Design of piezoelectric ocean-wave energy harvester using sway movement

•We design a piezoelectric ocean-wave energy harvester (POEH) that can harness wave energy.•The POEH uses a ball-and-rail mechanism to induce cantilever vibrations.•The POEH yields improved voltage and power output than cantilever system.•Our device can be used for low-frequency energy harvesting ap...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 260; pp. 191 - 197
Main Authors Hwang, Won Seop, Ahn, Jung Hwan, Jeong, Se Yeong, Jung, Hyun Jun, Hong, Seong Kwang, Choi, Jae Yoon, Cho, Jae Yong, Kim, Jung Hun, Sung, Tae Hyun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We design a piezoelectric ocean-wave energy harvester (POEH) that can harness wave energy.•The POEH uses a ball-and-rail mechanism to induce cantilever vibrations.•The POEH yields improved voltage and power output than cantilever system.•Our device can be used for low-frequency energy harvesting applications. The use of energy harvesting technologies for supplying power generating energy to wireless devices and sensors, particularly in scenarios where it is difficult to exchange or recharge batteries, has recently attracted considerable research attention. In this context, we report the design of a piezoelectric energy harvesting system that can be used to harvest energy from the ocean. The harvester is composed of a piezoelectric cantilever structure and a magnet as the tip-mass of the piezoelectric module, atop which a rail (tube) with a metal ball is positioned. The system is tested with a setup that simulates ocean waves. Our findings indicate that our approach can be utilized in the design of multipurpose piezoelectric energy harvesting systems for low frequency vibration and in “sea-based” applications involving buoys and boats.
AbstractList •We design a piezoelectric ocean-wave energy harvester (POEH) that can harness wave energy.•The POEH uses a ball-and-rail mechanism to induce cantilever vibrations.•The POEH yields improved voltage and power output than cantilever system.•Our device can be used for low-frequency energy harvesting applications. The use of energy harvesting technologies for supplying power generating energy to wireless devices and sensors, particularly in scenarios where it is difficult to exchange or recharge batteries, has recently attracted considerable research attention. In this context, we report the design of a piezoelectric energy harvesting system that can be used to harvest energy from the ocean. The harvester is composed of a piezoelectric cantilever structure and a magnet as the tip-mass of the piezoelectric module, atop which a rail (tube) with a metal ball is positioned. The system is tested with a setup that simulates ocean waves. Our findings indicate that our approach can be utilized in the design of multipurpose piezoelectric energy harvesting systems for low frequency vibration and in “sea-based” applications involving buoys and boats.
Author Jeong, Se Yeong
Hong, Seong Kwang
Kim, Jung Hun
Ahn, Jung Hwan
Cho, Jae Yong
Jung, Hyun Jun
Choi, Jae Yoon
Hwang, Won Seop
Sung, Tae Hyun
Author_xml – sequence: 1
  givenname: Won Seop
  surname: Hwang
  fullname: Hwang, Won Seop
– sequence: 2
  givenname: Jung Hwan
  surname: Ahn
  fullname: Ahn, Jung Hwan
– sequence: 3
  givenname: Se Yeong
  surname: Jeong
  fullname: Jeong, Se Yeong
– sequence: 4
  givenname: Hyun Jun
  surname: Jung
  fullname: Jung, Hyun Jun
– sequence: 5
  givenname: Seong Kwang
  surname: Hong
  fullname: Hong, Seong Kwang
– sequence: 6
  givenname: Jae Yoon
  surname: Choi
  fullname: Choi, Jae Yoon
– sequence: 7
  givenname: Jae Yong
  surname: Cho
  fullname: Cho, Jae Yong
– sequence: 8
  givenname: Jung Hun
  surname: Kim
  fullname: Kim, Jung Hun
– sequence: 9
  givenname: Tae Hyun
  surname: Sung
  fullname: Sung, Tae Hyun
  email: sungth@hanyang.ac.kr
BookMark eNp9kM1KAzEUhYNUsK0-gLu8wIw3P50fXEnVKhTc6Dpkkjs1pU1KMk6pT--UduWiqwsHvsO534SMfPBIyD2DnAErHtZ58jrnwMocZA68uCJjVpUiE1DUIzKGmstMclnekElKawAQoizHZPGMya08DS3dOfwNuEHTRWdoMKh9ttc9UvQYVwf6rWOPqcNIf5LzK5r2-kC3occt-u6WXLd6k_DufKfk6_Xlc_6WLT8W7_OnZWZEIbqMVS2TUFeyGqbwxjaco5w1VTOzRqNFbKBqmNFDbnVbVKy0ouAWai24ZliIKSlPvSaGlCK2yrhOdy74Lmq3UQzU0Ydaq8GHOvpQINXgYyDZP3IX3VbHw0Xm8cTg8FLvMKpkHHqD1sXBk7LBXaD_AM-RfCo
CitedBy_id crossref_primary_10_2112_SI83_161_1
crossref_primary_10_1016_j_apenergy_2021_118511
crossref_primary_10_1002_2050_7038_12655
crossref_primary_10_1016_j_seta_2023_103417
crossref_primary_10_1016_j_enconman_2023_117569
crossref_primary_10_1109_TMECH_2021_3093939
crossref_primary_10_1007_s13344_023_0064_9
crossref_primary_10_1016_j_scib_2023_06_025
crossref_primary_10_1016_j_nanoen_2020_105567
crossref_primary_10_1016_j_mtcomm_2023_105386
crossref_primary_10_1016_j_nanoen_2022_107669
crossref_primary_10_1016_j_apenergy_2023_121654
crossref_primary_10_1016_j_apenergy_2024_123876
crossref_primary_10_1016_j_oceaneng_2020_107248
crossref_primary_10_3390_electronics9010079
crossref_primary_10_1002_ente_202401455
crossref_primary_10_1016_j_energy_2024_132143
crossref_primary_10_3390_app112311504
crossref_primary_10_3390_cryst14090806
crossref_primary_10_1016_j_polymer_2024_127640
crossref_primary_10_1016_j_energy_2021_122495
crossref_primary_10_1016_j_apenergy_2024_124516
crossref_primary_10_1016_j_ecmx_2023_100463
crossref_primary_10_1016_j_euromechsol_2023_104924
crossref_primary_10_2139_ssrn_3979981
crossref_primary_10_1016_j_oceaneng_2018_11_014
crossref_primary_10_1016_j_oceaneng_2023_115829
crossref_primary_10_2139_ssrn_4168655
crossref_primary_10_1016_j_nanoen_2022_107854
crossref_primary_10_1007_s40819_022_01382_6
crossref_primary_10_3390_mi16030252
crossref_primary_10_1016_j_apor_2018_05_005
crossref_primary_10_1016_j_renene_2021_07_008
crossref_primary_10_3390_s22051949
crossref_primary_10_1016_j_apenergy_2021_117569
crossref_primary_10_1016_j_renene_2021_07_042
crossref_primary_10_1016_j_seta_2022_102940
crossref_primary_10_1016_j_apenergy_2023_122042
crossref_primary_10_2139_ssrn_4128949
crossref_primary_10_1016_j_engstruct_2018_06_081
crossref_primary_10_1038_s41378_021_00239_0
crossref_primary_10_1016_j_enconman_2020_112771
crossref_primary_10_1016_j_energy_2022_125478
crossref_primary_10_1021_acsami_4c10322
crossref_primary_10_1016_j_oceaneng_2021_109568
crossref_primary_10_1016_j_nanoen_2021_106199
crossref_primary_10_1063_1_5074184
crossref_primary_10_1016_j_sna_2023_114525
crossref_primary_10_1002_ese3_489
crossref_primary_10_1109_TMECH_2019_2939748
crossref_primary_10_1016_j_energy_2024_131790
crossref_primary_10_1016_j_ijmecsci_2022_107261
crossref_primary_10_1016_j_isci_2024_110665
crossref_primary_10_1016_j_prime_2023_100151
crossref_primary_10_1155_2020_8858529
crossref_primary_10_1016_j_energy_2020_118752
crossref_primary_10_1016_j_joule_2021_03_006
crossref_primary_10_1016_j_sna_2022_114054
crossref_primary_10_1016_j_sna_2019_05_015
crossref_primary_10_1109_ACCESS_2019_2937587
crossref_primary_10_3390_nanoenergyadv3020005
crossref_primary_10_1016_j_ymssp_2022_109588
crossref_primary_10_1016_j_renene_2023_119226
crossref_primary_10_1002_pssa_202400298
crossref_primary_10_1016_j_energy_2019_116261
crossref_primary_10_1016_j_sna_2020_112356
crossref_primary_10_2112_JCOASTRES_D_18_00171_1
crossref_primary_10_1016_j_nanoen_2022_107870
crossref_primary_10_1016_j_nanoen_2024_109697
Cites_doi 10.5916/jkosme.2013.37.6.596
10.1016/j.sna.2010.12.020
10.1016/j.ijhydene.2016.03.183
10.1016/j.sna.2013.06.009
10.1016/j.sna.2008.03.008
10.1016/j.cap.2015.02.009
10.1063/1.3360219
10.1016/j.sna.2015.02.036
10.1016/j.apor.2015.01.004
10.1016/j.ijengsci.2014.04.003
10.1016/j.ymssp.2014.07.014
10.1016/j.sna.2014.09.002
10.1016/j.sna.2014.07.003
10.1109/JMEMS.2011.2162488
10.1038/ncomms1098
10.1016/j.sna.2016.07.020
10.1080/00150193.2013.822759
10.1016/j.sna.2013.10.003
10.1016/j.sna.2016.08.022
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sna.2017.04.026
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
EndPage 197
ExternalDocumentID 10_1016_j_sna_2017_04_026
S0924424717306660
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c363t-18f14098482472bdb22e45b8b5dcaedeeb08b1cab22daf6817d362d09a32a1e63
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Tue Jul 01 01:05:24 EDT 2025
Thu Apr 24 23:08:59 EDT 2025
Fri Feb 23 02:21:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-directional vibration
Piezoelectric energy harvesting
Cantilever structure
Ocean wave energy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-18f14098482472bdb22e45b8b5dcaedeeb08b1cab22daf6817d362d09a32a1e63
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_sna_2017_04_026
crossref_primary_10_1016_j_sna_2017_04_026
elsevier_sciencedirect_doi_10_1016_j_sna_2017_04_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-15
PublicationDateYYYYMMDD 2017-06-15
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-15
  day: 15
PublicationDecade 2010
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Song, Yang, Hong, Bin Kim, Woo, Sung (bib0040) 2013; 449
Xu, Hansen, Wang (bib0110) 2010; 1
Xiao, Qian, Lian, Long, Tang, Chen, Du, Cao (bib0025) 2016; 249
Rezaeisaray, El Gowini, Sameoto, Raboud, Moussa (bib0075) 2015; 228
Saha, O'Donnell, Wang, McCloskey (bib0035) 2008; 147
Liu, Tay, Quan, Kobayashi, Lee (bib0070) 2011; 20
McCullagh, Galchev, Peterson, Gordenker, Zhang, Lynch, Najafi (bib0055) 2014; 217
Woo, Baek, Kim, Kim, Song, Sung (bib0045) 2014
Raghunathan, Kansal, Hsu, Friedman, Srivastava (bib0010) 2005; 0
Kurt, Uzun, Durmuş (bib0085) 2015
Samson, Kluge, Becker, Schmid (bib0015) 2011; 172
Chamanian, Ulusan, Zorlu, Baghee, Biykoglu (bib0005) 2016; 249
Muthalif, Nordin (bib0065) 2015; 54
Han, Lee (bib0100) 2013; 37
Xie, Wang, Wu (bib0125) 2014; 81
Tobergte, Curtis (bib0030) 2010; 53
Shevtsov, Chang (bib0020) 2016; 41
Sodano, Park, Leo, Inman (bib0115) 2003; 5050
Dhakar, Liu, Tay, Lee (bib0060) 2013; 199
Pillatsch, Yeatman, Holmes (bib0105) 2014; 206
Wu, Wang, Xie (bib0120) 2015; 50
Hwang, Jung, Kim, Ahn, Song, Song, Lee, Moon, Park, Sung (bib0095) 2015; 15
Wu, Lee (bib0050) 2014; 219
Jung, Yun (bib0080) 2010; 96
Li, Peng, Zhang, Wang (bib0090) 2016; 6
Chamanian (10.1016/j.sna.2017.04.026_bib0005) 2016; 249
Han (10.1016/j.sna.2017.04.026_bib0100) 2013; 37
Wu (10.1016/j.sna.2017.04.026_bib0050) 2014; 219
Tobergte (10.1016/j.sna.2017.04.026_bib0030) 2010; 53
Muthalif (10.1016/j.sna.2017.04.026_bib0065) 2015; 54
Raghunathan (10.1016/j.sna.2017.04.026_bib0010) 2005; 0
Xu (10.1016/j.sna.2017.04.026_bib0110) 2010; 1
Wu (10.1016/j.sna.2017.04.026_bib0120) 2015; 50
Shevtsov (10.1016/j.sna.2017.04.026_bib0020) 2016; 41
Li (10.1016/j.sna.2017.04.026_bib0090) 2016; 6
Rezaeisaray (10.1016/j.sna.2017.04.026_bib0075) 2015; 228
Jung (10.1016/j.sna.2017.04.026_bib0080) 2010; 96
Samson (10.1016/j.sna.2017.04.026_bib0015) 2011; 172
Xiao (10.1016/j.sna.2017.04.026_bib0025) 2016; 249
Woo (10.1016/j.sna.2017.04.026_bib0045) 2014
Liu (10.1016/j.sna.2017.04.026_bib0070) 2011; 20
Saha (10.1016/j.sna.2017.04.026_bib0035) 2008; 147
McCullagh (10.1016/j.sna.2017.04.026_bib0055) 2014; 217
Kurt (10.1016/j.sna.2017.04.026_bib0085) 2015
Pillatsch (10.1016/j.sna.2017.04.026_bib0105) 2014; 206
Hwang (10.1016/j.sna.2017.04.026_bib0095) 2015; 15
Dhakar (10.1016/j.sna.2017.04.026_bib0060) 2013; 199
Sodano (10.1016/j.sna.2017.04.026_bib0115) 2003; 5050
Song (10.1016/j.sna.2017.04.026_bib0040) 2013; 449
Xie (10.1016/j.sna.2017.04.026_bib0125) 2014; 81
References_xml – volume: 219
  start-page: 73
  year: 2014
  end-page: 79
  ident: bib0050
  article-title: An electromagnetic energy harvesting device based on high efficiency windmill structure for wireless forest fire monitoring application
  publication-title: Sens. Actuators A: Phys.
– volume: 199
  start-page: 344
  year: 2013
  end-page: 352
  ident: bib0060
  article-title: A new energy harvester design for high power output at low frequencies
  publication-title: Sens. Actuators A: Phys.
– volume: 15
  start-page: 669
  year: 2015
  end-page: 674
  ident: bib0095
  article-title: Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps
  publication-title: Curr. Appl. Phys.
– volume: 50
  start-page: 110
  year: 2015
  end-page: 118
  ident: bib0120
  article-title: Ocean wave energy harvesting with a piezoelectric coupled buoy structure
  publication-title: Appl. Ocean Res.
– volume: 228
  start-page: 104
  year: 2015
  end-page: 111
  ident: bib0075
  article-title: Low frequency piezoelectric energy harvesting at multi vibration mode shapes
  publication-title: Sens. Actuators A: Phys.
– volume: 96
  start-page: 2008
  year: 2010
  end-page: 2011
  ident: bib0080
  article-title: Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation
  publication-title: Appl. Phys. Lett.
– start-page: 1
  year: 2015
  end-page: 4
  ident: bib0085
  article-title: Power characteristics of a new contactless piezoelectric harvester
  publication-title: 4th Int. Conf. Electr. Power Energy Convers. Syst.
– start-page: 10
  year: 2014
  end-page: 14
  ident: bib0045
  article-title: Relationship between current and impedance in piezoelectric energy harvesting system for water waves
  publication-title: J. Electroceram.
– volume: 206
  start-page: 178
  year: 2014
  end-page: 185
  ident: bib0105
  article-title: A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications
  publication-title: Sens. Actuators A: Phys.
– volume: 53
  start-page: 1
  year: 2010
  end-page: 30
  ident: bib0030
  article-title: Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion
  publication-title: Clim. Change 2013—Phys. Sci. Basis
– volume: 249
  start-page: 77
  year: 2016
  end-page: 84
  ident: bib0005
  article-title: Wearable battery-less wireless sensor network with electromagnetic energy harvesting system
  publication-title: Sens. Actuators A: Phys.
– volume: 217
  start-page: 139
  year: 2014
  end-page: 150
  ident: bib0055
  article-title: Long-term testing of a vibration harvesting system for the structural health monitoring of bridges
  publication-title: Sens. Actuators A: Phys.
– volume: 249
  start-page: 276
  year: 2016
  end-page: 283
  ident: bib0025
  article-title: RF energy powered wireless temperature sensor for monitoring electrical equipment
  publication-title: Sens. Actuators A: Phys.
– volume: 147
  start-page: 248
  year: 2008
  end-page: 253
  ident: bib0035
  article-title: Electromagnetic generator for harvesting energy from human motion
  publication-title: Sens. Actuators A: Phys.
– volume: 172
  start-page: 240
  year: 2011
  end-page: 244
  ident: bib0015
  article-title: Wireless sensor node powered by aircraft specific thermoelectric energy harvesting
  publication-title: Sens. Actuators A: Phys.
– volume: 41
  start-page: 12618
  year: 2016
  end-page: 12625
  ident: bib0020
  article-title: Modeling of vibration energy harvesting system with power PZT stack loaded on Li-ion battery
  publication-title: Int. J. Hydrogen Energy
– volume: 81
  start-page: 41
  year: 2014
  end-page: 48
  ident: bib0125
  article-title: Energy harvesting from transverse ocean waves by a piezoelectric plate
  publication-title: Int. J. Eng. Sci.
– volume: 1
  start-page: 93
  year: 2010
  ident: bib0110
  article-title: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics
  publication-title: Nat. Commun.
– volume: 54
  start-page: 417
  year: 2015
  end-page: 426
  ident: bib0065
  article-title: Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results
  publication-title: Mech. Syst. Signal Process.
– volume: 37
  start-page: 596
  year: 2013
  end-page: 602
  ident: bib0100
  article-title: The research of wide band vibration energy harvester using ocean wave
  publication-title: J. Korean Soc. Mar. Eng.
– volume: 5050
  start-page: 101
  year: 2003
  end-page: 108
  ident: bib0115
  article-title: Use of piezoelectric energy harvesting devices for charging batteries
  publication-title: Proc. SPIE—Int. Soc. Opt. Eng.
– volume: 0
  start-page: 457
  year: 2005
  end-page: 462
  ident: bib0010
  article-title: Design considerations for solar energy harvesting wireless embedded systems
  publication-title: Lithium
– volume: 20
  start-page: 1131
  year: 2011
  end-page: 1142
  ident: bib0070
  article-title: Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power
  publication-title: J. Microelectromech. Syst.
– volume: 449
  start-page: 11
  year: 2013
  end-page: 23
  ident: bib0040
  article-title: Study on application of piezoelectricity to korea train eXpress (KTX)
  publication-title: Ferroelectrics
– volume: 6
  year: 2016
  ident: bib0090
  article-title: Dual resonant structure for energy harvesting from random vibration sources at low frequency
  publication-title: AIP Adv.
– volume: 37
  start-page: 596
  year: 2013
  ident: 10.1016/j.sna.2017.04.026_bib0100
  article-title: The research of wide band vibration energy harvester using ocean wave
  publication-title: J. Korean Soc. Mar. Eng.
  doi: 10.5916/jkosme.2013.37.6.596
– volume: 172
  start-page: 240
  year: 2011
  ident: 10.1016/j.sna.2017.04.026_bib0015
  article-title: Wireless sensor node powered by aircraft specific thermoelectric energy harvesting
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2010.12.020
– volume: 41
  start-page: 12618
  year: 2016
  ident: 10.1016/j.sna.2017.04.026_bib0020
  article-title: Modeling of vibration energy harvesting system with power PZT stack loaded on Li-ion battery
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.183
– volume: 199
  start-page: 344
  year: 2013
  ident: 10.1016/j.sna.2017.04.026_bib0060
  article-title: A new energy harvester design for high power output at low frequencies
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2013.06.009
– volume: 5050
  start-page: 101
  year: 2003
  ident: 10.1016/j.sna.2017.04.026_bib0115
  article-title: Use of piezoelectric energy harvesting devices for charging batteries
  publication-title: Proc. SPIE—Int. Soc. Opt. Eng.
– volume: 147
  start-page: 248
  year: 2008
  ident: 10.1016/j.sna.2017.04.026_bib0035
  article-title: Electromagnetic generator for harvesting energy from human motion
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2008.03.008
– volume: 15
  start-page: 669
  year: 2015
  ident: 10.1016/j.sna.2017.04.026_bib0095
  article-title: Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2015.02.009
– volume: 0
  start-page: 457
  year: 2005
  ident: 10.1016/j.sna.2017.04.026_bib0010
  article-title: Design considerations for solar energy harvesting wireless embedded systems
  publication-title: Lithium
– volume: 96
  start-page: 2008
  year: 2010
  ident: 10.1016/j.sna.2017.04.026_bib0080
  article-title: Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3360219
– volume: 228
  start-page: 104
  year: 2015
  ident: 10.1016/j.sna.2017.04.026_bib0075
  article-title: Low frequency piezoelectric energy harvesting at multi vibration mode shapes
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2015.02.036
– volume: 50
  start-page: 110
  year: 2015
  ident: 10.1016/j.sna.2017.04.026_bib0120
  article-title: Ocean wave energy harvesting with a piezoelectric coupled buoy structure
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2015.01.004
– volume: 81
  start-page: 41
  year: 2014
  ident: 10.1016/j.sna.2017.04.026_bib0125
  article-title: Energy harvesting from transverse ocean waves by a piezoelectric plate
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2014.04.003
– volume: 54
  start-page: 417
  year: 2015
  ident: 10.1016/j.sna.2017.04.026_bib0065
  article-title: Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.07.014
– volume: 219
  start-page: 73
  year: 2014
  ident: 10.1016/j.sna.2017.04.026_bib0050
  article-title: An electromagnetic energy harvesting device based on high efficiency windmill structure for wireless forest fire monitoring application
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2014.09.002
– start-page: 10
  year: 2014
  ident: 10.1016/j.sna.2017.04.026_bib0045
  article-title: Relationship between current and impedance in piezoelectric energy harvesting system for water waves
  publication-title: J. Electroceram.
– volume: 217
  start-page: 139
  year: 2014
  ident: 10.1016/j.sna.2017.04.026_bib0055
  article-title: Long-term testing of a vibration harvesting system for the structural health monitoring of bridges
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2014.07.003
– volume: 53
  start-page: 1
  year: 2010
  ident: 10.1016/j.sna.2017.04.026_bib0030
  article-title: Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion
  publication-title: Clim. Change 2013—Phys. Sci. Basis
– volume: 6
  year: 2016
  ident: 10.1016/j.sna.2017.04.026_bib0090
  article-title: Dual resonant structure for energy harvesting from random vibration sources at low frequency
  publication-title: AIP Adv.
– volume: 20
  start-page: 1131
  year: 2011
  ident: 10.1016/j.sna.2017.04.026_bib0070
  article-title: Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2011.2162488
– volume: 1
  start-page: 93
  year: 2010
  ident: 10.1016/j.sna.2017.04.026_bib0110
  article-title: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1098
– volume: 249
  start-page: 77
  year: 2016
  ident: 10.1016/j.sna.2017.04.026_bib0005
  article-title: Wearable battery-less wireless sensor network with electromagnetic energy harvesting system
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2016.07.020
– start-page: 1
  year: 2015
  ident: 10.1016/j.sna.2017.04.026_bib0085
  article-title: Power characteristics of a new contactless piezoelectric harvester
– volume: 449
  start-page: 11
  year: 2013
  ident: 10.1016/j.sna.2017.04.026_bib0040
  article-title: Study on application of piezoelectricity to korea train eXpress (KTX)
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2013.822759
– volume: 206
  start-page: 178
  year: 2014
  ident: 10.1016/j.sna.2017.04.026_bib0105
  article-title: A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2013.10.003
– volume: 249
  start-page: 276
  year: 2016
  ident: 10.1016/j.sna.2017.04.026_bib0025
  article-title: RF energy powered wireless temperature sensor for monitoring electrical equipment
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2016.08.022
SSID ssj0003377
Score 2.486951
Snippet •We design a piezoelectric ocean-wave energy harvester (POEH) that can harness wave energy.•The POEH uses a ball-and-rail mechanism to induce cantilever...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 191
SubjectTerms Cantilever structure
Multi-directional vibration
Ocean wave energy
Piezoelectric energy harvesting
Title Design of piezoelectric ocean-wave energy harvester using sway movement
URI https://dx.doi.org/10.1016/j.sna.2017.04.026
Volume 260
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIYXGsRM7Y1UoBUQXqNQtshMHiiCp2tAKBn47PjeBIgEDY6w7Kblz7s7yd98hdCyIlNznzDG5N3aYMH96KN3Ekb4ORRhTnqbQjXzTD3oDdjX0hzXUqXphAFZZxv5FTLfRulxpldZsjUej1q1rjg7MY3CNDEU4nNsZ47DLT9-_YB6U2umLIOyAdHWzaTFe0wyohwi3bKfAr_BTblrKN90NtF4Wiri9eJdNVNPZFlpbog_cRhdnFn6B8xSPR_otX4y0GcXY5CSZOXM501jb3j78ICczy4mAAeh-j6dz-Yqfc0sWXuygQff8rtNzysEITkwDWjhEpMBTJZgwH-SpRHmeZr4Syk9iqROtlSsUiaVZT2QaCMITk6cSN5TUk0QHdBfVszzTewhrGnPjLhoQTZg2jlFeYqoixTWHFli_gdzKJFFcsobD8IqnqIKHPUbGihFYMXJZZKzYQCefKuMFZcZfwqyyc_TN75EJ6b-r7f9P7QCtwhNAvYh_iOrF5EUfmaKiUE27a5popX153et_AOuMy_o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMTUmgcO4kzokIp0HahlbpZduJAECRVG1rBwG_HdhIoEjCwOndSchffneXvvgPghCLOfdcnlsq9oUWo2ukBtyOLuzKgQYj9ONbdyL2-1xmSm5E7qoFW1QujYZVl7C9iuonW5UqztGZznCTNO1sdHYhD9DWyLsLVuX2JqO2rxxicvX_hPDA24xe1tKXFq6tNA_Kappp7CPmG7lQTLPyUnBYSTnsdrJWVIjwvXmYD1GS6CVYX-AO3wNWFwV_ALIbjRL5lxUybJIQqKfHUmvOZhNI098EHPpkZUgSoke73cDrnr_A5M2zh-TYYti8HrY5VTkawQuzh3EI01kRVlFD1QY6IhONI4goq3CjkMpJS2FSgkKv1iMceRX6kElVkBxw7HEkP74B6mqVyF0CJQ1_5C3tIIiKVZ4QTqbJI-NLXPbBuA9iVSVhY0obr6RVPrMKHPTJlRaatyGzClBUb4PRTZVxwZvwlTCo7s2-OZyqm_6629z-1Y7DcGfS6rHvdv90HK_qJxn0h9wDU88mLPFQVRi6OzB_0AcbkzYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+piezoelectric+ocean-wave+energy+harvester+using+sway+movement&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Hwang%2C+Won+Seop&rft.au=Ahn%2C+Jung+Hwan&rft.au=Jeong%2C+Se+Yeong&rft.au=Jung%2C+Hyun+Jun&rft.date=2017-06-15&rft.issn=0924-4247&rft.volume=260&rft.spage=191&rft.epage=197&rft_id=info:doi/10.1016%2Fj.sna.2017.04.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2017_04_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon