A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment

The Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell whether you are at home right now or what your long or short-term habits are. Therefore, it is crucial to protect such devices against adversaries and has in place an earl...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 24; no. 4; pp. 1441 - 1449
Main Authors Kozik, Rafał, Pawlicki, Marek, Choraś, Michał
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell whether you are at home right now or what your long or short-term habits are. Therefore, it is crucial to protect such devices against adversaries and has in place an early warning system which indicates compromised devices in a quick and efficient manner. In this paper, we propose time window embedding solutions that efficiently process a massive amount of data and have a low-memory-footprint at the same time. On top of the proposed embedding vectors, we use the core anomaly detection unit. It is a classifier that is based on the transformer’s encoder component followed by a feed-forward neural network. We have compared the proposed method with other classical machine-learning algorithms. Therefore, in the paper, we formally evaluate various machine-learning schemes and discuss their effectiveness in the IoT-related context. Our proposal is supported by detailed experiments that have been conducted on the recently published Aposemat IoT-23 dataset.
AbstractList The Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell whether you are at home right now or what your long or short-term habits are. Therefore, it is crucial to protect such devices against adversaries and has in place an early warning system which indicates compromised devices in a quick and efficient manner. In this paper, we propose time window embedding solutions that efficiently process a massive amount of data and have a low-memory-footprint at the same time. On top of the proposed embedding vectors, we use the core anomaly detection unit. It is a classifier that is based on the transformer’s encoder component followed by a feed-forward neural network. We have compared the proposed method with other classical machine-learning algorithms. Therefore, in the paper, we formally evaluate various machine-learning schemes and discuss their effectiveness in the IoT-related context. Our proposal is supported by detailed experiments that have been conducted on the recently published Aposemat IoT-23 dataset.
Author Pawlicki, Marek
Choraś, Michał
Kozik, Rafał
Author_xml – sequence: 1
  givenname: Rafał
  orcidid: 0000-0001-7122-3306
  surname: Kozik
  fullname: Kozik, Rafał
  email: rkozik@utp.edu.pl
  organization: UTP University of Science and Technology, ITTI Sp. Z o.o
– sequence: 2
  givenname: Marek
  orcidid: 0000-0001-5881-6406
  surname: Pawlicki
  fullname: Pawlicki, Marek
  organization: UTP University of Science and Technology, ITTI Sp. Z o.o
– sequence: 3
  givenname: Michał
  orcidid: 0000-0003-1405-9911
  surname: Choraś
  fullname: Choraś, Michał
  organization: UTP University of Science and Technology, ITTI Sp. Z o.o
BookMark eNp9kEtLAzEUhYMoWB9_wFXAdTSPSSezlOILBDcK7kJmcmOjnUSTaBH88cZWFFx0k5sczndz79lD2yEGQOiI0RNGaXua69k0hHJGKO0UJXwLTVgjBGmlfNj-vTdsF-3l_ESpEIKrCfo8wwGWeIQyjxZHh-cfffIWFz8CXvpg4xLD2IO1PjxWocxxSSZkF9MIifQmg_1WnPMDtqYYPCxMzr4-TfExYB_wdbwjAcoypudqhvDuUwwjhHKAdpxZZDj8qfvo_uL8bnZFbm4vr2dnN2QQU1EImw4gOmFb2XcWWM-NAtk61VHXDco40xinmp4P0DM25awBzqZS2ZbRTtJeiX10vO77kuLrG-Sin-JbCvVLzaWSVHaybatLrV1DijkncHrwZbVE3c8vNKP6O2u9zlrXrPUqa80ryv-hL8mPJn1shsQaytUcHiH9TbWB-gIXzJVi
CitedBy_id crossref_primary_10_3233_JCS_220131
crossref_primary_10_3390_electronics12183927
crossref_primary_10_3390_s23125596
crossref_primary_10_3390_s23167191
crossref_primary_10_1109_ACCESS_2021_3124634
crossref_primary_10_31590_ejosat_1184984
crossref_primary_10_1016_j_comcom_2023_11_007
crossref_primary_10_1007_s11277_022_09548_7
crossref_primary_10_1016_j_cose_2024_104290
crossref_primary_10_1016_j_engappai_2024_109560
crossref_primary_10_1016_j_neucom_2022_06_002
crossref_primary_10_3934_mbe_2023826
crossref_primary_10_1109_ACCESS_2023_3325727
crossref_primary_10_1109_JIOT_2022_3221967
crossref_primary_10_1016_j_cose_2023_103596
crossref_primary_10_1016_j_compind_2022_103692
crossref_primary_10_1016_j_iswa_2023_200232
crossref_primary_10_3390_app12199636
crossref_primary_10_1109_TNSM_2023_3322152
crossref_primary_10_1109_ACCESS_2024_3443408
crossref_primary_10_3390_app14219690
crossref_primary_10_3390_s21134319
crossref_primary_10_1109_OJCOMS_2024_3365976
crossref_primary_10_25046_aj060521
crossref_primary_10_17798_bitlisfen_1380547
crossref_primary_10_3390_s21248231
crossref_primary_10_1155_2023_7107663
crossref_primary_10_1016_j_comnet_2023_110072
crossref_primary_10_1016_j_neucom_2023_126533
crossref_primary_10_1016_j_cose_2023_103171
crossref_primary_10_1007_s10922_022_09716_x
Cites_doi 10.1109/ACCESS.2018.2863036
10.1109/ICOIN.2018.8343255
10.1109/ACCESS.2018.2867564
10.1007/978-3-319-07995-0_54
10.13164/mendel.2019.2.027
10.1109/MTS.2020.3031848
10.23919/ICACT.2017.7890124
10.1109/PCCC.2018.8711068
10.1109/YAC.2016.7804912
10.1109/ACCESS.2019.2963716
10.23919/CNSM46954.2019.9012716
10.17487/rfc3954
10.1109/NOMS.2018.8406212
10.1109/TCSET49122.2020.235562
10.1109/ACCESS.2020.3048319
10.1145/3407023.3409189
10.1016/j.neucom.2020.07.138
10.1109/BigDataSecurity-HPSC-IDS.2019.00022
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10044-021-00980-2
DatabaseName Springer Nature OA Free Journals (ODIN)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 1449
ExternalDocumentID 10_1007_s10044_021_00980_2
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  grantid: 833115
  funderid: http://dx.doi.org/10.13039/100010661
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-16ce393d75b9de1b2a8e57f890f9c8afa4af84b2ceb116214e21658d710950b83
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Fri Jul 25 08:32:18 EDT 2025
Thu Apr 24 22:56:06 EDT 2025
Tue Jul 01 01:15:17 EDT 2025
Fri Feb 21 02:47:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Transformers
Anomaly detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-16ce393d75b9de1b2a8e57f890f9c8afa4af84b2ceb116214e21658d710950b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1405-9911
0000-0001-7122-3306
0000-0001-5881-6406
OpenAccessLink https://link.springer.com/10.1007/s10044-021-00980-2
PQID 2585059577
PQPubID 2043691
PageCount 9
ParticipantIDs proquest_journals_2585059577
crossref_citationtrail_10_1007_s10044_021_00980_2
crossref_primary_10_1007_s10044_021_00980_2
springer_journals_10_1007_s10044_021_00980_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References NaseerSSaleemYKhalidSBashirMKHanJIqbalMMHanKEnhanced network anomaly detection based on deep neural networksIEEE Access20186482314824610.1109/ACCESS.2018.2863036
Andrysiak T, Saganowski Ł, Choraś M, Kozik R (2014) Network traffic prediction and anomaly detection based on arfima model. In: International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, pp. 545–554. Springer
Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328
XuCShenJDuXZhangFAn intrusion detection system using a deep neural network with gated recurrent unitsIEEE Access20186486974870710.1109/ACCESS.2018.2867564
Komisarek M, Choraś M, Kozik R, Pawlicki M (2020) Real-time stream processing tool for detecting suspicious network patterns using machine learning. In: Proceedings of the 15th International Conference on Availability, Reliability and Security, pp. 1–7
Flanagan K, Fallon E, Awad A, Connolly P (2017) Self-configuring netflow anomaly detection using cluster density analysis. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 421–427
Hardegen C, Pfülb B, Rieger S, Gepperth A (2020) Predicting network flow characteristics using deep learning and real-world network traffic. IEEE Transactions on Network and Service Management pp. 1–1
PawlickaAJaroszewska-ChorasDChorasMPawlickiMGuidelines for stego/malware detection tools: achieving gdpr complianceIEEE Technol Soc Mag2020394607010.1109/MTS.2020.3031848
ThanhCTZelinkaIA survey on artificial intelligence in malware as next-generation threatsMendel201925273410.13164/mendel.2019.2.027
BitDefender: Ring video doorbell pro under the scope (2019). https://www.bitdefender.com/files/News/CaseStudies/study/294/Bitdefender-WhitePaper-RDoor-CREA3949-en-EN-GenericUse.pdf
Claise B (2004) Cisco systems netflow services export version 9. rfc 3954 (informational)
Liu X, Tang Z, Yang B (2019) Predicting network attacks with cnn by constructing images from netflow data. In: 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), pp. 61–66
F-Secure: the f-secure attack landscape report H1-2020 (2020). https://www.f-secure.com/content/dam/press/de/media-library/reports/F-Secure-attack-landscape-h12020.pdf
Caviglione L, Choraś M, Corona I, Janicki A, Mazurczyk W, Pawlicki M, Wasielewska K (2020) Tight arms race: overview of current malware threats and trends in their detection. IEEE Access
Cheng Z, Beshley M, Beshley H, Kochan O, Urikova O (2020) Development of deep packet inspection system for network traffic analysis and intrusion detection. In: 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 877–881
Garcia S (2014) dentifying, modeling and detecting botnet behaviors in the network. Ph.D. thesis, Instituto Superior de Ingenier’ıa de Software Tandil Departamento de Computacio’n y Sistemas
Tenable: Blink XT2 sync module multiple vulnerabilities (2019). https://www.tenable.com/security/research/tra-2019-51
Yeo M, Koo Y, Yoon Y, Hwang T, Ryu J, Song J, Park C (2018) Flow-based malware detection using convolutional neural network. In: 2018 International Conference on Information Networking (ICOIN), pp. 910–913. https://doi.org/10.1109/ICOIN.2018.8343255
Choraś M, Pawlicki M (2020) Intrusion detection approach based on optimised artificial neural network. Neurocomputing
YangCLiuJKristianiELiuMYouIPauGNetflow monitoring and cyberattack detection using deep learning with cephIEEE Access202087842785010.1109/ACCESS.2019.2963716
Zaman M, Lung C (2018) Evaluation of machine learning techniques for network intrusion detection. In: NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–5
Zhang H, Dai S, Li Y, Zhang W (2018) Real-time distributed-random-forest-based network intrusion detection system using apache spark. In: 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), pp. 1–7
980_CR16
A Pawlicka (980_CR15) 2020; 39
C Yang (980_CR19) 2020; 8
S Naseer (980_CR14) 2018; 6
980_CR4
980_CR3
980_CR2
980_CR1
980_CR8
980_CR7
980_CR20
980_CR6
980_CR5
980_CR12
C Xu (980_CR18) 2018; 6
980_CR13
980_CR10
CT Thanh (980_CR17) 2019; 25
980_CR21
980_CR9
980_CR11
980_CR22
References_xml – reference: Zaman M, Lung C (2018) Evaluation of machine learning techniques for network intrusion detection. In: NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–5
– reference: Cheng Z, Beshley M, Beshley H, Kochan O, Urikova O (2020) Development of deep packet inspection system for network traffic analysis and intrusion detection. In: 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 877–881
– reference: ThanhCTZelinkaIA survey on artificial intelligence in malware as next-generation threatsMendel201925273410.13164/mendel.2019.2.027
– reference: XuCShenJDuXZhangFAn intrusion detection system using a deep neural network with gated recurrent unitsIEEE Access20186486974870710.1109/ACCESS.2018.2867564
– reference: Claise B (2004) Cisco systems netflow services export version 9. rfc 3954 (informational)
– reference: Yeo M, Koo Y, Yoon Y, Hwang T, Ryu J, Song J, Park C (2018) Flow-based malware detection using convolutional neural network. In: 2018 International Conference on Information Networking (ICOIN), pp. 910–913. https://doi.org/10.1109/ICOIN.2018.8343255
– reference: Caviglione L, Choraś M, Corona I, Janicki A, Mazurczyk W, Pawlicki M, Wasielewska K (2020) Tight arms race: overview of current malware threats and trends in their detection. IEEE Access
– reference: Tenable: Blink XT2 sync module multiple vulnerabilities (2019). https://www.tenable.com/security/research/tra-2019-51
– reference: Garcia S (2014) dentifying, modeling and detecting botnet behaviors in the network. Ph.D. thesis, Instituto Superior de Ingenier’ıa de Software Tandil Departamento de Computacio’n y Sistemas
– reference: Andrysiak T, Saganowski Ł, Choraś M, Kozik R (2014) Network traffic prediction and anomaly detection based on arfima model. In: International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, pp. 545–554. Springer
– reference: F-Secure: the f-secure attack landscape report H1-2020 (2020). https://www.f-secure.com/content/dam/press/de/media-library/reports/F-Secure-attack-landscape-h12020.pdf
– reference: PawlickaAJaroszewska-ChorasDChorasMPawlickiMGuidelines for stego/malware detection tools: achieving gdpr complianceIEEE Technol Soc Mag2020394607010.1109/MTS.2020.3031848
– reference: Choraś M, Pawlicki M (2020) Intrusion detection approach based on optimised artificial neural network. Neurocomputing
– reference: Zhang H, Dai S, Li Y, Zhang W (2018) Real-time distributed-random-forest-based network intrusion detection system using apache spark. In: 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), pp. 1–7
– reference: Komisarek M, Choraś M, Kozik R, Pawlicki M (2020) Real-time stream processing tool for detecting suspicious network patterns using machine learning. In: Proceedings of the 15th International Conference on Availability, Reliability and Security, pp. 1–7
– reference: Liu X, Tang Z, Yang B (2019) Predicting network attacks with cnn by constructing images from netflow data. In: 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), pp. 61–66
– reference: Flanagan K, Fallon E, Awad A, Connolly P (2017) Self-configuring netflow anomaly detection using cluster density analysis. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 421–427
– reference: Fu R, Zhang Z, Li L (2016) Using lstm and gru neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328
– reference: Hardegen C, Pfülb B, Rieger S, Gepperth A (2020) Predicting network flow characteristics using deep learning and real-world network traffic. IEEE Transactions on Network and Service Management pp. 1–1
– reference: YangCLiuJKristianiELiuMYouIPauGNetflow monitoring and cyberattack detection using deep learning with cephIEEE Access202087842785010.1109/ACCESS.2019.2963716
– reference: NaseerSSaleemYKhalidSBashirMKHanJIqbalMMHanKEnhanced network anomaly detection based on deep neural networksIEEE Access20186482314824610.1109/ACCESS.2018.2863036
– reference: BitDefender: Ring video doorbell pro under the scope (2019). https://www.bitdefender.com/files/News/CaseStudies/study/294/Bitdefender-WhitePaper-RDoor-CREA3949-en-EN-GenericUse.pdf
– volume: 6
  start-page: 48231
  year: 2018
  ident: 980_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2863036
– ident: 980_CR20
  doi: 10.1109/ICOIN.2018.8343255
– volume: 6
  start-page: 48697
  year: 2018
  ident: 980_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2867564
– ident: 980_CR1
  doi: 10.1007/978-3-319-07995-0_54
– volume: 25
  start-page: 27
  year: 2019
  ident: 980_CR17
  publication-title: Mendel
  doi: 10.13164/mendel.2019.2.027
– volume: 39
  start-page: 60
  issue: 4
  year: 2020
  ident: 980_CR15
  publication-title: IEEE Technol Soc Mag
  doi: 10.1109/MTS.2020.3031848
– ident: 980_CR7
– ident: 980_CR8
  doi: 10.23919/ICACT.2017.7890124
– ident: 980_CR22
  doi: 10.1109/PCCC.2018.8711068
– ident: 980_CR9
  doi: 10.1109/YAC.2016.7804912
– volume: 8
  start-page: 7842
  year: 2020
  ident: 980_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963716
– ident: 980_CR11
  doi: 10.23919/CNSM46954.2019.9012716
– ident: 980_CR6
  doi: 10.17487/rfc3954
– ident: 980_CR16
– ident: 980_CR2
– ident: 980_CR10
– ident: 980_CR21
  doi: 10.1109/NOMS.2018.8406212
– ident: 980_CR4
  doi: 10.1109/TCSET49122.2020.235562
– ident: 980_CR3
  doi: 10.1109/ACCESS.2020.3048319
– ident: 980_CR12
  doi: 10.1145/3407023.3409189
– ident: 980_CR5
  doi: 10.1016/j.neucom.2020.07.138
– ident: 980_CR13
  doi: 10.1109/BigDataSecurity-HPSC-IDS.2019.00022
SSID ssj0033328
Score 2.4619305
Snippet The Internet of Things (IoT) appliances often expose sensitive data, either directly or indirectly. They may, for instance, tell whether you are at home right...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1441
SubjectTerms Algorithms
Anomalies
Coders
Computer Science
Early warning systems
Embedding
Internet of Things
Machine learning
Neural networks
Original Article
Pattern Recognition
Traffic information
Transformers
Windows (intervals)
Title A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment
URI https://link.springer.com/article/10.1007/s10044-021-00980-2
https://www.proquest.com/docview/2585059577
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5qL158i9VacvCmgc1jX8dSfKOnFuppyWtR0K3Yigj-eGe2G6uigtdsksN-k5lvknkQcpA744SThlmhLVPSGaZF5JnhOSzg2gqDF_pX18nZUF2M4lGTFDYJ0e7hSbLW1J-S3SKlGIYUYBHMiIHibcXou4MUD0Uv6F8pZd1RFYiAZGmseJMq8_MeX83RnGN-exatrc3JGllpaCLtzXBdJwu-2iCrDWWkzYGcwFDoyhDGNslbjwJVprPW0HRc0ttXzMqi2EWevoALPn6h_sF4h1aL4j0snQb26p8YmjWHI1hbgmIAKbXIsDGkqEaR3lX0fDxg1SyAHCZ_SpbbIsOT40H_jDU9FpiViZwynlgvc-nS2OTOcyN05uO0zPKozG2mS610mSkjLOh0ngiuvOBAWhyGcMaRyeQ2WarGld8hFKiHM1HmvVbgY2Ze55ktY6dy2LLkpWwTHn51YZsC5NgH476Yl05GeAqAp6jhKUSbHH6seZyV3_hzdicgWDRHcVIIcIiAQ8Zp2iZHAdX559932_3f9D2yLFCw6jzFDlmaPj37fSAsU9Mlrd7pzeVxlyz2k363ltZ3P43lsA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB734FldXzcGbBppHX0dZXFZdPe2Ct5JXUdBWdisi-OOd6bauigpep5Mc-iWZb5J5EHKcOuOEk4ZZoS1T0hmmReCZ4SkM4NoKgxf61zfRYKwub8PbpkwO5sJ8e7_HFLdAKYaBBFj6MmBw3C4p8JQxfK8X9dpTV0pZ91EF8y9ZHCreJMj8PMdXIzRnlt8eQ2sb018nqw05pGczNDfIgi82yVpDFGmzDacgansxtLIt8nZGgSDTWUNoWub07hVzsSj2jqcv4HiXL9Q_Gu_QVlG8faVVy1n9hKExcyjBihIUw0apRV6NgUQ1dvS-oBfliBWzsHFQ_pQit03G_fNRb8CazgrMykhWjEfWy1S6ODSp89wInfgwzpM0yFOb6FwrnSfKCAsnOY8EV15woCoOAzfDwCRyhywWZeF3CQXC4UyQeK8VeJaJ12li89CpFKbMeS47hLe_OrNN2XHsfvGQzQsmIzwZwJPV8GSiQ04-xjzNim78qd1tEcyaDTjNBLhBwBzDOO6Q0xbV-effZ9v7n_oRWR6MrofZ8OLmap-sCFxkdaZilyxWk2d_AJSlMof1Wn0HOJTiEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaqIFVcgBYQ6dMHbmBl_djXMUqJ0hYiDomU28pPgdTuVsmiCokf35l9kIAoUq9e24f9bM839nwzhLzPnXHCScOs0JYp6QzTIvLM8BwGcG2FwQv9L_NktlRXq3i1o-Jvot37J8lW04BZmsp6dOfCaEf4FinFMLwAE2JGDA7hZ-CpNA-1k2TSn8VSyqa6KpACydJY8U428-85_jRNW7751xNpY3mmr8iLjjLScYvxAdnz5SF52dFH2m3ODTT1FRr6ttfk15gCbaZtmWhaBfrtJyq0KFaUp_fgjlf31N8a79CCUbyTpXXPZP2aoYlz2IJ5JigGk1KLbBvDixpE6feSXlYLVrbB5NB5Rzj3hiynnxaTGevqLTArE1kznlgvc-nS2OTOcyN05uM0ZHkUcpvpoJUOmTLCwvnOE8GVFxwIjMNwzjgymXxLBmVV-neEAg1xJsq81wr8zczrPLMhdiqHKQMPckh4_6sL2yUjx5oYN8U2jTLCUwA8RQNPIYbkw-8xd20qjv_2PukRLLptuSkEOEfAJ-M0HZKPParbz4_PdvS07udk_-vFtPh8Ob8-Js8FrrFGvnhCBvX6hz8FHlObs2apPgDQQupY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+method+of+hybrid+time+window+embedding+with+transformer-based+traffic+data+classification+in+IoT-networked+environment&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Kozik%2C+Rafa%C5%82&rft.au=Pawlicki%2C+Marek&rft.au=Chora%C5%9B%2C+Micha%C5%82&rft.date=2021-11-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=24&rft.issue=4&rft.spage=1441&rft.epage=1449&rft_id=info:doi/10.1007%2Fs10044-021-00980-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_021_00980_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon