Design of piezoelectric ocean-wave energy harvester using sway movement
•We design a piezoelectric ocean-wave energy harvester (POEH) that can harness wave energy.•The POEH uses a ball-and-rail mechanism to induce cantilever vibrations.•The POEH yields improved voltage and power output than cantilever system.•Our device can be used for low-frequency energy harvesting ap...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 260; pp. 191 - 197 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We design a piezoelectric ocean-wave energy harvester (POEH) that can harness wave energy.•The POEH uses a ball-and-rail mechanism to induce cantilever vibrations.•The POEH yields improved voltage and power output than cantilever system.•Our device can be used for low-frequency energy harvesting applications.
The use of energy harvesting technologies for supplying power generating energy to wireless devices and sensors, particularly in scenarios where it is difficult to exchange or recharge batteries, has recently attracted considerable research attention. In this context, we report the design of a piezoelectric energy harvesting system that can be used to harvest energy from the ocean. The harvester is composed of a piezoelectric cantilever structure and a magnet as the tip-mass of the piezoelectric module, atop which a rail (tube) with a metal ball is positioned. The system is tested with a setup that simulates ocean waves. Our findings indicate that our approach can be utilized in the design of multipurpose piezoelectric energy harvesting systems for low frequency vibration and in “sea-based” applications involving buoys and boats. |
---|---|
AbstractList | •We design a piezoelectric ocean-wave energy harvester (POEH) that can harness wave energy.•The POEH uses a ball-and-rail mechanism to induce cantilever vibrations.•The POEH yields improved voltage and power output than cantilever system.•Our device can be used for low-frequency energy harvesting applications.
The use of energy harvesting technologies for supplying power generating energy to wireless devices and sensors, particularly in scenarios where it is difficult to exchange or recharge batteries, has recently attracted considerable research attention. In this context, we report the design of a piezoelectric energy harvesting system that can be used to harvest energy from the ocean. The harvester is composed of a piezoelectric cantilever structure and a magnet as the tip-mass of the piezoelectric module, atop which a rail (tube) with a metal ball is positioned. The system is tested with a setup that simulates ocean waves. Our findings indicate that our approach can be utilized in the design of multipurpose piezoelectric energy harvesting systems for low frequency vibration and in “sea-based” applications involving buoys and boats. |
Author | Jeong, Se Yeong Hong, Seong Kwang Kim, Jung Hun Ahn, Jung Hwan Cho, Jae Yong Jung, Hyun Jun Choi, Jae Yoon Hwang, Won Seop Sung, Tae Hyun |
Author_xml | – sequence: 1 givenname: Won Seop surname: Hwang fullname: Hwang, Won Seop – sequence: 2 givenname: Jung Hwan surname: Ahn fullname: Ahn, Jung Hwan – sequence: 3 givenname: Se Yeong surname: Jeong fullname: Jeong, Se Yeong – sequence: 4 givenname: Hyun Jun surname: Jung fullname: Jung, Hyun Jun – sequence: 5 givenname: Seong Kwang surname: Hong fullname: Hong, Seong Kwang – sequence: 6 givenname: Jae Yoon surname: Choi fullname: Choi, Jae Yoon – sequence: 7 givenname: Jae Yong surname: Cho fullname: Cho, Jae Yong – sequence: 8 givenname: Jung Hun surname: Kim fullname: Kim, Jung Hun – sequence: 9 givenname: Tae Hyun surname: Sung fullname: Sung, Tae Hyun email: sungth@hanyang.ac.kr |
BookMark | eNp9kM1KAzEUhYNUsK0-gLu8wIw3P50fXEnVKhTc6Dpkkjs1pU1KMk6pT--UduWiqwsHvsO534SMfPBIyD2DnAErHtZ58jrnwMocZA68uCJjVpUiE1DUIzKGmstMclnekElKawAQoizHZPGMya08DS3dOfwNuEHTRWdoMKh9ttc9UvQYVwf6rWOPqcNIf5LzK5r2-kC3occt-u6WXLd6k_DufKfk6_Xlc_6WLT8W7_OnZWZEIbqMVS2TUFeyGqbwxjaco5w1VTOzRqNFbKBqmNFDbnVbVKy0ouAWai24ZliIKSlPvSaGlCK2yrhOdy74Lmq3UQzU0Ydaq8GHOvpQINXgYyDZP3IX3VbHw0Xm8cTg8FLvMKpkHHqD1sXBk7LBXaD_AM-RfCo |
CitedBy_id | crossref_primary_10_2112_SI83_161_1 crossref_primary_10_1016_j_apenergy_2021_118511 crossref_primary_10_1002_2050_7038_12655 crossref_primary_10_1016_j_seta_2023_103417 crossref_primary_10_1016_j_enconman_2023_117569 crossref_primary_10_1109_TMECH_2021_3093939 crossref_primary_10_1007_s13344_023_0064_9 crossref_primary_10_1016_j_scib_2023_06_025 crossref_primary_10_1016_j_nanoen_2020_105567 crossref_primary_10_1016_j_mtcomm_2023_105386 crossref_primary_10_1016_j_nanoen_2022_107669 crossref_primary_10_1016_j_apenergy_2023_121654 crossref_primary_10_1016_j_apenergy_2024_123876 crossref_primary_10_1016_j_oceaneng_2020_107248 crossref_primary_10_3390_electronics9010079 crossref_primary_10_1002_ente_202401455 crossref_primary_10_1016_j_energy_2024_132143 crossref_primary_10_3390_app112311504 crossref_primary_10_3390_cryst14090806 crossref_primary_10_1016_j_polymer_2024_127640 crossref_primary_10_1016_j_energy_2021_122495 crossref_primary_10_1016_j_apenergy_2024_124516 crossref_primary_10_1016_j_ecmx_2023_100463 crossref_primary_10_1016_j_euromechsol_2023_104924 crossref_primary_10_2139_ssrn_3979981 crossref_primary_10_1016_j_oceaneng_2018_11_014 crossref_primary_10_1016_j_oceaneng_2023_115829 crossref_primary_10_2139_ssrn_4168655 crossref_primary_10_1016_j_nanoen_2022_107854 crossref_primary_10_1007_s40819_022_01382_6 crossref_primary_10_3390_mi16030252 crossref_primary_10_1016_j_apor_2018_05_005 crossref_primary_10_1016_j_renene_2021_07_008 crossref_primary_10_3390_s22051949 crossref_primary_10_1016_j_apenergy_2021_117569 crossref_primary_10_1016_j_renene_2021_07_042 crossref_primary_10_1016_j_seta_2022_102940 crossref_primary_10_1016_j_apenergy_2023_122042 crossref_primary_10_2139_ssrn_4128949 crossref_primary_10_1016_j_engstruct_2018_06_081 crossref_primary_10_1038_s41378_021_00239_0 crossref_primary_10_1016_j_enconman_2020_112771 crossref_primary_10_1016_j_energy_2022_125478 crossref_primary_10_1021_acsami_4c10322 crossref_primary_10_1016_j_oceaneng_2021_109568 crossref_primary_10_1016_j_nanoen_2021_106199 crossref_primary_10_1063_1_5074184 crossref_primary_10_1016_j_sna_2023_114525 crossref_primary_10_1002_ese3_489 crossref_primary_10_1109_TMECH_2019_2939748 crossref_primary_10_1016_j_energy_2024_131790 crossref_primary_10_1016_j_ijmecsci_2022_107261 crossref_primary_10_1016_j_isci_2024_110665 crossref_primary_10_1016_j_prime_2023_100151 crossref_primary_10_1155_2020_8858529 crossref_primary_10_1016_j_energy_2020_118752 crossref_primary_10_1016_j_joule_2021_03_006 crossref_primary_10_1016_j_sna_2022_114054 crossref_primary_10_1016_j_sna_2019_05_015 crossref_primary_10_1109_ACCESS_2019_2937587 crossref_primary_10_3390_nanoenergyadv3020005 crossref_primary_10_1016_j_ymssp_2022_109588 crossref_primary_10_1016_j_renene_2023_119226 crossref_primary_10_1002_pssa_202400298 crossref_primary_10_1016_j_energy_2019_116261 crossref_primary_10_1016_j_sna_2020_112356 crossref_primary_10_2112_JCOASTRES_D_18_00171_1 crossref_primary_10_1016_j_nanoen_2022_107870 crossref_primary_10_1016_j_nanoen_2024_109697 |
Cites_doi | 10.5916/jkosme.2013.37.6.596 10.1016/j.sna.2010.12.020 10.1016/j.ijhydene.2016.03.183 10.1016/j.sna.2013.06.009 10.1016/j.sna.2008.03.008 10.1016/j.cap.2015.02.009 10.1063/1.3360219 10.1016/j.sna.2015.02.036 10.1016/j.apor.2015.01.004 10.1016/j.ijengsci.2014.04.003 10.1016/j.ymssp.2014.07.014 10.1016/j.sna.2014.09.002 10.1016/j.sna.2014.07.003 10.1109/JMEMS.2011.2162488 10.1038/ncomms1098 10.1016/j.sna.2016.07.020 10.1080/00150193.2013.822759 10.1016/j.sna.2013.10.003 10.1016/j.sna.2016.08.022 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sna.2017.04.026 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
EndPage | 197 |
ExternalDocumentID | 10_1016_j_sna_2017_04_026 S0924424717306660 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c363t-18f14098482472bdb22e45b8b5dcaedeeb08b1cab22daf6817d362d09a32a1e63 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Tue Jul 01 01:05:24 EDT 2025 Thu Apr 24 23:08:59 EDT 2025 Fri Feb 23 02:21:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-directional vibration Piezoelectric energy harvesting Cantilever structure Ocean wave energy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-18f14098482472bdb22e45b8b5dcaedeeb08b1cab22daf6817d362d09a32a1e63 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sna_2017_04_026 crossref_primary_10_1016_j_sna_2017_04_026 elsevier_sciencedirect_doi_10_1016_j_sna_2017_04_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-15 |
PublicationDateYYYYMMDD | 2017-06-15 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Song, Yang, Hong, Bin Kim, Woo, Sung (bib0040) 2013; 449 Xu, Hansen, Wang (bib0110) 2010; 1 Xiao, Qian, Lian, Long, Tang, Chen, Du, Cao (bib0025) 2016; 249 Rezaeisaray, El Gowini, Sameoto, Raboud, Moussa (bib0075) 2015; 228 Saha, O'Donnell, Wang, McCloskey (bib0035) 2008; 147 Liu, Tay, Quan, Kobayashi, Lee (bib0070) 2011; 20 McCullagh, Galchev, Peterson, Gordenker, Zhang, Lynch, Najafi (bib0055) 2014; 217 Woo, Baek, Kim, Kim, Song, Sung (bib0045) 2014 Raghunathan, Kansal, Hsu, Friedman, Srivastava (bib0010) 2005; 0 Kurt, Uzun, Durmuş (bib0085) 2015 Samson, Kluge, Becker, Schmid (bib0015) 2011; 172 Chamanian, Ulusan, Zorlu, Baghee, Biykoglu (bib0005) 2016; 249 Muthalif, Nordin (bib0065) 2015; 54 Han, Lee (bib0100) 2013; 37 Xie, Wang, Wu (bib0125) 2014; 81 Tobergte, Curtis (bib0030) 2010; 53 Shevtsov, Chang (bib0020) 2016; 41 Sodano, Park, Leo, Inman (bib0115) 2003; 5050 Dhakar, Liu, Tay, Lee (bib0060) 2013; 199 Pillatsch, Yeatman, Holmes (bib0105) 2014; 206 Wu, Wang, Xie (bib0120) 2015; 50 Hwang, Jung, Kim, Ahn, Song, Song, Lee, Moon, Park, Sung (bib0095) 2015; 15 Wu, Lee (bib0050) 2014; 219 Jung, Yun (bib0080) 2010; 96 Li, Peng, Zhang, Wang (bib0090) 2016; 6 Chamanian (10.1016/j.sna.2017.04.026_bib0005) 2016; 249 Han (10.1016/j.sna.2017.04.026_bib0100) 2013; 37 Wu (10.1016/j.sna.2017.04.026_bib0050) 2014; 219 Tobergte (10.1016/j.sna.2017.04.026_bib0030) 2010; 53 Muthalif (10.1016/j.sna.2017.04.026_bib0065) 2015; 54 Raghunathan (10.1016/j.sna.2017.04.026_bib0010) 2005; 0 Xu (10.1016/j.sna.2017.04.026_bib0110) 2010; 1 Wu (10.1016/j.sna.2017.04.026_bib0120) 2015; 50 Shevtsov (10.1016/j.sna.2017.04.026_bib0020) 2016; 41 Li (10.1016/j.sna.2017.04.026_bib0090) 2016; 6 Rezaeisaray (10.1016/j.sna.2017.04.026_bib0075) 2015; 228 Jung (10.1016/j.sna.2017.04.026_bib0080) 2010; 96 Samson (10.1016/j.sna.2017.04.026_bib0015) 2011; 172 Xiao (10.1016/j.sna.2017.04.026_bib0025) 2016; 249 Woo (10.1016/j.sna.2017.04.026_bib0045) 2014 Liu (10.1016/j.sna.2017.04.026_bib0070) 2011; 20 Saha (10.1016/j.sna.2017.04.026_bib0035) 2008; 147 McCullagh (10.1016/j.sna.2017.04.026_bib0055) 2014; 217 Kurt (10.1016/j.sna.2017.04.026_bib0085) 2015 Pillatsch (10.1016/j.sna.2017.04.026_bib0105) 2014; 206 Hwang (10.1016/j.sna.2017.04.026_bib0095) 2015; 15 Dhakar (10.1016/j.sna.2017.04.026_bib0060) 2013; 199 Sodano (10.1016/j.sna.2017.04.026_bib0115) 2003; 5050 Song (10.1016/j.sna.2017.04.026_bib0040) 2013; 449 Xie (10.1016/j.sna.2017.04.026_bib0125) 2014; 81 |
References_xml | – volume: 219 start-page: 73 year: 2014 end-page: 79 ident: bib0050 article-title: An electromagnetic energy harvesting device based on high efficiency windmill structure for wireless forest fire monitoring application publication-title: Sens. Actuators A: Phys. – volume: 199 start-page: 344 year: 2013 end-page: 352 ident: bib0060 article-title: A new energy harvester design for high power output at low frequencies publication-title: Sens. Actuators A: Phys. – volume: 15 start-page: 669 year: 2015 end-page: 674 ident: bib0095 article-title: Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps publication-title: Curr. Appl. Phys. – volume: 50 start-page: 110 year: 2015 end-page: 118 ident: bib0120 article-title: Ocean wave energy harvesting with a piezoelectric coupled buoy structure publication-title: Appl. Ocean Res. – volume: 228 start-page: 104 year: 2015 end-page: 111 ident: bib0075 article-title: Low frequency piezoelectric energy harvesting at multi vibration mode shapes publication-title: Sens. Actuators A: Phys. – volume: 96 start-page: 2008 year: 2010 end-page: 2011 ident: bib0080 article-title: Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation publication-title: Appl. Phys. Lett. – start-page: 1 year: 2015 end-page: 4 ident: bib0085 article-title: Power characteristics of a new contactless piezoelectric harvester publication-title: 4th Int. Conf. Electr. Power Energy Convers. Syst. – start-page: 10 year: 2014 end-page: 14 ident: bib0045 article-title: Relationship between current and impedance in piezoelectric energy harvesting system for water waves publication-title: J. Electroceram. – volume: 206 start-page: 178 year: 2014 end-page: 185 ident: bib0105 article-title: A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications publication-title: Sens. Actuators A: Phys. – volume: 53 start-page: 1 year: 2010 end-page: 30 ident: bib0030 article-title: Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion publication-title: Clim. Change 2013—Phys. Sci. Basis – volume: 249 start-page: 77 year: 2016 end-page: 84 ident: bib0005 article-title: Wearable battery-less wireless sensor network with electromagnetic energy harvesting system publication-title: Sens. Actuators A: Phys. – volume: 217 start-page: 139 year: 2014 end-page: 150 ident: bib0055 article-title: Long-term testing of a vibration harvesting system for the structural health monitoring of bridges publication-title: Sens. Actuators A: Phys. – volume: 249 start-page: 276 year: 2016 end-page: 283 ident: bib0025 article-title: RF energy powered wireless temperature sensor for monitoring electrical equipment publication-title: Sens. Actuators A: Phys. – volume: 147 start-page: 248 year: 2008 end-page: 253 ident: bib0035 article-title: Electromagnetic generator for harvesting energy from human motion publication-title: Sens. Actuators A: Phys. – volume: 172 start-page: 240 year: 2011 end-page: 244 ident: bib0015 article-title: Wireless sensor node powered by aircraft specific thermoelectric energy harvesting publication-title: Sens. Actuators A: Phys. – volume: 41 start-page: 12618 year: 2016 end-page: 12625 ident: bib0020 article-title: Modeling of vibration energy harvesting system with power PZT stack loaded on Li-ion battery publication-title: Int. J. Hydrogen Energy – volume: 81 start-page: 41 year: 2014 end-page: 48 ident: bib0125 article-title: Energy harvesting from transverse ocean waves by a piezoelectric plate publication-title: Int. J. Eng. Sci. – volume: 1 start-page: 93 year: 2010 ident: bib0110 article-title: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics publication-title: Nat. Commun. – volume: 54 start-page: 417 year: 2015 end-page: 426 ident: bib0065 article-title: Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results publication-title: Mech. Syst. Signal Process. – volume: 37 start-page: 596 year: 2013 end-page: 602 ident: bib0100 article-title: The research of wide band vibration energy harvester using ocean wave publication-title: J. Korean Soc. Mar. Eng. – volume: 5050 start-page: 101 year: 2003 end-page: 108 ident: bib0115 article-title: Use of piezoelectric energy harvesting devices for charging batteries publication-title: Proc. SPIE—Int. Soc. Opt. Eng. – volume: 0 start-page: 457 year: 2005 end-page: 462 ident: bib0010 article-title: Design considerations for solar energy harvesting wireless embedded systems publication-title: Lithium – volume: 20 start-page: 1131 year: 2011 end-page: 1142 ident: bib0070 article-title: Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power publication-title: J. Microelectromech. Syst. – volume: 449 start-page: 11 year: 2013 end-page: 23 ident: bib0040 article-title: Study on application of piezoelectricity to korea train eXpress (KTX) publication-title: Ferroelectrics – volume: 6 year: 2016 ident: bib0090 article-title: Dual resonant structure for energy harvesting from random vibration sources at low frequency publication-title: AIP Adv. – volume: 37 start-page: 596 year: 2013 ident: 10.1016/j.sna.2017.04.026_bib0100 article-title: The research of wide band vibration energy harvester using ocean wave publication-title: J. Korean Soc. Mar. Eng. doi: 10.5916/jkosme.2013.37.6.596 – volume: 172 start-page: 240 year: 2011 ident: 10.1016/j.sna.2017.04.026_bib0015 article-title: Wireless sensor node powered by aircraft specific thermoelectric energy harvesting publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2010.12.020 – volume: 41 start-page: 12618 year: 2016 ident: 10.1016/j.sna.2017.04.026_bib0020 article-title: Modeling of vibration energy harvesting system with power PZT stack loaded on Li-ion battery publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.183 – volume: 199 start-page: 344 year: 2013 ident: 10.1016/j.sna.2017.04.026_bib0060 article-title: A new energy harvester design for high power output at low frequencies publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2013.06.009 – volume: 5050 start-page: 101 year: 2003 ident: 10.1016/j.sna.2017.04.026_bib0115 article-title: Use of piezoelectric energy harvesting devices for charging batteries publication-title: Proc. SPIE—Int. Soc. Opt. Eng. – volume: 147 start-page: 248 year: 2008 ident: 10.1016/j.sna.2017.04.026_bib0035 article-title: Electromagnetic generator for harvesting energy from human motion publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2008.03.008 – volume: 15 start-page: 669 year: 2015 ident: 10.1016/j.sna.2017.04.026_bib0095 article-title: Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2015.02.009 – volume: 0 start-page: 457 year: 2005 ident: 10.1016/j.sna.2017.04.026_bib0010 article-title: Design considerations for solar energy harvesting wireless embedded systems publication-title: Lithium – volume: 96 start-page: 2008 year: 2010 ident: 10.1016/j.sna.2017.04.026_bib0080 article-title: Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation publication-title: Appl. Phys. Lett. doi: 10.1063/1.3360219 – volume: 228 start-page: 104 year: 2015 ident: 10.1016/j.sna.2017.04.026_bib0075 article-title: Low frequency piezoelectric energy harvesting at multi vibration mode shapes publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2015.02.036 – volume: 50 start-page: 110 year: 2015 ident: 10.1016/j.sna.2017.04.026_bib0120 article-title: Ocean wave energy harvesting with a piezoelectric coupled buoy structure publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2015.01.004 – volume: 81 start-page: 41 year: 2014 ident: 10.1016/j.sna.2017.04.026_bib0125 article-title: Energy harvesting from transverse ocean waves by a piezoelectric plate publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2014.04.003 – volume: 54 start-page: 417 year: 2015 ident: 10.1016/j.sna.2017.04.026_bib0065 article-title: Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2014.07.014 – volume: 219 start-page: 73 year: 2014 ident: 10.1016/j.sna.2017.04.026_bib0050 article-title: An electromagnetic energy harvesting device based on high efficiency windmill structure for wireless forest fire monitoring application publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2014.09.002 – start-page: 10 year: 2014 ident: 10.1016/j.sna.2017.04.026_bib0045 article-title: Relationship between current and impedance in piezoelectric energy harvesting system for water waves publication-title: J. Electroceram. – volume: 217 start-page: 139 year: 2014 ident: 10.1016/j.sna.2017.04.026_bib0055 article-title: Long-term testing of a vibration harvesting system for the structural health monitoring of bridges publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2014.07.003 – volume: 53 start-page: 1 year: 2010 ident: 10.1016/j.sna.2017.04.026_bib0030 article-title: Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion publication-title: Clim. Change 2013—Phys. Sci. Basis – volume: 6 year: 2016 ident: 10.1016/j.sna.2017.04.026_bib0090 article-title: Dual resonant structure for energy harvesting from random vibration sources at low frequency publication-title: AIP Adv. – volume: 20 start-page: 1131 year: 2011 ident: 10.1016/j.sna.2017.04.026_bib0070 article-title: Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2011.2162488 – volume: 1 start-page: 93 year: 2010 ident: 10.1016/j.sna.2017.04.026_bib0110 article-title: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics publication-title: Nat. Commun. doi: 10.1038/ncomms1098 – volume: 249 start-page: 77 year: 2016 ident: 10.1016/j.sna.2017.04.026_bib0005 article-title: Wearable battery-less wireless sensor network with electromagnetic energy harvesting system publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2016.07.020 – start-page: 1 year: 2015 ident: 10.1016/j.sna.2017.04.026_bib0085 article-title: Power characteristics of a new contactless piezoelectric harvester – volume: 449 start-page: 11 year: 2013 ident: 10.1016/j.sna.2017.04.026_bib0040 article-title: Study on application of piezoelectricity to korea train eXpress (KTX) publication-title: Ferroelectrics doi: 10.1080/00150193.2013.822759 – volume: 206 start-page: 178 year: 2014 ident: 10.1016/j.sna.2017.04.026_bib0105 article-title: A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2013.10.003 – volume: 249 start-page: 276 year: 2016 ident: 10.1016/j.sna.2017.04.026_bib0025 article-title: RF energy powered wireless temperature sensor for monitoring electrical equipment publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2016.08.022 |
SSID | ssj0003377 |
Score | 2.486951 |
Snippet | •We design a piezoelectric ocean-wave energy harvester (POEH) that can harness wave energy.•The POEH uses a ball-and-rail mechanism to induce cantilever... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 191 |
SubjectTerms | Cantilever structure Multi-directional vibration Ocean wave energy Piezoelectric energy harvesting |
Title | Design of piezoelectric ocean-wave energy harvester using sway movement |
URI | https://dx.doi.org/10.1016/j.sna.2017.04.026 |
Volume | 260 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIYXGsRM7Y1UoBUQXqNQtshMHiiCp2tAKBn47PjeBIgEDY6w7Kblz7s7yd98hdCyIlNznzDG5N3aYMH96KN3Ekb4ORRhTnqbQjXzTD3oDdjX0hzXUqXphAFZZxv5FTLfRulxpldZsjUej1q1rjg7MY3CNDEU4nNsZ47DLT9-_YB6U2umLIOyAdHWzaTFe0wyohwi3bKfAr_BTblrKN90NtF4Wiri9eJdNVNPZFlpbog_cRhdnFn6B8xSPR_otX4y0GcXY5CSZOXM501jb3j78ICczy4mAAeh-j6dz-Yqfc0sWXuygQff8rtNzysEITkwDWjhEpMBTJZgwH-SpRHmeZr4Syk9iqROtlSsUiaVZT2QaCMITk6cSN5TUk0QHdBfVszzTewhrGnPjLhoQTZg2jlFeYqoixTWHFli_gdzKJFFcsobD8IqnqIKHPUbGihFYMXJZZKzYQCefKuMFZcZfwqyyc_TN75EJ6b-r7f9P7QCtwhNAvYh_iOrF5EUfmaKiUE27a5popX153et_AOuMy_o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMTUmgcO4kzokIp0HahlbpZduJAECRVG1rBwG_HdhIoEjCwOndSchffneXvvgPghCLOfdcnlsq9oUWo2ukBtyOLuzKgQYj9ONbdyL2-1xmSm5E7qoFW1QujYZVl7C9iuonW5UqztGZznCTNO1sdHYhD9DWyLsLVuX2JqO2rxxicvX_hPDA24xe1tKXFq6tNA_Kappp7CPmG7lQTLPyUnBYSTnsdrJWVIjwvXmYD1GS6CVYX-AO3wNWFwV_ALIbjRL5lxUybJIQqKfHUmvOZhNI098EHPpkZUgSoke73cDrnr_A5M2zh-TYYti8HrY5VTkawQuzh3EI01kRVlFD1QY6IhONI4goq3CjkMpJS2FSgkKv1iMceRX6kElVkBxw7HEkP74B6mqVyF0CJQ1_5C3tIIiKVZ4QTqbJI-NLXPbBuA9iVSVhY0obr6RVPrMKHPTJlRaatyGzClBUb4PRTZVxwZvwlTCo7s2-OZyqm_6629z-1Y7DcGfS6rHvdv90HK_qJxn0h9wDU88mLPFQVRi6OzB_0AcbkzYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+piezoelectric+ocean-wave+energy+harvester+using+sway+movement&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Hwang%2C+Won+Seop&rft.au=Ahn%2C+Jung+Hwan&rft.au=Jeong%2C+Se+Yeong&rft.au=Jung%2C+Hyun+Jun&rft.date=2017-06-15&rft.issn=0924-4247&rft.volume=260&rft.spage=191&rft.epage=197&rft_id=info:doi/10.1016%2Fj.sna.2017.04.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2017_04_026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |