Navigating the metric maze: a taxonomy of evaluation metrics for anomaly detection in time series

The field of time series anomaly detection is constantly advancing, with several methods available, making it a challenge to determine the most appropriate method for a specific domain. The evaluation of these methods is facilitated by the use of metrics, which vary widely in their properties. Despi...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 38; no. 3; pp. 1027 - 1068
Main Authors Sørbø, Sondre, Ruocco, Massimiliano
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The field of time series anomaly detection is constantly advancing, with several methods available, making it a challenge to determine the most appropriate method for a specific domain. The evaluation of these methods is facilitated by the use of metrics, which vary widely in their properties. Despite the existence of new evaluation metrics, there is limited agreement on which metrics are best suited for specific scenarios and domains, and the most commonly used metrics have faced criticism in the literature. This paper provides a comprehensive overview of the metrics used for the evaluation of time series anomaly detection methods, and also defines a taxonomy of these based on how they are calculated. By defining a set of properties for evaluation metrics and a set of specific case studies and experiments, twenty metrics are analyzed and discussed in detail, highlighting the unique suitability of each for specific tasks. Through extensive experimentation and analysis, this paper argues that the choice of evaluation metric must be made with care, taking into account the specific requirements of the task at hand.
AbstractList The field of time series anomaly detection is constantly advancing, with several methods available, making it a challenge to determine the most appropriate method for a specific domain. The evaluation of these methods is facilitated by the use of metrics, which vary widely in their properties. Despite the existence of new evaluation metrics, there is limited agreement on which metrics are best suited for specific scenarios and domains, and the most commonly used metrics have faced criticism in the literature. This paper provides a comprehensive overview of the metrics used for the evaluation of time series anomaly detection methods, and also defines a taxonomy of these based on how they are calculated. By defining a set of properties for evaluation metrics and a set of specific case studies and experiments, twenty metrics are analyzed and discussed in detail, highlighting the unique suitability of each for specific tasks. Through extensive experimentation and analysis, this paper argues that the choice of evaluation metric must be made with care, taking into account the specific requirements of the task at hand.
Author Sørbø, Sondre
Ruocco, Massimiliano
Author_xml – sequence: 1
  givenname: Sondre
  orcidid: 0000-0003-0673-5107
  surname: Sørbø
  fullname: Sørbø, Sondre
  email: sondre.sorbo@sintef.no
  organization: Sintef Digital
– sequence: 2
  givenname: Massimiliano
  surname: Ruocco
  fullname: Ruocco, Massimiliano
  organization: Sintef Digital, Dept. of Computer Science, Norwegian University of Science and Technology
BookMark eNp9kE1LAzEQhoNU0Fb_gKeA59XJxt1kvUnxC4peFLyFMZ2tke6mJmmx_npjWxA8eMqQeZ-Z4RmyQe97YuxEwJkAUOdRQC10AaUsABqtC73HDkWlZKGq-mWQa6kvikoLOGDDGN8BoColHDJ8wJWbYXL9jKc34h2l4Czv8IsuOfKEn7733Zr7ltMK58uc9P0uFXnrA8fcx_maTymR3XRdz5PriEcKjuIR229xHul4947Y88310_iumDze3o-vJoWVtUyFqKbwaiVdCF0r0JqwbbFpSlValKRIKEQrQFWtxcaKpsk_bVPaWk2tLmuSI3a6nbsI_mNJMZl3vwx9XmkkVFCpRkiRU-U2ZYOPMVBrFsF1GNZGgPlRabYqTVZpNiqNzpD-A1mXNiZSQDf_H5VbNOY9_YzC71X_UN8imIu3
CitedBy_id crossref_primary_10_1109_TKDE_2024_3466291
crossref_primary_10_1109_TPAMI_2024_3387317
crossref_primary_10_1109_ACCESS_2024_3392338
crossref_primary_10_2478_raft_2025_0016
crossref_primary_10_1016_j_cie_2024_110728
crossref_primary_10_1016_j_ifacol_2024_07_216
crossref_primary_10_1109_ACCESS_2024_3524908
crossref_primary_10_1016_j_ecoinf_2024_102922
Cites_doi 10.1109/TNNLS.2021.3136171
10.1109/BigData50022.2020.9378139
10.1109/TNNLS.2020.2980749
10.48550/arXiv.2210.01078
10.24963/ijcai.2019/616
10.1145/3357384.3358118
10.14778/3538598.3538602
10.1093/bib/bbr008
10.14778/3494124.3494142
10.1109/JIOT.2021.3100509
10.48550/arXiv.2202.07857
10.1016/j.oceaneng.2019.106129
10.1145/3534678.3539117
10.1109/ICMLA.2015.141
10.1145/3292500.3330680
10.1145/1143844.1143874
10.1109/IJCNN55064.2022.9891913
10.1145/3442381.3450023
10.1109/TITB.2005.863870
10.2478/ausi-2019-0008
10.1007/978-3-540-74767-3_14
10.1109/LRA.2018.2801475
10.1198/016214501753168136
10.1109/ICDE51399.2021.00228
10.1145/3442381.3450013
10.1007/s10661-020-8064-1
10.1155/2015/453214
10.1109/ACCESS.2020.2977892
10.48550/arXiv.2008.05788
10.1109/CVPRW53098.2021.00223
10.14778/3551793.3551830
10.1145/3394486.3403392
10.48550/arXiv.2201.07284
10.24963/ijcai.2019/837
10.1109/TNNLS.2022.3162949
10.1145/3485447.3511984
10.1109/TNNLS.2021.3105827
10.1109/TKDE.2021.3128667
10.1109/tkde.2021.3140058
10.1145/3178876.3185996
10.14778/3529337.3529354
10.1109/TNNLS.2020.3027736
10.1609/aaai.v35i5.16523
10.1007/978-981-15-1773-0_28
10.1016/j.neucom.2017.04.070,
10.1109/SSCI47803.2020.9308512
10.1145/3477314.3507024
10.1145/3292500.3330871
10.1371/journal.pone.0118432
10.1145/3219819.3219845
10.1109/TKDE.2021.3130234
10.1109/EPEC52095.2021.9621752
10.1109/TNNLS.2019.2935975
10.14778/3476249.3476307
10.1109/ICDE53745.2022.00116
10.23919/INM.2017.7987310
10.1145/3394486.3403378
10.1145/3447548.3467075
10.48550/arXiv.1201.0490
10.1145/3447548.3467174
10.3390/s20133738
10.1609/aaai.v36i7.20680
10.1111/J.1466-8238.2007.00358.X
10.1145/3292500.3330672
10.1109/SOCA.2019.00021
10.48550/arXiv.2212.11080
10.1109/ICDM50108.2020.00093
10.24963/ijcai.2019/378
10.1016/j.actaastro.2022.06.026,
10.1109/TII.2022.3164087
10.1609/aaai.v33i01.33011409
10.48550/arXiv.2004.00433
10.24963/ijcai.2020/173
10.1145/3534678.3539339
10.1088/1742-6596/1213/4/042050
10.48550/arXiv.2202.07586
10.1007/978-3-030-30490-4_56
10.48550/arXiv.2207.12201
10.3390/electronics11081213
10.1145/3534678.3539097
10.1109/TKDE.2022.3171562
10.1016/j.neucom.2021.03.062
10.1145/3447548.3467137
10.1016/j.measurement.2022.110791
10.48550/arXiv.2211.09224
10.1109/ACCESS.2021.3107975
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-023-00988-8
DatabaseName Springer Open Access Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Databases
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 1068
ExternalDocumentID 10_1007_s10618_023_00988_8
GrantInformation_xml – fundername: Norges Forskningsråd
  grantid: 312062
  funderid: http://dx.doi.org/10.13039/501100005416
– fundername: SINTEF
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-15d0bc3e41867088eaffa99272ca3e7e17aac1075fca9c199e17f92c67dc826e3
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Sat Aug 16 18:51:38 EDT 2025
Thu Apr 24 23:12:40 EDT 2025
Tue Jul 01 00:40:33 EDT 2025
Fri Feb 21 02:39:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Evaluation
Taxonomy
Anomaly detection
Time series
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-15d0bc3e41867088eaffa99272ca3e7e17aac1075fca9c199e17f92c67dc826e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0673-5107
OpenAccessLink https://doi.org/10.1007/s10618-023-00988-8
PQID 3050579131
PQPubID 43030
PageCount 42
ParticipantIDs proquest_journals_3050579131
crossref_primary_10_1007_s10618_023_00988_8
crossref_citationtrail_10_1007_s10618_023_00988_8
springer_journals_10_1007_s10618_023_00988_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240500
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Feng C, Tian P (2021) Time series anomaly detection for cyber-physical systems via neural system identification and bayesian filtering. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining. Association for computing machinery, New York. KDD ’21, p 2858-2867, https://doi.org/10.1145/3447548.3467137
NiuZYuKWuXLstm-based vae-gan for time-series anomaly detectionSens Basel Switz202020373810.3390/s20133738
Audibert J, Michiardi P, Guyard F, et al. (2020) Usad: Unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International conference on knowledge discovery and data mining. Association for computing machinery, New York. KDD ’20, p 3395-3404, https://doi.org/10.1145/3394486.3403392
Scharwächter E, Müller E (2020) Statistical Evaluation of Anomaly Detectors for Sequences. In: 6th ACM SIGKDD workshop on mining and learning from time series (KDD MiLeTS 2020), https://doi.org/10.48550/arXiv.2008.05788
Zhang J, Wu D, Boulet B (2021) Time series anomaly detection for smart grids: A survey. 2021 IEEE electrical power and energy conference (EPEC) pp 125–130. https://doi.org/10.1109/EPEC52095.2021.9621752
Bashar MA, Nayak R (2020) Tanogan: Time series anomaly detection with generative adversarial networks. In: 2020 IEEE symposium series on computational intelligence, SSCI 2020, Canberra, December 1-4, 2020. IEEE, pp 1778–1785, https://doi.org/10.1109/SSCI47803.2020.9308512
KimGYLimSMEuomICA study on performance metrics for anomaly detection based on industrial control system operation dataElectronics2022118110821310.3390/electronics11081213
Lai K, Zha D, Xu J, et al. (2021) Revisiting time series outlier detection: Definitions and benchmarks. In: Vanschoren J, Yeung S (eds) Proceedings of the neural information processing systems track on datasets and benchmarks 1, NeurIPS datasets and benchmarks 2021, December 2021, virtual, https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ec5decca5ed3d6b8079e2e7e7bacc9f2-Abstract-round1.html
Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Cohen WW, Moore AW (eds) Machine learning. Proceedings of the twenty-third international conference (ICML 2006). Pittsburgh, Pennsylvania, USA, June 25-29, 2006, ACM international conference proceeding series, vol 148. ACM, pp 233–240, https://doi.org/10.1145/1143844.1143874
Goswami M, Challu C, Callot L, et al. (2022) Unsupervised model selection for time-series anomaly detection. ArXiv abs/2210.01078. https://doi.org/10.48550/arXiv.2210.01078
Tatbul N, Lee TJ, Zdonik S, et al. (2018) Precision and recall for time series. In: Bengio S, Wallach HM, Larochelle H, et al. (eds) Advances in neural information processing systems 31: annual conference on neural information processing systems 2018. NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp 1924–1934, https://proceedings.neurips.cc/paper/2018/hash/8f468c873a32bb0619eaeb2050ba45d1-Abstract.html
Xu H, Wang Y, Jian S, et al. (2022) Calibrated one-class classification for unsupervised time series anomaly detection. CoRR abs/2207.12201. https://doi.org/10.48550/arXiv.2207.12201
Geiger A, Liu D, Alnegheimish S, et al. (2020) Tadgan: Time series anomaly detection using generative adversarial networks. In: Wu X, Jermaine C, Xiong L, et al. (eds) 2020 IEEE international conference on big data (IEEE BigData 2020), Atlanta, GA, USA, December 10-13, 2020. IEEE, pp 33–43, https://doi.org/10.1109/BigData50022.2020.9378139
Hwang WS, Yun JH, Kim J, et al. (2022) "do you know existing accuracy metrics overrate time-series anomaly detections?". In: Proceedings of the 37th ACM/SIGAPP symposium on applied computing. Association for computing machinery. New York, SAC ’22, p 403-412, https://doi.org/10.1145/3477314.3507024
ChenZChenDYuanZLearning graph structures with transformer for multivariate time-series anomaly detection in IOTIEEE Internet Things J202199179918910.1109/JIOT.2021.3100509
Baireddy S, Desai SR, Mathieson JL, et al. (2021) Spacecraft time-series anomaly detection using transfer learning. In: 2021 IEEE/CVF Conference on computer vision and pattern recognition workshops (CVPRW), pp 1951–1960, https://doi.org/10.1109/CVPRW53098.2021.00223
Ahmed AH, Riegler MA, Hicks SA, et al. (2022) Rcad: Real-time collaborative anomaly detection system for mobile broadband networks. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining. Association for computing machinery, New York. KDD ’22, p 2682-2691, https://doi.org/10.1145/3534678.3539097
Rewicki F, Denzler J, Niebling J (2022) Is it worth it? an experimental comparison of six deep- and classical machine learning methods for unsupervised anomaly detection in time series. ArXiv abs/2212.11080. https://doi.org/10.48550/arXiv.2212.11080
Huet A, Navarro JM, Rossi D (2022) Local evaluation of time series anomaly detection algorithms. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining. Association for computing machinery. New York. KDD ’22, p 635-645, https://doi.org/10.1145/3534678.3539339
SivaraksHRatanamahatanaCRobust and accurate anomaly detection in ecg artifacts using time series motif discoveryComput Math Methods Med2015201545314330517010.1155/2015/453214
Doshi K, Abudalou S, Yilmaz Y (2022) Reward once, penalize once: Rectifying time series anomaly detection. In: International joint conference on neural networks, IJCNN 2022, Padua, July 18-23, 2022. IEEE, pp 1–8, https://doi.org/10.1109/IJCNN55064.2022.9891913
Nalepa J, Myller M, Andrzejewski J et al (2022) Evaluating algorithms for anomaly detection in satellite telemetry data. Acta Astronautica 198:689–701 https://doi.org/10.1016/j.actaastro.2022.06.026,www.sciencedirect.com/science/article/pii/S0094576522003162
Chuah MC, Fu F (2007) ECG anomaly detection via time series analysis. In: Thulasiraman P, He X, Xu TL, et al. (eds) Frontiers of high performance computing and networking ISPA 2007 workshops, ISPA 2007 international workshops SSDSN, UPWN, WISH, SGC, ParDMCom, HiPCoMB, and IST-AWSN Niagara Falls. August 28 - September 1, 2007, Proceedings, Lecture Notes in Computer Science, vol 4743. Springer, pp 123–135, https://doi.org/10.1007/978-3-540-74767-3_14
Schmidl S, Wenig P, Papenbrock T (2022) Anomaly detection in time series: a comprehensive evaluation. Proc VLDB Endow 15(9):1779-1797. https://doi.org/10.14778/3538598.3538602
Ahmad S, Lavin A, Purdy S et al (2017) Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262:134–147 https://doi.org/10.1016/j.neucom.2017.04.070,www.sciencedirect.com/science/article/pii/S0925231217309864, online Real-Time Learning Strategies for Data Streams
Zhang C, Song D, Chen Y, et al. (2018) A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. ArXiv abs/1811.08055. https://doi.org/10.1609/aaai.v33i01.33011409
Chen T, Liu X, Xia B, et al. (2020) Unsupervised anomaly detection of industrial robots using sliding-window convolutional variational autoencoder. IEEE Access 8:47,072–47,081. https://doi.org/10.1109/ACCESS.2020.2977892
SaitoTRehmsmeierMThe precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasetsPLoS ONE20151010.1371/journal.pone.0118432
LoboJMJiménez-ValverdeARealRAuc: a misleading measure of the performance of predictive distribution modelsGlob Ecol Biogeogr20081714515110.1111/J.1466-8238.2007.00358.X
Campos D, Kieu T, Guo C, et al. (2021) Unsupervised time series outlier detection with diversity-driven convolutional ensembles. Proc VLDB Endow 15(3):611–623. https://doi.org/10.14778/3494124.3494142, http://www.vldb.org/pvldb/vol15/p611-chaves.pdf
LiLYanJWenQLearning robust deep state space for unsupervised anomaly detection in contaminated time-seriesIEEE Trans Knowl Data Eng2022231110.1109/TKDE.2022.3171562
FengYLiuZChenJUnsupervised multimodal anomaly detection with missing sources for liquid rocket engineIEEE Trans Neural Netw Learn Syst2022911510.1109/TNNLS.2022.3162949
Li D, Chen D, Shi L, et al. (2019) Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks. In: International conference on artificial neural networks https://doi.org/10.1007/978-3-030-30490-4_56
LiuSZhouBDingQXTime series anomaly detection with adversarial reconstruction networksIEEE Trans Knowl Data Eng202210.1109/tkde.2021.3140058
Pedregosa F, Varoquaux G, Gramfort A, et al. (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. https://doi.org/10.48550/arXiv.1201.0490
Dai E, Chen J (2022) Graph-augmented normalizing flows for anomaly detection of multiple time series. ArXiv abs/2202.07857. https://doi.org/10.48550/arXiv.2202.07857
DengLLianDHuangZGraph convolutional adversarial networks for spatiotemporal anomaly detectionIEEE Trans Neural Netw Learn Syst202233624162428444231610.1109/TNNLS.2021.3136171
WangYHanLLiuWStudy on wavelet neural network based anomaly detection in ocean observing data seriesOcean Eng201910.1016/j.oceaneng.2019.106129
Challu C, Jiang P, Wu YN, et al. (2022) Deep generative model with hierarchical latent factors for time series anomaly detection. In: International conference on artificial intelligence and statistics https://doi.org/10.48550/arXiv.2202.07586
ChenRShiGZhaoWA joint model for IT operation series prediction and anomaly detectionNeurocomputing202144813013910.1016/j.neucom.2021.03.062
Ma M, Zhang S, Chen J, et al. (2021) Jump-starting multivariate time series anomaly detection for online service systems. In: USENIX annual technical conference, https://www.usenix.org/conference/atc21/presentation/ma
MamandipoorBMajdMSheikhalishahiSMonitoring and detecting faults in wastewater treatment plants using deep learningEnviron Monitor Assess202019211210.1007/s10661-020-8064-1
Paparrizos J, Boniol P, Palpanas T, et al. (2022a) Volume under the surface: A new accuracy evaluation measure for time-series a
R Chen (988_CR14) 2021; 448
L Deng (988_CR24) 2022; 33
X Wang (988_CR84) 2022
Z Chen (988_CR16) 2022; 9
Z Niu (988_CR67) 2020; 20
988_CR26
988_CR25
988_CR69
EJ Keogh (988_CR48) 2006; 10
988_CR61
T Saito (988_CR75) 2015; 10
Y Wang (988_CR85) 2022; 18
988_CR20
988_CR64
988_CR22
988_CR66
988_CR21
988_CR65
988_CR68
988_CR23
B Du (988_CR27) 2021; 5
988_CR91
988_CR90
988_CR93
988_CR92
Y Wang (988_CR83) 2019
988_CR59
988_CR17
988_CR19
Z Chen (988_CR15) 2021; 9
988_CR18
988_CR51
Y Li (988_CR57) 2021; 23
988_CR95
988_CR94
988_CR53
988_CR11
988_CR55
988_CR10
988_CR54
988_CR13
S Liu (988_CR60) 2022
988_CR12
Y He (988_CR38) 2019; 4
G Kovács (988_CR52) 2019; 11
988_CR80
988_CR82
988_CR81
L Li (988_CR56) 2021; 32
988_CR4
988_CR3
988_CR2
988_CR1
L Li (988_CR58) 2022; 23
A Garg (988_CR32) 2022; 33
988_CR47
988_CR49
T Ergen (988_CR28) 2020; 31
988_CR40
DP Berrar (988_CR8) 2012; 13
988_CR42
988_CR86
Z He (988_CR39) 2020; 12
988_CR41
988_CR44
988_CR88
988_CR43
988_CR87
988_CR46
988_CR45
988_CR89
988_CR70
H Sivaraks (988_CR79) 2015; 2015
D Park (988_CR71) 2017; 3
B Mamandipoor (988_CR63) 2020; 192
Y Feng (988_CR29) 2022; 9
988_CR37
SG Baker (988_CR6) 2001; 96
988_CR7
988_CR36
JM Lobo (988_CR62) 2008; 17
988_CR5
988_CR9
988_CR73
988_CR72
988_CR31
GY Kim (988_CR50) 2022; 11
988_CR30
988_CR74
988_CR33
988_CR77
988_CR76
988_CR35
988_CR34
988_CR78
References_xml – reference: Flaborea A, Prenkaj B, Munjal B, et al. (2022) Are we certain it’s anomalous? ArXiv abs/2211.09224. https://doi.org/10.48550/arXiv.2211.09224
– reference: Kim S, Choi K, Choi H, et al. (2022b) Towards a rigorous evaluation of time-series anomaly detection. In: Thirty-sixth AAAI conference on artificial intelligence, AAAI 2022, Thirty-fourth conference on innovative applications of artificial intelligence, IAAI 2022, The twelveth symposium on educational advances in artificial intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI Press, pp 7194–7201, https://ojs.aaai.org/index.php/AAAI/article/view/20680
– reference: Lai K, Zha D, Xu J, et al. (2021) Revisiting time series outlier detection: Definitions and benchmarks. In: Vanschoren J, Yeung S (eds) Proceedings of the neural information processing systems track on datasets and benchmarks 1, NeurIPS datasets and benchmarks 2021, December 2021, virtual, https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ec5decca5ed3d6b8079e2e7e7bacc9f2-Abstract-round1.html
– reference: Chen X, Deng L, Huang F, et al. (2021b) DAEMON: unsupervised anomaly detection and interpretation for multivariate time series. In: 37th IEEE international conference on data engineering, ICDE 2021, Chania. April 19-22, 2021. IEEE, pp 2225–2230, https://doi.org/10.1109/ICDE51399.2021.00228,
– reference: KimGYLimSMEuomICA study on performance metrics for anomaly detection based on industrial control system operation dataElectronics2022118110821310.3390/electronics11081213
– reference: Paparrizos J, Boniol P, Palpanas T, et al. (2022a) Volume under the surface: A new accuracy evaluation measure for time-series anomaly detection. Proc VLDB Endow 15:2774–2787. https://doi.org/10.14778/3551793.3551830
– reference: Shen L, Li Z, Kwok J (2020) Timeseries anomaly detection using temporal hierarchical one-class network. In: Larochelle H, Ranzato M, Hadsell R, et al. (eds) Advances in neural information processing systems, vol 33. curran associates, Inc., pp 13,016–13,026, https://proceedings.neurips.cc/paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf
– reference: ChenRShiGZhaoWA joint model for IT operation series prediction and anomaly detectionNeurocomputing202144813013910.1016/j.neucom.2021.03.062
– reference: Abdulaal A, Liu Z, Lancewicki T (2021) Practical approach to asynchronous multivariate time series anomaly detection and localization. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining. Association for computing machinery, New York, NY, USA, KDD ’21, p 2485-2494, https://doi.org/10.1145/3447548.3467174,
– reference: Challu C, Jiang P, Wu YN, et al. (2022) Deep generative model with hierarchical latent factors for time series anomaly detection. In: International conference on artificial intelligence and statistics https://doi.org/10.48550/arXiv.2202.07586
– reference: Feng C, Tian P (2021) Time series anomaly detection for cyber-physical systems via neural system identification and bayesian filtering. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining. Association for computing machinery, New York. KDD ’21, p 2858-2867, https://doi.org/10.1145/3447548.3467137,
– reference: Paparrizos J, Kang Y, Boniol P, et al. (2022b) Tsb-uad: An end-to-end benchmark suite for univariate time-series anomaly detection. Proc VLDB Endow 15(8):1697-1711. https://doi.org/10.14778/3529337.3529354
– reference: SivaraksHRatanamahatanaCRobust and accurate anomaly detection in ecg artifacts using time series motif discoveryComput Math Methods Med2015201545314330517010.1155/2015/453214
– reference: Zhang CK, Li SZ, Zhang H, et al. (2020) Velc: A new variational autoencoder based model for time series anomaly detection. arXiv:1907.01702
– reference: Huet A, Navarro JM, Rossi D (2022) Local evaluation of time series anomaly detection algorithms. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining. Association for computing machinery. New York. KDD ’22, p 635-645, https://doi.org/10.1145/3534678.3539339
– reference: Doshi K, Abudalou S, Yilmaz Y (2022) Reward once, penalize once: Rectifying time series anomaly detection. In: International joint conference on neural networks, IJCNN 2022, Padua, July 18-23, 2022. IEEE, pp 1–8, https://doi.org/10.1109/IJCNN55064.2022.9891913,
– reference: GargAZhangWSamaranJAn evaluation of anomaly detection and diagnosis in multivariate time seriesIEEE Trans Neural Netw Learn Syst202233625082517444232310.1109/TNNLS.2021.3105827
– reference: Hundman K, Constantinou V, Laporte C, et al. (2018) Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Guo Y, Farooq F (eds) Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery and data mining, KDD 2018. London. August 19-23, 2018. ACM, pp 387–395, https://doi.org/10.1145/3219819.3219845
– reference: Wu R, Keogh EJ (2022) Current time series anomaly detection benchmarks are flawed and are creating the illusion of progress (extended abstract). In: 2022 IEEE 38th international conference on data engineering (ICDE), pp 1479–1480, https://doi.org/10.1109/ICDE53745.2022.00116
– reference: Dai L, Lin T, Liu C, et al. (2021) Sdfvae: Static and dynamic factorized vae for anomaly detection of multivariate cdn kpis. In: Proceedings of the web conference 2021. Association for computing machinery, New York. WWW ’21, p 3076-3086, https://doi.org/10.1145/3442381.3450013,
– reference: FengYLiuZChenJUnsupervised multimodal anomaly detection with missing sources for liquid rocket engineIEEE Trans Neural Netw Learn Syst2022911510.1109/TNNLS.2022.3162949
– reference: LiuSZhouBDingQXTime series anomaly detection with adversarial reconstruction networksIEEE Trans Knowl Data Eng202210.1109/tkde.2021.3140058
– reference: Huang T, Chen P, Li R (2022) A semi-supervised vae based active anomaly detection framework in multivariate time series for online systems. In: Proceedings of the ACM web conference 2022. Association for computing machinery. New York. WWW ’22, p 1797-1806, https://doi.org/10.1145/3485447.3511984,
– reference: ParkDHoshiYKempCCA multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoderIEEE Robot Autom Lett201731544155110.1109/LRA.2018.2801475
– reference: Goodge A, Hooi B, Ng S, et al. (2020) Robustness of autoencoders for anomaly detection under adversarial impact. In: Bessiere C (ed) Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI 2020. ijcai.org, pp 1244–1250, https://doi.org/10.24963/ijcai.2020/173,
– reference: Goswami M, Challu C, Callot L, et al. (2022) Unsupervised model selection for time-series anomaly detection. ArXiv abs/2210.01078. https://doi.org/10.48550/arXiv.2210.01078
– reference: DengLLianDHuangZGraph convolutional adversarial networks for spatiotemporal anomaly detectionIEEE Trans Neural Netw Learn Syst202233624162428444231610.1109/TNNLS.2021.3136171
– reference: LiLYanJWenQLearning robust deep state space for unsupervised anomaly detection in contaminated time-seriesIEEE Trans Knowl Data Eng2022231110.1109/TKDE.2022.3171562
– reference: Tuli S, Casale G, Jennings NR (2022) Tranad: deep transformer networks for anomaly detection in multivariate time series data. Proc VLDB Endow 15:1201–1214. https://doi.org/10.48550/arXiv.2201.07284
– reference: Hsieh RJ, Chou J, Ho CH (2019) Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing. 2019 IEEE 12th conference on service-oriented computing and applications (SOCA) pp 90–97. https://doi.org/10.1109/SOCA.2019.00021
– reference: WangXPiDZhangXVariational transformer-based anomaly detection approach for multivariate time seriesMeasurement202210.1016/j.measurement.2022.110791
– reference: ChenZChenDYuanZLearning graph structures with transformer for multivariate time-series anomaly detection in IOTIEEE Internet Things J202199179918910.1109/JIOT.2021.3100509
– reference: Huang X, Lee J, Kwon YW, et al. (2020) Crowdquake: A networked system of low-cost sensors for earthquake detection via deep learning. Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery and data mining https://doi.org/10.1145/3394486.3403378
– reference: Zhang J, Wu D, Boulet B (2021) Time series anomaly detection for smart grids: A survey. 2021 IEEE electrical power and energy conference (EPEC) pp 125–130. https://doi.org/10.1109/EPEC52095.2021.9621752
– reference: Ren H, Xu B, Wang Y, et al. (2019) Time-series anomaly detection service at microsoft. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining. Association for computing machinery. New York. KDD ’19, p 3009-3017, https://doi.org/10.1145/3292500.3330680,
– reference: Ahmed AH, Riegler MA, Hicks SA, et al. (2022) Rcad: Real-time collaborative anomaly detection system for mobile broadband networks. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining. Association for computing machinery, New York. KDD ’22, p 2682-2691, https://doi.org/10.1145/3534678.3539097,
– reference: WangYDuXLuZImproved lstm-based time-series anomaly detection in rail transit operation environmentsIEEE Trans Indust Inform2022189027903610.1109/TII.2022.3164087
– reference: Scharwächter E, Müller E (2020) Statistical Evaluation of Anomaly Detectors for Sequences. In: 6th ACM SIGKDD workshop on mining and learning from time series (KDD MiLeTS 2020), https://doi.org/10.48550/arXiv.2008.05788
– reference: Choi K, Yi J, Park C, et al. (2021) Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines. IEEE Access 9:120,043–120,065. https://doi.org/10.1109/ACCESS.2021.3107975
– reference: Hwang WS, Yun JH, Kim J, et al. (2022) "do you know existing accuracy metrics overrate time-series anomaly detections?". In: Proceedings of the 37th ACM/SIGAPP symposium on applied computing. Association for computing machinery. New York, SAC ’22, p 403-412, https://doi.org/10.1145/3477314.3507024,
– reference: Bashar MA, Nayak R (2020) Tanogan: Time series anomaly detection with generative adversarial networks. In: 2020 IEEE symposium series on computational intelligence, SSCI 2020, Canberra, December 1-4, 2020. IEEE, pp 1778–1785, https://doi.org/10.1109/SSCI47803.2020.9308512
– reference: Kieu T, Yang B, Guo C, et al. (2019) Outlier detection for time series with recurrent autoencoder ensembles. In: International joint conference on artificial intelligence, https://doi.org/10.24963/ijcai.2019/378
– reference: Gensler A, Sick B (2014) Novel criteria to measure performance of time series segmentation techniques. In: Seidl T, Hassani M, Beecks C (eds) Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, Aachen, Germany, September 8-10, 2014, CEUR workshop proceedings, vol 1226. CEUR-WS.org, pp 193–204, http://ceur-ws.org/Vol-1226/paper31.pdf
– reference: Ma M, Zhang S, Chen J, et al. (2021) Jump-starting multivariate time series anomaly detection for online service systems. In: USENIX annual technical conference, https://www.usenix.org/conference/atc21/presentation/ma
– reference: Meng H, Zhang Y, Li Y, et al. (2020) Spacecraft anomaly detection via transformer reconstruction error. In: Jing Z (ed) Proceedings of the international conference on aerospace system science and engineering 2019. Springer, Singapore, pp 351–362, https://doi.org/10.1007/978-981-15-1773-0_28
– reference: Tatbul N, Lee TJ, Zdonik S, et al. (2018) Precision and recall for time series. In: Bengio S, Wallach HM, Larochelle H, et al. (eds) Advances in neural information processing systems 31: annual conference on neural information processing systems 2018. NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp 1924–1934, https://proceedings.neurips.cc/paper/2018/hash/8f468c873a32bb0619eaeb2050ba45d1-Abstract.html
– reference: HeYZhaoJTemporal convolutional networks for anomaly detection in time seriesJ Phys Conf Ser20194121310.1088/1742-6596/1213/4/042050
– reference: ChenZChenDZhangXLearning graph structures with transformer for multivariate time-series anomaly detection in iotIEEE Internet Things J202291291799189449618710.1109/JIOT.2021.3100509
– reference: Chuah MC, Fu F (2007) ECG anomaly detection via time series analysis. In: Thulasiraman P, He X, Xu TL, et al. (eds) Frontiers of high performance computing and networking ISPA 2007 workshops, ISPA 2007 international workshops SSDSN, UPWN, WISH, SGC, ParDMCom, HiPCoMB, and IST-AWSN Niagara Falls. August 28 - September 1, 2007, Proceedings, Lecture Notes in Computer Science, vol 4743. Springer, pp 123–135, https://doi.org/10.1007/978-3-540-74767-3_14,
– reference: ErgenTKozatSSUnsupervised anomaly detection with LSTM neural networksIEEE Trans Neural Netw Learn Syst202031831273141413679710.1109/TNNLS.2019.2935975
– reference: Bhatia S, Jain A, Li P, et al. (2021) Mstream: Fast anomaly detection in multi-aspect streams. In: Proceedings of the web conference 2021. Association for computing machinery, New York. WWW ’21, p 3371-3382, https://doi.org/10.1145/3442381.3450023,
– reference: MamandipoorBMajdMSheikhalishahiSMonitoring and detecting faults in wastewater treatment plants using deep learningEnviron Monitor Assess202019211210.1007/s10661-020-8064-1
– reference: Han S, Woo SS (2022) Learning sparse latent graph representations for anomaly detection in multivariate time series. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining. Association for computing machinery, New York. KDD ’22, p 2977-2986, https://doi.org/10.1145/3534678.3539117,
– reference: Li Z, Zhao Y, Han J, et al. (2021c) Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD conference on knowledge discovery and data mining. association for computing machinery, New York. KDD ’21, p 3220-3230, https://doi.org/10.1145/3447548.3467075,
– reference: Zhou B, Liu S, Hooi B, et al. (2019) Beatgan: Anomalous rhythm detection using adversarially generated time series. In: International joint conference on artificial intelligence, https://doi.org/10.24963/ijcai.2019/616
– reference: Baireddy S, Desai SR, Mathieson JL, et al. (2021) Spacecraft time-series anomaly detection using transfer learning. In: 2021 IEEE/CVF Conference on computer vision and pattern recognition workshops (CVPRW), pp 1951–1960, https://doi.org/10.1109/CVPRW53098.2021.00223
– reference: Lavin A, Ahmad S (2015a) Evaluating real-time anomaly detection algorithms - the numenta anomaly benchmark. In: Li T, Kurgan LA, Palade V, et al. (eds) 14th IEEE international conference on machine learning and applications, ICMLA 2015, Miami. December 9-11, 2015. IEEE, pp 38–44, https://doi.org/10.1109/ICMLA.2015.141,
– reference: BakerSGPinskyPFA proposed design and analysis for comparing digital and analog mammographyJ Am Stat Assoc20019645442142810.1198/016214501753168136
– reference: BerrarDPFlachPACaveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them)Brief Bioinform2012131839710.1093/bib/bbr008
– reference: Xu H, Wang Y, Jian S, et al. (2022) Calibrated one-class classification for unsupervised time series anomaly detection. CoRR abs/2207.12201. https://doi.org/10.48550/arXiv.2207.12201,
– reference: Rewicki F, Denzler J, Niebling J (2022) Is it worth it? an experimental comparison of six deep- and classical machine learning methods for unsupervised anomaly detection in time series. ArXiv abs/2212.11080. https://doi.org/10.48550/arXiv.2212.11080
– reference: Braei M, Wagner S (2020) Anomaly detection in univariate time-series: a survey on the state-of-the-art. CoRR abs/2004.00433. https://doi.org/10.48550/arXiv.2004.00433, arXiv:2004.00433
– reference: Campos D, Kieu T, Guo C, et al. (2021) Unsupervised time series outlier detection with diversity-driven convolutional ensembles. Proc VLDB Endow 15(3):611–623. https://doi.org/10.14778/3494124.3494142, http://www.vldb.org/pvldb/vol15/p611-chaves.pdf
– reference: Dai E, Chen J (2022) Graph-augmented normalizing flows for anomaly detection of multiple time series. ArXiv abs/2202.07857. https://doi.org/10.48550/arXiv.2202.07857
– reference: Pang G, Shen C, van den Hengel A (2019) Deep anomaly detection with deviation networks. Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining https://doi.org/10.1145/3292500.3330871
– reference: WangYHanLLiuWStudy on wavelet neural network based anomaly detection in ocean observing data seriesOcean Eng201910.1016/j.oceaneng.2019.106129
– reference: LoboJMJiménez-ValverdeARealRAuc: a misleading measure of the performance of predictive distribution modelsGlob Ecol Biogeogr20081714515110.1111/J.1466-8238.2007.00358.X
– reference: Hwang W, Yun J, Kim J, et al. (2019) Time-series aware precision and recall for anomaly detection: Considering variety of detection result and addressing ambiguous labeling. In: Zhu W, Tao D, Cheng X, et al. (eds) Proceedings of the 28th ACM international conference on information and knowledge management, CIKM 2019. Beijing, China, November 3-7, 2019. ACM, pp 2241–2244, https://doi.org/10.1145/3357384.3358118,
– reference: KovácsGSebestyenGHanganAEvaluation metrics for anomaly detection algorithms in time-seriesActa Univ Sapientiae Inf20191111313010.2478/ausi-2019-0008
– reference: NiuZYuKWuXLstm-based vae-gan for time-series anomaly detectionSens Basel Switz202020373810.3390/s20133738
– reference: Pedregosa F, Varoquaux G, Gramfort A, et al. (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. https://doi.org/10.48550/arXiv.1201.0490
– reference: Deng A, Hooi B (2021) Graph neural network-based anomaly detection in multivariate time series. In: Thirty-Fifth AAAI conference on artificial intelligence, AAAI 2021, Thirty-third conference on innovative applications of artificial intelligence, IAAI 2021, The eleventh symposium on educational advances in artificial intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, pp 4027–4035, https://ojs.aaai.org/index.php/AAAI/article/view/16523
– reference: Geiger A, Liu D, Alnegheimish S, et al. (2020) Tadgan: Time series anomaly detection using generative adversarial networks. In: Wu X, Jermaine C, Xiong L, et al. (eds) 2020 IEEE international conference on big data (IEEE BigData 2020), Atlanta, GA, USA, December 10-13, 2020. IEEE, pp 33–43, https://doi.org/10.1109/BigData50022.2020.9378139,
– reference: Su Y, Zhao Y, Niu C, et al. (2019) Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining. Association for computing machinery. New York. KDD ’19, p 2828-2837, https://doi.org/10.1145/3292500.3330672,
– reference: Zhao H, Wang Y, Duan J, et al. (2020) Multivariate time-series anomaly detection via graph attention network. In: 2020 IEEE international conference on data mining (ICDM), pp 841–850, https://doi.org/10.1109/ICDM50108.2020.00093
– reference: Schmidl S, Wenig P, Papenbrock T (2022) Anomaly detection in time series: a comprehensive evaluation. Proc VLDB Endow 15(9):1779-1797. https://doi.org/10.14778/3538598.3538602,
– reference: Buda TS, Assem H, Xu L (2017) ADE: an ensemble approach for early anomaly detection. In: 2017 IFIP/IEEE symposium on integrated network and service management (IM), Lisbon. May 8-12, 2017. IEEE, pp 442–448, https://doi.org/10.23919/INM.2017.7987310,
– reference: Nalepa J, Myller M, Andrzejewski J et al (2022) Evaluating algorithms for anomaly detection in satellite telemetry data. Acta Astronautica 198:689–701 https://doi.org/10.1016/j.actaastro.2022.06.026,www.sciencedirect.com/science/article/pii/S0094576522003162
– reference: Wu R, Keogh EJ (2021) Ucr_anomalydatasets.pptx, supplemental material to the ucr anomaly archive. https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.zip, accessed: 2022-11-15
– reference: Zhang C, Song D, Chen Y, et al. (2018) A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. ArXiv abs/1811.08055. https://doi.org/10.1609/aaai.v33i01.33011409
– reference: HeZChenPLiXA spatiotemporal deep learning approach for unsupervised anomaly detection in cloud systemsIEEE Trans Neural Netw Learn Syst202012302773610.1109/TNNLS.2020.3027736
– reference: Xu H, Chen W, Zhao N, et al. (2018) Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications. In: Proceedings of the 2018 world wide web conference. International world wide web conferences steering committee, republic and canton of Geneva. CHE, WWW ’18, p 187-196, https://doi.org/10.1145/3178876.3185996,
– reference: Jacob V, Song F, Stiegler A, et al. (2021) Exathlon: A benchmark for explainable anomaly detection over time series. Proc VLDB Endow 14(11), 2613–2626. https://doi.org/10.14778/3476249.3476307
– reference: Li D, Chen D, Shi L, et al. (2019) Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks. In: International conference on artificial neural networks https://doi.org/10.1007/978-3-030-30490-4_56
– reference: KeoghEJLinJFuAWCFinding unusual medical time-series subsequences: algorithms and applicationsIEEE Trans Inf Technol Biomed20061042943910.1109/TITB.2005.863870
– reference: Chen T, Liu X, Xia B, et al. (2020) Unsupervised anomaly detection of industrial robots using sliding-window convolutional variational autoencoder. IEEE Access 8:47,072–47,081. https://doi.org/10.1109/ACCESS.2020.2977892,
– reference: LiLYanJWangHAnomaly detection of time series with smoothness-inducing sequential variational auto-encoderIEEE Trans Neural Netw Learn Syst20213231177119110.1109/TNNLS.2020.2980749
– reference: Zhang M, Li T, Shi H, et al. (2019) A decomposition approach for urban anomaly detection across spatiotemporal data. In: Kraus S (ed) Proceedings of the twenty-eighth international joint conference on artificial intelligence, IJCAI 2019, Macao. August 10-16, 2019. ijcai.org, pp 6043–6049, https://doi.org/10.24963/ijcai.2019/837,
– reference: DuBSunXYeJGan-based anomaly detection for multivariate time series using polluted training setIEEE Trans Knowl Data Eng202151110.1109/TKDE.2021.3128667
– reference: Audibert J, Michiardi P, Guyard F, et al. (2020) Usad: Unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International conference on knowledge discovery and data mining. Association for computing machinery, New York. KDD ’20, p 3395-3404, https://doi.org/10.1145/3394486.3403392,
– reference: SaitoTRehmsmeierMThe precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasetsPLoS ONE20151010.1371/journal.pone.0118432
– reference: Lavin A, Ahmad S (2015b) The numenta anomaly benchmark [White paper]. Redwood City, CA: Numenta, Available: https://github.com/numenta/NAB/wiki
– reference: Ahmad S, Lavin A, Purdy S et al (2017) Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262:134–147 https://doi.org/10.1016/j.neucom.2017.04.070,www.sciencedirect.com/science/article/pii/S0925231217309864, online Real-Time Learning Strategies for Data Streams
– reference: LiYPengXZhangJDct-gan: dilated convolutional transformer-based gan for time series anomaly detectionIEEE Trans Knowl Data Eng2021231110.1109/TKDE.2021.3130234
– reference: Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Cohen WW, Moore AW (eds) Machine learning. Proceedings of the twenty-third international conference (ICML 2006). Pittsburgh, Pennsylvania, USA, June 25-29, 2006, ACM international conference proceeding series, vol 148. ACM, pp 233–240, https://doi.org/10.1145/1143844.1143874,
– volume: 33
  start-page: 2416
  issue: 6
  year: 2022
  ident: 988_CR24
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3136171
– ident: 988_CR33
  doi: 10.1109/BigData50022.2020.9378139
– volume: 32
  start-page: 1177
  issue: 3
  year: 2021
  ident: 988_CR56
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.2980749
– ident: 988_CR36
  doi: 10.48550/arXiv.2210.01078
– ident: 988_CR95
  doi: 10.24963/ijcai.2019/616
– ident: 988_CR46
  doi: 10.1145/3357384.3358118
– ident: 988_CR77
  doi: 10.14778/3538598.3538602
– volume: 13
  start-page: 83
  issue: 1
  year: 2012
  ident: 988_CR8
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr008
– ident: 988_CR12
  doi: 10.14778/3494124.3494142
– volume: 9
  start-page: 9179
  year: 2021
  ident: 988_CR15
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3100509
– ident: 988_CR21
  doi: 10.48550/arXiv.2202.07857
– year: 2019
  ident: 988_CR83
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.106129
– ident: 988_CR37
  doi: 10.1145/3534678.3539117
– ident: 988_CR54
  doi: 10.1109/ICMLA.2015.141
– ident: 988_CR73
  doi: 10.1145/3292500.3330680
– ident: 988_CR23
  doi: 10.1145/1143844.1143874
– ident: 988_CR26
  doi: 10.1109/IJCNN55064.2022.9891913
– ident: 988_CR81
– ident: 988_CR9
  doi: 10.1145/3442381.3450023
– volume: 10
  start-page: 429
  year: 2006
  ident: 988_CR48
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2005.863870
– volume: 11
  start-page: 113
  year: 2019
  ident: 988_CR52
  publication-title: Acta Univ Sapientiae Inf
  doi: 10.2478/ausi-2019-0008
– ident: 988_CR20
  doi: 10.1007/978-3-540-74767-3_14
– volume: 3
  start-page: 1544
  year: 2017
  ident: 988_CR71
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2018.2801475
– volume: 96
  start-page: 421
  issue: 454
  year: 2001
  ident: 988_CR6
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214501753168136
– ident: 988_CR17
  doi: 10.1109/ICDE51399.2021.00228
– ident: 988_CR22
  doi: 10.1145/3442381.3450013
– volume: 192
  start-page: 1
  year: 2020
  ident: 988_CR63
  publication-title: Environ Monitor Assess
  doi: 10.1007/s10661-020-8064-1
– volume: 2015
  start-page: 45314
  year: 2015
  ident: 988_CR79
  publication-title: Comput Math Methods Med
  doi: 10.1155/2015/453214
– ident: 988_CR18
  doi: 10.1109/ACCESS.2020.2977892
– volume: 9
  start-page: 9179
  issue: 12
  year: 2022
  ident: 988_CR16
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2021.3100509
– ident: 988_CR76
  doi: 10.48550/arXiv.2008.05788
– ident: 988_CR5
  doi: 10.1109/CVPRW53098.2021.00223
– ident: 988_CR69
  doi: 10.14778/3551793.3551830
– ident: 988_CR4
  doi: 10.1145/3394486.3403392
– ident: 988_CR82
  doi: 10.48550/arXiv.2201.07284
– ident: 988_CR91
  doi: 10.24963/ijcai.2019/837
– volume: 9
  start-page: 1
  year: 2022
  ident: 988_CR29
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3162949
– ident: 988_CR41
  doi: 10.1145/3485447.3511984
– volume: 33
  start-page: 2508
  issue: 6
  year: 2022
  ident: 988_CR32
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3105827
– ident: 988_CR34
– volume: 5
  start-page: 1
  year: 2021
  ident: 988_CR27
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2021.3128667
– year: 2022
  ident: 988_CR60
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/tkde.2021.3140058
– ident: 988_CR88
  doi: 10.1145/3178876.3185996
– ident: 988_CR86
– ident: 988_CR55
– ident: 988_CR70
  doi: 10.14778/3529337.3529354
– volume: 12
  start-page: 3027736
  year: 2020
  ident: 988_CR39
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3027736
– ident: 988_CR25
  doi: 10.1609/aaai.v35i5.16523
– ident: 988_CR65
  doi: 10.1007/978-981-15-1773-0_28
– ident: 988_CR2
  doi: 10.1016/j.neucom.2017.04.070,
– ident: 988_CR7
  doi: 10.1109/SSCI47803.2020.9308512
– ident: 988_CR45
  doi: 10.1145/3477314.3507024
– ident: 988_CR68
  doi: 10.1145/3292500.3330871
– volume: 10
  year: 2015
  ident: 988_CR75
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0118432
– ident: 988_CR44
  doi: 10.1145/3219819.3219845
– ident: 988_CR78
– volume: 23
  start-page: 1
  year: 2021
  ident: 988_CR57
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2021.3130234
– ident: 988_CR93
  doi: 10.1109/EPEC52095.2021.9621752
– volume: 31
  start-page: 3127
  issue: 8
  year: 2020
  ident: 988_CR28
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2935975
– ident: 988_CR47
  doi: 10.14778/3476249.3476307
– ident: 988_CR87
  doi: 10.1109/ICDE53745.2022.00116
– ident: 988_CR11
  doi: 10.23919/INM.2017.7987310
– ident: 988_CR42
  doi: 10.1145/3394486.3403378
– ident: 988_CR61
  doi: 10.1145/3447548.3467075
– ident: 988_CR72
  doi: 10.48550/arXiv.1201.0490
– ident: 988_CR1
  doi: 10.1145/3447548.3467174
– ident: 988_CR64
– volume: 20
  start-page: 3738
  year: 2020
  ident: 988_CR67
  publication-title: Sens Basel Switz
  doi: 10.3390/s20133738
– ident: 988_CR90
– ident: 988_CR51
  doi: 10.1609/aaai.v36i7.20680
– volume: 17
  start-page: 145
  year: 2008
  ident: 988_CR62
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/J.1466-8238.2007.00358.X
– ident: 988_CR80
  doi: 10.1145/3292500.3330672
– ident: 988_CR40
  doi: 10.1109/SOCA.2019.00021
– ident: 988_CR74
  doi: 10.48550/arXiv.2212.11080
– ident: 988_CR94
  doi: 10.1109/ICDM50108.2020.00093
– ident: 988_CR49
  doi: 10.24963/ijcai.2019/378
– ident: 988_CR66
  doi: 10.1016/j.actaastro.2022.06.026,
– volume: 18
  start-page: 9027
  year: 2022
  ident: 988_CR85
  publication-title: IEEE Trans Indust Inform
  doi: 10.1109/TII.2022.3164087
– ident: 988_CR92
  doi: 10.1609/aaai.v33i01.33011409
– ident: 988_CR10
  doi: 10.48550/arXiv.2004.00433
– ident: 988_CR35
  doi: 10.24963/ijcai.2020/173
– ident: 988_CR43
  doi: 10.1145/3534678.3539339
– volume: 4
  start-page: 1213
  year: 2019
  ident: 988_CR38
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1213/4/042050
– ident: 988_CR13
  doi: 10.48550/arXiv.2202.07586
– ident: 988_CR59
  doi: 10.1007/978-3-030-30490-4_56
– ident: 988_CR89
  doi: 10.48550/arXiv.2207.12201
– volume: 11
  start-page: 1108213
  issue: 8
  year: 2022
  ident: 988_CR50
  publication-title: Electronics
  doi: 10.3390/electronics11081213
– ident: 988_CR3
  doi: 10.1145/3534678.3539097
– volume: 23
  start-page: 1
  year: 2022
  ident: 988_CR58
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2022.3171562
– volume: 448
  start-page: 130
  year: 2021
  ident: 988_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.062
– ident: 988_CR30
  doi: 10.1145/3447548.3467137
– year: 2022
  ident: 988_CR84
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110791
– ident: 988_CR53
– ident: 988_CR31
  doi: 10.48550/arXiv.2211.09224
– ident: 988_CR19
  doi: 10.1109/ACCESS.2021.3107975
SSID ssj0005230
Score 2.4799705
Snippet The field of time series anomaly detection is constantly advancing, with several methods available, making it a challenge to determine the most appropriate...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1027
SubjectTerms Anomalies
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Information Storage and Retrieval
Physics
Statistics for Engineering
Taxonomy
Time series
SummonAdditionalLinks – databaseName: Springer Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60InjxURWrVXLwpoFms5tNvEmxiGBPFnpbstmsCO1W3FXUX-9kH64WFbzmdZg85hsy830Ap4jXDPcwOtFCSIoeL6FSJjENEl8azjViAlcofDsW1xP_ZhpMa5ocVwuz9H_vStwEkxQ9C3XUl5LKVVgLGA-dTMNQDL-kc_CqIlj6NJBsUBfI_LzGdyfUIsulz9DSx4y2YbMGh-Sy2s0dWLFZF7Ya4QVS38MurJd5mybfBT3WLyVJRnZPEMqRuRPIMmSu3-0F0aTQr2XRAlmkpOX1rkflBAEr0divZ28ksUWZlZWRh4w4xXniDqfN92AyurobXtNaNYEaLnhBWZAMYsOt76jq8A2xOk21Ul7oGc1taFmotcGgL0iNVoYphS2p8owIE4OxhuX70MkWmT0AgnOU9KUNY4w6jGdigcG0GnDDRIAPQdwD1pgxMjWluFO2mEUtGbIzfYSmj0rTR7IHZ59zHitCjT9H95vdierLlUfcqe-FinHWg_Nmx9ru31c7_N_wI9jwEMJU6Y196BRPz_YYIUgRn5Rn7wP8y890
  priority: 102
  providerName: Springer Nature
Title Navigating the metric maze: a taxonomy of evaluation metrics for anomaly detection in time series
URI https://link.springer.com/article/10.1007/s10618-023-00988-8
https://www.proquest.com/docview/3050579131
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x7WUvPHdFoVQ-cGOtrePEsbmgUvUhENUKbaXuKXIcZ4XUpmWTRcCvZ5w4BJDoJQfH9mFsz3xjz8wH8BrxmuEBeidaCEnR4mVUyiylURZKw7lGTOAShT-txHIdfthEG3_hVvqwylYn1oo62xt3R37JHeVarBhn7w5fqWONcq-rnkLjBPqogqXsQf_9bHX1-Y8gD97kCcuQRpKNfdqMT54TTFK0WdQV1ZRU_m2aOrz5zxNpbXnmj-Ghh4xk0qzxE3hgi6fwqKVjIP50PgO90t_qghnFLUFYR3aOLMuQnf5p3xJNKv29TmAg-5x0Nb59r5IgeCUa_-vtD5LZqo7QKsiXgjj2eeI2qi3PYD2fXU-X1DMoUMMFryiLsnFquA1d2TrUJ1bnuVYqiAOjuY0ti7U26ABGudHKMKWwJVeBEXFm0O-w_Bx6xb6wz4HgGCVDaeMUPRATmFSgY63G3DARoVJIB8Ba4SXGlxd3LBfbpCuM7ASeoMCTWuCJHMCb32MOTXGNo72H7Zok_qCVSbctBnDRrlP3-_-zvTg-20s4DRC-NKGNQ-hVd_f2FcKPKh3BiZwvRtCfLG4-zkZ-x2HrVEzxuw4mvwDR4tk0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPcAFKA-xPNo5wAks1nEedqUKVW2X5bUnkLgFx3GqSksW2PDqj-pvZJwHKZXgxjV-HMbjmW_imfkANgmvGeFRdKLDUDLyeCmTMk1YkPrSCKEJE7hC4ZNB2D_zD8-D8wn429TCuLTKxiaWhjodGfePfFc4yrVIccH3rq6ZY41yr6sNhUalFkf28Z5CtvHXgx90vlue1_t5-r3PalYBZkQoCsaDtJsYYX3Xyo3umNVZppXyIs9oYSPLI60NBUVBZrQyXCn6kinPhFFqCItbQftOwgdfkCd3lem9_X9SSkRVlSx9FkjerYt06lK9kEtGHpK5Fp6SyZeOsEW3_z3Iln6uNw-zNUDFb5VGfYQJmy_AXEP-gLUtWAQ90Hdle478FxKIxEtHzWXwUv-xX1BjoR_KcgkcZdh2FK9njZGgMmoa18NHTG1R5oPl-DtHx3WP7lrY8RKcvYtkl2EqH-V2BZDWKOlLGyUU7xjPJCGF8aorDA8DMkFJB3gjvNjUzcwdp8YwbtswO4HHJPC4FHgsO7D9vOaqauXx5uz15kzi-lqP41YJO7DTnFM7_Ppuq2_v9hmm-6cnx_HxweBoDWY8Ak5VUuU6TBU3t3aDgE-RfCq1DeHivdX7CRo2ESs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6KdCHuoXCHNoTWKzjPGykquK1glJWCBWJW-o4ToXEZmk3QOlP669jnDiEVio3rvHjMB7PfBPPfAPwnvCaEQFFJzqOJSOPlzMp84xFeSiNEJowgSsUPhzFeyfh59PodAb-tLUwLq2ytYm1oc4nxv0jXxeu5VqiuODrhU-LONoZfrr4wVwHKffS2rbTaFTkwN5cU_g2_bi_Q2f9IQiGu1-395jvMMCMiEXFeJQPMiNs6Gjd6L5ZXRRaqSAJjBY2sTzR2lCAFBVGK8OVoi-FCkyc5IZwuRW07xOYTVxU1IPZrd3R0fG9BBPR1CjLkEWSD3zJji_ci7lk5C-ZI_SUTP7tFjus-8_zbO31hvPw3MNV3Gz0awFmbPkC5tpWEOgtw0vQI31Vk3WU35EgJY5doy6DY_3bbqDGSv-qiydwUmDHL-5nTZGAM2oa1-c3mNuqzg4r8azE6mxs0V0SO30FJ48i29fQKyelfQNIa5QMpU0yin5MYLKYgno1EIbHERmkrA-8FV5qPLW567BxnnakzE7gKQk8rQWeyj6s3q25aIg9Hpy91J5J6i_5NO1Usg9r7Tl1w__f7e3Du63AU1Lt9Mv-6GARngWEopoMyyXoVT8v7TtCQVW27NUN4dtja_gtfCUWvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Navigating+the+metric+maze%3A+a+taxonomy+of+evaluation+metrics+for+anomaly+detection+in+time+series&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=S%C3%B8rb%C3%B8%2C+Sondre&rft.au=Ruocco%2C+Massimiliano&rft.date=2024-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=38&rft.issue=3&rft.spage=1027&rft.epage=1068&rft_id=info:doi/10.1007%2Fs10618-023-00988-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon