Accelerating effects of biochar for pyrite-catalyzed Fenton-like oxidation of herbicide 2,4-D

[Display omitted] •Biochar accelerated 2,4-D degradation using pyrite as the Fenton-like catalyst.•Biochar increased the production of OH in the Fenton-like system.•The mechanism related to the increased production of OH was investigated.•The Fenton-like oxidation of 2,4-dichlorophenol was also acce...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 391; p. 123605
Main Authors Zhu, Xiaoxiao, Li, Jianfa, Xie, Bin, Feng, Dongqing, Li, Yimin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Biochar accelerated 2,4-D degradation using pyrite as the Fenton-like catalyst.•Biochar increased the production of OH in the Fenton-like system.•The mechanism related to the increased production of OH was investigated.•The Fenton-like oxidation of 2,4-dichlorophenol was also accelerated by biochar. Biochar was mixed with natural pyrite to catalyze the Fenton-like oxidation of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), so as to accelerate the degradation reaction. The accelerating effects of two biochars with different adsorption capacities were compared. The biochar’s functions on accelerating the oxidation were investigated by using radical scavengers, electron spin resonance (ESR), and the chemical probe method. The results indicated that the rate constant (kobs) for the degradation reaction of 2,4-D was enhanced 1.98–2.39 times after the addition of 0.1 g/L of biochar in the pyrite (1.5 g/L) catalyzed system. However, the biochar with the higher adsorption capacity did not outperform the other biochar in accelerating the reaction. Biochar did not influence the Fe lixiviation from pyrite; instead, it accelerated the Fenton oxidation of 2,4-D catalyzed by the dissolved Fe2+. Hydroxyl radicals (OH) were proved to be the major reactive species contributing to the oxidation of 2,4-D, and the addition of biochar increased the cumulative production of OH 2.72 times that in the pyrite-catalyzed system. The mechanism is related to the transformation of O2− to OH by biochar, in which the quinone-like structure acts as the electron shuttle. Based on the identified intermediates and products by gas chromatography-mass spectrometry (GC–MS), high performance liquid chromatography (HPLC), and ion chromatography (IC), as well as the released Cl−, a reaction pathway was summarized for mineralization of 2,4-D. Furthermore, the degradation of 2,4-dichlorophenol (2,4-DCP) was accelerated by biochar as well, indicating the wide feasibility of biochar for accelerating the Fenton-like oxidation of organic pollutants.
AbstractList [Display omitted] •Biochar accelerated 2,4-D degradation using pyrite as the Fenton-like catalyst.•Biochar increased the production of OH in the Fenton-like system.•The mechanism related to the increased production of OH was investigated.•The Fenton-like oxidation of 2,4-dichlorophenol was also accelerated by biochar. Biochar was mixed with natural pyrite to catalyze the Fenton-like oxidation of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), so as to accelerate the degradation reaction. The accelerating effects of two biochars with different adsorption capacities were compared. The biochar’s functions on accelerating the oxidation were investigated by using radical scavengers, electron spin resonance (ESR), and the chemical probe method. The results indicated that the rate constant (kobs) for the degradation reaction of 2,4-D was enhanced 1.98–2.39 times after the addition of 0.1 g/L of biochar in the pyrite (1.5 g/L) catalyzed system. However, the biochar with the higher adsorption capacity did not outperform the other biochar in accelerating the reaction. Biochar did not influence the Fe lixiviation from pyrite; instead, it accelerated the Fenton oxidation of 2,4-D catalyzed by the dissolved Fe2+. Hydroxyl radicals (OH) were proved to be the major reactive species contributing to the oxidation of 2,4-D, and the addition of biochar increased the cumulative production of OH 2.72 times that in the pyrite-catalyzed system. The mechanism is related to the transformation of O2− to OH by biochar, in which the quinone-like structure acts as the electron shuttle. Based on the identified intermediates and products by gas chromatography-mass spectrometry (GC–MS), high performance liquid chromatography (HPLC), and ion chromatography (IC), as well as the released Cl−, a reaction pathway was summarized for mineralization of 2,4-D. Furthermore, the degradation of 2,4-dichlorophenol (2,4-DCP) was accelerated by biochar as well, indicating the wide feasibility of biochar for accelerating the Fenton-like oxidation of organic pollutants.
ArticleNumber 123605
Author Li, Yimin
Xie, Bin
Li, Jianfa
Zhu, Xiaoxiao
Feng, Dongqing
Author_xml – sequence: 1
  givenname: Xiaoxiao
  surname: Zhu
  fullname: Zhu, Xiaoxiao
– sequence: 2
  givenname: Jianfa
  orcidid: 0000-0002-0876-4094
  surname: Li
  fullname: Li, Jianfa
  email: ljf@usx.edu.cn
– sequence: 3
  givenname: Bin
  surname: Xie
  fullname: Xie, Bin
– sequence: 4
  givenname: Dongqing
  surname: Feng
  fullname: Feng, Dongqing
– sequence: 5
  givenname: Yimin
  orcidid: 0000-0003-1012-3330
  surname: Li
  fullname: Li, Yimin
  email: liym@usx.edu.cn
BookMark eNp90L1OwzAQwHELFYm28ABsfgAc_JE4iZiqQgGpEguMyHLPZ-oS4sqJEOXpSSkTQ6e75XfS_Sdk1MYWCbkUPBNc6OtNBrjJJBd1JqTSvDghY1GViikp5GjYVVWwqs7LMzLpug3nXNeiHpPXGQA2mGwf2jeK3iP0HY2erkKEtU3Ux0S3uxR6ZGB72-y-0dEFtn1sWRPekcav4AYd271aY1oFCA6pvMrZ7Tk59bbp8OJvTsnL4u55_sCWT_eP89mSgdKqZwJLpV2tlRZVob2AKtdVLi2U4DUoWRW-dso5723uOUdRglopXmNdyKKUhZoScbgLKXZdQm-2KXzYtDOCm30fszFDH7PvYw59BlP-MxD630f6ZENzVN4cJA4vfQZMpoOALaALachnXAxH9A_w6oFS
CitedBy_id crossref_primary_10_1039_D4CY01211A
crossref_primary_10_1371_journal_pone_0291398
crossref_primary_10_1016_j_jhazmat_2021_126514
crossref_primary_10_1016_j_jwpe_2024_105362
crossref_primary_10_1016_j_molliq_2023_121259
crossref_primary_10_1016_j_watres_2022_118048
crossref_primary_10_1016_j_envpol_2021_117957
crossref_primary_10_1016_j_jece_2023_110156
crossref_primary_10_1016_j_cej_2023_141700
crossref_primary_10_1016_j_cej_2024_152080
crossref_primary_10_1016_j_jwpe_2025_107141
crossref_primary_10_1016_j_seppur_2024_130868
crossref_primary_10_3724_j_1000_4734_2024_44_071
crossref_primary_10_1016_j_jwpe_2022_102605
crossref_primary_10_1016_j_materresbull_2023_112261
crossref_primary_10_1039_D2AY01694J
crossref_primary_10_1016_j_jhazmat_2022_129741
crossref_primary_10_1016_j_jece_2020_104677
crossref_primary_10_1016_j_jscs_2023_101684
crossref_primary_10_1007_s44246_024_00166_5
crossref_primary_10_1016_j_jece_2021_105647
crossref_primary_10_1016_j_jece_2023_111097
crossref_primary_10_1016_j_chemosphere_2020_128197
crossref_primary_10_1007_s10653_025_02357_4
crossref_primary_10_1007_s11356_023_28308_z
crossref_primary_10_1016_j_cej_2022_138466
crossref_primary_10_1016_j_cej_2024_156198
crossref_primary_10_1021_acsaem_1c00371
crossref_primary_10_1007_s11270_022_05629_2
crossref_primary_10_1016_j_jenvman_2023_118196
crossref_primary_10_1007_s11356_021_13730_y
crossref_primary_10_1016_j_jece_2021_105730
crossref_primary_10_1016_j_jhazmat_2023_132377
crossref_primary_10_1016_j_micromeso_2021_111632
crossref_primary_10_1016_j_cej_2025_161166
crossref_primary_10_1016_j_envres_2025_120936
crossref_primary_10_1016_j_jgsce_2022_204867
crossref_primary_10_1016_j_cej_2021_128628
crossref_primary_10_1016_j_jece_2024_112872
crossref_primary_10_1021_acs_langmuir_4c03683
crossref_primary_10_1111_1758_2229_13187
crossref_primary_10_1016_j_cej_2021_129238
crossref_primary_10_1016_j_jconhyd_2024_104412
crossref_primary_10_1016_j_apcatb_2021_120734
crossref_primary_10_1016_j_chemosphere_2024_142731
crossref_primary_10_1016_j_jece_2023_111384
crossref_primary_10_2166_wst_2021_135
crossref_primary_10_1016_j_jclepro_2022_134459
crossref_primary_10_1007_s11356_022_22127_4
crossref_primary_10_1016_j_scitotenv_2020_142104
crossref_primary_10_1016_j_cej_2021_134435
crossref_primary_10_1016_j_envpol_2023_122208
crossref_primary_10_1016_j_catcom_2023_106626
crossref_primary_10_1016_j_ecoenv_2023_115794
crossref_primary_10_1016_j_colsurfa_2022_128574
crossref_primary_10_1016_j_jenvman_2023_118497
crossref_primary_10_1021_acsomega_3c07525
crossref_primary_10_1016_j_fuel_2021_122510
crossref_primary_10_1016_j_jhazmat_2022_130075
crossref_primary_10_1080_00222348_2023_2272366
crossref_primary_10_1016_j_cej_2025_161869
crossref_primary_10_1016_j_jece_2022_109015
crossref_primary_10_1016_j_chemosphere_2022_134963
crossref_primary_10_3390_catal9121062
crossref_primary_10_1016_j_jenvman_2021_113753
crossref_primary_10_1080_09593330_2025_2450557
crossref_primary_10_1016_j_chemosphere_2022_136427
crossref_primary_10_1021_acsagscitech_2c00222
crossref_primary_10_1039_D2RA01647H
Cites_doi 10.1021/ez5002209
10.1016/j.chemosphere.2018.08.033
10.1016/j.cej.2018.12.098
10.1016/j.biortech.2014.01.120
10.1016/j.apcatb.2017.05.036
10.1016/j.chemosphere.2018.10.080
10.1016/j.carbon.2018.01.036
10.1016/j.apcatb.2012.12.031
10.1016/j.seppur.2017.05.016
10.1016/j.cej.2018.05.133
10.1016/j.apsusc.2014.11.157
10.1016/j.jcis.2014.09.082
10.1016/j.jhazmat.2015.04.062
10.1021/acs.est.5b04323
10.1016/j.chemosphere.2016.11.038
10.1016/j.jphotochem.2006.09.005
10.1016/j.biortech.2014.11.032
10.1016/j.chemosphere.2017.10.026
10.1016/j.molliq.2018.10.142
10.1021/acs.est.7b02740
10.1016/j.cej.2015.03.114
10.1021/acsami.7b03310
10.1016/j.jhazmat.2016.12.045
10.1016/j.watres.2015.02.006
10.1016/j.chemosphere.2019.04.103
10.1016/j.watres.2016.02.042
10.1016/j.apcatb.2018.03.016
10.1016/j.apcatb.2019.117752
10.1016/j.jhazmat.2017.09.025
10.1016/j.scitotenv.2018.11.013
10.1016/j.biortech.2018.05.041
10.1016/j.cej.2015.03.016
10.1016/j.watres.2018.09.051
10.1021/acs.est.7b06487
10.1021/es5061512
10.1016/j.jhazmat.2010.10.055
10.1021/cr900136g
10.1021/acs.est.5b04314
10.1016/j.cej.2015.08.033
10.1016/j.cej.2017.03.036
10.1016/j.scitotenv.2016.06.092
10.1016/j.cej.2014.01.088
10.1016/j.cattod.2017.12.028
10.1016/j.cej.2015.03.079
10.1021/acs.est.5b04042
10.1016/j.apcatb.2017.05.019
10.1016/j.cej.2017.08.013
10.1016/j.cej.2016.02.097
10.1016/j.cej.2008.07.013
10.1016/j.jenvman.2016.01.002
10.1039/C6RA11850J
10.1021/acsami.5b09919
10.1016/j.chemosphere.2017.09.019
10.1016/j.watres.2018.03.012
10.1016/j.watres.2008.10.045
10.1021/acs.accounts.7b00187
10.1016/S0926-3373(00)00149-1
10.1016/j.cej.2016.12.075
10.1016/j.cej.2012.04.058
10.1016/j.electacta.2018.02.153
10.1016/j.jhazmat.2006.03.035
10.1016/j.cej.2019.122518
10.1016/S1001-0742(08)62161-0
10.1080/10643380500326564
10.1016/j.jenvman.2016.11.005
10.1016/j.cej.2017.09.175
10.1016/j.jtice.2015.06.015
10.1016/S0891-5849(01)00824-3
10.1016/j.biortech.2017.03.109
10.1016/j.biortech.2017.10.030
10.1016/S0045-6535(99)00061-2
10.1016/j.gca.2017.08.032
10.1016/j.gca.2015.10.015
10.1016/j.biortech.2014.10.103
10.1021/es4048126
10.1016/j.ultsonch.2016.07.028
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2019.123605
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2019_123605
S1385894719330207
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c363t-1e736d96361856f1c846842ac7cf6c3285f9d3ddffa4f00e17c3b309e95257253
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 03:52:32 EDT 2025
Thu Apr 24 23:07:51 EDT 2025
Fri Feb 23 02:46:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Degradation
Fenton reaction
Organic pollutants
Iron sulfide
Biochar
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-1e736d96361856f1c846842ac7cf6c3285f9d3ddffa4f00e17c3b309e95257253
ORCID 0000-0003-1012-3330
0000-0002-0876-4094
ParticipantIDs crossref_primary_10_1016_j_cej_2019_123605
crossref_citationtrail_10_1016_j_cej_2019_123605
elsevier_sciencedirect_doi_10_1016_j_cej_2019_123605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
2020-07-00
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Zhu, Shi, Li, Li, Lü, Li (b0110) 2017; 235
Brillas, Sirés, Oturan (b0330) 2009; 109
Arienzo (b0025) 1999; 39
Jaafarzadeh, Ghanbari, Ahmadi (b0205) 2017; 320
Fu, Liu, Mao, Chu, Li, Alvarez, Qu, Zhu (b0350) 2016; 50
Diao, Xu, Jiang, Li, Liu, Kong, Zuo (b0090) 2017; 327
Xiao, Chen, Chen, Zhu, Schnoor (b0105) 2018; 52
Qin, Li, Gao, Zhang, Ok, An (b0155) 2018; 137
Seo, Lee, Lee, Kim, Lee, Kim, Lee (b0185) 2015; 273
Yan, Han, Gao, Xue, Chen (b0115) 2015; 175
Duan, Liu, Yin, Bai, Qi (b0010) 2016; 283
Zhang, Xue, Chen, Li (b0120) 2018; 191
Fathinia, Fathinia, Rahmani, Khataee (b0285) 2015; 327
Chen, Zhang, Yang, Yang, Li, Bai (b0300) 2015; 273
Yang, Pan, Li, Liao, Zhang, Wu, Xing (b0150) 2015; 50
Fang, Liu, Gao, Dionysiou, Zhou (b0165) 2015; 49
Jaafarzadeh, Ghanbari, Ahmadi (b0200) 2017; 169
Park, Wang, Xiao, Tafti, DeLaune, Seo (b0265) 2018; 249
Kappler, Wuestner, Ruecker, Harter, Halama, Behrens (b0130) 2014; 1
Fan, Gu, Wu, Liu (b0290) 2018; 333
Labiadh, Oturan, Panizza, Hamadi, Ammar (b0060) 2015; 297
Khabbaz, Entezari (b0075) 2017; 187
Xin, Xian, Chiu (b0140) 2019; 215
Yi, Tu, Tsang, Fang (b0125) 2020; 380
Bae, Kim, Lee (b0275) 2013; 134
Yang, Zhang, Wang, Li, Zhao, Liang, Xie (b0095) 2019; 255
Mohan, Sarswat, Ok, Pittman (b0100) 2014; 160
Chen, Zhang, Feng, Liu, Wang, Yang, Hu (b0195) 2017; 313
Zhu, Zhao, Kalyanaraman, Frei (b0340) 2002; 32
Zhang, Yuan (b0325) 2017; 218
Giri, Ozaki, Takanami, Taniguchi (b0365) 2008; 20
Bandala, Peláez, Dionysiou, Gelover, Garcia, Macías (b0225) 2007; 186
Huang, Wang, Zhang, Zeng, Lai, Wan, Qin, Zeng (b0255) 2016; 6
Huang, Luo, Zhang, Zeng, Lai, Cheng, Wang, Deng, Xue, Gong, Guo, Li (b0270) 2018; 361
Zhang, Xu, Cao, Ok, Cao (b0135) 2018; 211
Qin, Zhang, An (b0190) 2017; 9
Llanos, Raschitor, Cañizares, Rodrigo (b0220) 2018; 269
Badellino, Rodrigues, Bertazzoli (b0370) 2006; 137
Conte, Schenone, Alfano (b0230) 2016; 170
Kemmou, Frontistis, Vakros, Manariotis, Mantzavinos (b0170) 2018; 313
Tong, Yuan, Ma, Jin, Liu, Cheng, Liu, Gan, Wang (b0245) 2016; 50
Fang, Gao, Liu, Dionysiou, Wang, Zhou (b0145) 2014; 48
Ammar, Oturan, Labiadh, Guersalli, Abdelhedi, Oturan, Brillas (b0035) 2015; 74
Piera, Calpe, Brillas, Domènech, Peral (b0360) 2000; 27
Zhang, Zhang, Dai, Zhou, Si (b0005) 2014; 244
Zhang, Yuan, Liao (b0320) 2016; 172
Rastogi, Al-Abed, Dionysiou (b0375) 2009; 43
Che, Bae, Lee (b0045) 2011; 185
Chen, Huang, Hou, Ai, Zhang (b0250) 2017; 51
Qian, Ren, Fang, Kan, Yue, Bian, Li, Jia, Zhao (b0355) 2018; 231
Khataee, Gholami, Sheydaei (b0295) 2016; 58
Zeng, Gong, Dan, Li, Zhang, Pu, Yang (b0070) 2019; 228
Fang, Liu, Wang, Dionysiou, Zhou (b0180) 2017; 214
Lü, Li, Li, Chen, Dong, Shou, Li (b0235) 2018; 349
Zhang, Sun, Faye, Zhang (b0345) 2018; 130
Wu, Chen, Zhang, Feng, Liu, Fan, Zhang (b0055) 2016; 294
Aziz, Miessner, Mueller, Mahyar, Kalass, Moeller, Khorshid, Rashid (b0210) 2018; 343
Li, Zhu, He, Fang, Dong, Lü, Li, Li (b0280) 2019; 274
Qin, Cheng, Sun, Yan, Shen (b0315) 2016; 569
Khataee, Fathinia, Fathinia (b0080) 2017; 34
Li, Pan, Yu, Xie, Li, Lai, Li, You, Wang (b0260) 2019; 654
Gao, Zheng, Jiang, Yu (b0085) 2017; 50
Fontmorin, Huguet, Fourcade, Geneste, Floner, Amrane (b0215) 2012; 195
Sun, Li, Meng, Zhang, Song, Ren (b0160) 2018; 147
Fang, Zhu, Dionysiou, Gao, Zhou (b0175) 2015; 176
Pignatello, Oliveros, MacKay (b0335) 2006; 36
Zhu, Li, Li, Xie, Lü, Li (b0240) 2018; 263
Li, Gao, Jin, Chen, Megharaj, Naidu (b0380) 2015; 438
Matta, Hanna, Kone, Chiron (b0020) 2008; 144
Barhoumi, Oturan, Olvera-Vargas, Brillas, Gadri, Ammar, Oturan (b0065) 2016; 94
Qin, Chen, Sun, Sun, Shen (b0310) 2017; 330
Diao, Liu, Hu, Kong, Jiang, Xu (b0305) 2017; 184
Liu, Wang, Ai, Zhang (b0040) 2015; 7
Zhao, Chen, Liu, Luo, Wu (b0050) 2017; 188
Liu, Liu, Zhao, Dionysiou (b0015) 2017; 213
Zhang, Tran, Hussain, Zhong, Huang (b0030) 2015; 279
Xin (10.1016/j.cej.2019.123605_b0140) 2019; 215
Ammar (10.1016/j.cej.2019.123605_b0035) 2015; 74
Diao (10.1016/j.cej.2019.123605_b0090) 2017; 327
Tong (10.1016/j.cej.2019.123605_b0245) 2016; 50
Fang (10.1016/j.cej.2019.123605_b0145) 2014; 48
Labiadh (10.1016/j.cej.2019.123605_b0060) 2015; 297
Li (10.1016/j.cej.2019.123605_b0260) 2019; 654
Khataee (10.1016/j.cej.2019.123605_b0295) 2016; 58
Zhu (10.1016/j.cej.2019.123605_b0240) 2018; 263
Aziz (10.1016/j.cej.2019.123605_b0210) 2018; 343
Khabbaz (10.1016/j.cej.2019.123605_b0075) 2017; 187
Gao (10.1016/j.cej.2019.123605_b0085) 2017; 50
Chen (10.1016/j.cej.2019.123605_b0195) 2017; 313
Rastogi (10.1016/j.cej.2019.123605_b0375) 2009; 43
Badellino (10.1016/j.cej.2019.123605_b0370) 2006; 137
Fang (10.1016/j.cej.2019.123605_b0175) 2015; 176
Qian (10.1016/j.cej.2019.123605_b0355) 2018; 231
Sun (10.1016/j.cej.2019.123605_b0160) 2018; 147
Qin (10.1016/j.cej.2019.123605_b0315) 2016; 569
Zhang (10.1016/j.cej.2019.123605_b0320) 2016; 172
Zhang (10.1016/j.cej.2019.123605_b0135) 2018; 211
Yi (10.1016/j.cej.2019.123605_b0125) 2020; 380
Zhang (10.1016/j.cej.2019.123605_b0120) 2018; 191
Jaafarzadeh (10.1016/j.cej.2019.123605_b0205) 2017; 320
Liu (10.1016/j.cej.2019.123605_b0040) 2015; 7
Pignatello (10.1016/j.cej.2019.123605_b0335) 2006; 36
Che (10.1016/j.cej.2019.123605_b0045) 2011; 185
Diao (10.1016/j.cej.2019.123605_b0305) 2017; 184
Zhang (10.1016/j.cej.2019.123605_b0345) 2018; 130
Huang (10.1016/j.cej.2019.123605_b0270) 2018; 361
Zhang (10.1016/j.cej.2019.123605_b0030) 2015; 279
Xiao (10.1016/j.cej.2019.123605_b0105) 2018; 52
Conte (10.1016/j.cej.2019.123605_b0230) 2016; 170
Qin (10.1016/j.cej.2019.123605_b0310) 2017; 330
Bandala (10.1016/j.cej.2019.123605_b0225) 2007; 186
Zhao (10.1016/j.cej.2019.123605_b0050) 2017; 188
Fu (10.1016/j.cej.2019.123605_b0350) 2016; 50
Yan (10.1016/j.cej.2019.123605_b0115) 2015; 175
Zeng (10.1016/j.cej.2019.123605_b0070) 2019; 228
Li (10.1016/j.cej.2019.123605_b0280) 2019; 274
Fathinia (10.1016/j.cej.2019.123605_b0285) 2015; 327
Matta (10.1016/j.cej.2019.123605_b0020) 2008; 144
Yang (10.1016/j.cej.2019.123605_b0095) 2019; 255
Seo (10.1016/j.cej.2019.123605_b0185) 2015; 273
Llanos (10.1016/j.cej.2019.123605_b0220) 2018; 269
Arienzo (10.1016/j.cej.2019.123605_b0025) 1999; 39
Chen (10.1016/j.cej.2019.123605_b0300) 2015; 273
Khataee (10.1016/j.cej.2019.123605_b0080) 2017; 34
Zhang (10.1016/j.cej.2019.123605_b0110) 2017; 235
Fang (10.1016/j.cej.2019.123605_b0165) 2015; 49
Chen (10.1016/j.cej.2019.123605_b0250) 2017; 51
Zhang (10.1016/j.cej.2019.123605_b0005) 2014; 244
Zhu (10.1016/j.cej.2019.123605_b0340) 2002; 32
Liu (10.1016/j.cej.2019.123605_b0015) 2017; 213
Li (10.1016/j.cej.2019.123605_b0380) 2015; 438
Barhoumi (10.1016/j.cej.2019.123605_b0065) 2016; 94
Wu (10.1016/j.cej.2019.123605_b0055) 2016; 294
Kemmou (10.1016/j.cej.2019.123605_b0170) 2018; 313
Lü (10.1016/j.cej.2019.123605_b0235) 2018; 349
Fontmorin (10.1016/j.cej.2019.123605_b0215) 2012; 195
Duan (10.1016/j.cej.2019.123605_b0010) 2016; 283
Qin (10.1016/j.cej.2019.123605_b0190) 2017; 9
Fan (10.1016/j.cej.2019.123605_b0290) 2018; 333
Huang (10.1016/j.cej.2019.123605_b0255) 2016; 6
Piera (10.1016/j.cej.2019.123605_b0360) 2000; 27
Yang (10.1016/j.cej.2019.123605_b0150) 2015; 50
Brillas (10.1016/j.cej.2019.123605_b0330) 2009; 109
Kappler (10.1016/j.cej.2019.123605_b0130) 2014; 1
Zhang (10.1016/j.cej.2019.123605_b0325) 2017; 218
Bae (10.1016/j.cej.2019.123605_b0275) 2013; 134
Mohan (10.1016/j.cej.2019.123605_b0100) 2014; 160
Fang (10.1016/j.cej.2019.123605_b0180) 2017; 214
Giri (10.1016/j.cej.2019.123605_b0365) 2008; 20
Qin (10.1016/j.cej.2019.123605_b0155) 2018; 137
Jaafarzadeh (10.1016/j.cej.2019.123605_b0200) 2017; 169
Park (10.1016/j.cej.2019.123605_b0265) 2018; 249
References_xml – volume: 214
  start-page: 34
  year: 2017
  end-page: 45
  ident: b0180
  article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation
  publication-title: Appl. Catal. B - Environ.
– volume: 195
  start-page: 208
  year: 2012
  end-page: 217
  ident: b0215
  article-title: Electrochemical oxidation of 2, 4-dichlorophenoxyacetic acid: analysis of by-products and improvement of the biodegradability
  publication-title: Chem. Eng. J.
– volume: 327
  start-page: 108
  year: 2017
  end-page: 115
  ident: b0090
  article-title: Enhanced catalytic degradation of ciprofloxacin with FeS
  publication-title: J. Hazard. Mater.
– volume: 175
  start-page: 269
  year: 2015
  end-page: 274
  ident: b0115
  article-title: Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 684
  year: 2009
  end-page: 694
  ident: b0375
  article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe (II) mediated advanced oxidation of chlorophenols
  publication-title: Water Res.
– volume: 186
  start-page: 357
  year: 2007
  end-page: 363
  ident: b0225
  article-title: Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process
  publication-title: J. Photochem. Photobio. A: Chem.
– volume: 147
  start-page: 91
  year: 2018
  end-page: 100
  ident: b0160
  article-title: Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H
  publication-title: Water Res.
– volume: 130
  start-page: 730
  year: 2018
  end-page: 740
  ident: b0345
  article-title: Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation
  publication-title: Carbon
– volume: 283
  start-page: 873
  year: 2016
  end-page: 879
  ident: b0010
  article-title: Degradation of nitrobenzene by Fenton-like reaction in a H
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 694
  year: 2015
  end-page: 700
  ident: b0150
  article-title: Degradation of
  publication-title: Environ. Sci. Technol.
– volume: 269
  start-page: 415
  year: 2018
  end-page: 421
  ident: b0220
  article-title: Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2, 4-dichlorophenoxyacetic acid
  publication-title: Electrochim. Acta
– volume: 273
  start-page: 481
  year: 2015
  end-page: 489
  ident: b0300
  article-title: Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS
  publication-title: Chem. Eng. J.
– volume: 137
  start-page: 130
  year: 2018
  end-page: 143
  ident: b0155
  article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review
  publication-title: Water Res.
– volume: 94
  start-page: 52
  year: 2016
  end-page: 61
  ident: b0065
  article-title: Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine: Kinetics, mechanism and toxicity assessment
  publication-title: Water Res.
– volume: 34
  start-page: 904
  year: 2017
  end-page: 915
  ident: b0080
  article-title: Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine
  publication-title: Ultrason. Sonochem.
– volume: 9
  start-page: 17115
  year: 2017
  end-page: 17124
  ident: b0190
  article-title: Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe (III)
  publication-title: ACS Appl. Mater. Interface
– volume: 255
  year: 2019
  ident: b0095
  article-title: Mechanistic insights into removal of Norfloxacin from water using different natural iron ore – biochar composites: more rich free radicals derived from natural pyrite-biochar composites than hematite-biochar composites
  publication-title: Appl. Catal. B - Environ.
– volume: 109
  start-page: 6570
  year: 2009
  end-page: 6631
  ident: b0330
  article-title: Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry
  publication-title: Chem. Rev.
– volume: 1
  start-page: 339
  year: 2014
  end-page: 344
  ident: b0130
  article-title: Biochar as an electron shuttle between bacteria and Fe (III) minerals
  publication-title: Environ. Sci. Technol. Lett.
– volume: 184
  start-page: 374
  year: 2017
  end-page: 383
  ident: b0305
  article-title: Comparative study of Rhodamine B degradation by the systems pyrite/H
  publication-title: Sep. Purif. Technol.
– volume: 327
  start-page: 190
  year: 2015
  end-page: 200
  ident: b0285
  article-title: Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process
  publication-title: Appl. Surf. Sci.
– volume: 380
  year: 2020
  ident: b0125
  article-title: Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar
  publication-title: Chem. Eng. J.
– volume: 274
  start-page: 353
  year: 2019
  end-page: 361
  ident: b0280
  article-title: Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: influence of biochar porosity and molecular size of antibiotics
  publication-title: J. Mol. Liq.
– volume: 330
  start-page: 804
  year: 2017
  end-page: 812
  ident: b0310
  article-title: Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation
  publication-title: Chem. Eng. J.
– volume: 213
  start-page: 74
  year: 2017
  end-page: 86
  ident: b0015
  article-title: Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst
  publication-title: Appl. Catal. B - Environ.
– volume: 188
  start-page: 557
  year: 2017
  end-page: 566
  ident: b0050
  article-title: Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite
  publication-title: Chemosphere
– volume: 50
  start-page: 214
  year: 2016
  end-page: 221
  ident: b0245
  article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments
  publication-title: Environ. Sci. Technol.
– volume: 231
  start-page: 108
  year: 2018
  end-page: 114
  ident: b0355
  article-title: Hydrophilic mesoporous carbon as iron (III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants
  publication-title: Appl. Catal. B - Environ.
– volume: 185
  start-page: 1355
  year: 2011
  end-page: 1361
  ident: b0045
  article-title: Degradation of trichloroethylene by Fenton reaction in pyrite suspension
  publication-title: J. Hazard. Mater.
– volume: 297
  start-page: 34
  year: 2015
  end-page: 41
  ident: b0060
  article-title: Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst
  publication-title: J. Hazard. Mater.
– volume: 263
  start-page: 475
  year: 2018
  end-page: 482
  ident: b0240
  article-title: Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline
  publication-title: Bioresour. Technol.
– volume: 235
  start-page: 185
  year: 2017
  end-page: 192
  ident: b0110
  article-title: Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals
  publication-title: Bioresour. Technol.
– volume: 349
  start-page: 522
  year: 2018
  end-page: 529
  ident: b0235
  article-title: Synergetic effect of pyrite on Cr(VI) removal by zero valent iron in column experiments: an investigation of mechanisms
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 2194
  year: 2017
  end-page: 2204
  ident: b0085
  article-title: Pyrite-type nanomaterials for advanced electrocatalysis
  publication-title: Acc. Chem. Res.
– volume: 569
  start-page: 1
  year: 2016
  end-page: 8
  ident: b0315
  article-title: Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry
  publication-title: Sci. Total Environ.
– volume: 48
  start-page: 1902
  year: 2014
  end-page: 1910
  ident: b0145
  article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: Implications to organic contaminant degradation
  publication-title: Environ. Sci. Technol.
– volume: 228
  start-page: 232
  year: 2019
  end-page: 240
  ident: b0070
  article-title: Novel visible light enhanced Pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: catalytic activity, characterization and mechanism
  publication-title: Chemosphere
– volume: 144
  start-page: 453
  year: 2008
  end-page: 458
  ident: b0020
  article-title: Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH
  publication-title: Chem. Eng. J.
– volume: 58
  start-page: 366
  year: 2016
  end-page: 373
  ident: b0295
  article-title: Heterogeneous Fenton process by natural pyrite for removal of a textile dye from water: effect of parameters and intermediate identification
  publication-title: J. Taiwan Inst. Chem. E
– volume: 438
  start-page: 87
  year: 2015
  end-page: 93
  ident: b0380
  article-title: Fenton-like oxidation of 2, 4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst
  publication-title: J. Colloid. Interf. Sci.
– volume: 279
  start-page: 396
  year: 2015
  end-page: 401
  ident: b0030
  article-title: Degradation of p-chloroaniline by pyrite in aqueous solutions
  publication-title: Chem. Eng. J.
– volume: 39
  start-page: 1629
  year: 1999
  end-page: 1638
  ident: b0025
  article-title: Oxidizing 2,4,6-trinitrotoluene with pyrite-H
  publication-title: Chemosphere
– volume: 160
  start-page: 191
  year: 2014
  end-page: 202
  ident: b0100
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review
  publication-title: Bioresour. Technol.
– volume: 51
  start-page: 11278
  year: 2017
  end-page: 11287
  ident: b0250
  article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation
  publication-title: Environ. Sci. Technol.
– volume: 187
  start-page: 416
  year: 2017
  end-page: 423
  ident: b0075
  article-title: Degradation of diclofenac by sonosynthesis of pyrite nanoparticles
  publication-title: J. Environ. Manage.
– volume: 52
  start-page: 5027
  year: 2018
  end-page: 5047
  ident: b0105
  article-title: Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review
  publication-title: Environ. Sci. Technol.
– volume: 273
  start-page: 502
  year: 2015
  end-page: 508
  ident: b0185
  article-title: Enhanced production of reactive oxidants by Fenton-like reactions in the presence of carbon materials
  publication-title: Chem. Eng. J.
– volume: 244
  start-page: 438
  year: 2014
  end-page: 445
  ident: b0005
  article-title: An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution
  publication-title: Chem. Eng. J.
– volume: 74
  start-page: 77
  year: 2015
  end-page: 87
  ident: b0035
  article-title: Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst
  publication-title: Water Res.
– volume: 313
  start-page: 498
  year: 2017
  end-page: 507
  ident: b0195
  article-title: Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite)
  publication-title: Chem. Eng. J.
– volume: 313
  start-page: 128
  year: 2018
  end-page: 133
  ident: b0170
  article-title: Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: factors affecting the activation and degradation processes
  publication-title: Catal. Today
– volume: 215
  start-page: 827
  year: 2019
  end-page: 834
  ident: b0140
  article-title: New methods for assessing electron storage capacity and redox reversibility of biochar
  publication-title: Chemosphere
– volume: 36
  start-page: 1
  year: 2006
  end-page: 84
  ident: b0335
  article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 32
  start-page: 465
  year: 2002
  end-page: 473
  ident: b0340
  article-title: Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study
  publication-title: Free Radical Biol. Med.
– volume: 20
  start-page: 1138
  year: 2008
  end-page: 1145
  ident: b0365
  article-title: A novel use of TiO
  publication-title: J. Environ. Sci.
– volume: 50
  start-page: 1218
  year: 2016
  end-page: 1226
  ident: b0350
  article-title: Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation
  publication-title: Environ. Sci. Technol.
– volume: 27
  start-page: 169
  year: 2000
  end-page: 177
  ident: b0360
  article-title: 2, 4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO
  publication-title: Appl. Catal. B: Environ.
– volume: 361
  start-page: 353
  year: 2018
  end-page: 363
  ident: b0270
  article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process
  publication-title: Chem. Eng. J.
– volume: 343
  start-page: 107
  year: 2018
  end-page: 115
  ident: b0210
  article-title: Comparative study on 2, 4-dichlorophenoxyacetic acid and 2, 4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor
  publication-title: J. Hazard. Mater.
– volume: 294
  start-page: 49
  year: 2016
  end-page: 57
  ident: b0055
  article-title: Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition
  publication-title: Chem. Eng. J.
– volume: 172
  start-page: 444
  year: 2016
  end-page: 457
  ident: b0320
  article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions
  publication-title: Geochim. Cosmochim. Acta
– volume: 191
  start-page: 64
  year: 2018
  end-page: 71
  ident: b0120
  article-title: Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment
  publication-title: Chemosphere
– volume: 134
  start-page: 93
  year: 2013
  end-page: 102
  ident: b0275
  article-title: Degradation of diclofenac by pyrite catalyzed Fenton oxidation
  publication-title: Appl. Catal. B: Environ.
– volume: 654
  start-page: 1284
  year: 2019
  end-page: 1292
  ident: b0260
  article-title: The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation
  publication-title: Sci. Total Environ.
– volume: 320
  start-page: 436
  year: 2017
  end-page: 447
  ident: b0205
  article-title: Efficient degradation of 2, 4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes
  publication-title: Chem. Eng. J.
– volume: 218
  start-page: 153
  year: 2017
  end-page: 166
  ident: b0325
  article-title: Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids
  publication-title: Geochim. Cosmochim. Acta
– volume: 333
  start-page: 657
  year: 2018
  end-page: 664
  ident: b0290
  article-title: Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 73186
  year: 2016
  end-page: 73196
  ident: b0255
  article-title: Influence of morphological and chemical features of biochar on hydrogen peroxide activation: implications on sulfamethazine degradation
  publication-title: RSC Adv.
– volume: 170
  start-page: 60
  year: 2016
  end-page: 69
  ident: b0230
  article-title: Photo-Fenton degradation of the herbicide 2, 4-D in aqueous medium at pH conditions close to neutrality
  publication-title: J. Environ. Manage.
– volume: 7
  start-page: 28534
  year: 2015
  end-page: 28544
  ident: b0040
  article-title: Hydrothermal synthesis of FeS
  publication-title: ACS Appl. Mater. Interface
– volume: 137
  start-page: 856
  year: 2006
  end-page: 864
  ident: b0370
  article-title: Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2, 4-dichlorophenoxyacetic acid
  publication-title: J. Hazard. Mater.
– volume: 211
  start-page: 1073
  year: 2018
  end-page: 1081
  ident: b0135
  article-title: Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses
  publication-title: Chemosphere
– volume: 49
  start-page: 5645
  year: 2015
  end-page: 5653
  ident: b0165
  article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation
  publication-title: Environ. Sci. Technol.
– volume: 169
  start-page: 568
  year: 2017
  end-page: 576
  ident: b0200
  article-title: Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe
  publication-title: Chemosphere
– volume: 176
  start-page: 210
  year: 2015
  end-page: 217
  ident: b0175
  article-title: Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation
  publication-title: Bioresour. Technol.
– volume: 249
  start-page: 368
  year: 2018
  end-page: 376
  ident: b0265
  article-title: Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst
  publication-title: Bioresour. Technol.
– volume: 1
  start-page: 339
  year: 2014
  ident: 10.1016/j.cej.2019.123605_b0130
  article-title: Biochar as an electron shuttle between bacteria and Fe (III) minerals
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/ez5002209
– volume: 211
  start-page: 1073
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0135
  article-title: Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.033
– volume: 361
  start-page: 353
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0270
  article-title: Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: insight into the influences on Fenton-like process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.098
– volume: 160
  start-page: 191
  year: 2014
  ident: 10.1016/j.cej.2019.123605_b0100
  article-title: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.120
– volume: 214
  start-page: 34
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0180
  article-title: Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation
  publication-title: Appl. Catal. B - Environ.
  doi: 10.1016/j.apcatb.2017.05.036
– volume: 215
  start-page: 827
  year: 2019
  ident: 10.1016/j.cej.2019.123605_b0140
  article-title: New methods for assessing electron storage capacity and redox reversibility of biochar
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.10.080
– volume: 130
  start-page: 730
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0345
  article-title: Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.01.036
– volume: 134
  start-page: 93
  year: 2013
  ident: 10.1016/j.cej.2019.123605_b0275
  article-title: Degradation of diclofenac by pyrite catalyzed Fenton oxidation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2012.12.031
– volume: 184
  start-page: 374
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0305
  article-title: Comparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: reactivity, stability, products and mechanism
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.05.016
– volume: 349
  start-page: 522
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0235
  article-title: Synergetic effect of pyrite on Cr(VI) removal by zero valent iron in column experiments: an investigation of mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.133
– volume: 327
  start-page: 190
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0285
  article-title: Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.11.157
– volume: 438
  start-page: 87
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0380
  article-title: Fenton-like oxidation of 2, 4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst
  publication-title: J. Colloid. Interf. Sci.
  doi: 10.1016/j.jcis.2014.09.082
– volume: 297
  start-page: 34
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0060
  article-title: Complete removal of AHPS synthetic dye from water using new electro-Fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.04.062
– volume: 50
  start-page: 214
  year: 2016
  ident: 10.1016/j.cej.2019.123605_b0245
  article-title: Production of abundant hydroxyl radicals from oxygenation of subsurface sediments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04323
– volume: 169
  start-page: 568
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0200
  article-title: Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated peroxymonosulfate: influential factors and mechanism determination
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.11.038
– volume: 186
  start-page: 357
  year: 2007
  ident: 10.1016/j.cej.2019.123605_b0225
  article-title: Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process
  publication-title: J. Photochem. Photobio. A: Chem.
  doi: 10.1016/j.jphotochem.2006.09.005
– volume: 176
  start-page: 210
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0175
  article-title: Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.11.032
– volume: 191
  start-page: 64
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0120
  article-title: Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.10.026
– volume: 274
  start-page: 353
  year: 2019
  ident: 10.1016/j.cej.2019.123605_b0280
  article-title: Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: influence of biochar porosity and molecular size of antibiotics
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.10.142
– volume: 51
  start-page: 11278
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0250
  article-title: Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02740
– volume: 273
  start-page: 502
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0185
  article-title: Enhanced production of reactive oxidants by Fenton-like reactions in the presence of carbon materials
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.114
– volume: 9
  start-page: 17115
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0190
  article-title: Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe (III)
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.7b03310
– volume: 327
  start-page: 108
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0090
  article-title: Enhanced catalytic degradation of ciprofloxacin with FeS2/SiO2 microspheres as heterogeneous Fenton catalyst: kinetics, reaction pathways and mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.12.045
– volume: 74
  start-page: 77
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0035
  article-title: Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.02.006
– volume: 228
  start-page: 232
  year: 2019
  ident: 10.1016/j.cej.2019.123605_b0070
  article-title: Novel visible light enhanced Pyrite-Fenton system toward ultrarapid oxidation of p-nitrophenol: catalytic activity, characterization and mechanism
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.04.103
– volume: 94
  start-page: 52
  year: 2016
  ident: 10.1016/j.cej.2019.123605_b0065
  article-title: Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine: Kinetics, mechanism and toxicity assessment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.02.042
– volume: 231
  start-page: 108
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0355
  article-title: Hydrophilic mesoporous carbon as iron (III)/(II) electron shuttle for visible light enhanced Fenton-like degradation of organic pollutants
  publication-title: Appl. Catal. B - Environ.
  doi: 10.1016/j.apcatb.2018.03.016
– volume: 255
  year: 2019
  ident: 10.1016/j.cej.2019.123605_b0095
  article-title: Mechanistic insights into removal of Norfloxacin from water using different natural iron ore – biochar composites: more rich free radicals derived from natural pyrite-biochar composites than hematite-biochar composites
  publication-title: Appl. Catal. B - Environ.
  doi: 10.1016/j.apcatb.2019.117752
– volume: 343
  start-page: 107
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0210
  article-title: Comparative study on 2, 4-dichlorophenoxyacetic acid and 2, 4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.09.025
– volume: 654
  start-page: 1284
  year: 2019
  ident: 10.1016/j.cej.2019.123605_b0260
  article-title: The synthesis of heterogeneous Fenton-like catalyst using sewage sludge biochar and its application for ciprofloxacin degradation
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.013
– volume: 263
  start-page: 475
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0240
  article-title: Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.05.041
– volume: 279
  start-page: 396
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0030
  article-title: Degradation of p-chloroaniline by pyrite in aqueous solutions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.016
– volume: 147
  start-page: 91
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0160
  article-title: Removal of sulfonamide antibiotics and human metabolite by biochar and biochar/H2O2 in synthetic urine
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.09.051
– volume: 52
  start-page: 5027
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0105
  article-title: Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b06487
– volume: 49
  start-page: 5645
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0165
  article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5061512
– volume: 185
  start-page: 1355
  year: 2011
  ident: 10.1016/j.cej.2019.123605_b0045
  article-title: Degradation of trichloroethylene by Fenton reaction in pyrite suspension
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.10.055
– volume: 109
  start-page: 6570
  year: 2009
  ident: 10.1016/j.cej.2019.123605_b0330
  article-title: Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry
  publication-title: Chem. Rev.
  doi: 10.1021/cr900136g
– volume: 50
  start-page: 1218
  year: 2016
  ident: 10.1016/j.cej.2019.123605_b0350
  article-title: Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04314
– volume: 283
  start-page: 873
  year: 2016
  ident: 10.1016/j.cej.2019.123605_b0010
  article-title: Degradation of nitrobenzene by Fenton-like reaction in a H2O2/schwertmannite system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.033
– volume: 320
  start-page: 436
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0205
  article-title: Efficient degradation of 2, 4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.036
– volume: 569
  start-page: 1
  year: 2016
  ident: 10.1016/j.cej.2019.123605_b0315
  article-title: Catalytic degradation of the soil fumigant 1,3-dichloropropene in aqueous biochar slurry
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.06.092
– volume: 244
  start-page: 438
  year: 2014
  ident: 10.1016/j.cej.2019.123605_b0005
  article-title: An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.01.088
– volume: 313
  start-page: 128
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0170
  article-title: Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: factors affecting the activation and degradation processes
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.12.028
– volume: 273
  start-page: 481
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0300
  article-title: Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.079
– volume: 50
  start-page: 694
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0150
  article-title: Degradation of p-nitrophenol on biochars: role of persistent free radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04042
– volume: 213
  start-page: 74
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0015
  article-title: Aligned α-FeOOH nanorods anchored on a graphene oxide-carbon nanotubes aerogel can serve as an effective Fenton-like oxidation catalyst
  publication-title: Appl. Catal. B - Environ.
  doi: 10.1016/j.apcatb.2017.05.019
– volume: 330
  start-page: 804
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0310
  article-title: Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.013
– volume: 294
  start-page: 49
  year: 2016
  ident: 10.1016/j.cej.2019.123605_b0055
  article-title: Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.02.097
– volume: 144
  start-page: 453
  year: 2008
  ident: 10.1016/j.cej.2019.123605_b0020
  article-title: Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.07.013
– volume: 170
  start-page: 60
  year: 2016
  ident: 10.1016/j.cej.2019.123605_b0230
  article-title: Photo-Fenton degradation of the herbicide 2, 4-D in aqueous medium at pH conditions close to neutrality
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.01.002
– volume: 6
  start-page: 73186
  year: 2016
  ident: 10.1016/j.cej.2019.123605_b0255
  article-title: Influence of morphological and chemical features of biochar on hydrogen peroxide activation: implications on sulfamethazine degradation
  publication-title: RSC Adv.
  doi: 10.1039/C6RA11850J
– volume: 7
  start-page: 28534
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0040
  article-title: Hydrothermal synthesis of FeS2 as a high-efficiency Fenton reagent to degrade alachlor via superoxide-mediated Fe (II)/Fe (III) cycle
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.5b09919
– volume: 188
  start-page: 557
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0050
  article-title: Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.09.019
– volume: 137
  start-page: 130
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0155
  article-title: Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.012
– volume: 43
  start-page: 684
  year: 2009
  ident: 10.1016/j.cej.2019.123605_b0375
  article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe (II) mediated advanced oxidation of chlorophenols
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.10.045
– volume: 50
  start-page: 2194
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0085
  article-title: Pyrite-type nanomaterials for advanced electrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00187
– volume: 27
  start-page: 169
  year: 2000
  ident: 10.1016/j.cej.2019.123605_b0360
  article-title: 2, 4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO2/UVA/O3 and Fe (II)/UVA/O3 systems
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/S0926-3373(00)00149-1
– volume: 313
  start-page: 498
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0195
  article-title: Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.075
– volume: 195
  start-page: 208
  year: 2012
  ident: 10.1016/j.cej.2019.123605_b0215
  article-title: Electrochemical oxidation of 2, 4-dichlorophenoxyacetic acid: analysis of by-products and improvement of the biodegradability
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.04.058
– volume: 269
  start-page: 415
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0220
  article-title: Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2, 4-dichlorophenoxyacetic acid
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.02.153
– volume: 137
  start-page: 856
  year: 2006
  ident: 10.1016/j.cej.2019.123605_b0370
  article-title: Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2, 4-dichlorophenoxyacetic acid
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.03.035
– volume: 380
  year: 2020
  ident: 10.1016/j.cej.2019.123605_b0125
  article-title: Insight into the influence of pyrolysis temperature on Fenton-like catalytic performance of magnetic biochar
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122518
– volume: 20
  start-page: 1138
  year: 2008
  ident: 10.1016/j.cej.2019.123605_b0365
  article-title: A novel use of TiO2 fiber for photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid in aqueous solution
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(08)62161-0
– volume: 36
  start-page: 1
  year: 2006
  ident: 10.1016/j.cej.2019.123605_b0335
  article-title: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380500326564
– volume: 187
  start-page: 416
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0075
  article-title: Degradation of diclofenac by sonosynthesis of pyrite nanoparticles
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2016.11.005
– volume: 333
  start-page: 657
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0290
  article-title: Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.175
– volume: 58
  start-page: 366
  year: 2016
  ident: 10.1016/j.cej.2019.123605_b0295
  article-title: Heterogeneous Fenton process by natural pyrite for removal of a textile dye from water: effect of parameters and intermediate identification
  publication-title: J. Taiwan Inst. Chem. E
  doi: 10.1016/j.jtice.2015.06.015
– volume: 32
  start-page: 465
  year: 2002
  ident: 10.1016/j.cej.2019.123605_b0340
  article-title: Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/S0891-5849(01)00824-3
– volume: 235
  start-page: 185
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0110
  article-title: Efficient removal of lead from solution by celery-derived biochars rich in alkaline minerals
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.109
– volume: 249
  start-page: 368
  year: 2018
  ident: 10.1016/j.cej.2019.123605_b0265
  article-title: Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.10.030
– volume: 39
  start-page: 1629
  year: 1999
  ident: 10.1016/j.cej.2019.123605_b0025
  article-title: Oxidizing 2,4,6-trinitrotoluene with pyrite-H2O2 suspensions
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00061-2
– volume: 218
  start-page: 153
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0325
  article-title: Production of hydroxyl radicals from abiotic oxidation of pyrite by oxygen under circumneutral conditions in the presence of low-molecular-weight organic acids
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2017.08.032
– volume: 172
  start-page: 444
  year: 2016
  ident: 10.1016/j.cej.2019.123605_b0320
  article-title: Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2015.10.015
– volume: 175
  start-page: 269
  year: 2015
  ident: 10.1016/j.cej.2019.123605_b0115
  article-title: Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.10.103
– volume: 48
  start-page: 1902
  year: 2014
  ident: 10.1016/j.cej.2019.123605_b0145
  article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: Implications to organic contaminant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4048126
– volume: 34
  start-page: 904
  year: 2017
  ident: 10.1016/j.cej.2019.123605_b0080
  article-title: Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.07.028
SSID ssj0006919
Score 2.5574336
Snippet [Display omitted] •Biochar accelerated 2,4-D degradation using pyrite as the Fenton-like catalyst.•Biochar increased the production of OH in the Fenton-like...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123605
SubjectTerms Biochar
Degradation
Fenton reaction
Iron sulfide
Organic pollutants
Title Accelerating effects of biochar for pyrite-catalyzed Fenton-like oxidation of herbicide 2,4-D
URI https://dx.doi.org/10.1016/j.cej.2019.123605
Volume 391
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_Akrk12N5vssVSlWuxBLXqRkOxuJLW0RSpYD_52Z_LwAerBUyDMQJiZnUf2mxlCDpzxrZdwyRwUH0xqT7MoBYVEOnDKaZVYhb3Dlz3V6cuLu-BujrTrXhiEVVa-v_Tphbeu3jQraTYned689vFOS4NzxZqcFx3lUoZo5cdvnzAPpYvlHkjMkLq-2SwwXsYNEN2lj3EGCW6w-yk2fYk3ZytkuUoUaav8llUy50ZrZOnL-MB1ct8yBqIG6nD0QCtkBh1nNM3H2E1FISGlkxmU_44Vv2lmr85SsEtcGzzMHx0dv-TlTiXkAu2lucmto_xIspMN0j87vWl3WLUugRmhxJT5LhTKwoFSEINV5htILSLJExOaTBnBoyDTVlibZYnMPM_5oRGp8LTTOBGVB2KTzI_GI7dFqAI_JoJMcS-1ktskgmNuwtBA8mBFws028WpBxaaaJY4rLYZxDRobxCDbGGUbl7LdJocfLJNykMZfxLKWfvzNGmJw9L-z7fyPbZcscqyiCxDuHpmfPj27fUg1pmmjsKUGWWiddzs9fHavbrvv9WPSIg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwELUQFECBOMWNC2gQZhPb68QFxYoFLWcDSDQoJLaDAmh3BYtgKfgpfpCZHBwSUCDRRhnJGU_ezCTP8whZdca3Xswlc9B8MKk9zcIENiTUdaecVrFVeHb46Fi1zuT-ef18gLxWZ2GQVllif4HpOVqXV2qlN2vdLKud-PhPSwO4Yk_OvaBkVh64_iP0bfdbe03Y5DXOd3dOt1uslBZgRijRY74LhLIQfArylUp9A2k4lDw2gUmVETysp9oKa9M0lqnnOT8wIhGedhqnh3KUigDcH5IAFyibsPnywStROlcTwdUxXF71KzUnlRl3jXQyvYlDT1Ay77tk-CnB7Y6TsbIypY3i4SfIgGtPktFP8wqnyEXDGEhTGDTtK1pSQWgnpUnWweNbFCpg2u3fQRnL8u9C_WdnKbwIqFN8m9042nnKChEntIJwSTKTWUf5hmTNaXL2L06cIYPtTtvNEqoAOEU9VdxLrOQ2DgFXTBAYqFasiLmZI17lqMiUw8tRQ-M2qlhq1xH4NkLfRoVv58j6u0m3mNzx282y8n70JfwiyCw_m83_zWyFDLdOjw6jw73jgwUywrGFzxnAi2Swd_fglqDO6SXLeVxRcvnfgfwGWpALBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+effects+of+biochar+for+pyrite-catalyzed+Fenton-like+oxidation+of+herbicide+2%2C4-D&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhu%2C+Xiaoxiao&rft.au=Li%2C+Jianfa&rft.au=Xie%2C+Bin&rft.au=Feng%2C+Dongqing&rft.date=2020-07-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=391&rft_id=info:doi/10.1016%2Fj.cej.2019.123605&rft.externalDocID=S1385894719330207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon