Optical and microstructural properties of electrodeposited cuprous oxide

The production of hydrogen fuel using photoelectrochemical water splitting method requires semiconductor materials with suitable energy gap, electrical and optical properties. Cuprous oxide is feasible candidate fulfilling many of these requirements to be the photocathode of such devices. In this st...

Full description

Saved in:
Bibliographic Details
Published inApplied physics. A, Materials science & processing Vol. 130; no. 3
Main Authors Jurečka, Stanislav, Sahoo, Prangya P., Čendula, Peter
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The production of hydrogen fuel using photoelectrochemical water splitting method requires semiconductor materials with suitable energy gap, electrical and optical properties. Cuprous oxide is feasible candidate fulfilling many of these requirements to be the photocathode of such devices. In this study, we investigated optical and microstructural properties of cuprous oxide prepared under different temperatures. Microstructure properties were evaluated by statistical, fractal and Fourier methods. Roughness characteristics, Fourier transforms and multifractal characteristics provide consistent information connected with the distribution of surface objects created during sample fabrication. Our methodology is feasible to provide practical insights for the fabrication and monitoring of surface and optical properties of Cu 2 O and other semiconductor materials.
AbstractList The production of hydrogen fuel using photoelectrochemical water splitting method requires semiconductor materials with suitable energy gap, electrical and optical properties. Cuprous oxide is feasible candidate fulfilling many of these requirements to be the photocathode of such devices. In this study, we investigated optical and microstructural properties of cuprous oxide prepared under different temperatures. Microstructure properties were evaluated by statistical, fractal and Fourier methods. Roughness characteristics, Fourier transforms and multifractal characteristics provide consistent information connected with the distribution of surface objects created during sample fabrication. Our methodology is feasible to provide practical insights for the fabrication and monitoring of surface and optical properties of Cu2O and other semiconductor materials.
The production of hydrogen fuel using photoelectrochemical water splitting method requires semiconductor materials with suitable energy gap, electrical and optical properties. Cuprous oxide is feasible candidate fulfilling many of these requirements to be the photocathode of such devices. In this study, we investigated optical and microstructural properties of cuprous oxide prepared under different temperatures. Microstructure properties were evaluated by statistical, fractal and Fourier methods. Roughness characteristics, Fourier transforms and multifractal characteristics provide consistent information connected with the distribution of surface objects created during sample fabrication. Our methodology is feasible to provide practical insights for the fabrication and monitoring of surface and optical properties of Cu 2 O and other semiconductor materials.
ArticleNumber 179
Author Jurečka, Stanislav
Čendula, Peter
Sahoo, Prangya P.
Author_xml – sequence: 1
  givenname: Stanislav
  surname: Jurečka
  fullname: Jurečka, Stanislav
  organization: Institute of Aurel Stodola, University of Žilina
– sequence: 2
  givenname: Prangya P.
  surname: Sahoo
  fullname: Sahoo, Prangya P.
  organization: Institute of Aurel Stodola, University of Žilina
– sequence: 3
  givenname: Peter
  orcidid: 0000-0001-7856-5384
  surname: Čendula
  fullname: Čendula, Peter
  email: peter.cendula@feit.uniza.sk
  organization: Institute of Aurel Stodola, University of Žilina
BookMark eNp9kMFLwzAYxYNMcJv-A54KnqNfkjZtjjLUCYNd9ByyJJWMrqlJCvrfm9mB4GHfJfDl_fJe3gLNet9bhG4J3BOA-iECMCYw0BJDzSjBcIHmpGQUA2cwQ3MQZY0bJvgVWsS4hzwlpXO03g7JadUVqjfFwengYwqjTmPIuyH4wYbkbCx8W9jO6hS8sYOPLllT6DELxnz35Yy9Rpet6qK9OZ1L9P789LZa48325XX1uMGacZYwERQM54IBKXe6LG1V17rhVWtNzTmnOSYTGtqsIkIrYQSv-I4p3u4qXRvFluhuejd7f442Jrn3Y-izpaSCNkAYFSKr6KQ6figG28ohuIMK35KAPDYmp8Zkbkz-NiYhQ80_SLukkvN9Csp151E2oTH79B82_KU6Q_0AoFGCNQ
CitedBy_id crossref_primary_10_1134_S0012500825600105
Cites_doi 10.1186/1556-276X-9-219
10.1016/j.solmat.2016.07.005
10.1016/j.solmat.2015.05.025
10.1038/s41929-018-0077-6
10.1038/s41560-019-0490-3
10.1021/cm9602095
10.1007/s00603-019-01977-4
10.1016/j.apsusc.2010.03.030
10.1021/acs.jpcc.5b08397
10.1088/1361-6463/ac6f97
10.1186/s11671-016-1621-4
10.1103/PhysRevA.42.1869
10.1021/acs.jpcc.5b07276
10.1016/j.vacuum.2008.10.003
10.1016/j.apsusc.2014.02.102
10.1007/s11235-011-9657-3
10.1016/j.jcrysgro.2009.07.020
10.1002/adfm.200601146
10.1002/adfm.201102263
10.2478/s11534-009-0021-0
10.1103/PhysRevLett.62.1327
10.1021/am506657v
10.1088/0268-1242/28/11/115005
10.1021/acs.chemmater.6b00926
10.1039/C1JM14478B
10.1149/1.1854126
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00339-024-07321-0
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1432-0630
ExternalDocumentID 10_1007_s00339_024_07321_0
GrantInformation_xml – fundername: Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
  grantid: APVV-20-0528
  funderid: http://dx.doi.org/10.13039/501100003194
– fundername: European Regional Development Fund
  grantid: ITMS 26220120003; ITMS 26220120046; ITMS 26210120021
  funderid: http://dx.doi.org/10.13039/501100008530
– fundername: Žilina University in Žilina
GroupedDBID -54
-5F
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WIP
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZE2
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-1920d6693014bc44e577c865fed7666294739c0f20d19ca9d9656b3a6fb5c7da3
IEDL.DBID U2A
ISSN 0947-8396
IngestDate Sun Jul 13 05:34:23 EDT 2025
Tue Jul 01 00:39:45 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 21 02:39:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Water splitting
Cu
Microstructure analysis
Hydrogen
Raman scattering
AFM
O
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-1920d6693014bc44e577c865fed7666294739c0f20d19ca9d9656b3a6fb5c7da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7856-5384
OpenAccessLink https://link.springer.com/10.1007/s00339-024-07321-0
PQID 2928013299
PQPubID 2043608
ParticipantIDs proquest_journals_2928013299
crossref_primary_10_1007_s00339_024_07321_0
crossref_citationtrail_10_1007_s00339_024_07321_0
springer_journals_10_1007_s00339_024_07321_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Materials Science & Processing
PublicationTitle Applied physics. A, Materials science & processing
PublicationTitleAbbrev Appl. Phys. A
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Morales, Sánchez, Bijani, Martı́nez, Gabás, Ramos-Barrado (CR14) 2005; 8
Laidoudi, Bioud, Azizi, Schmerber, Bartringer, Barre (CR16) 2013; 28
Yang, Han, Ning, Cao, Xu, Guo (CR12) 2014; 6
Ma, Hofmann, Litke, Hensen (CR8) 2015; 141
Pan, Kim, Mayer, Son, Ummadisingu, Lee (CR7) 2018; 1
Chen, Chen, Liang, Chang, Tseng, Yeh (CR18) 2016; 11
Jiang, Zhang, Shi, He, Song, Sun (CR13) 2014; 9
Chhabra, Jensen (CR22) 1989; 62
Wang, Wu, Tang, Amal, Ng (CR15) 2015; 119
Block, von Bloh, Schellnhuber (CR25) 1990; 42
de Melo, Conci (CR24) 2013; 52
Chen, Long, Li, Li, Yang, Lu (CR10) 2009; 83
Zhang, Wang (CR9) 2012; 22
Magsipoc, Zhao, Grasselli (CR20) 2020; 53
Golden, Shumsky, Zhou, VanderWerf, Van Leeuwen, Switzer (CR17) 1996; 8
Sullivan, Zoellner, Maggard (CR26) 2016; 28
Zhang, Zhu, Zhang, Wang, Zhao, Yu (CR3) 2007; 17
Jurečka, Kobayashi, Takahashi, Matsumoto, Jurečková, Chovanec (CR21) 2010; 256
Segev, Kibsgaard, Hahn, Xu, Cheng, Deutsch (CR1) 2022
Jeong, Aydil (CR11) 2009; 311
Wijesundera, Gunawardhana, Siripala (CR5) 2016; 157
Jureckova, Jureckova, Chovanec, Kobayashi, Takahashi, Mikula (CR23) 2009; 7
Musselman, Marin, Schmidt-Mende, MacManus-Driscoll (CR4) 2012; 22
Wu, McNulty, Liu, Lau, Liu, Paulikas (CR6) 2019; 4
Wick, Tilley (CR2) 2015; 119
Jurečka, Angermann, Kobayashi, Takahashi, Pinčík (CR19) 2014; 301
KP Musselman (7321_CR4) 2012; 22
X Jiang (7321_CR13) 2014; 9
P Wang (7321_CR15) 2015; 119
S Jurečka (7321_CR21) 2010; 256
A Chhabra (7321_CR22) 1989; 62
S Jeong (7321_CR11) 2009; 311
R Wick (7321_CR2) 2015; 119
A Chen (7321_CR10) 2009; 83
G Segev (7321_CR1) 2022
YA Wu (7321_CR6) 2019; 4
E Magsipoc (7321_CR20) 2020; 53
I Sullivan (7321_CR26) 2016; 28
TD Golden (7321_CR17) 1996; 8
RHC de Melo (7321_CR24) 2013; 52
RP Wijesundera (7321_CR5) 2016; 157
Y Yang (7321_CR12) 2014; 6
L Pan (7321_CR7) 2018; 1
S Jureckova (7321_CR23) 2009; 7
A Block (7321_CR25) 1990; 42
Q-B Ma (7321_CR8) 2015; 141
S Laidoudi (7321_CR16) 2013; 28
H Zhang (7321_CR3) 2007; 17
S Jurečka (7321_CR19) 2014; 301
L-C Chen (7321_CR18) 2016; 11
J Morales (7321_CR14) 2005; 8
Z Zhang (7321_CR9) 2012; 22
References_xml – volume: 9
  start-page: 219
  year: 2014
  ident: CR13
  article-title: Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-219
– volume: 157
  start-page: 881
  year: 2016
  end-page: 6
  ident: CR5
  article-title: Electrodeposited Cu2O homojunction solar cells: fabrication of a cell of high short circuit photocurrent
  publication-title: Sol Energy Mater Sol Cells.
  doi: 10.1016/j.solmat.2016.07.005
– volume: 141
  start-page: 178
  year: 2015
  end-page: 186
  ident: CR8
  article-title: Cu2O photoelectrodes for solar water splitting: tuning photoelectrochemical performance by controlled faceting
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.05.025
– volume: 1
  start-page: 412
  year: 2018
  end-page: 420
  ident: CR7
  article-title: Boosting the performance of Cu 2 O photocathodes for unassisted solar water splitting devices
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0077-6
– volume: 4
  start-page: 957
  year: 2019
  end-page: 968
  ident: CR6
  article-title: Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0490-3
– volume: 8
  start-page: 2499
  year: 1996
  end-page: 2504
  ident: CR17
  article-title: Electrochemical deposition of copper(I) oxide films
  publication-title: Chem. Mater.
  doi: 10.1021/cm9602095
– volume: 53
  start-page: 1495
  year: 2020
  end-page: 1519
  ident: CR20
  article-title: 2D and 3D roughness characterization
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-019-01977-4
– volume: 256
  start-page: 5623
  year: 2010
  end-page: 5628
  ident: CR21
  article-title: On the influence of the surface roughness onto the ultrathin SiO2/Si structure properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.03.030
– volume: 119
  start-page: 26243
  year: 2015
  end-page: 26257
  ident: CR2
  article-title: Photovoltaic and photoelectrochemical solar energy conversion with Cu2O
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b08397
– year: 2022
  ident: CR1
  article-title: The 2022 solar fuels roadmap
  publication-title: J Phys Appl Phys
  doi: 10.1088/1361-6463/ac6f97
– volume: 11
  start-page: 402
  year: 2016
  ident: CR18
  article-title: Nano-structured CuO-Cu2O complex thin film for application in CH3NH3PbI3 perovskite solar cells
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1621-4
– volume: 42
  start-page: 1869
  year: 1990
  end-page: 1874
  ident: CR25
  article-title: Efficient box-counting determination of generalized fractal dimensions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.42.1869
– volume: 119
  start-page: 26275
  year: 2015
  end-page: 26282
  ident: CR15
  article-title: Electrodeposited Cu2O as photoelectrodes with controllable conductivity type for solar energy conversion
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b07276
– volume: 83
  start-page: 927
  year: 2009
  end-page: 930
  ident: CR10
  article-title: Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2008.10.003
– volume: 301
  start-page: 46
  year: 2014
  end-page: 50
  ident: CR19
  article-title: Multifractal analysis of textured silicon surfaces
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.02.102
– volume: 52
  start-page: 1643
  year: 2013
  end-page: 1655
  ident: CR24
  article-title: How Succolarity could be used as another fractal measure in image analysis
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-011-9657-3
– volume: 311
  start-page: 4188
  year: 2009
  end-page: 4192
  ident: CR11
  article-title: Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.07.020
– volume: 17
  start-page: 2766
  year: 2007
  end-page: 2771
  ident: CR3
  article-title: One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200601146
– volume: 22
  start-page: 2202
  year: 2012
  end-page: 2208
  ident: CR4
  article-title: Incompatible length scales in nanostructured Cu2O solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102263
– volume: 7
  start-page: 321
  year: 2009
  end-page: 326
  ident: CR23
  article-title: On the topographic and optical properties of SiC/SiO2 surfaces
  publication-title: Cent. Eur. J. Phys.
  doi: 10.2478/s11534-009-0021-0
– volume: 62
  start-page: 1327
  year: 1989
  end-page: 1330
  ident: CR22
  article-title: Direct determination of the f(\ensuremath{\alpha}) singularity spectrum
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.1327
– volume: 6
  start-page: 22534
  year: 2014
  end-page: 22543
  ident: CR12
  article-title: Controllable morphology and conductivity of electrodeposited Cu2O thin film: effect of surfactants
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am506657v
– volume: 28
  year: 2013
  ident: CR16
  article-title: Growth and characterization of electrodeposited Cu2O thin films
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/28/11/115005
– volume: 28
  start-page: 5999
  year: 2016
  end-page: 6016
  ident: CR26
  article-title: Copper(I)-based p-type oxides for photoelectrochemical and photovoltaic solar energy conversion
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00926
– volume: 22
  start-page: 2456
  year: 2012
  end-page: 2464
  ident: CR9
  article-title: Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14478B
– volume: 8
  start-page: A159
  year: 2005
  ident: CR14
  article-title: Electrodeposition of Cu2O: an excellent method for obtaining films of controlled morphology and good performance in Li-ion batteries
  publication-title: Electrochem Solid-State Lett.
  doi: 10.1149/1.1854126
– volume: 311
  start-page: 4188
  year: 2009
  ident: 7321_CR11
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.07.020
– volume: 42
  start-page: 1869
  year: 1990
  ident: 7321_CR25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.42.1869
– volume: 119
  start-page: 26243
  year: 2015
  ident: 7321_CR2
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b08397
– volume: 17
  start-page: 2766
  year: 2007
  ident: 7321_CR3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200601146
– volume: 8
  start-page: A159
  year: 2005
  ident: 7321_CR14
  publication-title: Electrochem Solid-State Lett.
  doi: 10.1149/1.1854126
– volume: 62
  start-page: 1327
  year: 1989
  ident: 7321_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.1327
– year: 2022
  ident: 7321_CR1
  publication-title: J Phys Appl Phys
  doi: 10.1088/1361-6463/ac6f97
– volume: 28
  year: 2013
  ident: 7321_CR16
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/28/11/115005
– volume: 8
  start-page: 2499
  year: 1996
  ident: 7321_CR17
  publication-title: Chem. Mater.
  doi: 10.1021/cm9602095
– volume: 83
  start-page: 927
  year: 2009
  ident: 7321_CR10
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2008.10.003
– volume: 52
  start-page: 1643
  year: 2013
  ident: 7321_CR24
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-011-9657-3
– volume: 7
  start-page: 321
  year: 2009
  ident: 7321_CR23
  publication-title: Cent. Eur. J. Phys.
  doi: 10.2478/s11534-009-0021-0
– volume: 22
  start-page: 2456
  year: 2012
  ident: 7321_CR9
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14478B
– volume: 157
  start-page: 881
  year: 2016
  ident: 7321_CR5
  publication-title: Sol Energy Mater Sol Cells.
  doi: 10.1016/j.solmat.2016.07.005
– volume: 4
  start-page: 957
  year: 2019
  ident: 7321_CR6
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0490-3
– volume: 301
  start-page: 46
  year: 2014
  ident: 7321_CR19
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.02.102
– volume: 1
  start-page: 412
  year: 2018
  ident: 7321_CR7
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0077-6
– volume: 141
  start-page: 178
  year: 2015
  ident: 7321_CR8
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.05.025
– volume: 119
  start-page: 26275
  year: 2015
  ident: 7321_CR15
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b07276
– volume: 28
  start-page: 5999
  year: 2016
  ident: 7321_CR26
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00926
– volume: 11
  start-page: 402
  year: 2016
  ident: 7321_CR18
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-016-1621-4
– volume: 22
  start-page: 2202
  year: 2012
  ident: 7321_CR4
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102263
– volume: 9
  start-page: 219
  year: 2014
  ident: 7321_CR13
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-219
– volume: 6
  start-page: 22534
  year: 2014
  ident: 7321_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am506657v
– volume: 53
  start-page: 1495
  year: 2020
  ident: 7321_CR20
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-019-01977-4
– volume: 256
  start-page: 5623
  year: 2010
  ident: 7321_CR21
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.03.030
SSID ssj0000422
Score 2.4299934
Snippet The production of hydrogen fuel using photoelectrochemical water splitting method requires semiconductor materials with suitable energy gap, electrical and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Characterization and Evaluation of Materials
Condensed Matter Physics
Copper oxides
Energy gap
Fourier transforms
Hydrogen fuels
Hydrogen production
Machines
Manufacturing
Microstructure
Nanotechnology
Optical and Electronic Materials
Optical properties
Photocathodes
Physics
Physics and Astronomy
Processes
Semiconductor materials
Surfaces and Interfaces
Thin Films
Water splitting
Title Optical and microstructural properties of electrodeposited cuprous oxide
URI https://link.springer.com/article/10.1007/s00339-024-07321-0
https://www.proquest.com/docview/2928013299
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8NADA9uQ9AH0ak4neMefNODru1de4_b3BwK-uJgPpXeR0HQbrgN_PPNXdtNRQWf-nDpFZL0klySXwAuvEyyOItCmsaKYYAS-FQEUlIRRlqmEs9K5aot7vl4Et5O2bRsCltU1e5VStKd1OtmNzt2TFC0KRTV0scguAYNZmN31OKJ39ucv2GRO8DPUTT_vGyV-XmPr-Zo42N-S4s6azPah73STSS9Qq4HsGXyJux-Ag9swrYr3lSLQxg_zN2NNElzTV5thV2BCmsRNcjc3ra_WdhUMstIOfVGG1esZTRRKyRY4dr7szZHMBkNHwdjWk5IoCrgwZKie-ZpbqcZdkOpwtCwKFIxZ5nREcYlPrIgEMrLkKorVCq0QPdNBilHCalIp8Ex1PNZbk6AOJQbbtK4aziKTArGIsE0erURV0awFnQrRiWqhA-3UyxekjXwsWNugsxNHHMTrwWX63fmBXjGn9Ttiv9J-SMtEl_4sU0HCdGCq0omm-Xfdzv9H_kZ7PhOLWx1WRvqKCZzju7GUnag0etf90f2efN0N-xAbcAHHadzH5k_zOk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90IuqD6FScn33wTQNt06TNowxH1TlfNthbaT4KgnbDbeCf7yXtNh0q-JxrCndJ7ne5y-8ArvxCsqSII5InimGAQkMiqJRERLGWucSzUrlqix5PB9HDkA1rmhz7FmYlf2_JPikVBD0JwcUYYui7DhsRRsq2fK_N28tTN6oyBvgTgk6f1w9kfp7juxNaIsuVZKjzMZ092K3BoXdbWXMf1kzZhJ0vlIFN2HQlm2pyAOnz2N1De3mpvTdbV1dxwVoeDW9s79jfLVmqNyq8uteNNq5Ey2hPzVBghmMfL9ocwqBz12-npO6LQBTldEoQlPma2x6GQSRVFBkWxyrhrDA6xmgkRBVQofwCpQKhcqEFgjZJc452UbHO6RE0ylFpjsFz3Dbc5ElgOBpKCsZiwTRi2ZgrI1gLgrmiMlWThtveFa_Zgu7YKTdD5WZOuZnfguvFN-OKMuNP6bO5_rN6-0yyUISJTQIJ0YKbuU2Ww7_PdvI_8UvYSvtP3ax733s8he3QLRFbX3YGDTSZOUfAMZUXbqV9AnrEx9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60ouhBtCpWq-bgTZfmtZvsUaqlPqgeLPQWso-AoGmwLfjznd0kbRUVPO9kAzP7-GZn5huAczcTNM6ikKSxpOigBD7hgRCEh5ESqcCzUtpsiwHrD8O7ER0tVfHbbPc6JFnWNBiWpnzaKVTWmRe-mRZknOD9QnCJ-ugQr8Iaeio2UNtl3cVZHJZxBPw1QSjAqrKZn-f4ejUt8Oa3EKm9eXo7sF1BRueqtPEurOi8CVtLRIJNWLeJnHKyB_3Hwr5OO2munDeTbVcyxBp2DacwL-_vhkLVGWdO1QFHaZu4pZUjZygww7GPF6X3Ydi7ee72SdUtgciABVOCUM1VzHQ29EIhw1DTKJIxo5lWEfooPqog4NLNUMrjMuWKI5QTQcrQWjJSaXAAjXyc60NwLOMN02nsaYbmE5zSiFOFCDdiUnPaAq9WVCIrKnHT0eI1mZMgW-UmqNzEKjdxW3Ax_6YoiTT-lG7X-k-qTTVJfO7HJjTEeQsua5sshn-f7eh_4mew8XTdSx5uB_fHsOnbFWKSztrQQIvpE0QhU3FqF9on17vQHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+and+microstructural+properties+of+electrodeposited+cuprous+oxide&rft.jtitle=Applied+physics.+A%2C+Materials+science+%26+processing&rft.au=Jure%C4%8Dka%2C+Stanislav&rft.au=Sahoo%2C+Prangya+P.&rft.au=%C4%8Cendula%2C+Peter&rft.date=2024-03-01&rft.issn=0947-8396&rft.eissn=1432-0630&rft.volume=130&rft.issue=3&rft_id=info:doi/10.1007%2Fs00339-024-07321-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00339_024_07321_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-8396&client=summon