A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment
The Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell whether you are at home right now or what your long or short-term habits are. Therefore, it is crucial to protect such devices against adversaries and has in place an earl...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 24; no. 4; pp. 1441 - 1449 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell whether you are at home right now or what your long or short-term habits are. Therefore, it is crucial to protect such devices against adversaries and has in place an early warning system which indicates compromised devices in a quick and efficient manner. In this paper, we propose time window embedding solutions that efficiently process a massive amount of data and have a low-memory-footprint at the same time. On top of the proposed embedding vectors, we use the core anomaly detection unit. It is a classifier that is based on the transformer’s encoder component followed by a feed-forward neural network. We have compared the proposed method with other classical machine-learning algorithms. Therefore, in the paper, we formally evaluate various machine-learning schemes and discuss their effectiveness in the IoT-related context. Our proposal is supported by detailed experiments that have been conducted on the recently published Aposemat IoT-23 dataset. |
---|---|
AbstractList | The Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell whether you are at home right now or what your long or short-term habits are. Therefore, it is crucial to protect such devices against adversaries and has in place an early warning system which indicates compromised devices in a quick and efficient manner. In this paper, we propose time window embedding solutions that efficiently process a massive amount of data and have a low-memory-footprint at the same time. On top of the proposed embedding vectors, we use the core anomaly detection unit. It is a classifier that is based on the transformer’s encoder component followed by a feed-forward neural network. We have compared the proposed method with other classical machine-learning algorithms. Therefore, in the paper, we formally evaluate various machine-learning schemes and discuss their effectiveness in the IoT-related context. Our proposal is supported by detailed experiments that have been conducted on the recently published Aposemat IoT-23 dataset. |
Author | Pawlicki, Marek Choraś, Michał Kozik, Rafał |
Author_xml | – sequence: 1 givenname: Rafał orcidid: 0000-0001-7122-3306 surname: Kozik fullname: Kozik, Rafał email: rkozik@utp.edu.pl organization: UTP University of Science and Technology, ITTI Sp. Z o.o – sequence: 2 givenname: Marek orcidid: 0000-0001-5881-6406 surname: Pawlicki fullname: Pawlicki, Marek organization: UTP University of Science and Technology, ITTI Sp. Z o.o – sequence: 3 givenname: Michał orcidid: 0000-0003-1405-9911 surname: Choraś fullname: Choraś, Michał organization: UTP University of Science and Technology, ITTI Sp. Z o.o |
BookMark | eNp9kEtLAzEUhYMoWB9_wFXAdTSPSSezlOILBDcK7kJmcmOjnUSTaBH88cZWFFx0k5sczndz79lD2yEGQOiI0RNGaXua69k0hHJGKO0UJXwLTVgjBGmlfNj-vTdsF-3l_ESpEIKrCfo8wwGWeIQyjxZHh-cfffIWFz8CXvpg4xLD2IO1PjxWocxxSSZkF9MIifQmg_1WnPMDtqYYPCxMzr4-TfExYB_wdbwjAcoypudqhvDuUwwjhHKAdpxZZDj8qfvo_uL8bnZFbm4vr2dnN2QQU1EImw4gOmFb2XcWWM-NAtk61VHXDco40xinmp4P0DM25awBzqZS2ZbRTtJeiX10vO77kuLrG-Sin-JbCvVLzaWSVHaybatLrV1DijkncHrwZbVE3c8vNKP6O2u9zlrXrPUqa80ryv-hL8mPJn1shsQaytUcHiH9TbWB-gIXzJVi |
CitedBy_id | crossref_primary_10_3233_JCS_220131 crossref_primary_10_3390_electronics12183927 crossref_primary_10_3390_s23125596 crossref_primary_10_3390_s23167191 crossref_primary_10_1109_ACCESS_2021_3124634 crossref_primary_10_31590_ejosat_1184984 crossref_primary_10_1016_j_comcom_2023_11_007 crossref_primary_10_1007_s11277_022_09548_7 crossref_primary_10_1016_j_cose_2024_104290 crossref_primary_10_1016_j_engappai_2024_109560 crossref_primary_10_1016_j_neucom_2022_06_002 crossref_primary_10_3934_mbe_2023826 crossref_primary_10_1109_ACCESS_2023_3325727 crossref_primary_10_1109_JIOT_2022_3221967 crossref_primary_10_1016_j_cose_2023_103596 crossref_primary_10_1016_j_compind_2022_103692 crossref_primary_10_1016_j_iswa_2023_200232 crossref_primary_10_3390_app12199636 crossref_primary_10_1109_TNSM_2023_3322152 crossref_primary_10_1109_ACCESS_2024_3443408 crossref_primary_10_3390_app14219690 crossref_primary_10_3390_s21134319 crossref_primary_10_1109_OJCOMS_2024_3365976 crossref_primary_10_25046_aj060521 crossref_primary_10_17798_bitlisfen_1380547 crossref_primary_10_3390_s21248231 crossref_primary_10_1155_2023_7107663 crossref_primary_10_1016_j_comnet_2023_110072 crossref_primary_10_1016_j_neucom_2023_126533 crossref_primary_10_1016_j_cose_2023_103171 crossref_primary_10_1007_s10922_022_09716_x |
Cites_doi | 10.1109/ACCESS.2018.2863036 10.1109/ICOIN.2018.8343255 10.1109/ACCESS.2018.2867564 10.1007/978-3-319-07995-0_54 10.13164/mendel.2019.2.027 10.1109/MTS.2020.3031848 10.23919/ICACT.2017.7890124 10.1109/PCCC.2018.8711068 10.1109/YAC.2016.7804912 10.1109/ACCESS.2019.2963716 10.23919/CNSM46954.2019.9012716 10.17487/rfc3954 10.1109/NOMS.2018.8406212 10.1109/TCSET49122.2020.235562 10.1109/ACCESS.2020.3048319 10.1145/3407023.3409189 10.1016/j.neucom.2020.07.138 10.1109/BigDataSecurity-HPSC-IDS.2019.00022 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10044-021-00980-2 |
DatabaseName | Springer Nature OA Free Journals (ODIN) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 1449 |
ExternalDocumentID | 10_1007_s10044_021_00980_2 |
GrantInformation_xml | – fundername: Horizon 2020 Framework Programme grantid: 833115 funderid: http://dx.doi.org/10.13039/100010661 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-16ce393d75b9de1b2a8e57f890f9c8afa4af84b2ceb116214e21658d710950b83 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Fri Jul 25 08:32:18 EDT 2025 Thu Apr 24 22:56:06 EDT 2025 Tue Jul 01 01:15:17 EDT 2025 Fri Feb 21 02:47:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Deep learning Transformers Anomaly detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-16ce393d75b9de1b2a8e57f890f9c8afa4af84b2ceb116214e21658d710950b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1405-9911 0000-0001-7122-3306 0000-0001-5881-6406 |
OpenAccessLink | https://link.springer.com/10.1007/s10044-021-00980-2 |
PQID | 2585059577 |
PQPubID | 2043691 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2585059577 crossref_citationtrail_10_1007_s10044_021_00980_2 crossref_primary_10_1007_s10044_021_00980_2 springer_journals_10_1007_s10044_021_00980_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | NaseerSSaleemYKhalidSBashirMKHanJIqbalMMHanKEnhanced network anomaly detection based on deep neural networksIEEE Access20186482314824610.1109/ACCESS.2018.2863036 Andrysiak T, Saganowski Ł, Choraś M, Kozik R (2014) Network traffic prediction and anomaly detection based on arfima model. In: International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, pp. 545–554. Springer Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328 XuCShenJDuXZhangFAn intrusion detection system using a deep neural network with gated recurrent unitsIEEE Access20186486974870710.1109/ACCESS.2018.2867564 Komisarek M, Choraś M, Kozik R, Pawlicki M (2020) Real-time stream processing tool for detecting suspicious network patterns using machine learning. In: Proceedings of the 15th International Conference on Availability, Reliability and Security, pp. 1–7 Flanagan K, Fallon E, Awad A, Connolly P (2017) Self-configuring netflow anomaly detection using cluster density analysis. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 421–427 Hardegen C, Pfülb B, Rieger S, Gepperth A (2020) Predicting network flow characteristics using deep learning and real-world network traffic. IEEE Transactions on Network and Service Management pp. 1–1 PawlickaAJaroszewska-ChorasDChorasMPawlickiMGuidelines for stego/malware detection tools: achieving gdpr complianceIEEE Technol Soc Mag2020394607010.1109/MTS.2020.3031848 ThanhCTZelinkaIA survey on artificial intelligence in malware as next-generation threatsMendel201925273410.13164/mendel.2019.2.027 BitDefender: Ring video doorbell pro under the scope (2019). https://www.bitdefender.com/files/News/CaseStudies/study/294/Bitdefender-WhitePaper-RDoor-CREA3949-en-EN-GenericUse.pdf Claise B (2004) Cisco systems netflow services export version 9. rfc 3954 (informational) Liu X, Tang Z, Yang B (2019) Predicting network attacks with cnn by constructing images from netflow data. In: 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), pp. 61–66 F-Secure: the f-secure attack landscape report H1-2020 (2020). https://www.f-secure.com/content/dam/press/de/media-library/reports/F-Secure-attack-landscape-h12020.pdf Caviglione L, Choraś M, Corona I, Janicki A, Mazurczyk W, Pawlicki M, Wasielewska K (2020) Tight arms race: overview of current malware threats and trends in their detection. IEEE Access Cheng Z, Beshley M, Beshley H, Kochan O, Urikova O (2020) Development of deep packet inspection system for network traffic analysis and intrusion detection. In: 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 877–881 Garcia S (2014) dentifying, modeling and detecting botnet behaviors in the network. Ph.D. thesis, Instituto Superior de Ingenier’ıa de Software Tandil Departamento de Computacio’n y Sistemas Tenable: Blink XT2 sync module multiple vulnerabilities (2019). https://www.tenable.com/security/research/tra-2019-51 Yeo M, Koo Y, Yoon Y, Hwang T, Ryu J, Song J, Park C (2018) Flow-based malware detection using convolutional neural network. In: 2018 International Conference on Information Networking (ICOIN), pp. 910–913. https://doi.org/10.1109/ICOIN.2018.8343255 Choraś M, Pawlicki M (2020) Intrusion detection approach based on optimised artificial neural network. Neurocomputing YangCLiuJKristianiELiuMYouIPauGNetflow monitoring and cyberattack detection using deep learning with cephIEEE Access202087842785010.1109/ACCESS.2019.2963716 Zaman M, Lung C (2018) Evaluation of machine learning techniques for network intrusion detection. In: NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–5 Zhang H, Dai S, Li Y, Zhang W (2018) Real-time distributed-random-forest-based network intrusion detection system using apache spark. In: 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), pp. 1–7 980_CR16 A Pawlicka (980_CR15) 2020; 39 C Yang (980_CR19) 2020; 8 S Naseer (980_CR14) 2018; 6 980_CR4 980_CR3 980_CR2 980_CR1 980_CR8 980_CR7 980_CR20 980_CR6 980_CR5 980_CR12 C Xu (980_CR18) 2018; 6 980_CR13 980_CR10 CT Thanh (980_CR17) 2019; 25 980_CR21 980_CR9 980_CR11 980_CR22 |
References_xml | – reference: Zaman M, Lung C (2018) Evaluation of machine learning techniques for network intrusion detection. In: NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–5 – reference: Cheng Z, Beshley M, Beshley H, Kochan O, Urikova O (2020) Development of deep packet inspection system for network traffic analysis and intrusion detection. In: 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 877–881 – reference: ThanhCTZelinkaIA survey on artificial intelligence in malware as next-generation threatsMendel201925273410.13164/mendel.2019.2.027 – reference: XuCShenJDuXZhangFAn intrusion detection system using a deep neural network with gated recurrent unitsIEEE Access20186486974870710.1109/ACCESS.2018.2867564 – reference: Claise B (2004) Cisco systems netflow services export version 9. rfc 3954 (informational) – reference: Yeo M, Koo Y, Yoon Y, Hwang T, Ryu J, Song J, Park C (2018) Flow-based malware detection using convolutional neural network. In: 2018 International Conference on Information Networking (ICOIN), pp. 910–913. https://doi.org/10.1109/ICOIN.2018.8343255 – reference: Caviglione L, Choraś M, Corona I, Janicki A, Mazurczyk W, Pawlicki M, Wasielewska K (2020) Tight arms race: overview of current malware threats and trends in their detection. IEEE Access – reference: Tenable: Blink XT2 sync module multiple vulnerabilities (2019). https://www.tenable.com/security/research/tra-2019-51 – reference: Garcia S (2014) dentifying, modeling and detecting botnet behaviors in the network. Ph.D. thesis, Instituto Superior de Ingenier’ıa de Software Tandil Departamento de Computacio’n y Sistemas – reference: Andrysiak T, Saganowski Ł, Choraś M, Kozik R (2014) Network traffic prediction and anomaly detection based on arfima model. In: International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, pp. 545–554. Springer – reference: F-Secure: the f-secure attack landscape report H1-2020 (2020). https://www.f-secure.com/content/dam/press/de/media-library/reports/F-Secure-attack-landscape-h12020.pdf – reference: PawlickaAJaroszewska-ChorasDChorasMPawlickiMGuidelines for stego/malware detection tools: achieving gdpr complianceIEEE Technol Soc Mag2020394607010.1109/MTS.2020.3031848 – reference: Choraś M, Pawlicki M (2020) Intrusion detection approach based on optimised artificial neural network. Neurocomputing – reference: Zhang H, Dai S, Li Y, Zhang W (2018) Real-time distributed-random-forest-based network intrusion detection system using apache spark. In: 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), pp. 1–7 – reference: Komisarek M, Choraś M, Kozik R, Pawlicki M (2020) Real-time stream processing tool for detecting suspicious network patterns using machine learning. In: Proceedings of the 15th International Conference on Availability, Reliability and Security, pp. 1–7 – reference: Liu X, Tang Z, Yang B (2019) Predicting network attacks with cnn by constructing images from netflow data. In: 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), pp. 61–66 – reference: Flanagan K, Fallon E, Awad A, Connolly P (2017) Self-configuring netflow anomaly detection using cluster density analysis. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 421–427 – reference: Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328 – reference: Hardegen C, Pfülb B, Rieger S, Gepperth A (2020) Predicting network flow characteristics using deep learning and real-world network traffic. IEEE Transactions on Network and Service Management pp. 1–1 – reference: YangCLiuJKristianiELiuMYouIPauGNetflow monitoring and cyberattack detection using deep learning with cephIEEE Access202087842785010.1109/ACCESS.2019.2963716 – reference: NaseerSSaleemYKhalidSBashirMKHanJIqbalMMHanKEnhanced network anomaly detection based on deep neural networksIEEE Access20186482314824610.1109/ACCESS.2018.2863036 – reference: BitDefender: Ring video doorbell pro under the scope (2019). https://www.bitdefender.com/files/News/CaseStudies/study/294/Bitdefender-WhitePaper-RDoor-CREA3949-en-EN-GenericUse.pdf – volume: 6 start-page: 48231 year: 2018 ident: 980_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2863036 – ident: 980_CR20 doi: 10.1109/ICOIN.2018.8343255 – volume: 6 start-page: 48697 year: 2018 ident: 980_CR18 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2867564 – ident: 980_CR1 doi: 10.1007/978-3-319-07995-0_54 – volume: 25 start-page: 27 year: 2019 ident: 980_CR17 publication-title: Mendel doi: 10.13164/mendel.2019.2.027 – volume: 39 start-page: 60 issue: 4 year: 2020 ident: 980_CR15 publication-title: IEEE Technol Soc Mag doi: 10.1109/MTS.2020.3031848 – ident: 980_CR7 – ident: 980_CR8 doi: 10.23919/ICACT.2017.7890124 – ident: 980_CR22 doi: 10.1109/PCCC.2018.8711068 – ident: 980_CR9 doi: 10.1109/YAC.2016.7804912 – volume: 8 start-page: 7842 year: 2020 ident: 980_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963716 – ident: 980_CR11 doi: 10.23919/CNSM46954.2019.9012716 – ident: 980_CR6 doi: 10.17487/rfc3954 – ident: 980_CR16 – ident: 980_CR2 – ident: 980_CR10 – ident: 980_CR21 doi: 10.1109/NOMS.2018.8406212 – ident: 980_CR4 doi: 10.1109/TCSET49122.2020.235562 – ident: 980_CR3 doi: 10.1109/ACCESS.2020.3048319 – ident: 980_CR12 doi: 10.1145/3407023.3409189 – ident: 980_CR5 doi: 10.1016/j.neucom.2020.07.138 – ident: 980_CR13 doi: 10.1109/BigDataSecurity-HPSC-IDS.2019.00022 |
SSID | ssj0033328 |
Score | 2.4619305 |
Snippet | The Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell whether you are at home right... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1441 |
SubjectTerms | Algorithms Anomalies Coders Computer Science Early warning systems Embedding Internet of Things Machine learning Neural networks Original Article Pattern Recognition Traffic information Transformers Windows (intervals) |
Title | A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment |
URI | https://link.springer.com/article/10.1007/s10044-021-00980-2 https://www.proquest.com/docview/2585059577 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5qL158i9VacvCmgc1jX8dSfKOnFuppyWtR0K3Yigj-eGe2G6uigtdsksN-k5lvknkQcpA744SThlmhLVPSGaZF5JnhOSzg2gqDF_pX18nZUF2M4lGTFDYJ0e7hSbLW1J-S3SKlGIYUYBHMiIHibcXou4MUD0Uv6F8pZd1RFYiAZGmseJMq8_MeX83RnGN-exatrc3JGllpaCLtzXBdJwu-2iCrDWWkzYGcwFDoyhDGNslbjwJVprPW0HRc0ttXzMqi2EWevoALPn6h_sF4h1aL4j0snQb26p8YmjWHI1hbgmIAKbXIsDGkqEaR3lX0fDxg1SyAHCZ_SpbbIsOT40H_jDU9FpiViZwynlgvc-nS2OTOcyN05uO0zPKozG2mS610mSkjLOh0ngiuvOBAWhyGcMaRyeQ2WarGld8hFKiHM1HmvVbgY2Ze55ktY6dy2LLkpWwTHn51YZsC5NgH476Yl05GeAqAp6jhKUSbHH6seZyV3_hzdicgWDRHcVIIcIiAQ8Zp2iZHAdX559932_3f9D2yLFCw6jzFDlmaPj37fSAsU9Mlrd7pzeVxlyz2k363ltZ3P43lsA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB734FldXzcGbBppHX0dZXFZdPe2Ct5JXUdBWdisi-OOd6bauigpep5Mc-iWZb5J5EHKcOuOEk4ZZoS1T0hmmReCZ4SkM4NoKgxf61zfRYKwub8PbpkwO5sJ8e7_HFLdAKYaBBFj6MmBw3C4p8JQxfK8X9dpTV0pZ91EF8y9ZHCreJMj8PMdXIzRnlt8eQ2sb018nqw05pGczNDfIgi82yVpDFGmzDacgansxtLIt8nZGgSDTWUNoWub07hVzsSj2jqcv4HiXL9Q_Gu_QVlG8faVVy1n9hKExcyjBihIUw0apRV6NgUQ1dvS-oBfliBWzsHFQ_pQit03G_fNRb8CazgrMykhWjEfWy1S6ODSp89wInfgwzpM0yFOb6FwrnSfKCAsnOY8EV15woCoOAzfDwCRyhywWZeF3CQXC4UyQeK8VeJaJ12li89CpFKbMeS47hLe_OrNN2XHsfvGQzQsmIzwZwJPV8GSiQ04-xjzNim78qd1tEcyaDTjNBLhBwBzDOO6Q0xbV-effZ9v7n_oRWR6MrofZ8OLmap-sCFxkdaZilyxWk2d_AJSlMof1Wn0HOJTiEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaqIFVcgBYQ6dMHbmBl_djXMUqJ0hYiDomU28pPgdTuVsmiCokf35l9kIAoUq9e24f9bM839nwzhLzPnXHCScOs0JYp6QzTIvLM8BwGcG2FwQv9L_NktlRXq3i1o-Jvot37J8lW04BZmsp6dOfCaEf4FinFMLwAE2JGDA7hZ-CpNA-1k2TSn8VSyqa6KpACydJY8U428-85_jRNW7751xNpY3mmr8iLjjLScYvxAdnz5SF52dFH2m3ODTT1FRr6ttfk15gCbaZtmWhaBfrtJyq0KFaUp_fgjlf31N8a79CCUbyTpXXPZP2aoYlz2IJ5JigGk1KLbBvDixpE6feSXlYLVrbB5NB5Rzj3hiynnxaTGevqLTArE1kznlgvc-nS2OTOcyN05uM0ZHkUcpvpoJUOmTLCwvnOE8GVFxwIjMNwzjgymXxLBmVV-neEAg1xJsq81wr8zczrPLMhdiqHKQMPckh4_6sL2yUjx5oYN8U2jTLCUwA8RQNPIYbkw-8xd20qjv_2PukRLLptuSkEOEfAJ-M0HZKPParbz4_PdvS07udk_-vFtPh8Ob8-Js8FrrFGvnhCBvX6hz8FHlObs2apPgDQQupY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+method+of+hybrid+time+window+embedding+with+transformer-based+traffic+data+classification+in+IoT-networked+environment&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Kozik%2C+Rafa%C5%82&rft.au=Pawlicki%2C+Marek&rft.au=Chora%C5%9B%2C+Micha%C5%82&rft.date=2021-11-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=24&rft.issue=4&rft.spage=1441&rft.epage=1449&rft_id=info:doi/10.1007%2Fs10044-021-00980-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_021_00980_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |