Generative Artificial Intelligence and the Evolving Challenge of Deepfake Detection: A Systematic Analysis
Deepfake technology, which employs advanced generative artificial intelligence to create hyper-realistic synthetic media, poses significant challenges across various sectors, including security, entertainment, and education. This literature review explores the evolution of deepfake generation method...
Saved in:
Published in | Journal of sensor and actuator networks Vol. 14; no. 1; p. 17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deepfake technology, which employs advanced generative artificial intelligence to create hyper-realistic synthetic media, poses significant challenges across various sectors, including security, entertainment, and education. This literature review explores the evolution of deepfake generation methods, ranging from traditional techniques to state-of-the-art models such as generative adversarial networks and diffusion models. We navigate through the effectiveness and limitations of various detection approaches, including machine learning, forensic analysis, and hybrid techniques, while highlighting the critical importance of interpretability and real-time performance in detection systems. Furthermore, we discuss the ethical implications and regulatory considerations surrounding deepfake technology, emphasizing the need for comprehensive frameworks to mitigate risks associated with misinformation and manipulation. Through a systematic review of the existing literature, our aim is to identify research gaps and future directions for the development of robust, adaptable detection systems that can keep pace with rapid advancements in deepfake generation. |
---|---|
AbstractList | Deepfake technology, which employs advanced generative artificial intelligence to create hyper-realistic synthetic media, poses significant challenges across various sectors, including security, entertainment, and education. This literature review explores the evolution of deepfake generation methods, ranging from traditional techniques to state-of-the-art models such as generative adversarial networks and diffusion models. We navigate through the effectiveness and limitations of various detection approaches, including machine learning, forensic analysis, and hybrid techniques, while highlighting the critical importance of interpretability and real-time performance in detection systems. Furthermore, we discuss the ethical implications and regulatory considerations surrounding deepfake technology, emphasizing the need for comprehensive frameworks to mitigate risks associated with misinformation and manipulation. Through a systematic review of the existing literature, our aim is to identify research gaps and future directions for the development of robust, adaptable detection systems that can keep pace with rapid advancements in deepfake generation. |
Audience | Academic |
Author | Duan, Rui Babaei, Reza Zhao, Shangqing Cheng, Samuel |
Author_xml | – sequence: 1 givenname: Reza orcidid: 0000-0001-6257-7719 surname: Babaei fullname: Babaei, Reza – sequence: 2 givenname: Samuel orcidid: 0000-0002-5439-1137 surname: Cheng fullname: Cheng, Samuel – sequence: 3 givenname: Rui surname: Duan fullname: Duan, Rui – sequence: 4 givenname: Shangqing surname: Zhao fullname: Zhao, Shangqing |
BookMark | eNpNkcFuFDEMhiNUJErpjQeIxJUtyWQyyXAbLaWsVIkDcI48GWeaYTZZknSlffumLEK1D7Ys-7Ot_y25CDEgIe85uxGiZ5-WDIG3jDPG1Sty2TRNu2kU0xcv8jfkOueFVeu50G17SZY7DJig-CPSIRXvvPWw0l0ouK5-xmCRQphoeUB6e4zr0YeZbh9gXTHMSKOjXxAPDn5jTQra4mP4TAf645QL7ivX0iHAeso-vyOvHawZr__FK_Lr6-3P7bfN_fe73Xa431jRibLhY2dHhshRSOn0qHvHNHQSFTRCN2CtxUZPioPsWqul5ih7NzEmOzeyUYkrsjtzpwiLOSS_h3QyEbz5W4hpNlA_tSuaXsix7uKau66VgOOklG5F54TmkkleWR_OrEOKfx4xF7PEx1QfykZwxZnuO_XcdXPumqFCfXCxJLDVJ9x7W2VyvtYH3fRKql7qOvDxPGBTzDmh-38mZ-ZZTfNSTfEEnCuTSw |
Cites_doi | 10.1177/1365712718807226 10.1109/ICCIS54243.2021.9676375 10.1109/AVSS.2018.8639163 10.1145/3543873.3587321 10.24963/ijcai.2020/476 10.1109/SCEECS61402.2024.10481956 10.1109/CACRE58689.2023.10208613 10.1007/s10676-019-09522-1 10.1109/ICASSP.2019.8683164 10.1016/j.eng.2019.12.012 10.1109/MITP.2024.3369948 10.1109/ACCESS.2023.3246661 10.1145/1360612.1360638 10.1007/s11263-022-01606-8 10.1109/FG.2018.00024 10.1109/CVPR.2018.00917 10.1007/978-3-030-01261-8_41 10.3390/s21165413 10.1109/ACCESS.2022.3185121 10.1145/3624748 10.1109/CVPRW50498.2020.00336 10.1109/CVPR46437.2021.00416 10.1109/CVPRW50498.2020.00337 10.21437/Interspeech.2023-703 10.1016/j.heliyon.2023.e15090 10.1016/j.cviu.2022.103525 10.1145/3478513.3480484 10.1109/WACVW.2019.00020 10.1109/IJCB52358.2021.9484387 10.1016/j.nlp.2024.100064 10.1145/3425780 10.1145/3595958 10.1109/CVPR46437.2021.00222 10.1007/s00521-023-09288-0 10.1109/ICCV48922.2021.01483 10.23919/AEIT50178.2020.9241108 10.1109/ICCVW.2019.00213 10.1080/1369118X.2023.2234980 10.1109/CVPR46437.2021.00295 10.3390/jimaging9010018 10.1109/BIOSIG61931.2024.10786752 10.1109/CVPR42600.2020.00327 10.1109/CVPR42600.2020.00505 10.1109/MIS.2023.3255590 10.1073/pnas.2110013119 10.1145/3394171.3413769 10.1109/TIFS.2022.3146781 10.3390/fi13040093 10.1109/ICASSP49357.2023.10096249 10.1002/widm.1520 10.1109/ACCESS.2022.3151186 10.3390/app12062953 10.1109/WACV45572.2020.9093492 10.1109/JSTSP.2020.3002101 10.1007/978-3-031-19781-9_4 10.1109/CVPR.2008.4587756 10.1016/j.ins.2023.119341 10.1109/CVPR46437.2021.00572 10.1109/TIP.2019.2916751 10.1145/3072959.3073640 10.1007/978-3-030-88040-8_7 10.3390/computers12100216 10.1109/CVPR46437.2021.01605 10.1109/IJCB48548.2020.9304936 10.1109/ICASSP.2019.8682602 10.1109/JSTSP.2020.3007250 10.1109/CVPR.2018.00916 10.1145/3422622 10.1109/CVPR46437.2021.00500 10.1145/3536221.3558175 10.1145/3230744.3230818 10.1109/CVPR.2016.262 10.1109/ACCESS.2022.3154404 10.1109/ICCV.2017.397 10.1145/3394171.3413570 10.1007/978-3-030-58610-2_6 10.1109/APSIPAASC58517.2023.10317126 10.1109/SP.2019.00023 10.3389/fsoc.2022.907199 10.1109/R10-HTC57504.2023.10461811 10.1109/ICICT60155.2024.10544590 10.58496/ADSA/2024/011 10.1109/CVPR42600.2020.00582 10.1007/978-981-97-8792-0_32 10.3390/jsan12040061 10.1109/ICCV.2017.244 10.1109/CVPRW53098.2021.00109 10.1145/3629976 10.1016/j.inffus.2020.06.014 10.3390/electronics13030585 10.1109/ISCC58397.2023.10217850 10.1109/CVPR42600.2020.00813 10.1109/CVPRW50498.2020.00338 10.1109/WIFS.2018.8630787 10.1109/MTS.2019.2894474 10.1007/s10489-022-03766-z 10.1109/IJCB54206.2022.10007968 10.1109/CVPR52688.2022.01042 10.1145/3394171.3413707 10.1109/CVPRW50498.2020.00341 10.23919/APSIPA.2018.8659461 10.1109/CVPR52733.2024.02559 10.47392/IRJAEH.2024.0206 10.1109/ICCVW54120.2021.00421 10.1007/978-3-030-20876-9_8 10.1145/3596711.3596787 10.1155/2021/2482942 10.5121/csit.2023.130804 10.1007/s11042-021-11733-y 10.1109/WACV48630.2021.00339 10.3390/s23218763 10.3390/forensicsci4030021 10.1177/13548565211034044 10.1109/WIFS.2018.8630761 10.3390/s22124556 10.1609/aaai.v34i07.6721 10.1145/3306346.3323035 10.17762/ijritcc.v11i9.8861 10.1007/s11263-024-02151-2 10.47392/IRJAEH.2024.0131 10.1109/CVPR46437.2021.00434 10.20944/preprints202405.0686.v1 10.1111/exsy.13570 10.1109/ICCV48922.2021.01477 10.1145/3625547 10.1109/BTAS46853.2019.9185974 10.1177/2056305120903408 10.3390/jimaging9100199 10.1109/CVPR42600.2020.00296 10.1007/s10462-024-10810-6 10.1007/978-3-030-58571-6_39 10.1109/CVPR46437.2021.00278 10.1007/s00371-023-02981-0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/jsan14010017 |
DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2224-2708 |
ExternalDocumentID | oai_doaj_org_article_935bb0e181f645aebd778436f3815051 A829757958 10_3390_jsan14010017 |
GeographicLocations | United States New Jersey Germany |
GeographicLocations_xml | – name: New Jersey – name: Germany – name: United States |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO EDO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC ITG ITH K6V K7- KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TUS PMFND 3V. 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M M0N PKEHL PQEST PQGLB PQUKI Q9U PUEGO |
ID | FETCH-LOGICAL-c363t-1b6cb0ee1e355f8b89f08a65e7a2382accce28d71a564c8581e59fd0056fb0b73 |
IEDL.DBID | DOA |
ISSN | 2224-2708 |
IngestDate | Wed Aug 27 01:28:54 EDT 2025 Fri Jul 25 11:43:07 EDT 2025 Tue Jun 10 20:53:37 EDT 2025 Tue Jul 01 02:56:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-1b6cb0ee1e355f8b89f08a65e7a2382accce28d71a564c8581e59fd0056fb0b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6257-7719 0000-0002-5439-1137 |
OpenAccessLink | https://doaj.org/article/935bb0e181f645aebd778436f3815051 |
PQID | 3171089671 |
PQPubID | 2032375 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_935bb0e181f645aebd778436f3815051 proquest_journals_3171089671 gale_infotracacademiconefile_A829757958 crossref_primary_10_3390_jsan14010017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of sensor and actuator networks |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Shree (ref_63) 2024; 2 ref_94 ref_137 ref_92 ref_138 ref_90 Demir (ref_91) 2024; 40 ref_131 Kingsley (ref_64) 2024; 2 ref_99 ref_130 ref_133 (ref_8) 2020; 22 ref_97 ref_132 Nah (ref_11) 2023; 25 ref_96 ref_135 ref_95 ref_134 Verdoliva (ref_85) 2020; 14 Heidari (ref_171) 2024; 14 Passos (ref_18) 2024; 41 ref_19 ref_15 Neves (ref_162) 2020; 14 Bitouk (ref_35) 2008; 27 ref_128 ref_127 ref_129 ref_25 ref_23 ref_120 ref_22 ref_21 ref_124 He (ref_3) 2019; 28 ref_29 ref_27 Khaleel (ref_142) 2024; 2024 ref_26 Vaccari (ref_67) 2020; 6 Rana (ref_93) 2022; 10 Goodfellow (ref_24) 2020; 63 Maras (ref_7) 2019; 23 Zhang (ref_144) 2022; 81 ref_72 ref_159 ref_71 ref_158 Nguyen (ref_17) 2022; 223 Masood (ref_13) 2023; 53 ref_151 Haq (ref_61) 2023; 20 ref_79 ref_150 ref_78 ref_153 ref_77 ref_152 ref_76 ref_155 Firc (ref_10) 2023; 9 ref_75 Nadimpalli (ref_122) 2023; 20 ref_154 ref_74 ref_157 ref_73 ref_156 ref_160 Kang (ref_9) 2022; 10 Maniyal (ref_70) 2024; 26 ref_83 ref_148 ref_82 ref_147 ref_81 ref_80 ref_149 ref_140 ref_89 ref_88 ref_87 ref_86 ref_146 ref_145 Xia (ref_84) 2023; 38 Thies (ref_28) 2019; 38 Sun (ref_59) 2021; 2021 Malik (ref_12) 2022; 10 Tang (ref_123) 2024; 27 Kaur (ref_58) 2024; 57 Yu (ref_103) 2022; 17 Cao (ref_126) 2024; 132 Jacobsen (ref_20) 2024; 27 Suwajanakorn (ref_14) 2017; 36 Kane (ref_6) 2019; 38 ref_173 ref_57 ref_172 ref_56 ref_54 ref_53 ref_52 ref_51 Wang (ref_16) 2022; 130 Kingra (ref_60) 2023; 645 Combs (ref_125) 2024; 7 Akhtar (ref_69) 2024; 4 ref_169 Mirsky (ref_5) 2021; 54 Wang (ref_98) 2023; 19 ref_68 ref_161 ref_164 ref_66 ref_163 ref_65 ref_166 ref_165 ref_168 ref_62 ref_167 Tolosana (ref_1) 2020; 64 ref_170 ref_115 ref_114 ref_117 ref_116 ref_119 ref_118 ref_36 ref_34 ref_33 Groh (ref_136) 2022; 119 ref_32 ref_111 ref_31 ref_110 ref_30 ref_113 ref_39 ref_38 ref_37 Alnaim (ref_121) 2023; 11 Mone (ref_141) 2023; 66 Bode (ref_55) 2021; 27 Ren (ref_143) 2020; 6 ref_104 ref_106 ref_105 ref_108 ref_107 ref_109 ref_47 ref_46 ref_45 ref_44 ref_43 ref_100 ref_42 ref_41 ref_102 Sandotra (ref_112) 2024; 36 ref_40 ref_101 ref_2 ref_49 ref_48 Lu (ref_50) 2021; 40 Vora (ref_139) 2023; 11 ref_4 |
References_xml | – volume: 23 start-page: 255 year: 2019 ident: ref_7 article-title: Determining authenticity of video evidence in the age of artificial intelligence and in the wake of Deepfake videos publication-title: Int. J. Evid. Proof doi: 10.1177/1365712718807226 – ident: ref_133 doi: 10.1109/ICCIS54243.2021.9676375 – ident: ref_107 doi: 10.1109/AVSS.2018.8639163 – ident: ref_80 – ident: ref_149 doi: 10.1145/3543873.3587321 – ident: ref_132 doi: 10.24963/ijcai.2020/476 – ident: ref_53 doi: 10.1109/SCEECS61402.2024.10481956 – ident: ref_62 doi: 10.1109/CACRE58689.2023.10208613 – ident: ref_155 – ident: ref_108 – volume: 22 start-page: 133 year: 2020 ident: ref_8 article-title: Introducing the pervert’s dilemma: A contribution to the critique of Deepfake Pornography publication-title: Ethics Inf. Technol. doi: 10.1007/s10676-019-09522-1 – ident: ref_152 doi: 10.1109/ICASSP.2019.8683164 – volume: 6 start-page: 346 year: 2020 ident: ref_143 article-title: Adversarial attacks and defenses in deep learning publication-title: Engineering doi: 10.1016/j.eng.2019.12.012 – volume: 26 start-page: 32 year: 2024 ident: ref_70 article-title: Unveiling the Deepfake Dilemma: Framework, Classification, and Future Trajectories publication-title: IT Prof. doi: 10.1109/MITP.2024.3369948 – ident: ref_94 – volume: 11 start-page: 16711 year: 2023 ident: ref_121 article-title: DFFMD: A deepfake face mask dataset for infectious disease era with deepfake detection algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3246661 – volume: 27 start-page: 1 year: 2008 ident: ref_35 article-title: Face swapping: Automatically replacing faces in photographs publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/1360612.1360638 – ident: ref_161 – volume: 130 start-page: 1678 year: 2022 ident: ref_16 article-title: Countering malicious deepfakes: Survey, battleground, and horizon publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-022-01606-8 – ident: ref_169 – ident: ref_166 – ident: ref_40 doi: 10.1109/FG.2018.00024 – ident: ref_56 – ident: ref_39 doi: 10.1109/CVPR.2018.00917 – ident: ref_38 doi: 10.1007/978-3-030-01261-8_41 – ident: ref_119 doi: 10.3390/s21165413 – volume: 10 start-page: 69031 year: 2022 ident: ref_9 article-title: Detection enhancement for various deepfake types based on residual noise and manipulation traces publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3185121 – volume: 20 start-page: 1 year: 2023 ident: ref_61 article-title: Multimodal neurosymbolic approach for explainable deepfake detection publication-title: ACM Trans. Multimed. Comput. Commun. Appl. doi: 10.1145/3624748 – ident: ref_15 doi: 10.1109/CVPRW50498.2020.00336 – ident: ref_49 doi: 10.1109/CVPR46437.2021.00416 – ident: ref_146 doi: 10.1109/CVPRW50498.2020.00337 – ident: ref_148 doi: 10.21437/Interspeech.2023-703 – volume: 19 start-page: 1 year: 2023 ident: ref_98 article-title: Deep convolutional pooling transformer for deepfake detection publication-title: ACM Trans. Multimed. Comput. Commun. Appl. – volume: 9 start-page: e15090 year: 2023 ident: ref_10 article-title: Deepfakes as a threat to a speaker and facial recognition: An overview of tools and attack vectors publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e15090 – volume: 223 start-page: 103525 year: 2022 ident: ref_17 article-title: Deep learning for deepfakes creation and detection: A survey publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2022.103525 – volume: 40 start-page: 1 year: 2021 ident: ref_50 article-title: Live speech portraits: Real-time photorealistic talking-head animation publication-title: ACM Trans. Graph. (ToG) doi: 10.1145/3478513.3480484 – ident: ref_113 doi: 10.1109/WACVW.2019.00020 – ident: ref_45 – ident: ref_163 doi: 10.1109/IJCB52358.2021.9484387 – volume: 7 start-page: 100064 year: 2024 ident: ref_125 article-title: Utilization of generative AI for the characterization and identification of visual unknowns publication-title: Nat. Lang. Process. J. doi: 10.1016/j.nlp.2024.100064 – volume: 54 start-page: 1 year: 2021 ident: ref_5 article-title: The creation and detection of deepfakes: A survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3425780 – volume: 66 start-page: 18 year: 2023 ident: ref_141 article-title: Outsmarting Deepfake Video publication-title: Commun. ACM doi: 10.1145/3595958 – ident: ref_83 doi: 10.1109/CVPR46437.2021.00222 – volume: 36 start-page: 3859 year: 2024 ident: ref_112 article-title: A comprehensive evaluation of feature-based AI techniques for deepfake detection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-09288-0 – ident: ref_120 doi: 10.1109/ICCV48922.2021.01483 – ident: ref_140 – ident: ref_86 doi: 10.23919/AEIT50178.2020.9241108 – ident: ref_89 doi: 10.1109/ICCVW.2019.00213 – volume: 27 start-page: 1095 year: 2024 ident: ref_20 article-title: The tensions of deepfakes publication-title: Inf. Commun. Soc. doi: 10.1080/1369118X.2023.2234980 – ident: ref_97 doi: 10.1109/CVPR46437.2021.00295 – ident: ref_172 doi: 10.3390/jimaging9010018 – ident: ref_151 doi: 10.1109/BIOSIG61931.2024.10786752 – ident: ref_31 doi: 10.1109/CVPR42600.2020.00327 – ident: ref_102 doi: 10.1109/CVPR42600.2020.00505 – volume: 38 start-page: 32 year: 2023 ident: ref_84 article-title: Deep Anomaly Analytics: Advancing the Frontier of Anomaly Detection publication-title: IEEE Intell. Syst. doi: 10.1109/MIS.2023.3255590 – ident: ref_92 – volume: 119 start-page: e2110013119 year: 2022 ident: ref_136 article-title: Deepfake detection by human crowds, machines, and machine-informed crowds publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2110013119 – ident: ref_158 doi: 10.1145/3394171.3413769 – volume: 17 start-page: 547 year: 2022 ident: ref_103 article-title: Improving generalization by commonality learning in face forgery detection publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2022.3146781 – ident: ref_106 – ident: ref_135 doi: 10.3390/fi13040093 – ident: ref_138 doi: 10.1109/ICASSP49357.2023.10096249 – volume: 14 start-page: e1520 year: 2024 ident: ref_171 article-title: Deepfake detection using deep learning methods: A systematic and comprehensive review publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1520 – volume: 10 start-page: 18757 year: 2022 ident: ref_12 article-title: DeepFake detection for human face images and videos: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3151186 – ident: ref_22 doi: 10.3390/app12062953 – ident: ref_46 doi: 10.1109/WACV45572.2020.9093492 – ident: ref_81 – ident: ref_33 – volume: 14 start-page: 910 year: 2020 ident: ref_85 article-title: Media forensics and deepfakes: An overview publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2020.3002101 – ident: ref_147 doi: 10.1007/978-3-031-19781-9_4 – ident: ref_117 doi: 10.1109/CVPR.2008.4587756 – volume: 645 start-page: 119341 year: 2023 ident: ref_60 article-title: SiamNet: Exploiting source camera noise discrepancies using Siamese network for Deepfake detection publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119341 – ident: ref_134 doi: 10.1109/CVPR46437.2021.00572 – volume: 28 start-page: 5464 year: 2019 ident: ref_3 article-title: Attgan: Facial attribute editing by only changing what you want publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2916751 – volume: 36 start-page: 1 year: 2017 ident: ref_14 article-title: Synthesizing obama: Learning lip sync from audio publication-title: ACM Trans. Graph. (ToG) doi: 10.1145/3072959.3073640 – ident: ref_66 doi: 10.1007/978-3-030-88040-8_7 – ident: ref_72 doi: 10.3390/computers12100216 – ident: ref_101 – ident: ref_111 doi: 10.1109/CVPR46437.2021.01605 – ident: ref_36 – ident: ref_19 – ident: ref_27 doi: 10.1109/IJCB48548.2020.9304936 – ident: ref_95 doi: 10.1109/ICASSP.2019.8682602 – ident: ref_160 – volume: 14 start-page: 1038 year: 2020 ident: ref_162 article-title: Ganprintr: Improved fakes and evaluation of the state of the art in face manipulation detection publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2020.3007250 – ident: ref_41 doi: 10.1109/CVPR.2018.00916 – volume: 63 start-page: 139 year: 2020 ident: ref_24 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – ident: ref_82 doi: 10.1109/CVPR46437.2021.00500 – ident: ref_168 – ident: ref_165 – ident: ref_25 doi: 10.1145/3536221.3558175 – ident: ref_42 doi: 10.1145/3230744.3230818 – ident: ref_44 doi: 10.1109/CVPR.2016.262 – volume: 10 start-page: 25494 year: 2022 ident: ref_93 article-title: Deepfake detection: A systematic literature review publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3154404 – ident: ref_2 doi: 10.1109/ICCV.2017.397 – ident: ref_109 doi: 10.1145/3394171.3413570 – ident: ref_115 doi: 10.1007/978-3-030-58610-2_6 – ident: ref_90 – ident: ref_4 doi: 10.1109/APSIPAASC58517.2023.10317126 – ident: ref_127 – ident: ref_145 doi: 10.1109/SP.2019.00023 – ident: ref_68 doi: 10.3389/fsoc.2022.907199 – ident: ref_88 doi: 10.1109/R10-HTC57504.2023.10461811 – ident: ref_104 – ident: ref_128 doi: 10.1109/ICICT60155.2024.10544590 – ident: ref_23 – volume: 2024 start-page: 121 year: 2024 ident: ref_142 article-title: Adversarial Attacks in Machine Learning: Key Insights and Defense Approaches publication-title: Appl. Data Sci. Anal. doi: 10.58496/ADSA/2024/011 – ident: ref_154 doi: 10.1109/CVPR42600.2020.00582 – ident: ref_129 doi: 10.1007/978-981-97-8792-0_32 – ident: ref_57 doi: 10.3390/jsan12040061 – ident: ref_118 – ident: ref_37 doi: 10.1109/ICCV.2017.244 – ident: ref_87 doi: 10.1109/CVPRW53098.2021.00109 – ident: ref_52 – volume: 27 start-page: 1 year: 2024 ident: ref_123 article-title: DeepMark: A Scalable and Robust Framework for DeepFake Video Detection publication-title: ACM Trans. Priv. Secur. doi: 10.1145/3629976 – volume: 64 start-page: 131 year: 2020 ident: ref_1 article-title: Deepfakes and beyond: A survey of face manipulation and fake detection publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.06.014 – ident: ref_150 doi: 10.3390/electronics13030585 – ident: ref_170 doi: 10.1109/ISCC58397.2023.10217850 – ident: ref_26 doi: 10.1109/CVPR42600.2020.00813 – ident: ref_114 doi: 10.1109/CVPRW50498.2020.00338 – ident: ref_156 – ident: ref_131 doi: 10.1109/WIFS.2018.8630787 – volume: 38 start-page: 72 year: 2019 ident: ref_6 article-title: Artificial intelligence in politics: Establishing ethics publication-title: IEEE Technol. Soc. Mag. doi: 10.1109/MTS.2019.2894474 – volume: 53 start-page: 3974 year: 2023 ident: ref_13 article-title: Deepfakes generation and detection: State-of-the-art, open challenges, countermeasures, and way forward publication-title: Appl. Intell. doi: 10.1007/s10489-022-03766-z – ident: ref_71 doi: 10.1109/IJCB54206.2022.10007968 – ident: ref_124 – ident: ref_32 doi: 10.1109/CVPR52688.2022.01042 – ident: ref_79 doi: 10.1109/ICASSP.2019.8682602 – ident: ref_30 doi: 10.1145/3394171.3413707 – ident: ref_78 doi: 10.1109/CVPRW50498.2020.00341 – ident: ref_75 doi: 10.23919/APSIPA.2018.8659461 – ident: ref_110 doi: 10.1109/CVPR52733.2024.02559 – volume: 2 start-page: 1489 year: 2024 ident: ref_63 article-title: Investigating the Evolving Landscape of Deepfake Technology: Generative AI’s Role in it’s Generation and Detection publication-title: Int. Res. J. Adv. Eng. Hub (IRJAEH) doi: 10.47392/IRJAEH.2024.0206 – ident: ref_76 – ident: ref_100 doi: 10.1109/ICCVW54120.2021.00421 – ident: ref_34 – ident: ref_43 doi: 10.1007/978-3-030-20876-9_8 – ident: ref_173 – ident: ref_51 doi: 10.1145/3596711.3596787 – volume: 2021 start-page: 2482942 year: 2021 ident: ref_59 article-title: Deepfake Detection Method Based on Cross-Domain Fusion publication-title: Secur. Commun. Netw. doi: 10.1155/2021/2482942 – ident: ref_65 doi: 10.5121/csit.2023.130804 – volume: 81 start-page: 6259 year: 2022 ident: ref_144 article-title: Deepfake generation and detection, a survey publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-11733-y – ident: ref_105 doi: 10.1109/WACV48630.2021.00339 – ident: ref_153 – ident: ref_130 – ident: ref_137 doi: 10.3390/s23218763 – volume: 4 start-page: 289 year: 2024 ident: ref_69 article-title: Video and Audio Deepfake Datasets and Open Issues in Deepfake Technology: Being Ahead of the Curve publication-title: Forensic Sci. doi: 10.3390/forensicsci4030021 – ident: ref_96 – volume: 27 start-page: 849 year: 2021 ident: ref_55 article-title: The digital face and deepfakes on screen publication-title: Convergence doi: 10.1177/13548565211034044 – ident: ref_116 doi: 10.1109/WIFS.2018.8630761 – ident: ref_73 doi: 10.3390/s22124556 – ident: ref_167 – ident: ref_47 doi: 10.1609/aaai.v34i07.6721 – volume: 38 start-page: 1 year: 2019 ident: ref_28 article-title: Deferred neural rendering: Image synthesis using neural textures publication-title: ACM Trans. Graph. (TOG) doi: 10.1145/3306346.3323035 – volume: 11 start-page: 691 year: 2023 ident: ref_139 article-title: A Multimodal Approach for Detecting AI Generated Content using BERT and CNN publication-title: Int. J. Recent Innov. Trends Comput. Commun. doi: 10.17762/ijritcc.v11i9.8861 – ident: ref_164 – volume: 132 start-page: 5862 year: 2024 ident: ref_126 article-title: Towards Unified Defense for Face Forgery and Spoofing Attacks via Dual Space Reconstruction Learning publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-024-02151-2 – ident: ref_54 – volume: 2 start-page: 938 year: 2024 ident: ref_64 article-title: AI Simulated Media Detection for Social Media publication-title: Int. Res. J. Adv. Eng. Hub (IRJAEH) doi: 10.47392/IRJAEH.2024.0131 – ident: ref_159 doi: 10.1109/CVPR46437.2021.00434 – volume: 25 start-page: 277 year: 2023 ident: ref_11 article-title: Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration publication-title: J. Inf. Technol. Case Appl. Res. – ident: ref_77 doi: 10.20944/preprints202405.0686.v1 – volume: 41 start-page: e13570 year: 2024 ident: ref_18 article-title: A review of deep learning-based approaches for deepfake content detection publication-title: Expert Syst. doi: 10.1111/exsy.13570 – ident: ref_21 doi: 10.1109/ICCV48922.2021.01477 – volume: 20 start-page: 1 year: 2023 ident: ref_122 article-title: ProActive deepfake detection using gan-based visible watermarking publication-title: ACM Trans. Multimed. Comput. Commun. Appl. doi: 10.1145/3625547 – ident: ref_29 doi: 10.1109/BTAS46853.2019.9185974 – volume: 6 start-page: 2056305120903408 year: 2020 ident: ref_67 article-title: Deepfakes and disinformation: Exploring the impact of synthetic political video on deception, uncertainty, and trust in news publication-title: Soc. Media+ Soc. doi: 10.1177/2056305120903408 – ident: ref_74 doi: 10.3390/jimaging9100199 – ident: ref_157 doi: 10.1109/CVPR42600.2020.00296 – volume: 57 start-page: 1 year: 2024 ident: ref_58 article-title: Deepfake video detection: Challenges and opportunities publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10810-6 – ident: ref_99 doi: 10.1007/978-3-030-58571-6_39 – ident: ref_48 doi: 10.1109/CVPR46437.2021.00278 – volume: 40 start-page: 2733 year: 2024 ident: ref_91 article-title: Deepfake source detection in a heart beat publication-title: Vis. Comput. doi: 10.1007/s00371-023-02981-0 |
SSID | ssj0000913844 |
Score | 2.3204978 |
SecondaryResourceType | review_article |
Snippet | Deepfake technology, which employs advanced generative artificial intelligence to create hyper-realistic synthetic media, poses significant challenges across... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 17 |
SubjectTerms | Algorithms Artificial intelligence Automation Deception Deep learning Deepfake deepfake detection Detectors Diffusion models digital forensics False information Generative adversarial networks Generative artificial intelligence Innovations Literature reviews Machine learning media security Neural networks Real time Realism Social media Technological change |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHVL7EloJ8AHGKaiex43CptmWrgkSFgEq9Wf5EKlJ2uxv-PzOJsywHuEWJD9bY8-Z5Mn4D8CYEjOqBt0WyzhU1ojC6FBU5Ip0IXAaVFN13_nylLq_rTzfyJifctrmscsLEAajDylOO_ATjnOC6VY04Xd8V1DWK_q7mFhr34QAhWOsZHJwtr7583WVZSPVS1_VY8V7h-f7kdms7OlQQPP8ViwbJ_n8B8xBtLg7hUaaJbDGu62O4F7sn8HBPPPAp3I6K0QRXw7hRCoJ93NPYZLYLDBkeWyIIUeaAnU-9U9gqsQ8xrpP9GfGhHyqyuvdswb7ttJ3ZpFjyDK4vlt_PL4vcOaHwlar6QjjlHY9RRKQTSTvdJq6tkrGxGKJL672PpQ6NsFLVXkstomxTIF3Q5Lhrqucw61ZdfAEseCs01x7Dfqytbh0vvaiQBDVl5Xnyc3g72dCsR4EMgwcLsrXZt_UczsjAuzEkaz28WG1-mOwlpq2kw3kj60iqlja60DS6rlRCXoFUTczhHS2PIefrN9bbfIcAp0oyVmYxXBRuWqnncDytoMleuTV_9tDR_z-_hAcl9fkdqrOPYdZvfsVXSD569zrvsN-xatp8 priority: 102 providerName: ProQuest |
Title | Generative Artificial Intelligence and the Evolving Challenge of Deepfake Detection: A Systematic Analysis |
URI | https://www.proquest.com/docview/3171089671 https://doaj.org/article/935bb0e181f645aebd778436f3815051 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xuJQDKrQVW-jKB1BPEXYcOw63BXZ5SKCqLRI3y8_DVgoI0v_P2Mmi9FBx4RZFPoxmMvN9E42_ATj0HlHd06aIxtqiwiqMKZWGHJFOeCq8jDLdd765lZd31fW9uB-t-kozYb08cO-444YLa2lAIIqyEiZYX9eq4jIi1CB658YHMW_UTOUa3DCuqqqfdOfY1x8vn02bmolUlv_BoCzV_7-CnFFm8RG2B3pIZr1ZO7AW2l3YGokGfoJlrxSdylQ-10tAkKuRtiYxrSfI7Mgci0_6Y0DOVjtTyEMk5yE8RvMn4EOXJ7HaEzIjv141nclKqeQz3C3mv88ui2FjQuG45F3BrHTorMAC0oiorGoiVUaKUBuE5tI450KpfM2MkJVTQrEgmuiTHmi01Nb8C2y0D23YA-KdYYoqh3AfKqMaS0vHOJKfuuSORjeBo5UP9WMvjKGxoUi-1mNfT-A0Ofj1TJKzzi8wyHoIsn4ryBP4nsKjU9J1T8aZ4e4Amprkq_QsXxCuG6EmcLCKoB6y8VkjR2JUNbJmX9_Dmn34UKYtwHl2-wA2uqe_4RtSk85OYV0tLqaweTq__fFzmr_JF2c64xI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYUsAHKk5RncRxHCSElrbLLn1caKXejJ9IRcpud4MQf4rfyEwey3KAW29RYkXReDzfZ2fmG4DX3iOqe14l0VibCIzCuKQoyRHphOeFl1FSvfPpmZxeiE-XxeUW_BpqYSitcoiJbaD2c0dn5PuIcylXlSzT94vrhLpG0d_VoYVG5xbH4ecP3LKt3s0OcX73smxydH4wTfquAonLZd4kqZXO8hDSgFAblVVV5MrIIpQG4SszzrmQKV-mppDCqUKloaiiJ83MaLktc3zvLbgtckRyqkyffFyf6ZDGphKiy6_H53z_amVq2sIQGPyFfG2DgH_BQIttkwdwvyelbNx50UPYCvUjuLchVfgYrjp9agqO7bhOeILNNhQ9mak9Qz7JjjDk0TkFOxg6tbB5ZIchLKL5FvCiafO_6rdszD6vlaTZoI_yBC5uxKJPYbue1-EZMO9MqrhySDKCMKqyPHNpjpSrzHLHoxvB3mBDvejkODRuY8jWetPWI_hABl6PIRHt9sZ8-VX3a1JXeWHxu5HjRCkKE6wvSyVyGZHFIDFMR_CGpkfTUm-Wxpm-YgE_lUSz9LgtSy6rQo1gd5hB3ceAlf7jsTv_f_wK7kzPT0_0yezs-DnczajDcJsXvgvbzfJ7eIG0p7EvW19j8OWmnfs3OpsWmQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDzVQIE9UHGysn6t10gIpU2ihkJUAZV6W_aJVCQnJEaIv8avY8aPEA5w682yV5Y1Ozvft-uZbwBeOIeo7ngZBW1MlGEUxiVFSY5IJxzPnQiC6p3fL8TpRfb2Mr_cg199LQylVfYxsQnUbmnpjHyEOBdzWYoiHoUuLeJ8Mnuz-hZRByn609q302hd5Mz__IHbt83r-QTn-ihJZtNPJ6dR12EgsqlI6yg2whrufewRdoM0sgxcapH7QiOUJdpa6xPpiljnIrMyl7HPy-BIPzMYbooU33sD9gvaFQ1g_3i6OP-wPeEhxU2ZZW22fZqWfHS10RVtaAga_sLBpl3Av0ChQbrZXbjTUVQ2bn3qHuz56j7c3hEufABXrVo1hcpmXCtDweY7-p5MV44hu2RTDIB0asFO-r4tbBnYxPtV0F89XtRNNlj1io3Zx62uNOvVUh7CxbXY9BEMqmXlD4A5q2PJpUXK4TMtS8MTG6dIwIoktTzYIRz1NlSrVpxD4aaGbK12bT2EYzLwdgxJajc3lusvqluhqkxzg9-NjCeILNfeuKKQWSoCchqkifEQXtL0KFr49Vpb3dUv4KeShJYaN0XKRZnLIRz2M6i6iLBRf_z38f8fP4eb6Njq3Xxx9gRuJdRuuEkSP4RBvf7unyIHqs2zztkYfL5u__4No5kcKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+Artificial+Intelligence+and+the+Evolving+Challenge+of+Deepfake+Detection%3A+A+Systematic+Analysis&rft.jtitle=Journal+of+sensor+and+actuator+networks&rft.au=Babaei%2C+Reza&rft.au=Cheng%2C+Samuel&rft.au=Duan%2C+Rui&rft.au=Zhao%2C+Shangqing&rft.date=2025-02-01&rft.issn=2224-2708&rft.eissn=2224-2708&rft.volume=14&rft.issue=1&rft.spage=17&rft_id=info:doi/10.3390%2Fjsan14010017&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_jsan14010017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2224-2708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2224-2708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2224-2708&client=summon |