Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis
•Kernel dynamic ICA (KDICA) is proposed for non-linear non-Gaussian dynamic processes.•Its main idea is applying ICA in kernel space of augmented measurement matrix.•Non-linear contribution plot of KDICA is developed for fault diagnosis.•KDICA is compared with conventional methods on Tennessee Eastm...
Saved in:
Published in | Information sciences Vol. 259; pp. 369 - 379 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
20.02.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0020-0255 |
DOI | 10.1016/j.ins.2013.06.021 |
Cover
Abstract | •Kernel dynamic ICA (KDICA) is proposed for non-linear non-Gaussian dynamic processes.•Its main idea is applying ICA in kernel space of augmented measurement matrix.•Non-linear contribution plot of KDICA is developed for fault diagnosis.•KDICA is compared with conventional methods on Tennessee Eastman (TE) process.
This paper proposes a novel approach for dealing with fault detection of multivariate processes, which will be referred to as kernel dynamic independent component analysis (KDICA). The main idea of KDICA is to carry out an independent component analysis in the kernel space of an augmented measurement matrix to extract the dynamic and non-linear characteristics of a non-linear non-Gaussian dynamic process. Furthermore, as a new method of fault diagnosis, a non-linear contribution plot is developed for KDICA. A comparative study on the Tennessee Eastman process is carried out to illustrate the effectiveness of the proposed method. The experimental results show that the proposed method compares favorably with existing methods. |
---|---|
AbstractList | •Kernel dynamic ICA (KDICA) is proposed for non-linear non-Gaussian dynamic processes.•Its main idea is applying ICA in kernel space of augmented measurement matrix.•Non-linear contribution plot of KDICA is developed for fault diagnosis.•KDICA is compared with conventional methods on Tennessee Eastman (TE) process.
This paper proposes a novel approach for dealing with fault detection of multivariate processes, which will be referred to as kernel dynamic independent component analysis (KDICA). The main idea of KDICA is to carry out an independent component analysis in the kernel space of an augmented measurement matrix to extract the dynamic and non-linear characteristics of a non-linear non-Gaussian dynamic process. Furthermore, as a new method of fault diagnosis, a non-linear contribution plot is developed for KDICA. A comparative study on the Tennessee Eastman process is carried out to illustrate the effectiveness of the proposed method. The experimental results show that the proposed method compares favorably with existing methods. |
Author | Wang, Youqing Fan, Jicong |
Author_xml | – sequence: 1 givenname: Jicong surname: Fan fullname: Fan, Jicong – sequence: 2 givenname: Youqing surname: Wang fullname: Wang, Youqing email: wang.youqing@ieee.org |
BookMark | eNp9kM1OAjEQgHvAREAfwFtfYNfpLtsu8WSIoAmJFz03_ZklxaUl7WLCxWe3iPHggcvMJJNvfr4JGfngkZA7BiUDxu-3pfOprIDVJfASKjYiY4AKCqia5ppMUtoCwExwPiZfS3XoB2pxQDO44KnyllqnNj4kl2joaB5e9M6jij_lSh1ScspTe_Rq5wzdx2AwJUz0kJzf0A-MHvu_tvMW95iDH6gJu30-NVfKq_6YF9yQq071CW9_85S8L5_eFs_F-nX1snhcF6bm9VCwWnPQwMyMCYUNQjvXQteMC2BamKYTjRad5txCq-uWtRaZnotOqK5pVKXrKWHnuSaGlCJ2ch_dTsWjZCBP0uRWZmnyJE0Cl1laZsQ_xrhBnSQNUbn-IvlwJjG_9OkwymQceoPWxaxZ2uAu0N9l8Y62 |
CitedBy_id | crossref_primary_10_1002_cjce_25242 crossref_primary_10_1016_j_ces_2016_02_038 crossref_primary_10_1155_2018_7038531 crossref_primary_10_1021_acs_iecr_9b03406 crossref_primary_10_1016_j_neucom_2020_04_075 crossref_primary_10_1252_jcej_17we055 crossref_primary_10_1016_j_chemolab_2017_01_007 crossref_primary_10_1021_acs_iecr_9b05547 crossref_primary_10_1016_j_compchemeng_2018_12_027 crossref_primary_10_1016_j_isatra_2019_05_013 crossref_primary_10_1109_ACCESS_2021_3052197 crossref_primary_10_1177_1475921719884019 crossref_primary_10_1016_j_neucom_2022_03_012 crossref_primary_10_1016_j_asoc_2021_107319 crossref_primary_10_1155_2016_9567967 crossref_primary_10_1109_ACCESS_2019_2892487 crossref_primary_10_1016_j_compchemeng_2018_04_009 crossref_primary_10_1016_j_buildenv_2022_109010 crossref_primary_10_1108_GS_05_2020_0066 crossref_primary_10_1177_1687814019833279 crossref_primary_10_1155_2015_705725 crossref_primary_10_1002_cjce_24716 crossref_primary_10_1016_j_conengprac_2018_11_020 crossref_primary_10_1016_j_ins_2020_06_062 crossref_primary_10_1016_j_ins_2015_10_029 crossref_primary_10_1002_cjce_23740 crossref_primary_10_1016_j_cie_2015_05_012 crossref_primary_10_1016_j_ins_2021_12_106 crossref_primary_10_3390_s19214612 crossref_primary_10_1021_ie401834e crossref_primary_10_1109_TIM_2018_2872610 crossref_primary_10_1016_j_cmpb_2017_12_019 crossref_primary_10_1088_1361_6501_ab7bbd crossref_primary_10_1016_j_measurement_2023_112504 crossref_primary_10_1109_TASE_2023_3290202 crossref_primary_10_1115_1_4066595 crossref_primary_10_1109_TII_2021_3119377 crossref_primary_10_1016_j_neunet_2017_04_005 crossref_primary_10_17122_ogbus_2019_5_202_238 crossref_primary_10_1016_j_jprocont_2020_03_007 crossref_primary_10_1016_j_isatra_2021_06_005 crossref_primary_10_1021_acs_iecr_5b04268 crossref_primary_10_1016_j_ins_2024_121435 crossref_primary_10_1016_j_jprocont_2023_03_003 crossref_primary_10_1007_s10845_021_01762_7 crossref_primary_10_1016_j_cjche_2018_12_021 crossref_primary_10_1002_cjce_23750 crossref_primary_10_1016_j_chemolab_2017_07_013 crossref_primary_10_1016_j_jfranklin_2022_04_021 crossref_primary_10_3390_pr8091123 crossref_primary_10_1109_TIE_2018_2877188 crossref_primary_10_1016_j_chemolab_2023_104846 crossref_primary_10_1109_TIM_2022_3150589 crossref_primary_10_1016_j_eswa_2018_06_055 crossref_primary_10_1109_TNB_2018_2873243 crossref_primary_10_1016_j_jprocont_2018_02_002 crossref_primary_10_1016_j_jfranklin_2020_01_049 crossref_primary_10_1007_s10845_017_1343_1 crossref_primary_10_1002_cem_3168 crossref_primary_10_1002_cjce_23762 crossref_primary_10_1016_j_chemolab_2021_104371 crossref_primary_10_1016_j_chemolab_2014_10_008 crossref_primary_10_1016_j_conengprac_2021_104816 crossref_primary_10_1177_01423312231194125 crossref_primary_10_1016_j_psep_2022_03_064 crossref_primary_10_1016_j_jprocont_2019_02_006 crossref_primary_10_1016_j_asoc_2017_04_071 crossref_primary_10_1016_j_isatra_2021_08_040 crossref_primary_10_1016_j_conengprac_2020_104386 crossref_primary_10_3390_pr8010024 crossref_primary_10_1515_nleng_2022_0003 crossref_primary_10_3390_electronics13244931 crossref_primary_10_1021_acs_iecr_8b05099 crossref_primary_10_1109_TII_2018_2810822 crossref_primary_10_1109_TAI_2022_3185024 crossref_primary_10_1515_revce_2017_0069 crossref_primary_10_1016_j_ymssp_2019_05_048 crossref_primary_10_1016_j_automatica_2021_110148 crossref_primary_10_1016_j_compchemeng_2020_107172 crossref_primary_10_1016_j_asoc_2019_105564 crossref_primary_10_1002_cjce_22855 crossref_primary_10_1016_j_ins_2023_119176 crossref_primary_10_3390_e26100815 crossref_primary_10_1021_acs_iecr_8b03463 crossref_primary_10_1016_j_compchemeng_2017_02_041 crossref_primary_10_1109_TASE_2021_3138925 crossref_primary_10_1016_j_ins_2016_05_016 crossref_primary_10_1016_j_chemolab_2015_09_010 crossref_primary_10_1063_1_4944976 crossref_primary_10_1007_s10586_020_03129_8 crossref_primary_10_3390_pr10020335 crossref_primary_10_1007_s10462_022_10260_y crossref_primary_10_1016_j_chemolab_2020_104149 crossref_primary_10_1002_cjce_23319 crossref_primary_10_1109_TII_2020_3048990 crossref_primary_10_3390_en12040726 crossref_primary_10_1021_acs_iecr_9b00030 crossref_primary_10_1016_j_renene_2019_08_064 crossref_primary_10_1109_JSEN_2023_3277038 crossref_primary_10_1252_jcej_19we143 crossref_primary_10_1016_j_arcontrol_2022_09_005 crossref_primary_10_1016_j_chemolab_2019_103812 crossref_primary_10_1016_j_neucom_2016_03_015 crossref_primary_10_3390_en16155793 crossref_primary_10_1109_ACCESS_2019_2914960 crossref_primary_10_1016_j_engappai_2023_107493 crossref_primary_10_3233_JIFS_189034 crossref_primary_10_1515_auto_2023_0031 crossref_primary_10_1109_TCST_2017_2669151 crossref_primary_10_1016_j_cjche_2020_05_003 |
Cites_doi | 10.1021/ie071304y 10.1109/29.57576 10.1021/ie900521b 10.1016/j.ces.2004.04.031 10.1016/S0959-1524(01)00027-0 10.1016/j.ins.2011.08.028 10.1016/j.jprocont.2010.10.005 10.1016/j.ces.2009.01.050 10.1016/j.ins.2012.06.016 10.1021/ie070579a 10.1016/j.ces.2004.08.007 10.1016/j.jprocont.2003.09.004 10.1016/0169-7439(95)00076-3 10.1016/j.ins.2011.08.030 10.1016/0098-1354(94)00057-U 10.1016/j.ins.2010.08.006 10.1016/0098-1354(93)80018-I 10.1016/j.ces.2010.10.008 10.1016/j.ces.2008.10.012 10.1016/j.neucom.2010.11.033 10.1016/0098-1354(94)88019-0 10.1002/cem.800 10.1016/j.jprocont.2011.11.005 10.1007/s00521-011-0665-8 10.1109/72.761722 10.1021/ie9018947 10.1021/ie8012874 10.1016/j.ins.2010.11.005 10.1002/cjce.5450850414 10.1016/S0893-6080(00)00026-5 10.1016/j.ins.2011.10.022 10.1021/ie071496x 10.1016/0098-1354(95)00003-K 10.1016/0959-1524(96)00010-8 10.1016/j.eswa.2010.06.101 10.1002/aic.690370209 10.1080/00401706.1995.10485888 10.1016/0169-7439(87)80084-9 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. |
Copyright_xml | – notice: 2013 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2013.06.021 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EndPage | 379 |
ExternalDocumentID | 10_1016_j_ins_2013_06_021 S0020025513004477 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABXDB ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SSH SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I AAAKG AAQXK AAYXX ABEFU ABWVN ACNNM ACRPL ADJOM ADMUD ADNMO ADVLN AFFNX AFJKZ AGQPQ AIGII APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 |
ID | FETCH-LOGICAL-c363t-13b60b01c417ae5e089b7b316701b7c5f75b7fb66d08b3818de1b97f7af55a2b3 |
IEDL.DBID | AIKHN |
ISSN | 0020-0255 |
IngestDate | Thu Apr 24 23:12:51 EDT 2025 Tue Jul 01 04:16:24 EDT 2025 Fri Jul 18 18:51:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-linear non-Gaussian dynamic processes Non-linear contribution plot TE process Independent component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-13b60b01c417ae5e089b7b316701b7c5f75b7fb66d08b3818de1b97f7af55a2b3 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_ins_2013_06_021 crossref_citationtrail_10_1016_j_ins_2013_06_021 elsevier_sciencedirect_doi_10_1016_j_ins_2013_06_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-20 |
PublicationDateYYYYMMDD | 2014-02-20 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Information sciences |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhang, Cao (b0180) 2011; 181 Nomikos, MacGrego (b0130) 1995; 37 Zhang, Ma (b0195) 2011; 66 Chen, Liao (b0020) 2002; 12 Wang, Conilione (b0155) 2012; 21 Lee, Yoo, Lee (b0100) 2004; 59 Wang, Zhang, Cao, Zhu (b0160) 2012; 22 Kramer (b0075) 1991; 37 Wu, Law (b0170) 2010; 180 Ge, Yang, Song (b0050) 2009; 64 Chiang, Russell, Braatz (b0030) 2001 Banerjee, Das (b0015) 2012; 217 Cho, Lee, Choi, Lee, Lee (b0035) 2005; 60 Ku, Storer, Georgakis (b0080) 1995; 30 Man, Lee, Wang, Cao, Miao (b0115) 2011; 74 Zhang (b0190) 2009; 64 Ge, Yang, Song, Wang (b0055) 2008; 47 Alcala, Qin (b0005) 2010; 49 Downs, Vogel (b0045) 1993; 17 Zhang (b0185) 2008; 47 Dong, McAvoy (b0040) 1996; 20 Stefatos, Hamza (b0145) 2010; 37 Yao, Gao (b0175) 2007; 46 Martin, Morris (b0120) 1996; 6 Hyvärinen, Oja (b0070) 2000; 13 Alcala, Qin (b0010) 2011; 21 Cheng, Hsu, Chen (b0025) 2010; 49 Giannakis, Mendel (b0060) 1990; 38 Qin (b0135) 2003; 17 Lee, Qin, Lee (b0090) 2007; 85 Lee, Yoo, Lee (b0095) 2004; 14 Lyman, Georgakis (b0110) 1995; 19 Lemos, Caminhas, Gomide (b0085) 2013; 220 Hyvärinen (b0065) 1999; 10 Wold, Esbensen, Geladi (b0165) 1987; 2 Zhao, Gao, Wang (b0200) 2009; 48 Rakotomamonjy (b0140) 2003; 3 Li, Tsai, Hsu (b0105) 2012; 187 McAvoy, Ye (b0125) 1994; 18 Sun, Li, Yang, Luo, Bai (b0150) 2012; 184 Martin (10.1016/j.ins.2013.06.021_b0120) 1996; 6 Chiang (10.1016/j.ins.2013.06.021_b0030) 2001 Stefatos (10.1016/j.ins.2013.06.021_b0145) 2010; 37 Rakotomamonjy (10.1016/j.ins.2013.06.021_b0140) 2003; 3 Lee (10.1016/j.ins.2013.06.021_b0090) 2007; 85 Nomikos (10.1016/j.ins.2013.06.021_b0130) 1995; 37 Giannakis (10.1016/j.ins.2013.06.021_b0060) 1990; 38 Lee (10.1016/j.ins.2013.06.021_b0100) 2004; 59 Wu (10.1016/j.ins.2013.06.021_b0170) 2010; 180 Zhang (10.1016/j.ins.2013.06.021_b0195) 2011; 66 Zhao (10.1016/j.ins.2013.06.021_b0200) 2009; 48 Banerjee (10.1016/j.ins.2013.06.021_b0015) 2012; 217 Qin (10.1016/j.ins.2013.06.021_b0135) 2003; 17 Li (10.1016/j.ins.2013.06.021_b0105) 2012; 187 Sun (10.1016/j.ins.2013.06.021_b0150) 2012; 184 Chen (10.1016/j.ins.2013.06.021_b0020) 2002; 12 Yao (10.1016/j.ins.2013.06.021_b0175) 2007; 46 Downs (10.1016/j.ins.2013.06.021_b0045) 1993; 17 Alcala (10.1016/j.ins.2013.06.021_b0010) 2011; 21 Ge (10.1016/j.ins.2013.06.021_b0050) 2009; 64 Lyman (10.1016/j.ins.2013.06.021_b0110) 1995; 19 Zhang (10.1016/j.ins.2013.06.021_b0180) 2011; 181 Lee (10.1016/j.ins.2013.06.021_b0095) 2004; 14 Dong (10.1016/j.ins.2013.06.021_b0040) 1996; 20 Hyvärinen (10.1016/j.ins.2013.06.021_b0065) 1999; 10 Zhang (10.1016/j.ins.2013.06.021_b0190) 2009; 64 Cheng (10.1016/j.ins.2013.06.021_b0025) 2010; 49 Cho (10.1016/j.ins.2013.06.021_b0035) 2005; 60 Ge (10.1016/j.ins.2013.06.021_b0055) 2008; 47 Kramer (10.1016/j.ins.2013.06.021_b0075) 1991; 37 Wang (10.1016/j.ins.2013.06.021_b0155) 2012; 21 Ku (10.1016/j.ins.2013.06.021_b0080) 1995; 30 Man (10.1016/j.ins.2013.06.021_b0115) 2011; 74 Alcala (10.1016/j.ins.2013.06.021_b0005) 2010; 49 Zhang (10.1016/j.ins.2013.06.021_b0185) 2008; 47 Lemos (10.1016/j.ins.2013.06.021_b0085) 2013; 220 Hyvärinen (10.1016/j.ins.2013.06.021_b0070) 2000; 13 McAvoy (10.1016/j.ins.2013.06.021_b0125) 1994; 18 Wang (10.1016/j.ins.2013.06.021_b0160) 2012; 22 Wold (10.1016/j.ins.2013.06.021_b0165) 1987; 2 |
References_xml | – year: 2001 ident: b0030 article-title: Fault Detection and Diagnosis in Industrial Systems – volume: 21 start-page: 683 year: 2012 end-page: 694 ident: b0155 article-title: Machine learning approach for face image retrieval publication-title: Neural Computing and Applications – volume: 17 start-page: 245 year: 1993 end-page: 255 ident: b0045 article-title: A plant-wide industrial process control problem publication-title: Computers and Chemical Engineering – volume: 3 start-page: 1357 year: 2003 end-page: 1370 ident: b0140 article-title: Variable selection using SVM-based criteria publication-title: The Journal of Machine Learning Research – volume: 180 start-page: 4514 year: 2010 end-page: 4528 ident: b0170 article-title: Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization publication-title: Information Sciences – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: b0070 article-title: Independent component analysis: algorithms and applications publication-title: Neural Networks – volume: 37 start-page: 8606 year: 2010 end-page: 8617 ident: b0145 article-title: Dynamic independent component analysis approach for fault detection and diagnosis publication-title: Expert Systems with Applications – volume: 49 start-page: 7849 year: 2010 end-page: 7857 ident: b0005 article-title: Reconstruction-based contribution for process monitoring with kernel principal component analysis publication-title: Industrial and Engineering Chemistry Research – volume: 47 start-page: 4775 year: 2008 end-page: 4783 ident: b0055 article-title: Robust online monitoring for multimode processes based on nonlinear external analysis publication-title: Industrial and Engineering Chemistry Research – volume: 74 start-page: 2491 year: 2011 end-page: 2501 ident: b0115 article-title: A new robust training algorithm for a class of single-hidden layer feedforward neural networks publication-title: Neurocomputing – volume: 64 start-page: 801 year: 2009 end-page: 811 ident: b0190 article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM publication-title: Chemical Engineering Science – volume: 64 start-page: 2245 year: 2009 end-page: 2255 ident: b0050 article-title: Improved kernel PCA-based monitoring approach for nonlinear processes publication-title: Chemical Engineering Science – volume: 17 start-page: 480 year: 2003 end-page: 502 ident: b0135 article-title: Statistical process monitoring: basics and beyond publication-title: Journal of Chemometrics – volume: 30 start-page: 179 year: 1995 end-page: 196 ident: b0080 article-title: Disturbance detection and isolation by dynamic principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 85 start-page: 526 year: 2007 end-page: 536 ident: b0090 article-title: Fault detection of non-linear processes using kernel independent component analysis publication-title: The Canadian Journal of Chemical Engineering – volume: 66 start-page: 64 year: 2011 end-page: 72 ident: b0195 article-title: Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS publication-title: Chemical Engineering Science – volume: 60 start-page: 279 year: 2005 end-page: 288 ident: b0035 article-title: Fault identification for process monitoring using kernel principal component analysis publication-title: Chemical Engineering Science – volume: 21 start-page: 322 year: 2011 end-page: 330 ident: b0010 article-title: Analysis and generalization of fault diagnosis methods for process monitoring publication-title: Journal of Process Control – volume: 38 start-page: 1411 year: 1990 end-page: 1423 ident: b0060 article-title: Cumulant-based order determination of non-Gaussian ARMA models publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing – volume: 49 start-page: 2254 year: 2010 end-page: 2262 ident: b0025 article-title: Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes publication-title: Industrial and Engineering Chemistry Research – volume: 37 start-page: 233 year: 1991 end-page: 243 ident: b0075 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE Journal – volume: 14 start-page: 467 year: 2004 end-page: 485 ident: b0095 article-title: Statistical process monitoring with independent component analysis publication-title: Journal of Process Control – volume: 19 start-page: 321 year: 1995 end-page: 331 ident: b0110 article-title: Plant-wide control of the Tennessee Eastman problem publication-title: Computers and Chemical Engineering – volume: 22 start-page: 477 year: 2012 end-page: 487 ident: b0160 article-title: Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error publication-title: Journal of Process Control – volume: 18 start-page: 384 year: 1994 end-page: 413 ident: b0125 article-title: Base control for the Tennessee Eastman problem publication-title: Computers and Chemical Engineering – volume: 47 start-page: 6961 year: 2008 end-page: 6971 ident: b0185 article-title: Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM) publication-title: Industrial and Engineering Chemistry Research – volume: 20 start-page: 65 year: 1996 end-page: 78 ident: b0040 article-title: Nonlinear principal component analysis-based on principal curves and neural networks publication-title: Computers and Chemical Engineering – volume: 6 start-page: 349 year: 1996 end-page: 358 ident: b0120 article-title: Non-parametric confidence bounds for process performance monitoring charts publication-title: Journal of Process Control – volume: 46 start-page: 8033 year: 2007 end-page: 8043 ident: b0175 article-title: Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA) publication-title: Industrial and Engineering Chemistry Research – volume: 12 start-page: 277 year: 2002 end-page: 289 ident: b0020 article-title: Dynamic process fault monitoring based on neural network and PCA publication-title: Journal of Process Control – volume: 37 start-page: 4159 year: 1995 ident: b0130 article-title: Multivariate SPC charts for monitoring batch processes publication-title: Technometrics – volume: 187 start-page: 291 year: 2012 end-page: 297 ident: b0105 article-title: A fast fault-identification algorithm for bijective connection graphs using the PMC model publication-title: Information Sciences – volume: 220 start-page: 64 year: 2013 end-page: 85 ident: b0085 article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier publication-title: Information Sciences – volume: 2 start-page: 37 year: 1987 end-page: 52 ident: b0165 article-title: Principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 59 start-page: 2995 year: 2004 end-page: 3006 ident: b0100 article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis publication-title: Chemical Engineering Science – volume: 217 start-page: 96 year: 2012 end-page: 107 ident: b0015 article-title: Multi-sensor data fusion using support vector machine for motor fault detection publication-title: Information Sciences – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: b0065 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Transactions on Neural Networks – volume: 181 start-page: 4658 year: 2011 end-page: 4672 ident: b0180 article-title: A novel ant-based clustering algorithm using the kernel method publication-title: Information Sciences – volume: 48 start-page: 9163 year: 2009 end-page: 9174 ident: b0200 article-title: Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA) publication-title: Industrial and Engineering Chemistry Research – volume: 184 start-page: 140 year: 2012 end-page: 154 ident: b0150 article-title: Scaling the kernel function based on the separating boundary in input space: a data-dependent way for improving the performance of kernel methods publication-title: Information Sciences – volume: 47 start-page: 4775 year: 2008 ident: 10.1016/j.ins.2013.06.021_b0055 article-title: Robust online monitoring for multimode processes based on nonlinear external analysis publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie071304y – volume: 38 start-page: 1411 year: 1990 ident: 10.1016/j.ins.2013.06.021_b0060 article-title: Cumulant-based order determination of non-Gaussian ARMA models publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing doi: 10.1109/29.57576 – volume: 49 start-page: 2254 year: 2010 ident: 10.1016/j.ins.2013.06.021_b0025 article-title: Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie900521b – volume: 59 start-page: 2995 year: 2004 ident: 10.1016/j.ins.2013.06.021_b0100 article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2004.04.031 – volume: 12 start-page: 277 year: 2002 ident: 10.1016/j.ins.2013.06.021_b0020 article-title: Dynamic process fault monitoring based on neural network and PCA publication-title: Journal of Process Control doi: 10.1016/S0959-1524(01)00027-0 – year: 2001 ident: 10.1016/j.ins.2013.06.021_b0030 – volume: 184 start-page: 140 year: 2012 ident: 10.1016/j.ins.2013.06.021_b0150 article-title: Scaling the kernel function based on the separating boundary in input space: a data-dependent way for improving the performance of kernel methods publication-title: Information Sciences doi: 10.1016/j.ins.2011.08.028 – volume: 21 start-page: 322 year: 2011 ident: 10.1016/j.ins.2013.06.021_b0010 article-title: Analysis and generalization of fault diagnosis methods for process monitoring publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2010.10.005 – volume: 64 start-page: 2245 year: 2009 ident: 10.1016/j.ins.2013.06.021_b0050 article-title: Improved kernel PCA-based monitoring approach for nonlinear processes publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2009.01.050 – volume: 217 start-page: 96 year: 2012 ident: 10.1016/j.ins.2013.06.021_b0015 article-title: Multi-sensor data fusion using support vector machine for motor fault detection publication-title: Information Sciences doi: 10.1016/j.ins.2012.06.016 – volume: 46 start-page: 8033 year: 2007 ident: 10.1016/j.ins.2013.06.021_b0175 article-title: Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA) publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie070579a – volume: 60 start-page: 279 year: 2005 ident: 10.1016/j.ins.2013.06.021_b0035 article-title: Fault identification for process monitoring using kernel principal component analysis publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2004.08.007 – volume: 3 start-page: 1357 year: 2003 ident: 10.1016/j.ins.2013.06.021_b0140 article-title: Variable selection using SVM-based criteria publication-title: The Journal of Machine Learning Research – volume: 14 start-page: 467 year: 2004 ident: 10.1016/j.ins.2013.06.021_b0095 article-title: Statistical process monitoring with independent component analysis publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2003.09.004 – volume: 30 start-page: 179 year: 1995 ident: 10.1016/j.ins.2013.06.021_b0080 article-title: Disturbance detection and isolation by dynamic principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/0169-7439(95)00076-3 – volume: 220 start-page: 64 year: 2013 ident: 10.1016/j.ins.2013.06.021_b0085 article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier publication-title: Information Sciences doi: 10.1016/j.ins.2011.08.030 – volume: 19 start-page: 321 year: 1995 ident: 10.1016/j.ins.2013.06.021_b0110 article-title: Plant-wide control of the Tennessee Eastman problem publication-title: Computers and Chemical Engineering doi: 10.1016/0098-1354(94)00057-U – volume: 180 start-page: 4514 year: 2010 ident: 10.1016/j.ins.2013.06.021_b0170 article-title: Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization publication-title: Information Sciences doi: 10.1016/j.ins.2010.08.006 – volume: 17 start-page: 245 year: 1993 ident: 10.1016/j.ins.2013.06.021_b0045 article-title: A plant-wide industrial process control problem publication-title: Computers and Chemical Engineering doi: 10.1016/0098-1354(93)80018-I – volume: 66 start-page: 64 year: 2011 ident: 10.1016/j.ins.2013.06.021_b0195 article-title: Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2010.10.008 – volume: 64 start-page: 801 year: 2009 ident: 10.1016/j.ins.2013.06.021_b0190 article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM publication-title: Chemical Engineering Science doi: 10.1016/j.ces.2008.10.012 – volume: 74 start-page: 2491 year: 2011 ident: 10.1016/j.ins.2013.06.021_b0115 article-title: A new robust training algorithm for a class of single-hidden layer feedforward neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.033 – volume: 18 start-page: 384 year: 1994 ident: 10.1016/j.ins.2013.06.021_b0125 article-title: Base control for the Tennessee Eastman problem publication-title: Computers and Chemical Engineering doi: 10.1016/0098-1354(94)88019-0 – volume: 17 start-page: 480 year: 2003 ident: 10.1016/j.ins.2013.06.021_b0135 article-title: Statistical process monitoring: basics and beyond publication-title: Journal of Chemometrics doi: 10.1002/cem.800 – volume: 22 start-page: 477 year: 2012 ident: 10.1016/j.ins.2013.06.021_b0160 article-title: Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2011.11.005 – volume: 21 start-page: 683 year: 2012 ident: 10.1016/j.ins.2013.06.021_b0155 article-title: Machine learning approach for face image retrieval publication-title: Neural Computing and Applications doi: 10.1007/s00521-011-0665-8 – volume: 10 start-page: 626 year: 1999 ident: 10.1016/j.ins.2013.06.021_b0065 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.761722 – volume: 49 start-page: 7849 year: 2010 ident: 10.1016/j.ins.2013.06.021_b0005 article-title: Reconstruction-based contribution for process monitoring with kernel principal component analysis publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie9018947 – volume: 48 start-page: 9163 year: 2009 ident: 10.1016/j.ins.2013.06.021_b0200 article-title: Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA) publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie8012874 – volume: 181 start-page: 4658 year: 2011 ident: 10.1016/j.ins.2013.06.021_b0180 article-title: A novel ant-based clustering algorithm using the kernel method publication-title: Information Sciences doi: 10.1016/j.ins.2010.11.005 – volume: 85 start-page: 526 year: 2007 ident: 10.1016/j.ins.2013.06.021_b0090 article-title: Fault detection of non-linear processes using kernel independent component analysis publication-title: The Canadian Journal of Chemical Engineering doi: 10.1002/cjce.5450850414 – volume: 13 start-page: 411 year: 2000 ident: 10.1016/j.ins.2013.06.021_b0070 article-title: Independent component analysis: algorithms and applications publication-title: Neural Networks doi: 10.1016/S0893-6080(00)00026-5 – volume: 187 start-page: 291 year: 2012 ident: 10.1016/j.ins.2013.06.021_b0105 article-title: A fast fault-identification algorithm for bijective connection graphs using the PMC model publication-title: Information Sciences doi: 10.1016/j.ins.2011.10.022 – volume: 47 start-page: 6961 year: 2008 ident: 10.1016/j.ins.2013.06.021_b0185 article-title: Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM) publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie071496x – volume: 20 start-page: 65 year: 1996 ident: 10.1016/j.ins.2013.06.021_b0040 article-title: Nonlinear principal component analysis-based on principal curves and neural networks publication-title: Computers and Chemical Engineering doi: 10.1016/0098-1354(95)00003-K – volume: 6 start-page: 349 year: 1996 ident: 10.1016/j.ins.2013.06.021_b0120 article-title: Non-parametric confidence bounds for process performance monitoring charts publication-title: Journal of Process Control doi: 10.1016/0959-1524(96)00010-8 – volume: 37 start-page: 8606 year: 2010 ident: 10.1016/j.ins.2013.06.021_b0145 article-title: Dynamic independent component analysis approach for fault detection and diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.06.101 – volume: 37 start-page: 233 year: 1991 ident: 10.1016/j.ins.2013.06.021_b0075 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE Journal doi: 10.1002/aic.690370209 – volume: 37 start-page: 4159 year: 1995 ident: 10.1016/j.ins.2013.06.021_b0130 article-title: Multivariate SPC charts for monitoring batch processes publication-title: Technometrics doi: 10.1080/00401706.1995.10485888 – volume: 2 start-page: 37 year: 1987 ident: 10.1016/j.ins.2013.06.021_b0165 article-title: Principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/0169-7439(87)80084-9 |
SSID | ssj0004766 |
Score | 2.4881647 |
Snippet | •Kernel dynamic ICA (KDICA) is proposed for non-linear non-Gaussian dynamic processes.•Its main idea is applying ICA in kernel space of augmented measurement... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 369 |
SubjectTerms | Independent component analysis Non-linear contribution plot Non-linear non-Gaussian dynamic processes TE process |
Title | Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis |
URI | https://dx.doi.org/10.1016/j.ins.2013.06.021 |
Volume | 259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoEBQQHxlgfEgBSIEz-SsUKUAoIJJLbIdhwUqNKqTVd-O7nEKSABA5vzOMmyHd85933fAZzEmZEmVMLLFKYZTRx7UaCoJ3StFhaY2CB3-P5BjJ7Y7TN_7sBly4VBWKXb-5s9vd6t3Z0LN5oX0zxHjm9QR8SYkGFMyhXoBWEseBd6g5u70cMnPVI2KUs8KaFBm9ysYV55gaLdNKxVPAP6s3v64nKGG7DuYkUyaLqzCR1b9GHti4JgH44c74CcEkcswoEm7ovdgvehWoxLktqyhlwVRBUpSRt4XT4nk4xUx38PQ001q5vXajFHXiVJm1L1ZNowCeycIET-hbzZWWHHy8f5soxuSRCePimwpZzUyTY8Da8eL0eeK7ngmVCEWJheC_w1ahiVynLrR7GWGtnyPtXS8ExyLTMtROpHGp19aqmOZSZVxrkKdLgD3aqzdheIpamsTnMRMyJmPDRaaEsVM2m1FiLj2z3w25FOjNMjx7IY46QFnr0m1eQkODkJgu8CugdnS5NpI8bx18usnb7k24pKKmfxu9n-_8wOYLW6YjXZ3T-Ebjlb2KMqXCn1Maycv9Njtyg_AGrg7B0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH5icNh2QNBtomMFH6YdJmXEiWMnR4QoBVpOIPUW2Y4zBapQtem1vx0_x-k6iXHYLYptyfJz_J7zvu97AN-zUgsdSx6UEtOMOsuCNJI04MqphUU608gdntzx0QO7mSbTHbjouDAIq_Rnf3umu9Pavznzq3k2ryrk-EYuIsaEDGNCvIM9lsQCcX2_1n9wHky0CUu8J2H3LrXpQF5VjZLdNHYanhF93TltOZzhAez7SJGct5M5hB1T9-Djln5gDwaedUB-EE8rwmUm_nv9BOuhXM0aUpjGAa5qIuuCFC24rlqS55LYy3-AgaZcuMcruVoiq5IUbaF6Mm95BGZJECD_mzyZRW1mm-ZqU0S3IQhOf67xSXqhk8_wMLy8vxgFvuBCoGMeY1l6xfHHqGZUSJOYMM2UUMiVD6kSOilFokSpOC_CVKGrLwxVmSiFLJNERir-Art2suYIiKGFsHe5lGmeWatoxZWhkunC7oRUh6YPYbfSufZq5FgUY5Z3sLPH3BonR-PkCL2LaB9-bobMWymOtzqzznz5X_spt67i38O-_t-wU3g_up-M8_H13e0xfLAtzNHew2-w2yxWZmADl0aduI35Am1o7Og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+detection+and+diagnosis+of+non-linear+non-Gaussian+dynamic+processes+using+kernel+dynamic+independent+component+analysis&rft.jtitle=Information+sciences&rft.au=Fan%2C+Jicong&rft.au=Wang%2C+Youqing&rft.date=2014-02-20&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.volume=259&rft.spage=369&rft.epage=379&rft_id=info:doi/10.1016%2Fj.ins.2013.06.021&rft.externalDocID=S0020025513004477 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |