin (10.1016/j.cej.2019.123605_b0155) 2018; 137 Jaafarzadeh (10.1016/j.cej.2019.123605_b0200) 2017; 169 Park (10.1016/j.cej.2019.123605_b0265) 2018; 249 |
References_xml | – volume: 214 start-page: 34 year: 2017 end-page: 45 ident: b0180 article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation publication-title: Appl. Catal. B - Environ. – volume: 195 start-page: 208 year: 2012 end-page: 217 ident: b0215 article-title: Electrochemical oxidation of 2, 4-dichlorophenoxyacetic acid: analysis of by-products and improvement of the biodegradability publication-title: Chem. Eng. J. – volume: 327 start-page: 108 year: 2017 end-page: 115 ident: b0090 article-title: Enhanced catalytic degradation of ciprofloxacin with FeS publication-title: J. Hazard. Mater. – volume: 175 start-page: 269 year: 2015 end-page: 274 ident: b0115 article-title: Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene publication-title: Bioresour. Technol. – volume: 43 start-page: 684 year: 2009 end-page: 694 ident: b0375 article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe (II) mediated advanced oxidation of chlorophenols publication-title: Water Res. – volume: 186 start-page: 357 year: 2007 end-page: 363 ident: b0225 article-title: Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process publication-title: J. Photochem. Photobio. A: Chem. – volume: 147 start-page: 91 year: 2018 end-page: 100 ident: b0160 article-title: Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H publication-title: Water Res. – volume: 130 start-page: 730 year: 2018 end-page: 740 ident: b0345 article-title: Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation publication-title: Carbon – volume: 283 start-page: 873 year: 2016 end-page: 879 ident: b0010 article-title: Degradation of nitrobenzene by Fenton-like reaction in a H publication-title: Chem. Eng. J. – volume: 50 start-page: 694 year: 2015 end-page: 700 ident: b0150 article-title: Degradation of publication-title: Environ. Sci. Technol. – volume: 269 start-page: 415 year: 2018 end-page: 421 ident: b0220 article-title: Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2, 4-dichlorophenoxyacetic acid publication-title: Electrochim. Acta – volume: 273 start-page: 481 year: 2015 end-page: 489 ident: b0300 article-title: Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS publication-title: Chem. Eng. J. – volume: 137 start-page: 130 year: 2018 end-page: 143 ident: b0155 article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review publication-title: Water Res. – volume: 94 start-page: 52 year: 2016 end-page: 61 ident: b0065 article-title: Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine: Kinetics, mechanism and toxicity assessment publication-title: Water Res. – volume: 34 start-page: 904 year: 2017 end-page: 915 ident: b0080 article-title: Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine publication-title: Ultrason. Sonochem. – volume: 9 start-page: 17115 year: 2017 end-page: 17124 ident: b0190 article-title: Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe (III) publication-title: ACS Appl. Mater. Interface – volume: 255 year: 2019 ident: b0095 article-title: Mechanistic insights into removal of Norfloxacin from water using different natural iron ore – biochar composites: more rich free radicals derived from natural pyrite-biochar composites than hematite-biochar composites publication-title: Appl. Catal. B - Environ. – volume: 109 start-page: 6570 year: 2009 end-page: 6631 ident: b0330 article-title: Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry publication-title: Chem. Rev. – volume: 1 start-page: 339 year: 2014 end-page: 344 ident: b0130 article-title: Biochar as an electron shuttle between bacteria and Fe (III) minerals publication-title: Environ. Sci. Technol. Lett. – volume: 184 start-page: 374 year: 2017 end-page: 383 ident: b0305 article-title: Comparative study of Rhodamine B degradation by the systems pyrite/H publication-title: Sep. Purif. Technol. – volume: 327 start-page: 190 year: 2015 end-page: 200 ident: b0285 article-title: Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process publication-title: Appl. Surf. Sci. – volume: 380 year: 2020 ident: b0125 article-title: Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar publication-title: Chem. Eng. J. – volume: 274 start-page: 353 year: 2019 end-page: 361 ident: b0280 article-title: Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: influence of biochar porosity and molecular size of antibiotics publication-title: J. Mol. Liq. – volume: 330 start-page: 804 year: 2017 end-page: 812 ident: b0310 article-title: Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation publication-title: Chem. Eng. J. – volume: 213 start-page: 74 year: 2017 end-page: 86 ident: b0015 article-title: Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst publication-title: Appl. Catal. B - Environ. – volume: 188 start-page: 557 year: 2017 end-page: 566 ident: b0050 article-title: Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite publication-title: Chemosphere – volume: 50 start-page: 214 year: 2016 end-page: 221 ident: b0245 article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments publication-title: Environ. Sci. Technol. – volume: 231 start-page: 108 year: 2018 end-page: 114 ident: b0355 article-title: Hydrophilic mesoporous carbon as iron (III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants publication-title: Appl. Catal. B - Environ. – volume: 185 start-page: 1355 year: 2011 end-page: 1361 ident: b0045 article-title: Degradation of trichloroethylene by Fenton reaction in pyrite suspension publication-title: J. Hazard. Mater. – volume: 297 start-page: 34 year: 2015 end-page: 41 ident: b0060 article-title: Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst publication-title: J. Hazard. Mater. – volume: 263 start-page: 475 year: 2018 end-page: 482 ident: b0240 article-title: Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline publication-title: Bioresour. Technol. – volume: 235 start-page: 185 year: 2017 end-page: 192 ident: b0110 article-title: Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals publication-title: Bioresour. Technol. – volume: 349 start-page: 522 year: 2018 end-page: 529 ident: b0235 article-title: Synergetic effect of pyrite on Cr(VI) removal by zero valent iron in column experiments: an investigation of mechanisms publication-title: Chem. Eng. J. – volume: 50 start-page: 2194 year: 2017 end-page: 2204 ident: b0085 article-title: Pyrite-type nanomaterials for advanced electrocatalysis publication-title: Acc. Chem. Res. – volume: 569 start-page: 1 year: 2016 end-page: 8 ident: b0315 article-title: Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry publication-title: Sci. Total Environ. – volume: 48 start-page: 1902 year: 2014 end-page: 1910 ident: b0145 article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: Implications to organic contaminant degradation publication-title: Environ. Sci. Technol. – volume: 228 start-page: 232 year: 2019 end-page: 240 ident: b0070 article-title: Novel visible light enhanced Pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: catalytic activity, characterization and mechanism publication-title: Chemosphere – volume: 144 start-page: 453 year: 2008 end-page: 458 ident: b0020 article-title: Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH publication-title: Chem. Eng. J. – volume: 58 start-page: 366 year: 2016 end-page: 373 ident: b0295 article-title: Heterogeneous Fenton process by natural pyrite for removal of a textile dye from water: effect of parameters and intermediate identification publication-title: J. Taiwan Inst. Chem. E – volume: 438 start-page: 87 year: 2015 end-page: 93 ident: b0380 article-title: Fenton-like oxidation of 2, 4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst publication-title: J. Colloid. Interf. Sci. – volume: 279 start-page: 396 year: 2015 end-page: 401 ident: b0030 article-title: Degradation of p-chloroaniline by pyrite in aqueous solutions publication-title: Chem. Eng. J. – volume: 39 start-page: 1629 year: 1999 end-page: 1638 ident: b0025 article-title: Oxidizing 2,4,6-trinitrotoluene with pyrite-H publication-title: Chemosphere – volume: 160 start-page: 191 year: 2014 end-page: 202 ident: b0100 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review publication-title: Bioresour. Technol. – volume: 51 start-page: 11278 year: 2017 end-page: 11287 ident: b0250 article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation publication-title: Environ. Sci. Technol. – volume: 187 start-page: 416 year: 2017 end-page: 423 ident: b0075 article-title: Degradation of diclofenac by sonosynthesis of pyrite nanoparticles publication-title: J. Environ. Manage. – volume: 52 start-page: 5027 year: 2018 end-page: 5047 ident: b0105 article-title: Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review publication-title: Environ. Sci. Technol. – volume: 273 start-page: 502 year: 2015 end-page: 508 ident: b0185 article-title: Enhanced production of reactive oxidants by Fenton-like reactions in the presence of carbon materials publication-title: Chem. Eng. J. – volume: 244 start-page: 438 year: 2014 end-page: 445 ident: b0005 article-title: An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution publication-title: Chem. Eng. J. – volume: 74 start-page: 77 year: 2015 end-page: 87 ident: b0035 article-title: Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst publication-title: Water Res. – volume: 313 start-page: 498 year: 2017 end-page: 507 ident: b0195 article-title: Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite) publication-title: Chem. Eng. J. – volume: 313 start-page: 128 year: 2018 end-page: 133 ident: b0170 article-title: Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: factors affecting the activation and degradation processes publication-title: Catal. Today – volume: 215 start-page: 827 year: 2019 end-page: 834 ident: b0140 article-title: New methods for assessing electron storage capacity and redox reversibility of biochar publication-title: Chemosphere – volume: 36 start-page: 1 year: 2006 end-page: 84 ident: b0335 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 32 start-page: 465 year: 2002 end-page: 473 ident: b0340 article-title: Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study publication-title: Free Radical Biol. Med. – volume: 20 start-page: 1138 year: 2008 end-page: 1145 ident: b0365 article-title: A novel use of TiO publication-title: J. Environ. Sci. – volume: 50 start-page: 1218 year: 2016 end-page: 1226 ident: b0350 article-title: Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation publication-title: Environ. Sci. Technol. – volume: 27 start-page: 169 year: 2000 end-page: 177 ident: b0360 article-title: 2, 4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO publication-title: Appl. Catal. B: Environ. – volume: 361 start-page: 353 year: 2018 end-page: 363 ident: b0270 article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process publication-title: Chem. Eng. J. – volume: 343 start-page: 107 year: 2018 end-page: 115 ident: b0210 article-title: Comparative study on 2, 4-dichlorophenoxyacetic acid and 2, 4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor publication-title: J. Hazard. Mater. – volume: 294 start-page: 49 year: 2016 end-page: 57 ident: b0055 article-title: Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition publication-title: Chem. Eng. J. – volume: 172 start-page: 444 year: 2016 end-page: 457 ident: b0320 article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions publication-title: Geochim. Cosmochim. Acta – volume: 191 start-page: 64 year: 2018 end-page: 71 ident: b0120 article-title: Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment publication-title: Chemosphere – volume: 134 start-page: 93 year: 2013 end-page: 102 ident: b0275 article-title: Degradation of diclofenac by pyrite catalyzed Fenton oxidation publication-title: Appl. Catal. B: Environ. – volume: 654 start-page: 1284 year: 2019 end-page: 1292 ident: b0260 article-title: The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation publication-title: Sci. Total Environ. – volume: 320 start-page: 436 year: 2017 end-page: 447 ident: b0205 article-title: Efficient degradation of 2, 4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes publication-title: Chem. Eng. J. – volume: 218 start-page: 153 year: 2017 end-page: 166 ident: b0325 article-title: Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids publication-title: Geochim. Cosmochim. Acta – volume: 333 start-page: 657 year: 2018 end-page: 664 ident: b0290 article-title: Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species publication-title: Chem. Eng. J. – volume: 6 start-page: 73186 year: 2016 end-page: 73196 ident: b0255 article-title: Influence of morphological and chemical features of biochar on hydrogen peroxide activation: implications on sulfamethazine degradation publication-title: RSC Adv. – volume: 170 start-page: 60 year: 2016 end-page: 69 ident: b0230 article-title: Photo-Fenton degradation of the herbicide 2, 4-D in aqueous medium at pH conditions close to neutrality publication-title: J. Environ. Manage. – volume: 7 start-page: 28534 year: 2015 end-page: 28544 ident: b0040 article-title: Hydrothermal synthesis of FeS publication-title: ACS Appl. Mater. Interface – volume: 137 start-page: 856 year: 2006 end-page: 864 ident: b0370 article-title: Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2, 4-dichlorophenoxyacetic acid publication-title: J. Hazard. Mater. – volume: 211 start-page: 1073 year: 2018 end-page: 1081 ident: b0135 article-title: Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses publication-title: Chemosphere – volume: 49 start-page: 5645 year: 2015 end-page: 5653 ident: b0165 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. – volume: 169 start-page: 568 year: 2017 end-page: 576 ident: b0200 article-title: Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe publication-title: Chemosphere – volume: 176 start-page: 210 year: 2015 end-page: 217 ident: b0175 article-title: Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation publication-title: Bioresour. Technol. – volume: 249 start-page: 368 year: 2018 end-page: 376 ident: b0265 article-title: Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst publication-title: Bioresour. Technol. – volume: 1 start-page: 339 year: 2014 ident: 10.1016/j.cej.2019.123605_b0130 article-title: Biochar as an electron shuttle between bacteria and Fe (III) minerals publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/ez5002209 – volume: 211 start-page: 1073 year: 2018 ident: 10.1016/j.cej.2019.123605_b0135 article-title: Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.033 – volume: 361 start-page: 353 year: 2018 ident: 10.1016/j.cej.2019.123605_b0270 article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.098 – volume: 160 start-page: 191 year: 2014 ident: 10.1016/j.cej.2019.123605_b0100 article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.120 – volume: 214 start-page: 34 year: 2017 ident: 10.1016/j.cej.2019.123605_b0180 article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation publication-title: Appl. Catal. B - Environ. doi: 10.1016/j.apcatb.2017.05.036 – volume: 215 start-page: 827 year: 2019 ident: 10.1016/j.cej.2019.123605_b0140 article-title: New methods for assessing electron storage capacity and redox reversibility of biochar publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.10.080 – volume: 130 start-page: 730 year: 2018 ident: 10.1016/j.cej.2019.123605_b0345 article-title: Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation publication-title: Carbon doi: 10.1016/j.carbon.2018.01.036 – volume: 134 start-page: 93 year: 2013 ident: 10.1016/j.cej.2019.123605_b0275 article-title: Degradation of diclofenac by pyrite catalyzed Fenton oxidation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2012.12.031 – volume: 184 start-page: 374 year: 2017 ident: 10.1016/j.cej.2019.123605_b0305 article-title: Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: reactivity, stability, products and mechanism publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.05.016 – volume: 349 start-page: 522 year: 2018 ident: 10.1016/j.cej.2019.123605_b0235 article-title: Synergetic effect of pyrite on Cr(VI) removal by zero valent iron in column experiments: an investigation of mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.133 – volume: 327 start-page: 190 year: 2015 ident: 10.1016/j.cej.2019.123605_b0285 article-title: Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.11.157 – volume: 438 start-page: 87 year: 2015 ident: 10.1016/j.cej.2019.123605_b0380 article-title: Fenton-like oxidation of 2, 4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst publication-title: J. Colloid. Interf. Sci. doi: 10.1016/j.jcis.2014.09.082 – volume: 297 start-page: 34 year: 2015 ident: 10.1016/j.cej.2019.123605_b0060 article-title: Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.04.062 – volume: 50 start-page: 214 year: 2016 ident: 10.1016/j.cej.2019.123605_b0245 article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04323 – volume: 169 start-page: 568 year: 2017 ident: 10.1016/j.cej.2019.123605_b0200 article-title: Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated peroxymonosulfate: influential factors and mechanism determination publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.11.038 – volume: 186 start-page: 357 year: 2007 ident: 10.1016/j.cej.2019.123605_b0225 article-title: Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process publication-title: J. Photochem. Photobio. A: Chem. doi: 10.1016/j.jphotochem.2006.09.005 – volume: 176 start-page: 210 year: 2015 ident: 10.1016/j.cej.2019.123605_b0175 article-title: Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.11.032 – volume: 191 start-page: 64 year: 2018 ident: 10.1016/j.cej.2019.123605_b0120 article-title: Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.10.026 – volume: 274 start-page: 353 year: 2019 ident: 10.1016/j.cej.2019.123605_b0280 article-title: Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: influence of biochar porosity and molecular size of antibiotics publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.10.142 – volume: 51 start-page: 11278 year: 2017 ident: 10.1016/j.cej.2019.123605_b0250 article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02740 – volume: 273 start-page: 502 year: 2015 ident: 10.1016/j.cej.2019.123605_b0185 article-title: Enhanced production of reactive oxidants by Fenton-like reactions in the presence of carbon materials publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.114 – volume: 9 start-page: 17115 year: 2017 ident: 10.1016/j.cej.2019.123605_b0190 article-title: Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe (III) publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.7b03310 – volume: 327 start-page: 108 year: 2017 ident: 10.1016/j.cej.2019.123605_b0090 article-title: Enhanced catalytic degradation of ciprofloxacin with FeS2/SiO2 microspheres as heterogeneous Fenton catalyst: kinetics, reaction pathways and mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.12.045 – volume: 74 start-page: 77 year: 2015 ident: 10.1016/j.cej.2019.123605_b0035 article-title: Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst publication-title: Water Res. doi: 10.1016/j.watres.2015.02.006 – volume: 228 start-page: 232 year: 2019 ident: 10.1016/j.cej.2019.123605_b0070 article-title: Novel visible light enhanced Pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: catalytic activity, characterization and mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.103 – volume: 94 start-page: 52 year: 2016 ident: 10.1016/j.cej.2019.123605_b0065 article-title: Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine: Kinetics, mechanism and toxicity assessment publication-title: Water Res. doi: 10.1016/j.watres.2016.02.042 – volume: 231 start-page: 108 year: 2018 ident: 10.1016/j.cej.2019.123605_b0355 article-title: Hydrophilic mesoporous carbon as iron (III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants publication-title: Appl. Catal. B - Environ. doi: 10.1016/j.apcatb.2018.03.016 – volume: 255 year: 2019 ident: 10.1016/j.cej.2019.123605_b0095 article-title: Mechanistic insights into removal of Norfloxacin from water using different natural iron ore – biochar composites: more rich free radicals derived from natural pyrite-biochar composites than hematite-biochar composites publication-title: Appl. Catal. B - Environ. doi: 10.1016/j.apcatb.2019.117752 – volume: 343 start-page: 107 year: 2018 ident: 10.1016/j.cej.2019.123605_b0210 article-title: Comparative study on 2, 4-dichlorophenoxyacetic acid and 2, 4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.09.025 – volume: 654 start-page: 1284 year: 2019 ident: 10.1016/j.cej.2019.123605_b0260 article-title: The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.013 – volume: 263 start-page: 475 year: 2018 ident: 10.1016/j.cej.2019.123605_b0240 article-title: Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.05.041 – volume: 279 start-page: 396 year: 2015 ident: 10.1016/j.cej.2019.123605_b0030 article-title: Degradation of p-chloroaniline by pyrite in aqueous solutions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.016 – volume: 147 start-page: 91 year: 2018 ident: 10.1016/j.cej.2019.123605_b0160 article-title: Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine publication-title: Water Res. doi: 10.1016/j.watres.2018.09.051 – volume: 52 start-page: 5027 year: 2018 ident: 10.1016/j.cej.2019.123605_b0105 article-title: Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06487 – volume: 49 start-page: 5645 year: 2015 ident: 10.1016/j.cej.2019.123605_b0165 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5061512 – volume: 185 start-page: 1355 year: 2011 ident: 10.1016/j.cej.2019.123605_b0045 article-title: Degradation of trichloroethylene by Fenton reaction in pyrite suspension publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.055 – volume: 109 start-page: 6570 year: 2009 ident: 10.1016/j.cej.2019.123605_b0330 article-title: Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry publication-title: Chem. Rev. doi: 10.1021/cr900136g – volume: 50 start-page: 1218 year: 2016 ident: 10.1016/j.cej.2019.123605_b0350 article-title: Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04314 – volume: 283 start-page: 873 year: 2016 ident: 10.1016/j.cej.2019.123605_b0010 article-title: Degradation of nitrobenzene by Fenton-like reaction in a H2O2/schwertmannite system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.033 – volume: 320 start-page: 436 year: 2017 ident: 10.1016/j.cej.2019.123605_b0205 article-title: Efficient degradation of 2, 4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.036 – volume: 569 start-page: 1 year: 2016 ident: 10.1016/j.cej.2019.123605_b0315 article-title: Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.06.092 – volume: 244 start-page: 438 year: 2014 ident: 10.1016/j.cej.2019.123605_b0005 article-title: An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.01.088 – volume: 313 start-page: 128 year: 2018 ident: 10.1016/j.cej.2019.123605_b0170 article-title: Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: factors affecting the activation and degradation processes publication-title: Catal. Today doi: 10.1016/j.cattod.2017.12.028 – volume: 273 start-page: 481 year: 2015 ident: 10.1016/j.cej.2019.123605_b0300 article-title: Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.079 – volume: 50 start-page: 694 year: 2015 ident: 10.1016/j.cej.2019.123605_b0150 article-title: Degradation of p-nitrophenol on biochars: role of persistent free radicals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04042 – volume: 213 start-page: 74 year: 2017 ident: 10.1016/j.cej.2019.123605_b0015 article-title: Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst publication-title: Appl. Catal. B - Environ. doi: 10.1016/j.apcatb.2017.05.019 – volume: 330 start-page: 804 year: 2017 ident: 10.1016/j.cej.2019.123605_b0310 article-title: Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.013 – volume: 294 start-page: 49 year: 2016 ident: 10.1016/j.cej.2019.123605_b0055 article-title: Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.02.097 – volume: 144 start-page: 453 year: 2008 ident: 10.1016/j.cej.2019.123605_b0020 article-title: Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.07.013 – volume: 170 start-page: 60 year: 2016 ident: 10.1016/j.cej.2019.123605_b0230 article-title: Photo-Fenton degradation of the herbicide 2, 4-D in aqueous medium at pH conditions close to neutrality publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.01.002 – volume: 6 start-page: 73186 year: 2016 ident: 10.1016/j.cej.2019.123605_b0255 article-title: Influence of morphological and chemical features of biochar on hydrogen peroxide activation: implications on sulfamethazine degradation publication-title: RSC Adv. doi: 10.1039/C6RA11850J – volume: 7 start-page: 28534 year: 2015 ident: 10.1016/j.cej.2019.123605_b0040 article-title: Hydrothermal synthesis of FeS2 as a high-efficiency Fenton reagent to degrade alachlor via superoxide-mediated Fe (II)/Fe (III) cycle publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.5b09919 – volume: 188 start-page: 557 year: 2017 ident: 10.1016/j.cej.2019.123605_b0050 article-title: Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.09.019 – volume: 137 start-page: 130 year: 2018 ident: 10.1016/j.cej.2019.123605_b0155 article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2018.03.012 – volume: 43 start-page: 684 year: 2009 ident: 10.1016/j.cej.2019.123605_b0375 article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe (II) mediated advanced oxidation of chlorophenols publication-title: Water Res. doi: 10.1016/j.watres.2008.10.045 – volume: 50 start-page: 2194 year: 2017 ident: 10.1016/j.cej.2019.123605_b0085 article-title: Pyrite-type nanomaterials for advanced electrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00187 – volume: 27 start-page: 169 year: 2000 ident: 10.1016/j.cej.2019.123605_b0360 article-title: 2, 4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO2/UVA/O3 and Fe (II)/UVA/O3 systems publication-title: Appl. Catal. B: Environ. doi: 10.1016/S0926-3373(00)00149-1 – volume: 313 start-page: 498 year: 2017 ident: 10.1016/j.cej.2019.123605_b0195 article-title: Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.075 – volume: 195 start-page: 208 year: 2012 ident: 10.1016/j.cej.2019.123605_b0215 article-title: Electrochemical oxidation of 2, 4-dichlorophenoxyacetic acid: analysis of by-products and improvement of the biodegradability publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.04.058 – volume: 269 start-page: 415 year: 2018 ident: 10.1016/j.cej.2019.123605_b0220 article-title: Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2, 4-dichlorophenoxyacetic acid publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.02.153 – volume: 137 start-page: 856 year: 2006 ident: 10.1016/j.cej.2019.123605_b0370 article-title: Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2, 4-dichlorophenoxyacetic acid publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.03.035 – volume: 380 year: 2020 ident: 10.1016/j.cej.2019.123605_b0125 article-title: Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122518 – volume: 20 start-page: 1138 year: 2008 ident: 10.1016/j.cej.2019.123605_b0365 article-title: A novel use of TiO2 fiber for photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid in aqueous solution publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(08)62161-0 – volume: 36 start-page: 1 year: 2006 ident: 10.1016/j.cej.2019.123605_b0335 article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380500326564 – volume: 187 start-page: 416 year: 2017 ident: 10.1016/j.cej.2019.123605_b0075 article-title: Degradation of diclofenac by sonosynthesis of pyrite nanoparticles publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.11.005 – volume: 333 start-page: 657 year: 2018 ident: 10.1016/j.cej.2019.123605_b0290 article-title: Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.175 – volume: 58 start-page: 366 year: 2016 ident: 10.1016/j.cej.2019.123605_b0295 article-title: Heterogeneous Fenton process by natural pyrite for removal of a textile dye from water: effect of parameters and intermediate identification publication-title: J. Taiwan Inst. Chem. E doi: 10.1016/j.jtice.2015.06.015 – volume: 32 start-page: 465 year: 2002 ident: 10.1016/j.cej.2019.123605_b0340 article-title: Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study publication-title: Free Radical Biol. Med. doi: 10.1016/S0891-5849(01)00824-3 – volume: 235 start-page: 185 year: 2017 ident: 10.1016/j.cej.2019.123605_b0110 article-title: Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.109 – volume: 249 start-page: 368 year: 2018 ident: 10.1016/j.cej.2019.123605_b0265 article-title: Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.10.030 – volume: 39 start-page: 1629 year: 1999 ident: 10.1016/j.cej.2019.123605_b0025 article-title: Oxidizing 2,4,6-trinitrotoluene with pyrite-H2O2 suspensions publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00061-2 – volume: 218 start-page: 153 year: 2017 ident: 10.1016/j.cej.2019.123605_b0325 article-title: Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2017.08.032 – volume: 172 start-page: 444 year: 2016 ident: 10.1016/j.cej.2019.123605_b0320 article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.10.015 – volume: 175 start-page: 269 year: 2015 ident: 10.1016/j.cej.2019.123605_b0115 article-title: Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.10.103 – volume: 48 start-page: 1902 year: 2014 ident: 10.1016/j.cej.2019.123605_b0145 article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: Implications to organic contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es4048126 – volume: 34 start-page: 904 year: 2017 ident: 10.1016/j.cej.2019.123605_b0080 article-title: Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.07.028 |
SSID | ssj0006919 |
Score | 2.5574336 |
Snippet | [Display omitted]
•Biochar accelerated 2,4-D degradation using pyrite as the Fenton-like catalyst.•Biochar increased the production of OH in the Fenton-like... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 123605 |
SubjectTerms | Biochar Degradation Fenton reaction Iron sulfide Organic pollutants |
Title | Accelerating effects of biochar for pyrite-catalyzed Fenton-like oxidation of herbicide 2,4-D |
URI | https://dx.doi.org/10.1016/j.cej.2019.123605 |
Volume | 391 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_Akrk12N5vssVSlWuxBLXqRkOxuJLW0RSpYD_52Z_LwAerBUyDMQJiZnUf2mxlCDpzxrZdwyRwUH0xqT7MoBYVEOnDKaZVYhb3Dlz3V6cuLu-BujrTrXhiEVVa-v_Tphbeu3jQraTYned689vFOS4NzxZqcFx3lUoZo5cdvnzAPpYvlHkjMkLq-2SwwXsYNEN2lj3EGCW6w-yk2fYk3ZytkuUoUaav8llUy50ZrZOnL-MB1ct8yBqIG6nD0QCtkBh1nNM3H2E1FISGlkxmU_44Vv2lmr85SsEtcGzzMHx0dv-TlTiXkAu2lucmto_xIspMN0j87vWl3WLUugRmhxJT5LhTKwoFSEINV5htILSLJExOaTBnBoyDTVlibZYnMPM_5oRGp8LTTOBGVB2KTzI_GI7dFqAI_JoJMcS-1ktskgmNuwtBA8mBFws028WpBxaaaJY4rLYZxDRobxCDbGGUbl7LdJocfLJNykMZfxLKWfvzNGmJw9L-z7fyPbZcscqyiCxDuHpmfPj27fUg1pmmjsKUGWWiddzs9fHavbrvv9WPSIg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwELUQFECBOMWNC2gQZhPb68QFxYoFLWcDSDQoJLaDAmh3BYtgKfgpfpCZHBwSUCDRRhnJGU_ezCTP8whZdca3Xswlc9B8MKk9zcIENiTUdaecVrFVeHb46Fi1zuT-ef18gLxWZ2GQVllif4HpOVqXV2qlN2vdLKud-PhPSwO4Yk_OvaBkVh64_iP0bfdbe03Y5DXOd3dOt1uslBZgRijRY74LhLIQfArylUp9A2k4lDw2gUmVETysp9oKa9M0lqnnOT8wIhGedhqnh3KUigDcH5IAFyibsPnywStROlcTwdUxXF71KzUnlRl3jXQyvYlDT1Ay77tk-CnB7Y6TsbIypY3i4SfIgGtPktFP8wqnyEXDGEhTGDTtK1pSQWgnpUnWweNbFCpg2u3fQRnL8u9C_WdnKbwIqFN8m9042nnKChEntIJwSTKTWUf5hmTNaXL2L06cIYPtTtvNEqoAOEU9VdxLrOQ2DgFXTBAYqFasiLmZI17lqMiUw8tRQ-M2qlhq1xH4NkLfRoVv58j6u0m3mNzx282y8n70JfwiyCw_m83_zWyFDLdOjw6jw73jgwUywrGFzxnAi2Swd_fglqDO6SXLeVxRcvnfgfwGWpALBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+effects+of+biochar+for+pyrite-catalyzed+Fenton-like+oxidation+of+herbicide+2%2C4-D&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhu%2C+Xiaoxiao&rft.au=Li%2C+Jianfa&rft.au=Xie%2C+Bin&rft.au=Feng%2C+Dongqing&rft.date=2020-07-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=391&rft_id=info:doi/10.1016%2Fj.cej.2019.123605&rft.externalDocID=S1385894719330207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |