Optimizing epileptic seizure recognition performance with feature scaling and dropout layers
Epilepsy is a widespread neurological disorder characterized by recurring seizures that have a significant impact on individuals' lives. Accurately recognizing epileptic seizures is crucial for proper diagnosis and treatment. Deep learning models have shown promise in improving seizure recognit...
Saved in:
Published in | Neural computing & applications Vol. 36; no. 6; pp. 2835 - 2852 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.02.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epilepsy is a widespread neurological disorder characterized by recurring seizures that have a significant impact on individuals' lives. Accurately recognizing epileptic seizures is crucial for proper diagnosis and treatment. Deep learning models have shown promise in improving seizure recognition accuracy. However, optimizing their performance for this task remains challenging. This study presents a new approach to optimize epileptic seizure recognition using deep learning models. The study employed a dataset of Electroencephalography (EEG) recordings from multiple subjects and trained nine deep learning architectures with different preprocessing techniques. By combining a 1D convolutional neural network (Conv1D) with a Long Short-Term Memory (LSTM) network, we developed the Conv1D + LSTM architecture. This architecture, augmented with dropout layers, achieved an effective test accuracy of 0.993. The LSTM architecture alone achieved a slightly lower accuracy of 0.986. Additionally, the Bidirectional LSTM (BiLSTM) and Gated Recurrent Unit (GRU) architectures performed exceptionally well, with accuracies of 0.983 and 0.984, respectively. Notably, standard scaling proved to be advantageous, significantly improving the accuracy of both BiLSTM and GRU compared to MinMax scaling. These models consistently achieved high test accuracies across different percentages of Principal Component Analysis (PCA), with the best results obtained when retaining 50% and 90% of the features. Chi-square feature selection also enhanced the classification performance of BiLSTM and GRU models. The study reveals that different deep learning architectures respond differently to feature scaling, PCA, and feature selection methods. Understanding these nuances can lead to optimized models for epileptic seizure recognition, ultimately improving patient outcomes and quality of life. |
---|---|
AbstractList | Epilepsy is a widespread neurological disorder characterized by recurring seizures that have a significant impact on individuals' lives. Accurately recognizing epileptic seizures is crucial for proper diagnosis and treatment. Deep learning models have shown promise in improving seizure recognition accuracy. However, optimizing their performance for this task remains challenging. This study presents a new approach to optimize epileptic seizure recognition using deep learning models. The study employed a dataset of Electroencephalography (EEG) recordings from multiple subjects and trained nine deep learning architectures with different preprocessing techniques. By combining a 1D convolutional neural network (Conv1D) with a Long Short-Term Memory (LSTM) network, we developed the Conv1D + LSTM architecture. This architecture, augmented with dropout layers, achieved an effective test accuracy of 0.993. The LSTM architecture alone achieved a slightly lower accuracy of 0.986. Additionally, the Bidirectional LSTM (BiLSTM) and Gated Recurrent Unit (GRU) architectures performed exceptionally well, with accuracies of 0.983 and 0.984, respectively. Notably, standard scaling proved to be advantageous, significantly improving the accuracy of both BiLSTM and GRU compared to MinMax scaling. These models consistently achieved high test accuracies across different percentages of Principal Component Analysis (PCA), with the best results obtained when retaining 50% and 90% of the features. Chi-square feature selection also enhanced the classification performance of BiLSTM and GRU models. The study reveals that different deep learning architectures respond differently to feature scaling, PCA, and feature selection methods. Understanding these nuances can lead to optimized models for epileptic seizure recognition, ultimately improving patient outcomes and quality of life. |
Author | Omar, Ahmed Abd El-Hafeez, Tarek |
Author_xml | – sequence: 1 givenname: Ahmed surname: Omar fullname: Omar, Ahmed email: ahmed.omar@mu.edu.eg organization: Department of Computer Science, Faculty of Science, Minia University – sequence: 2 givenname: Tarek orcidid: 0000-0003-1785-1058 surname: Abd El-Hafeez fullname: Abd El-Hafeez, Tarek email: tarek@mu.edu.eg organization: Department of Computer Science, Faculty of Science, Minia University, Computer Science Unit, Deraya University |
BookMark | eNp9kE1LxDAQhoOs4K76BzwVPFcnH03aoyx-gbAXvQkhm07XSDepSRbRX2_rCoIHT8Mw7zMzPAsy88EjIWcULiiAukwAFaMlMF5Cw0CU8oDMqeC85FDVMzKHRoxjKfgRWaT0CgBC1tWcPK-G7Lbu0_lNgYPrcWxtkdB97iIWEW3YeJdd8MWAsQtxa7zF4t3ll6JDk6dQsqafcOPboo1hCLtc9OYDYzohh53pE57-1GPydHP9uLwrH1a398urh9JyyXNJlZQNZUahqmEtQQKgYOtWMEZpx1thWFMjmLWt0CrksmWmY0p0htWNsR0_Juf7vUMMbztMWb-GXfTjSc0aqhQwqOSYYvuUjSGliJ0eotua-KEp6Mmi3lvUo0X9bVFPUP0Hsi6bSUiOxvX_o3yPpvGO32D8_eof6guoZood |
CitedBy_id | crossref_primary_10_1016_j_ipm_2024_103770 crossref_primary_10_1007_s11042_024_20219_6 crossref_primary_10_1016_j_engappai_2024_108501 crossref_primary_10_1371_journal_pone_0306493 crossref_primary_10_1016_j_aej_2025_01_077 crossref_primary_10_1155_2024_5080332 crossref_primary_10_1016_j_asoc_2025_112937 crossref_primary_10_1016_j_ins_2024_120886 crossref_primary_10_3390_biomedinformatics4010023 crossref_primary_10_1007_s13369_024_09342_6 crossref_primary_10_1016_j_ins_2024_121659 crossref_primary_10_1016_j_compbiomed_2024_108592 crossref_primary_10_1016_j_heliyon_2024_e37165 crossref_primary_10_1016_j_heliyon_2024_e40134 crossref_primary_10_1088_2057_1976_ad3afd crossref_primary_10_1371_journal_pone_0303094 crossref_primary_10_3390_math12233661 crossref_primary_10_1007_s11042_024_20330_8 crossref_primary_10_1007_s11042_024_20336_2 crossref_primary_10_1016_j_comcom_2025_108055 crossref_primary_10_1038_s41598_025_89249_w crossref_primary_10_1016_j_neunet_2024_106789 crossref_primary_10_4015_S1016237224500212 crossref_primary_10_1016_j_eswa_2025_127260 crossref_primary_10_32628_CSEIT2410612405 crossref_primary_10_1016_j_jksuci_2024_102061 crossref_primary_10_1016_j_patrec_2024_06_025 crossref_primary_10_1038_s41387_024_00324_z crossref_primary_10_3390_app14135783 crossref_primary_10_1016_j_heliyon_2024_e41199 crossref_primary_10_1016_j_heliyon_2024_e37293 crossref_primary_10_1016_j_patcog_2025_111563 crossref_primary_10_1016_j_jobe_2024_110033 crossref_primary_10_1088_2631_8695_ad7a4f crossref_primary_10_1109_ACCESS_2024_3394447 crossref_primary_10_1016_j_compbiomed_2024_108646 crossref_primary_10_1007_s40815_024_01875_0 crossref_primary_10_1016_j_engappai_2024_109540 crossref_primary_10_1016_j_iot_2024_101287 crossref_primary_10_1007_s11042_024_19543_8 crossref_primary_10_1016_j_engappai_2025_110565 crossref_primary_10_1007_s11042_024_19584_z crossref_primary_10_1016_j_aej_2024_11_065 crossref_primary_10_3390_arm92050037 crossref_primary_10_1016_j_jare_2024_11_015 crossref_primary_10_1049_2024_4982277 crossref_primary_10_1177_10775463241283867 crossref_primary_10_1007_s00521_025_11068_x crossref_primary_10_1016_j_aej_2025_03_027 crossref_primary_10_1016_j_asoc_2024_112151 crossref_primary_10_1080_08839514_2025_2452675 crossref_primary_10_1016_j_engappai_2024_108637 crossref_primary_10_1016_j_heliyon_2025_e42993 crossref_primary_10_1016_j_neunet_2025_107319 crossref_primary_10_1177_20552076241280103 crossref_primary_10_1007_s00034_024_02975_w crossref_primary_10_1007_s13369_024_09409_4 crossref_primary_10_1016_j_smhl_2024_100536 crossref_primary_10_1016_j_swevo_2024_101769 crossref_primary_10_1016_j_heliyon_2024_e39929 crossref_primary_10_1016_j_sasc_2024_200115 crossref_primary_10_1186_s13321_024_00859_4 crossref_primary_10_1007_s11042_024_20466_7 crossref_primary_10_1016_j_eij_2024_100606 |
Cites_doi | 10.1016/j.procs.2019.12.082 10.9734/BJMCS/2014/7675 10.1016/j.bspc.2020.102215 10.1016/j.bspc.2017.07.022 10.3322/caac.21254 10.1007/s00521-017-3003-y 10.1016/j.patrec.2019.10.029 10.1007/s42235-022-00280-3 10.1016/j.eswa.2022.119032 10.1016/j.knosys.2019.105333 10.1007/s42979-023-01958-z 10.1016/j.advengsoft.2022.103190 10.1007/s13246-017-0610-y 10.3390/ijerph20065000 10.1016/j.cmpb.2018.04.005 10.1109/JBHI.2019.2933046 10.1007/s42979-023-01798-x 10.1016/j.cmpb.2016.08.013 10.1016/j.apacoust.2021.107941 10.21928/uhdjst.v3n2y2019.pp41-50 10.1109/EDiS49545.2020.9296466 10.1111/jop.13227 10.1016/j.jocs.2023.101943 10.1016/j.future.2023.07.004 10.1016/j.bspc.2021.102854 10.1007/978-3-319-93417-4_48 10.1007/978-3-030-89010-0_10 10.3390/a12060118 10.1007/978-3-030-21642-9_8 10.1016/j.seizure.2017.05.018 10.1109/ICAPR.2015.7050699 10.1007/11941439_114 10.1007/s00521-023-08832-2 10.3390/en13215592 10.1080/1206212X.2023.2256048 10.1109/JBHI.2014.2387795 10.1109/ACCESS.2020.2969055 10.1002/cnm.3573 10.5687/sss.2017.160 10.1109/ICECA.2018.8474658 10.1016/j.cmpb.2016.09.008 10.1109/TITB.2009.2017939 10.1109/JBHI.2015.2424074 10.1109/ICCE.2019.8661969 10.3389/fninf.2018.00095 10.1016/j.eswa.2019.03.021 10.1007/978-3-030-26050-7_44-1 10.1016/j.knosys.2018.10.029 10.1016/j.neunet.2018.04.018 10.1007/978-3-030-11800-6_9 10.13374/j.issn2095-9389.2021.01.13.002 10.1155/2022/8330833 10.1080/17455030.2023.2226246 10.1016/j.neucom.2016.08.050 10.1109/JBHI.2015.2457093 10.1109/ACCESS.2016.2585661 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00521-023-09204-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 2852 |
ExternalDocumentID | 10_1007_s00521_023_09204_6 |
GrantInformation_xml | – fundername: Minia University |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c363t-1766912a7e780b60600e42bd42211f3d4a298e0abc5ec7e36d2af274fa289acf3 |
IEDL.DBID | BENPR |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 22:21:32 EDT 2025 Tue Jul 01 03:04:45 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Fri Feb 21 02:41:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Conv1D LSTM Epileptic seizure recognition Feature scaling EEG Chi-square feature selection GRU BiLSTM PCA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-1766912a7e780b60600e42bd42211f3d4a298e0abc5ec7e36d2af274fa289acf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1785-1058 |
OpenAccessLink | https://link.springer.com/10.1007/s00521-023-09204-6 |
PQID | 2917702056 |
PQPubID | 2043988 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2917702056 crossref_primary_10_1007_s00521_023_09204_6 crossref_citationtrail_10_1007_s00521_023_09204_6 springer_journals_10_1007_s00521_023_09204_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240200 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Thara, PremaSudha, Xiong (CR13) 2019; 128 Faust, Hagiwara, Hong, Lih, Acharya (CR14) 2018; 161 Zhang, Guo, Yang, Chen, Lo (CR18) 2019; 24 CR39 CR38 CR36 CR35 CR34 CR33 Qaisar, Subasi (CR28) 2019; 163 Mahmoud, El Nashar, Abd-El-Hafeez, Khairy (CR47) 2014; 4 Lee, An (CR8) 2023; 213 Handa, Mathur, Goel (CR1) 2023; 4 Sharma, Pachori (CR31) 2015; 42 CR6 Ghanem, Erbay, Bakour (CR37) 2023; 4 CR49 Warin, Limprasert, Suebnukarn, Jinaporntham, Jantana (CR5) 2021; 50 CR46 CR45 CR44 CR43 CR42 CR41 CR40 Karasmanoglou, Antonakakis, Zervakis (CR2) 2023; 20 Jaiswal, Banka (CR58) 2018; 41 Hassan, Subasi, Zhang (CR30) 2020; 191 CR19 CR59 CR57 CR56 CR11 CR55 CR10 CR54 CR53 CR52 CR51 CR50 Hussain, Sadiq, Siuly, Rehman (CR15) 2021; 177 Alickovic, Kevric, Subasi (CR26) 2018; 39 Jaafar, Mohammadi (CR12) 2019; 3 Hassan, Subasi (CR29) 2016; 136 Varlı, Yılmaz (CR7) 2023; 67 Yao, Li, Ye, Huang, Cheng, Zhang (CR16) 2021; 64 Ahmed, Ahmad, Chehri, Jeon (CR4) 2023; 149 Siegel, Miller, Jemal (CR48) 2015; 65 Shankar, Khaing, Dandapat, Barma (CR32) 2021; 69 CR27 CR24 CR23 CR22 CR21 CR20 Subasi, Kevric, Canbaz (CR25) 2019; 31 CR62 Meddah, Zairi, Bessekri, Cherrih, Kedir-Talha (CR17) 2020; 2020 CR61 CR60 Skrobek (CR3) 2022; 173 Zhu, Guan, Li, He, Wang, Cai (CR9) 2023; 20 X Yao (9204_CR16) 2021; 64 9204_CR19 9204_CR10 9204_CR54 9204_CR11 9204_CR55 9204_CR56 9204_CR57 9204_CR59 A Shankar (9204_CR32) 2021; 69 R Ghanem (9204_CR37) 2023; 4 9204_CR50 9204_CR51 9204_CR52 E Alickovic (9204_CR26) 2018; 39 9204_CR53 D Skrobek (9204_CR3) 2022; 173 9204_CR43 9204_CR44 K Warin (9204_CR5) 2021; 50 9204_CR45 TM Mahmoud (9204_CR47) 2014; 4 Y Zhang (9204_CR18) 2019; 24 9204_CR46 9204_CR49 A Karasmanoglou (9204_CR2) 2023; 20 RL Siegel (9204_CR48) 2015; 65 K Meddah (9204_CR17) 2020; 2020 9204_CR40 9204_CR41 9204_CR42 DK Thara (9204_CR13) 2019; 128 C Lee (9204_CR8) 2023; 213 AR Hassan (9204_CR30) 2020; 191 O Faust (9204_CR14) 2018; 161 R Sharma (9204_CR31) 2015; 42 I Ahmed (9204_CR4) 2023; 149 9204_CR6 AR Hassan (9204_CR29) 2016; 136 9204_CR33 9204_CR34 9204_CR35 M Zhu (9204_CR9) 2023; 20 A Subasi (9204_CR25) 2019; 31 9204_CR36 9204_CR38 9204_CR39 AK Jaiswal (9204_CR58) 2018; 41 W Hussain (9204_CR15) 2021; 177 P Handa (9204_CR1) 2023; 4 ST Jaafar (9204_CR12) 2019; 3 9204_CR21 9204_CR22 9204_CR23 9204_CR24 9204_CR27 SM Qaisar (9204_CR28) 2019; 163 9204_CR60 9204_CR61 9204_CR62 9204_CR20 M Varlı (9204_CR7) 2023; 67 |
References_xml | – ident: CR45 – ident: CR22 – volume: 163 start-page: 30 year: 2019 end-page: 34 ident: CR28 article-title: Efficient epileptic seizure detection based on the event-driven processing publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2019.12.082 – volume: 4 start-page: 1184 issue: 9 year: 2014 end-page: 1201 ident: CR47 article-title: An Efficient Three-phase Email Spam Filtering publication-title: Br J Math Comput Sci doi: 10.9734/BJMCS/2014/7675 – ident: CR49 – ident: CR39 – ident: CR51 – volume: 64 year: 2021 ident: CR16 article-title: A robust deep learning approach for automatic classification of seizures against non-seizures publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102215 – volume: 39 start-page: 94 year: 2018 end-page: 102 ident: CR26 article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.07.022 – ident: CR35 – volume: 65 start-page: 5 issue: 1 year: 2015 end-page: 29 ident: CR48 article-title: Cancer statistics, 2015 publication-title: CA Cancer J Clin doi: 10.3322/caac.21254 – ident: CR54 – ident: CR61 – volume: 31 start-page: 317 year: 2019 end-page: 325 ident: CR25 article-title: Epileptic seizure detection using hybrid machine learning methods publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3003-y – ident: CR42 – volume: 128 start-page: 544 year: 2019 end-page: 550 ident: CR13 article-title: Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2019.10.029 – volume: 20 start-page: 612 issue: 2 year: 2023 end-page: 627 ident: CR9 article-title: sEMG-based lower limb motion prediction using CNN-LSTM with improved PCA optimization algorithm publication-title: J Bionic Eng doi: 10.1007/s42235-022-00280-3 – volume: 213 year: 2023 ident: CR8 article-title: LSTM-CNN model of drowsiness detection from multiple consciousness states acquired by EEG publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119032 – ident: CR21 – volume: 191 year: 2020 ident: CR30 article-title: Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105333 – ident: CR46 – volume: 4 start-page: 437 issue: 5 year: 2023 ident: CR1 article-title: EEG Datasets in Machine Learning Applications of Epilepsy Diagnosis and Seizure Detection publication-title: SN Comput Sci doi: 10.1007/s42979-023-01958-z – ident: CR19 – volume: 173 year: 2022 ident: CR3 article-title: Implementation of deep learning methods in prediction of adsorption processes publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2022.103190 – volume: 41 start-page: 81 issue: 1 year: 2018 end-page: 94 ident: CR58 article-title: Epileptic seizure detection in EEG signal using machine learning techniques publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-017-0610-y – ident: CR50 – volume: 20 start-page: 5000 issue: 6 year: 2023 ident: CR2 article-title: ECG-Based Semi-Supervised Anomaly Detection for Early Detection and Monitoring of Epileptic Seizures publication-title: Int J Env Res Public Health doi: 10.3390/ijerph20065000 – ident: CR11 – ident: CR57 – volume: 161 start-page: 1 year: 2018 end-page: 13 ident: CR14 article-title: Deep learning for healthcare applications based on physiological signals: A review publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.04.005 – ident: CR60 – ident: CR36 – volume: 24 start-page: 465 issue: 2 year: 2019 end-page: 474 ident: CR18 article-title: Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2019.2933046 – volume: 4 start-page: 380 issue: 4 year: 2023 ident: CR37 article-title: Contents-Based Spam Detection on Social Networks Using RoBERTa Embedding and Stacked BLSTM publication-title: SN Comput Sci doi: 10.1007/s42979-023-01798-x – ident: CR43 – ident: CR53 – ident: CR10 – ident: CR33 – ident: CR6 – volume: 136 start-page: 65 year: 2016 end-page: 77 ident: CR29 article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2016.08.013 – volume: 177 year: 2021 ident: CR15 article-title: Epileptic seizure detection using 1 D-convolutional long short-term memory neural networks publication-title: Appl Acoust doi: 10.1016/j.apacoust.2021.107941 – volume: 3 start-page: 41 issue: 2 year: 2019 end-page: 50 ident: CR12 article-title: Epileptic Seizure Detection using Deep Learning Approach publication-title: UHD J Sci Technol doi: 10.21928/uhdjst.v3n2y2019.pp41-50 – ident: CR56 – volume: 2020 start-page: 141 year: 2020 end-page: 146 ident: CR17 article-title: “FPGA implementation of Epileptic Seizure detection based on DWT, PCA and Support Vector Machine”, in publication-title: Second International Conference on Embedded & Distributed Systems (EDiS) doi: 10.1109/EDiS49545.2020.9296466 – ident: CR40 – ident: CR27 – volume: 50 start-page: 911 issue: 9 year: 2021 end-page: 918 ident: CR5 article-title: Automatic classification and detection of oral cancer in photographic images using deep learning algorithms publication-title: J Oral Pathol Med doi: 10.1111/jop.13227 – ident: CR23 – ident: CR44 – volume: 67 year: 2023 ident: CR7 article-title: Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning publication-title: J Comput Sci doi: 10.1016/j.jocs.2023.101943 – ident: CR38 – ident: CR52 – volume: 149 start-page: 1 year: 2023 end-page: 11 ident: CR4 article-title: A heterogeneous network embedded medicine recommendation system based on LSTM publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2023.07.004 – ident: CR34 – volume: 69 year: 2021 ident: CR32 article-title: Analysis of epileptic seizures based on EEG using recurrence plot images and deep learning publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102854 – ident: CR55 – volume: 42 start-page: 1106 issue: 3 year: 2015 end-page: 1117 ident: CR31 article-title: Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions publication-title: Classif Epileptic Seizures EEG Signals Based Phase Space Represent Intrinsic Mode Funct – ident: CR59 – ident: CR41 – ident: CR62 – ident: CR24 – ident: CR20 – ident: 9204_CR41 doi: 10.1007/978-3-319-93417-4_48 – ident: 9204_CR35 doi: 10.1007/978-3-030-89010-0_10 – ident: 9204_CR42 doi: 10.3390/a12060118 – ident: 9204_CR22 doi: 10.1007/978-3-030-21642-9_8 – volume: 213 year: 2023 ident: 9204_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119032 – ident: 9204_CR57 doi: 10.1016/j.seizure.2017.05.018 – volume: 24 start-page: 465 issue: 2 year: 2019 ident: 9204_CR18 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2019.2933046 – volume: 31 start-page: 317 year: 2019 ident: 9204_CR25 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3003-y – ident: 9204_CR39 doi: 10.1109/ICAPR.2015.7050699 – ident: 9204_CR40 – volume: 4 start-page: 1184 issue: 9 year: 2014 ident: 9204_CR47 publication-title: Br J Math Comput Sci doi: 10.9734/BJMCS/2014/7675 – ident: 9204_CR49 doi: 10.1007/11941439_114 – volume: 2020 start-page: 141 year: 2020 ident: 9204_CR17 publication-title: Second International Conference on Embedded & Distributed Systems (EDiS) doi: 10.1109/EDiS49545.2020.9296466 – ident: 9204_CR11 doi: 10.1007/s00521-023-08832-2 – volume: 173 year: 2022 ident: 9204_CR3 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2022.103190 – volume: 42 start-page: 1106 issue: 3 year: 2015 ident: 9204_CR31 publication-title: Classif Epileptic Seizures EEG Signals Based Phase Space Represent Intrinsic Mode Funct – volume: 20 start-page: 612 issue: 2 year: 2023 ident: 9204_CR9 publication-title: J Bionic Eng doi: 10.1007/s42235-022-00280-3 – ident: 9204_CR44 doi: 10.3390/en13215592 – ident: 9204_CR38 doi: 10.1080/1206212X.2023.2256048 – volume: 67 year: 2023 ident: 9204_CR7 publication-title: J Comput Sci doi: 10.1016/j.jocs.2023.101943 – volume: 136 start-page: 65 year: 2016 ident: 9204_CR29 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2016.08.013 – ident: 9204_CR51 doi: 10.1109/JBHI.2014.2387795 – volume: 41 start-page: 81 issue: 1 year: 2018 ident: 9204_CR58 publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-017-0610-y – ident: 9204_CR19 – volume: 149 start-page: 1 year: 2023 ident: 9204_CR4 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2023.07.004 – ident: 9204_CR61 doi: 10.1109/ACCESS.2020.2969055 – ident: 9204_CR33 doi: 10.1002/cnm.3573 – volume: 161 start-page: 1 year: 2018 ident: 9204_CR14 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.04.005 – volume: 128 start-page: 544 year: 2019 ident: 9204_CR13 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2019.10.029 – ident: 9204_CR36 doi: 10.5687/sss.2017.160 – ident: 9204_CR21 doi: 10.1109/ICECA.2018.8474658 – volume: 50 start-page: 911 issue: 9 year: 2021 ident: 9204_CR5 publication-title: J Oral Pathol Med doi: 10.1111/jop.13227 – ident: 9204_CR56 doi: 10.1016/j.cmpb.2016.09.008 – ident: 9204_CR50 doi: 10.1109/TITB.2009.2017939 – ident: 9204_CR43 – ident: 9204_CR55 doi: 10.1109/JBHI.2015.2424074 – ident: 9204_CR23 doi: 10.1109/ICCE.2019.8661969 – volume: 3 start-page: 41 issue: 2 year: 2019 ident: 9204_CR12 publication-title: UHD J Sci Technol doi: 10.21928/uhdjst.v3n2y2019.pp41-50 – volume: 4 start-page: 380 issue: 4 year: 2023 ident: 9204_CR37 publication-title: SN Comput Sci doi: 10.1007/s42979-023-01798-x – ident: 9204_CR27 doi: 10.3389/fninf.2018.00095 – volume: 163 start-page: 30 year: 2019 ident: 9204_CR28 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2019.12.082 – ident: 9204_CR60 doi: 10.1016/j.eswa.2019.03.021 – volume: 191 year: 2020 ident: 9204_CR30 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.105333 – ident: 9204_CR34 doi: 10.1007/978-3-030-26050-7_44-1 – volume: 69 year: 2021 ident: 9204_CR32 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102854 – volume: 39 start-page: 94 year: 2018 ident: 9204_CR26 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.07.022 – ident: 9204_CR46 – volume: 20 start-page: 5000 issue: 6 year: 2023 ident: 9204_CR2 publication-title: Int J Env Res Public Health doi: 10.3390/ijerph20065000 – ident: 9204_CR59 doi: 10.1016/j.knosys.2018.10.029 – ident: 9204_CR24 doi: 10.1016/j.neunet.2018.04.018 – volume: 177 year: 2021 ident: 9204_CR15 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2021.107941 – ident: 9204_CR20 doi: 10.1007/978-3-030-11800-6_9 – volume: 64 year: 2021 ident: 9204_CR16 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.102215 – volume: 65 start-page: 5 issue: 1 year: 2015 ident: 9204_CR48 publication-title: CA Cancer J Clin doi: 10.3322/caac.21254 – volume: 4 start-page: 437 issue: 5 year: 2023 ident: 9204_CR1 publication-title: SN Comput Sci doi: 10.1007/s42979-023-01958-z – ident: 9204_CR6 doi: 10.13374/j.issn2095-9389.2021.01.13.002 – ident: 9204_CR62 doi: 10.1155/2022/8330833 – ident: 9204_CR10 doi: 10.1080/17455030.2023.2226246 – ident: 9204_CR52 doi: 10.1016/j.neucom.2016.08.050 – ident: 9204_CR53 doi: 10.1109/JBHI.2015.2457093 – ident: 9204_CR54 doi: 10.1109/ACCESS.2016.2585661 – ident: 9204_CR45 |
SSID | ssj0004685 |
Score | 2.5921843 |
Snippet | Epilepsy is a widespread neurological disorder characterized by recurring seizures that have a significant impact on individuals' lives. Accurately recognizing... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2835 |
SubjectTerms | Accuracy Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Convulsions & seizures Data Mining and Knowledge Discovery Deep learning Electroencephalography Epilepsy Feature selection Image Processing and Computer Vision Machine learning Neurological diseases Optimization Original Article Principal components analysis Probability and Statistics in Computer Science Scaling Seizures |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA86L158i9MpOXjTQJek6Xoc4hiCenGwg1DS5CsMZjfW7rK_fl-ytlNRwWPJ4_A9mt8v-R6E3KaOJfQAmE25YojAgcWZNUwr3QMHSYxv0_n8ooYj-TQOx1VSWFFHu9dPkv5P3SS7uRtMpL5csCDmgWRql-yFjrujFY94_1M2pG_EibzFxfRIUaXK_LzH1-NoizG_PYv602ZwRA4qmEj7G70ekx3IT8hh3YKBVh55St5f0eU_JivchMIcPRw_DS1gslougDbRQbOczrcZAtRdvtIMfE1PWqCW3HKdW2pdz4RlSafaIfEzMho8vj0MWdUwgRmhROmLPcZdriOIekGK1CQIQPLUSo40LxNWah6jBnRqQjARCGW5zpCWZhpplzaZOCetfJbDBaGpjoXRsZEBuJpiIbIiHcY8NJxbgXpsk24tt8RU1cRdU4tp0tRB9rJOUNaJl3Wi2uSuWTPf1NL4c3anVkdS-VWRcGSXESLcEIfvaxVth3_f7fJ_06_IPlqW3IRnd0irXCzhGtFHmd54Y1sDINDQOQ priority: 102 providerName: Springer Nature |
Title | Optimizing epileptic seizure recognition performance with feature scaling and dropout layers |
URI | https://link.springer.com/article/10.1007/s00521-023-09204-6 https://www.proquest.com/docview/2917702056 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3DhjRiPKQduEFGSNmtPaBsbCMRDiEkgIVVpkkqToBtsu-zX42TpBkhwadWmzcHOw59j-wM4yixKiI2hOmOCogVuaJJrRaWQsbEmiXI0nbd34qoXXj9Hz97hNvJhleWa6BZqPVDWR37KEFc00LaJxPnwg1rWKHu66ik0lqGKS3CM4Kva6tw9PH7LjHSknIhhbHxPyH3ajEuesx5RfMs4DRIWhFT83JoW9uavI1K383TXYdWbjKQ50_EGLJliE9ZKOgbiZ-cWvN7j9H_vT7ETYoY42_FRkZHpTyefhswjhQYFGS6yBYh1xJLcuPqeZIQas7_LQhNt-RMmY_ImrVW-Db1u56l9RT15AlVc8LEr_JicMdkwjTjIEKYEgQlZpkOGkC_nOpQsQW3ITEVGNQwXmskcIWouEYJJlfMdqBSDwuwCyWTClUxUGBhbXyxChCSjhEWKMc1RpzU4K-WWKl9Z3BJcvKXzmshO1inKOnWyTkUNjuf_DGd1Nf79-qBUR-rn2ChdjIganJQqWjT_3dve_73twwpDy2UWmn0AlfHnxByi5THO6rAcdy_rUG22Llpde798uenU_aDD1rZo47XHml98Ttp2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOMCFHVFWH-AEFsFO0uaAEAJKgQIXkDggBceeSEglLV2E4KP4RsZu0gIS3Dhm8Sgajyfv2bMAbCWWJVQRuUlEyAmBI49So7kKVRUtJNGuTefVdVi_8y_ug_sSfBS5MDassvCJzlGblrZ75HuCeEWFsE0QHrZfuO0aZU9XixYaA7O4xLdXomzdg_MTmt9tIWqnt8d1nncV4FqGsucqIkb7QlWwUvUSwu-eh75IjC-IC6XS-EpE9Jkq0QHqCsrQCJUSd0sVcROlU0lyx2DClzKyK6paO_uSh-lagBJjstFEvsyTdFyqnt1_pbtCci8Sns_D7z_CEbr9cSDr_nO1WZjOASo7GljUHJQwm4eZovkDy33BAjzckLN5fnonIQzb5FvoUrMuPr33O8iGcUmtjLVHuQnMbvuyFF01UdYl-7DDVWaYsd0a-j3WVJYDLMLdvyh1CcazVobLwBIVSa0i7Xtoq5kFxMdUEIlAC2EkWVAZ9gu9xTqvY27baTTjYQVmp-uYdB07XcdhGXaGY9qDKh5_vr1WTEecr-huPLK_MuwWUzR6_Lu0lb-lbcJk_faqETfOry9XYUoQZhoEha_BeK_Tx3XCPL1kwxkag8f_tuxPys8P-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_CmodtkH92jVEt9VQ8WehBCNslCoW6Xdnvpr3eSfbSKCh6XPA4zO-T7kplvELqMDEtoa01URH0CCFyTMFaSCF-0tYEk0rbpfO77vYH7MPSGK1X8Ntu9fJLMaxqMSlOSNVMVN6vCN3ObCTSYMuKE1HGJv442gKnYh9qO31mpjLRNOYHDmPwelxVlMz_v8fVoWuLNb0-k9uTp7qLtAjLim9zHe2hNJ_top2zHgIvoPEDvLxD-H6MFbIJ1CtEOnxLP9Ggxn2pcZQpNEpwuqwWwuYjFsbb6nngGHjPLRaKwMv0T5hkeC4PKD9Gge_fW6ZGieQKRzGeZFX4MW1QEOmg7EdAUx9EujZRLgfLFTLmChuANEUlPy0AzX1ERA0WNBVAwIWN2hGrJJNHHCEciZFKE0nW00RfzgCEJL6SepFQx8GkdtUq7cVkoi5sGF2NeaSJbW3OwNbe25n4dXVVr0lxX48_ZjdIdvIixGafANANAux4MX5cuWg7_vtvJ_6ZfoM3X2y5_uu8_nqItCqAmz9puoFo2neszACVZdG7_u09rxddS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+epileptic+seizure+recognition+performance+with+feature+scaling+and+dropout+layers&rft.jtitle=Neural+computing+%26+applications&rft.au=Omar%2C+Ahmed&rft.au=Abd+El-Hafeez%2C+Tarek&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=6&rft.spage=2835&rft.epage=2852&rft_id=info:doi/10.1007%2Fs00521-023-09204-6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |