Optimizing epileptic seizure recognition performance with feature scaling and dropout layers

Epilepsy is a widespread neurological disorder characterized by recurring seizures that have a significant impact on individuals' lives. Accurately recognizing epileptic seizures is crucial for proper diagnosis and treatment. Deep learning models have shown promise in improving seizure recognit...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 36; no. 6; pp. 2835 - 2852
Main Authors Omar, Ahmed, Abd El-Hafeez, Tarek
Format Journal Article
LanguageEnglish
Published London Springer London 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epilepsy is a widespread neurological disorder characterized by recurring seizures that have a significant impact on individuals' lives. Accurately recognizing epileptic seizures is crucial for proper diagnosis and treatment. Deep learning models have shown promise in improving seizure recognition accuracy. However, optimizing their performance for this task remains challenging. This study presents a new approach to optimize epileptic seizure recognition using deep learning models. The study employed a dataset of Electroencephalography (EEG) recordings from multiple subjects and trained nine deep learning architectures with different preprocessing techniques. By combining a 1D convolutional neural network (Conv1D) with a Long Short-Term Memory (LSTM) network, we developed the Conv1D + LSTM architecture. This architecture, augmented with dropout layers, achieved an effective test accuracy of 0.993. The LSTM architecture alone achieved a slightly lower accuracy of 0.986. Additionally, the Bidirectional LSTM (BiLSTM) and Gated Recurrent Unit (GRU) architectures performed exceptionally well, with accuracies of 0.983 and 0.984, respectively. Notably, standard scaling proved to be advantageous, significantly improving the accuracy of both BiLSTM and GRU compared to MinMax scaling. These models consistently achieved high test accuracies across different percentages of Principal Component Analysis (PCA), with the best results obtained when retaining 50% and 90% of the features. Chi-square feature selection also enhanced the classification performance of BiLSTM and GRU models. The study reveals that different deep learning architectures respond differently to feature scaling, PCA, and feature selection methods. Understanding these nuances can lead to optimized models for epileptic seizure recognition, ultimately improving patient outcomes and quality of life.
AbstractList Epilepsy is a widespread neurological disorder characterized by recurring seizures that have a significant impact on individuals' lives. Accurately recognizing epileptic seizures is crucial for proper diagnosis and treatment. Deep learning models have shown promise in improving seizure recognition accuracy. However, optimizing their performance for this task remains challenging. This study presents a new approach to optimize epileptic seizure recognition using deep learning models. The study employed a dataset of Electroencephalography (EEG) recordings from multiple subjects and trained nine deep learning architectures with different preprocessing techniques. By combining a 1D convolutional neural network (Conv1D) with a Long Short-Term Memory (LSTM) network, we developed the Conv1D + LSTM architecture. This architecture, augmented with dropout layers, achieved an effective test accuracy of 0.993. The LSTM architecture alone achieved a slightly lower accuracy of 0.986. Additionally, the Bidirectional LSTM (BiLSTM) and Gated Recurrent Unit (GRU) architectures performed exceptionally well, with accuracies of 0.983 and 0.984, respectively. Notably, standard scaling proved to be advantageous, significantly improving the accuracy of both BiLSTM and GRU compared to MinMax scaling. These models consistently achieved high test accuracies across different percentages of Principal Component Analysis (PCA), with the best results obtained when retaining 50% and 90% of the features. Chi-square feature selection also enhanced the classification performance of BiLSTM and GRU models. The study reveals that different deep learning architectures respond differently to feature scaling, PCA, and feature selection methods. Understanding these nuances can lead to optimized models for epileptic seizure recognition, ultimately improving patient outcomes and quality of life.
Author Omar, Ahmed
Abd El-Hafeez, Tarek
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Omar
  fullname: Omar, Ahmed
  email: ahmed.omar@mu.edu.eg
  organization: Department of Computer Science, Faculty of Science, Minia University
– sequence: 2
  givenname: Tarek
  orcidid: 0000-0003-1785-1058
  surname: Abd El-Hafeez
  fullname: Abd El-Hafeez, Tarek
  email: tarek@mu.edu.eg
  organization: Department of Computer Science, Faculty of Science, Minia University, Computer Science Unit, Deraya University
BookMark eNp9kE1LxDAQhoOs4K76BzwVPFcnH03aoyx-gbAXvQkhm07XSDepSRbRX2_rCoIHT8Mw7zMzPAsy88EjIWcULiiAukwAFaMlMF5Cw0CU8oDMqeC85FDVMzKHRoxjKfgRWaT0CgBC1tWcPK-G7Lbu0_lNgYPrcWxtkdB97iIWEW3YeJdd8MWAsQtxa7zF4t3ll6JDk6dQsqafcOPboo1hCLtc9OYDYzohh53pE57-1GPydHP9uLwrH1a398urh9JyyXNJlZQNZUahqmEtQQKgYOtWMEZpx1thWFMjmLWt0CrksmWmY0p0htWNsR0_Juf7vUMMbztMWb-GXfTjSc0aqhQwqOSYYvuUjSGliJ0eotua-KEp6Mmi3lvUo0X9bVFPUP0Hsi6bSUiOxvX_o3yPpvGO32D8_eof6guoZood
CitedBy_id crossref_primary_10_1016_j_ipm_2024_103770
crossref_primary_10_1007_s11042_024_20219_6
crossref_primary_10_1016_j_engappai_2024_108501
crossref_primary_10_1371_journal_pone_0306493
crossref_primary_10_1016_j_aej_2025_01_077
crossref_primary_10_1155_2024_5080332
crossref_primary_10_1016_j_asoc_2025_112937
crossref_primary_10_1016_j_ins_2024_120886
crossref_primary_10_3390_biomedinformatics4010023
crossref_primary_10_1007_s13369_024_09342_6
crossref_primary_10_1016_j_ins_2024_121659
crossref_primary_10_1016_j_compbiomed_2024_108592
crossref_primary_10_1016_j_heliyon_2024_e37165
crossref_primary_10_1016_j_heliyon_2024_e40134
crossref_primary_10_1088_2057_1976_ad3afd
crossref_primary_10_1371_journal_pone_0303094
crossref_primary_10_3390_math12233661
crossref_primary_10_1007_s11042_024_20330_8
crossref_primary_10_1007_s11042_024_20336_2
crossref_primary_10_1016_j_comcom_2025_108055
crossref_primary_10_1038_s41598_025_89249_w
crossref_primary_10_1016_j_neunet_2024_106789
crossref_primary_10_4015_S1016237224500212
crossref_primary_10_1016_j_eswa_2025_127260
crossref_primary_10_32628_CSEIT2410612405
crossref_primary_10_1016_j_jksuci_2024_102061
crossref_primary_10_1016_j_patrec_2024_06_025
crossref_primary_10_1038_s41387_024_00324_z
crossref_primary_10_3390_app14135783
crossref_primary_10_1016_j_heliyon_2024_e41199
crossref_primary_10_1016_j_heliyon_2024_e37293
crossref_primary_10_1016_j_patcog_2025_111563
crossref_primary_10_1016_j_jobe_2024_110033
crossref_primary_10_1088_2631_8695_ad7a4f
crossref_primary_10_1109_ACCESS_2024_3394447
crossref_primary_10_1016_j_compbiomed_2024_108646
crossref_primary_10_1007_s40815_024_01875_0
crossref_primary_10_1016_j_engappai_2024_109540
crossref_primary_10_1016_j_iot_2024_101287
crossref_primary_10_1007_s11042_024_19543_8
crossref_primary_10_1016_j_engappai_2025_110565
crossref_primary_10_1007_s11042_024_19584_z
crossref_primary_10_1016_j_aej_2024_11_065
crossref_primary_10_3390_arm92050037
crossref_primary_10_1016_j_jare_2024_11_015
crossref_primary_10_1049_2024_4982277
crossref_primary_10_1177_10775463241283867
crossref_primary_10_1007_s00521_025_11068_x
crossref_primary_10_1016_j_aej_2025_03_027
crossref_primary_10_1016_j_asoc_2024_112151
crossref_primary_10_1080_08839514_2025_2452675
crossref_primary_10_1016_j_engappai_2024_108637
crossref_primary_10_1016_j_heliyon_2025_e42993
crossref_primary_10_1016_j_neunet_2025_107319
crossref_primary_10_1177_20552076241280103
crossref_primary_10_1007_s00034_024_02975_w
crossref_primary_10_1007_s13369_024_09409_4
crossref_primary_10_1016_j_smhl_2024_100536
crossref_primary_10_1016_j_swevo_2024_101769
crossref_primary_10_1016_j_heliyon_2024_e39929
crossref_primary_10_1016_j_sasc_2024_200115
crossref_primary_10_1186_s13321_024_00859_4
crossref_primary_10_1007_s11042_024_20466_7
crossref_primary_10_1016_j_eij_2024_100606
Cites_doi 10.1016/j.procs.2019.12.082
10.9734/BJMCS/2014/7675
10.1016/j.bspc.2020.102215
10.1016/j.bspc.2017.07.022
10.3322/caac.21254
10.1007/s00521-017-3003-y
10.1016/j.patrec.2019.10.029
10.1007/s42235-022-00280-3
10.1016/j.eswa.2022.119032
10.1016/j.knosys.2019.105333
10.1007/s42979-023-01958-z
10.1016/j.advengsoft.2022.103190
10.1007/s13246-017-0610-y
10.3390/ijerph20065000
10.1016/j.cmpb.2018.04.005
10.1109/JBHI.2019.2933046
10.1007/s42979-023-01798-x
10.1016/j.cmpb.2016.08.013
10.1016/j.apacoust.2021.107941
10.21928/uhdjst.v3n2y2019.pp41-50
10.1109/EDiS49545.2020.9296466
10.1111/jop.13227
10.1016/j.jocs.2023.101943
10.1016/j.future.2023.07.004
10.1016/j.bspc.2021.102854
10.1007/978-3-319-93417-4_48
10.1007/978-3-030-89010-0_10
10.3390/a12060118
10.1007/978-3-030-21642-9_8
10.1016/j.seizure.2017.05.018
10.1109/ICAPR.2015.7050699
10.1007/11941439_114
10.1007/s00521-023-08832-2
10.3390/en13215592
10.1080/1206212X.2023.2256048
10.1109/JBHI.2014.2387795
10.1109/ACCESS.2020.2969055
10.1002/cnm.3573
10.5687/sss.2017.160
10.1109/ICECA.2018.8474658
10.1016/j.cmpb.2016.09.008
10.1109/TITB.2009.2017939
10.1109/JBHI.2015.2424074
10.1109/ICCE.2019.8661969
10.3389/fninf.2018.00095
10.1016/j.eswa.2019.03.021
10.1007/978-3-030-26050-7_44-1
10.1016/j.knosys.2018.10.029
10.1016/j.neunet.2018.04.018
10.1007/978-3-030-11800-6_9
10.13374/j.issn2095-9389.2021.01.13.002
10.1155/2022/8330833
10.1080/17455030.2023.2226246
10.1016/j.neucom.2016.08.050
10.1109/JBHI.2015.2457093
10.1109/ACCESS.2016.2585661
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00521-023-09204-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 2852
ExternalDocumentID 10_1007_s00521_023_09204_6
GrantInformation_xml – fundername: Minia University
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c363t-1766912a7e780b60600e42bd42211f3d4a298e0abc5ec7e36d2af274fa289acf3
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 22:21:32 EDT 2025
Tue Jul 01 03:04:45 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Fri Feb 21 02:41:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Conv1D
LSTM
Epileptic seizure recognition
Feature scaling
EEG
Chi-square feature selection
GRU
BiLSTM
PCA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-1766912a7e780b60600e42bd42211f3d4a298e0abc5ec7e36d2af274fa289acf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1785-1058
OpenAccessLink https://link.springer.com/10.1007/s00521-023-09204-6
PQID 2917702056
PQPubID 2043988
PageCount 18
ParticipantIDs proquest_journals_2917702056
crossref_primary_10_1007_s00521_023_09204_6
crossref_citationtrail_10_1007_s00521_023_09204_6
springer_journals_10_1007_s00521_023_09204_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Thara, PremaSudha, Xiong (CR13) 2019; 128
Faust, Hagiwara, Hong, Lih, Acharya (CR14) 2018; 161
Zhang, Guo, Yang, Chen, Lo (CR18) 2019; 24
CR39
CR38
CR36
CR35
CR34
CR33
Qaisar, Subasi (CR28) 2019; 163
Mahmoud, El Nashar, Abd-El-Hafeez, Khairy (CR47) 2014; 4
Lee, An (CR8) 2023; 213
Handa, Mathur, Goel (CR1) 2023; 4
Sharma, Pachori (CR31) 2015; 42
CR6
Ghanem, Erbay, Bakour (CR37) 2023; 4
CR49
Warin, Limprasert, Suebnukarn, Jinaporntham, Jantana (CR5) 2021; 50
CR46
CR45
CR44
CR43
CR42
CR41
CR40
Karasmanoglou, Antonakakis, Zervakis (CR2) 2023; 20
Jaiswal, Banka (CR58) 2018; 41
Hassan, Subasi, Zhang (CR30) 2020; 191
CR19
CR59
CR57
CR56
CR11
CR55
CR10
CR54
CR53
CR52
CR51
CR50
Hussain, Sadiq, Siuly, Rehman (CR15) 2021; 177
Alickovic, Kevric, Subasi (CR26) 2018; 39
Jaafar, Mohammadi (CR12) 2019; 3
Hassan, Subasi (CR29) 2016; 136
Varlı, Yılmaz (CR7) 2023; 67
Yao, Li, Ye, Huang, Cheng, Zhang (CR16) 2021; 64
Ahmed, Ahmad, Chehri, Jeon (CR4) 2023; 149
Siegel, Miller, Jemal (CR48) 2015; 65
Shankar, Khaing, Dandapat, Barma (CR32) 2021; 69
CR27
CR24
CR23
CR22
CR21
CR20
Subasi, Kevric, Canbaz (CR25) 2019; 31
CR62
Meddah, Zairi, Bessekri, Cherrih, Kedir-Talha (CR17) 2020; 2020
CR61
CR60
Skrobek (CR3) 2022; 173
Zhu, Guan, Li, He, Wang, Cai (CR9) 2023; 20
X Yao (9204_CR16) 2021; 64
9204_CR19
9204_CR10
9204_CR54
9204_CR11
9204_CR55
9204_CR56
9204_CR57
9204_CR59
A Shankar (9204_CR32) 2021; 69
R Ghanem (9204_CR37) 2023; 4
9204_CR50
9204_CR51
9204_CR52
E Alickovic (9204_CR26) 2018; 39
9204_CR53
D Skrobek (9204_CR3) 2022; 173
9204_CR43
9204_CR44
K Warin (9204_CR5) 2021; 50
9204_CR45
TM Mahmoud (9204_CR47) 2014; 4
Y Zhang (9204_CR18) 2019; 24
9204_CR46
9204_CR49
A Karasmanoglou (9204_CR2) 2023; 20
RL Siegel (9204_CR48) 2015; 65
K Meddah (9204_CR17) 2020; 2020
9204_CR40
9204_CR41
9204_CR42
DK Thara (9204_CR13) 2019; 128
C Lee (9204_CR8) 2023; 213
AR Hassan (9204_CR30) 2020; 191
O Faust (9204_CR14) 2018; 161
R Sharma (9204_CR31) 2015; 42
I Ahmed (9204_CR4) 2023; 149
9204_CR6
AR Hassan (9204_CR29) 2016; 136
9204_CR33
9204_CR34
9204_CR35
M Zhu (9204_CR9) 2023; 20
A Subasi (9204_CR25) 2019; 31
9204_CR36
9204_CR38
9204_CR39
AK Jaiswal (9204_CR58) 2018; 41
W Hussain (9204_CR15) 2021; 177
P Handa (9204_CR1) 2023; 4
ST Jaafar (9204_CR12) 2019; 3
9204_CR21
9204_CR22
9204_CR23
9204_CR24
9204_CR27
SM Qaisar (9204_CR28) 2019; 163
9204_CR60
9204_CR61
9204_CR62
9204_CR20
M Varlı (9204_CR7) 2023; 67
References_xml – ident: CR45
– ident: CR22
– volume: 163
  start-page: 30
  year: 2019
  end-page: 34
  ident: CR28
  article-title: Efficient epileptic seizure detection based on the event-driven processing
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2019.12.082
– volume: 4
  start-page: 1184
  issue: 9
  year: 2014
  end-page: 1201
  ident: CR47
  article-title: An Efficient Three-phase Email Spam Filtering
  publication-title: Br J Math Comput Sci
  doi: 10.9734/BJMCS/2014/7675
– ident: CR49
– ident: CR39
– ident: CR51
– volume: 64
  year: 2021
  ident: CR16
  article-title: A robust deep learning approach for automatic classification of seizures against non-seizures
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102215
– volume: 39
  start-page: 94
  year: 2018
  end-page: 102
  ident: CR26
  article-title: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.07.022
– ident: CR35
– volume: 65
  start-page: 5
  issue: 1
  year: 2015
  end-page: 29
  ident: CR48
  article-title: Cancer statistics, 2015
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21254
– ident: CR54
– ident: CR61
– volume: 31
  start-page: 317
  year: 2019
  end-page: 325
  ident: CR25
  article-title: Epileptic seizure detection using hybrid machine learning methods
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3003-y
– ident: CR42
– volume: 128
  start-page: 544
  year: 2019
  end-page: 550
  ident: CR13
  article-title: Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2019.10.029
– volume: 20
  start-page: 612
  issue: 2
  year: 2023
  end-page: 627
  ident: CR9
  article-title: sEMG-based lower limb motion prediction using CNN-LSTM with improved PCA optimization algorithm
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-022-00280-3
– volume: 213
  year: 2023
  ident: CR8
  article-title: LSTM-CNN model of drowsiness detection from multiple consciousness states acquired by EEG
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119032
– ident: CR21
– volume: 191
  year: 2020
  ident: CR30
  article-title: Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105333
– ident: CR46
– volume: 4
  start-page: 437
  issue: 5
  year: 2023
  ident: CR1
  article-title: EEG Datasets in Machine Learning Applications of Epilepsy Diagnosis and Seizure Detection
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-023-01958-z
– ident: CR19
– volume: 173
  year: 2022
  ident: CR3
  article-title: Implementation of deep learning methods in prediction of adsorption processes
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2022.103190
– volume: 41
  start-page: 81
  issue: 1
  year: 2018
  end-page: 94
  ident: CR58
  article-title: Epileptic seizure detection in EEG signal using machine learning techniques
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-017-0610-y
– ident: CR50
– volume: 20
  start-page: 5000
  issue: 6
  year: 2023
  ident: CR2
  article-title: ECG-Based Semi-Supervised Anomaly Detection for Early Detection and Monitoring of Epileptic Seizures
  publication-title: Int J Env Res Public Health
  doi: 10.3390/ijerph20065000
– ident: CR11
– ident: CR57
– volume: 161
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR14
  article-title: Deep learning for healthcare applications based on physiological signals: A review
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.04.005
– ident: CR60
– ident: CR36
– volume: 24
  start-page: 465
  issue: 2
  year: 2019
  end-page: 474
  ident: CR18
  article-title: Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2019.2933046
– volume: 4
  start-page: 380
  issue: 4
  year: 2023
  ident: CR37
  article-title: Contents-Based Spam Detection on Social Networks Using RoBERTa Embedding and Stacked BLSTM
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-023-01798-x
– ident: CR43
– ident: CR53
– ident: CR10
– ident: CR33
– ident: CR6
– volume: 136
  start-page: 65
  year: 2016
  end-page: 77
  ident: CR29
  article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.08.013
– volume: 177
  year: 2021
  ident: CR15
  article-title: Epileptic seizure detection using 1 D-convolutional long short-term memory neural networks
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2021.107941
– volume: 3
  start-page: 41
  issue: 2
  year: 2019
  end-page: 50
  ident: CR12
  article-title: Epileptic Seizure Detection using Deep Learning Approach
  publication-title: UHD J Sci Technol
  doi: 10.21928/uhdjst.v3n2y2019.pp41-50
– ident: CR56
– volume: 2020
  start-page: 141
  year: 2020
  end-page: 146
  ident: CR17
  article-title: “FPGA implementation of Epileptic Seizure detection based on DWT, PCA and Support Vector Machine”, in
  publication-title: Second International Conference on Embedded & Distributed Systems (EDiS)
  doi: 10.1109/EDiS49545.2020.9296466
– ident: CR40
– ident: CR27
– volume: 50
  start-page: 911
  issue: 9
  year: 2021
  end-page: 918
  ident: CR5
  article-title: Automatic classification and detection of oral cancer in photographic images using deep learning algorithms
  publication-title: J Oral Pathol Med
  doi: 10.1111/jop.13227
– ident: CR23
– ident: CR44
– volume: 67
  year: 2023
  ident: CR7
  article-title: Multiple classification of EEG signals and epileptic seizure diagnosis with combined deep learning
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2023.101943
– ident: CR38
– ident: CR52
– volume: 149
  start-page: 1
  year: 2023
  end-page: 11
  ident: CR4
  article-title: A heterogeneous network embedded medicine recommendation system based on LSTM
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2023.07.004
– ident: CR34
– volume: 69
  year: 2021
  ident: CR32
  article-title: Analysis of epileptic seizures based on EEG using recurrence plot images and deep learning
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102854
– ident: CR55
– volume: 42
  start-page: 1106
  issue: 3
  year: 2015
  end-page: 1117
  ident: CR31
  article-title: Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions
  publication-title: Classif Epileptic Seizures EEG Signals Based Phase Space Represent Intrinsic Mode Funct
– ident: CR59
– ident: CR41
– ident: CR62
– ident: CR24
– ident: CR20
– ident: 9204_CR41
  doi: 10.1007/978-3-319-93417-4_48
– ident: 9204_CR35
  doi: 10.1007/978-3-030-89010-0_10
– ident: 9204_CR42
  doi: 10.3390/a12060118
– ident: 9204_CR22
  doi: 10.1007/978-3-030-21642-9_8
– volume: 213
  year: 2023
  ident: 9204_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119032
– ident: 9204_CR57
  doi: 10.1016/j.seizure.2017.05.018
– volume: 24
  start-page: 465
  issue: 2
  year: 2019
  ident: 9204_CR18
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2019.2933046
– volume: 31
  start-page: 317
  year: 2019
  ident: 9204_CR25
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3003-y
– ident: 9204_CR39
  doi: 10.1109/ICAPR.2015.7050699
– ident: 9204_CR40
– volume: 4
  start-page: 1184
  issue: 9
  year: 2014
  ident: 9204_CR47
  publication-title: Br J Math Comput Sci
  doi: 10.9734/BJMCS/2014/7675
– ident: 9204_CR49
  doi: 10.1007/11941439_114
– volume: 2020
  start-page: 141
  year: 2020
  ident: 9204_CR17
  publication-title: Second International Conference on Embedded & Distributed Systems (EDiS)
  doi: 10.1109/EDiS49545.2020.9296466
– ident: 9204_CR11
  doi: 10.1007/s00521-023-08832-2
– volume: 173
  year: 2022
  ident: 9204_CR3
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2022.103190
– volume: 42
  start-page: 1106
  issue: 3
  year: 2015
  ident: 9204_CR31
  publication-title: Classif Epileptic Seizures EEG Signals Based Phase Space Represent Intrinsic Mode Funct
– volume: 20
  start-page: 612
  issue: 2
  year: 2023
  ident: 9204_CR9
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-022-00280-3
– ident: 9204_CR44
  doi: 10.3390/en13215592
– ident: 9204_CR38
  doi: 10.1080/1206212X.2023.2256048
– volume: 67
  year: 2023
  ident: 9204_CR7
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2023.101943
– volume: 136
  start-page: 65
  year: 2016
  ident: 9204_CR29
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.08.013
– ident: 9204_CR51
  doi: 10.1109/JBHI.2014.2387795
– volume: 41
  start-page: 81
  issue: 1
  year: 2018
  ident: 9204_CR58
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-017-0610-y
– ident: 9204_CR19
– volume: 149
  start-page: 1
  year: 2023
  ident: 9204_CR4
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2023.07.004
– ident: 9204_CR61
  doi: 10.1109/ACCESS.2020.2969055
– ident: 9204_CR33
  doi: 10.1002/cnm.3573
– volume: 161
  start-page: 1
  year: 2018
  ident: 9204_CR14
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 128
  start-page: 544
  year: 2019
  ident: 9204_CR13
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2019.10.029
– ident: 9204_CR36
  doi: 10.5687/sss.2017.160
– ident: 9204_CR21
  doi: 10.1109/ICECA.2018.8474658
– volume: 50
  start-page: 911
  issue: 9
  year: 2021
  ident: 9204_CR5
  publication-title: J Oral Pathol Med
  doi: 10.1111/jop.13227
– ident: 9204_CR56
  doi: 10.1016/j.cmpb.2016.09.008
– ident: 9204_CR50
  doi: 10.1109/TITB.2009.2017939
– ident: 9204_CR43
– ident: 9204_CR55
  doi: 10.1109/JBHI.2015.2424074
– ident: 9204_CR23
  doi: 10.1109/ICCE.2019.8661969
– volume: 3
  start-page: 41
  issue: 2
  year: 2019
  ident: 9204_CR12
  publication-title: UHD J Sci Technol
  doi: 10.21928/uhdjst.v3n2y2019.pp41-50
– volume: 4
  start-page: 380
  issue: 4
  year: 2023
  ident: 9204_CR37
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-023-01798-x
– ident: 9204_CR27
  doi: 10.3389/fninf.2018.00095
– volume: 163
  start-page: 30
  year: 2019
  ident: 9204_CR28
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2019.12.082
– ident: 9204_CR60
  doi: 10.1016/j.eswa.2019.03.021
– volume: 191
  year: 2020
  ident: 9204_CR30
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.105333
– ident: 9204_CR34
  doi: 10.1007/978-3-030-26050-7_44-1
– volume: 69
  year: 2021
  ident: 9204_CR32
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102854
– volume: 39
  start-page: 94
  year: 2018
  ident: 9204_CR26
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.07.022
– ident: 9204_CR46
– volume: 20
  start-page: 5000
  issue: 6
  year: 2023
  ident: 9204_CR2
  publication-title: Int J Env Res Public Health
  doi: 10.3390/ijerph20065000
– ident: 9204_CR59
  doi: 10.1016/j.knosys.2018.10.029
– ident: 9204_CR24
  doi: 10.1016/j.neunet.2018.04.018
– volume: 177
  year: 2021
  ident: 9204_CR15
  publication-title: Appl Acoust
  doi: 10.1016/j.apacoust.2021.107941
– ident: 9204_CR20
  doi: 10.1007/978-3-030-11800-6_9
– volume: 64
  year: 2021
  ident: 9204_CR16
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102215
– volume: 65
  start-page: 5
  issue: 1
  year: 2015
  ident: 9204_CR48
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21254
– volume: 4
  start-page: 437
  issue: 5
  year: 2023
  ident: 9204_CR1
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-023-01958-z
– ident: 9204_CR6
  doi: 10.13374/j.issn2095-9389.2021.01.13.002
– ident: 9204_CR62
  doi: 10.1155/2022/8330833
– ident: 9204_CR10
  doi: 10.1080/17455030.2023.2226246
– ident: 9204_CR52
  doi: 10.1016/j.neucom.2016.08.050
– ident: 9204_CR53
  doi: 10.1109/JBHI.2015.2457093
– ident: 9204_CR54
  doi: 10.1109/ACCESS.2016.2585661
– ident: 9204_CR45
SSID ssj0004685
Score 2.5921843
Snippet Epilepsy is a widespread neurological disorder characterized by recurring seizures that have a significant impact on individuals' lives. Accurately recognizing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2835
SubjectTerms Accuracy
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Convulsions & seizures
Data Mining and Knowledge Discovery
Deep learning
Electroencephalography
Epilepsy
Feature selection
Image Processing and Computer Vision
Machine learning
Neurological diseases
Optimization
Original Article
Principal components analysis
Probability and Statistics in Computer Science
Scaling
Seizures
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA86L158i9MpOXjTQJek6Xoc4hiCenGwg1DS5CsMZjfW7rK_fl-ytlNRwWPJ4_A9mt8v-R6E3KaOJfQAmE25YojAgcWZNUwr3QMHSYxv0_n8ooYj-TQOx1VSWFFHu9dPkv5P3SS7uRtMpL5csCDmgWRql-yFjrujFY94_1M2pG_EibzFxfRIUaXK_LzH1-NoizG_PYv602ZwRA4qmEj7G70ekx3IT8hh3YKBVh55St5f0eU_JivchMIcPRw_DS1gslougDbRQbOczrcZAtRdvtIMfE1PWqCW3HKdW2pdz4RlSafaIfEzMho8vj0MWdUwgRmhROmLPcZdriOIekGK1CQIQPLUSo40LxNWah6jBnRqQjARCGW5zpCWZhpplzaZOCetfJbDBaGpjoXRsZEBuJpiIbIiHcY8NJxbgXpsk24tt8RU1cRdU4tp0tRB9rJOUNaJl3Wi2uSuWTPf1NL4c3anVkdS-VWRcGSXESLcEIfvaxVth3_f7fJ_06_IPlqW3IRnd0irXCzhGtFHmd54Y1sDINDQOQ
  priority: 102
  providerName: Springer Nature
Title Optimizing epileptic seizure recognition performance with feature scaling and dropout layers
URI https://link.springer.com/article/10.1007/s00521-023-09204-6
https://www.proquest.com/docview/2917702056
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3DhjRiPKQduEFGSNmtPaBsbCMRDiEkgIVVpkkqToBtsu-zX42TpBkhwadWmzcHOw59j-wM4yixKiI2hOmOCogVuaJJrRaWQsbEmiXI0nbd34qoXXj9Hz97hNvJhleWa6BZqPVDWR37KEFc00LaJxPnwg1rWKHu66ik0lqGKS3CM4Kva6tw9PH7LjHSknIhhbHxPyH3ajEuesx5RfMs4DRIWhFT83JoW9uavI1K383TXYdWbjKQ50_EGLJliE9ZKOgbiZ-cWvN7j9H_vT7ETYoY42_FRkZHpTyefhswjhQYFGS6yBYh1xJLcuPqeZIQas7_LQhNt-RMmY_ImrVW-Db1u56l9RT15AlVc8LEr_JicMdkwjTjIEKYEgQlZpkOGkC_nOpQsQW3ITEVGNQwXmskcIWouEYJJlfMdqBSDwuwCyWTClUxUGBhbXyxChCSjhEWKMc1RpzU4K-WWKl9Z3BJcvKXzmshO1inKOnWyTkUNjuf_DGd1Nf79-qBUR-rn2ChdjIganJQqWjT_3dve_73twwpDy2UWmn0AlfHnxByi5THO6rAcdy_rUG22Llpde798uenU_aDD1rZo47XHml98Ttp2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOMCFHVFWH-AEFsFO0uaAEAJKgQIXkDggBceeSEglLV2E4KP4RsZu0gIS3Dhm8Sgajyfv2bMAbCWWJVQRuUlEyAmBI49So7kKVRUtJNGuTefVdVi_8y_ug_sSfBS5MDassvCJzlGblrZ75HuCeEWFsE0QHrZfuO0aZU9XixYaA7O4xLdXomzdg_MTmt9tIWqnt8d1nncV4FqGsucqIkb7QlWwUvUSwu-eh75IjC-IC6XS-EpE9Jkq0QHqCsrQCJUSd0sVcROlU0lyx2DClzKyK6paO_uSh-lagBJjstFEvsyTdFyqnt1_pbtCci8Sns_D7z_CEbr9cSDr_nO1WZjOASo7GljUHJQwm4eZovkDy33BAjzckLN5fnonIQzb5FvoUrMuPr33O8iGcUmtjLVHuQnMbvuyFF01UdYl-7DDVWaYsd0a-j3WVJYDLMLdvyh1CcazVobLwBIVSa0i7Xtoq5kFxMdUEIlAC2EkWVAZ9gu9xTqvY27baTTjYQVmp-uYdB07XcdhGXaGY9qDKh5_vr1WTEecr-huPLK_MuwWUzR6_Lu0lb-lbcJk_faqETfOry9XYUoQZhoEha_BeK_Tx3XCPL1kwxkag8f_tuxPys8P-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_CmodtkH92jVEt9VQ8WehBCNslCoW6Xdnvpr3eSfbSKCh6XPA4zO-T7kplvELqMDEtoa01URH0CCFyTMFaSCF-0tYEk0rbpfO77vYH7MPSGK1X8Ntu9fJLMaxqMSlOSNVMVN6vCN3ObCTSYMuKE1HGJv442gKnYh9qO31mpjLRNOYHDmPwelxVlMz_v8fVoWuLNb0-k9uTp7qLtAjLim9zHe2hNJ_top2zHgIvoPEDvLxD-H6MFbIJ1CtEOnxLP9Ggxn2pcZQpNEpwuqwWwuYjFsbb6nngGHjPLRaKwMv0T5hkeC4PKD9Gge_fW6ZGieQKRzGeZFX4MW1QEOmg7EdAUx9EujZRLgfLFTLmChuANEUlPy0AzX1ERA0WNBVAwIWN2hGrJJNHHCEciZFKE0nW00RfzgCEJL6SepFQx8GkdtUq7cVkoi5sGF2NeaSJbW3OwNbe25n4dXVVr0lxX48_ZjdIdvIixGafANANAux4MX5cuWg7_vtvJ_6ZfoM3X2y5_uu8_nqItCqAmz9puoFo2neszACVZdG7_u09rxddS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+epileptic+seizure+recognition+performance+with+feature+scaling+and+dropout+layers&rft.jtitle=Neural+computing+%26+applications&rft.au=Omar%2C+Ahmed&rft.au=Abd+El-Hafeez%2C+Tarek&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=6&rft.spage=2835&rft.epage=2852&rft_id=info:doi/10.1007%2Fs00521-023-09204-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon