Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis

•Kernel dynamic ICA (KDICA) is proposed for non-linear non-Gaussian dynamic processes.•Its main idea is applying ICA in kernel space of augmented measurement matrix.•Non-linear contribution plot of KDICA is developed for fault diagnosis.•KDICA is compared with conventional methods on Tennessee Eastm...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 259; pp. 369 - 379
Main Authors Fan, Jicong, Wang, Youqing
Format Journal Article
LanguageEnglish
Published Elsevier Inc 20.02.2014
Subjects
Online AccessGet full text
ISSN0020-0255
DOI10.1016/j.ins.2013.06.021

Cover

Abstract •Kernel dynamic ICA (KDICA) is proposed for non-linear non-Gaussian dynamic processes.•Its main idea is applying ICA in kernel space of augmented measurement matrix.•Non-linear contribution plot of KDICA is developed for fault diagnosis.•KDICA is compared with conventional methods on Tennessee Eastman (TE) process. This paper proposes a novel approach for dealing with fault detection of multivariate processes, which will be referred to as kernel dynamic independent component analysis (KDICA). The main idea of KDICA is to carry out an independent component analysis in the kernel space of an augmented measurement matrix to extract the dynamic and non-linear characteristics of a non-linear non-Gaussian dynamic process. Furthermore, as a new method of fault diagnosis, a non-linear contribution plot is developed for KDICA. A comparative study on the Tennessee Eastman process is carried out to illustrate the effectiveness of the proposed method. The experimental results show that the proposed method compares favorably with existing methods.
AbstractList •Kernel dynamic ICA (KDICA) is proposed for non-linear non-Gaussian dynamic processes.•Its main idea is applying ICA in kernel space of augmented measurement matrix.•Non-linear contribution plot of KDICA is developed for fault diagnosis.•KDICA is compared with conventional methods on Tennessee Eastman (TE) process. This paper proposes a novel approach for dealing with fault detection of multivariate processes, which will be referred to as kernel dynamic independent component analysis (KDICA). The main idea of KDICA is to carry out an independent component analysis in the kernel space of an augmented measurement matrix to extract the dynamic and non-linear characteristics of a non-linear non-Gaussian dynamic process. Furthermore, as a new method of fault diagnosis, a non-linear contribution plot is developed for KDICA. A comparative study on the Tennessee Eastman process is carried out to illustrate the effectiveness of the proposed method. The experimental results show that the proposed method compares favorably with existing methods.
Author Wang, Youqing
Fan, Jicong
Author_xml – sequence: 1
  givenname: Jicong
  surname: Fan
  fullname: Fan, Jicong
– sequence: 2
  givenname: Youqing
  surname: Wang
  fullname: Wang, Youqing
  email: wang.youqing@ieee.org
BookMark eNp9kM1OAjEQgHvAREAfwFtfYNfpLtsu8WSIoAmJFz03_ZklxaUl7WLCxWe3iPHggcvMJJNvfr4JGfngkZA7BiUDxu-3pfOprIDVJfASKjYiY4AKCqia5ppMUtoCwExwPiZfS3XoB2pxQDO44KnyllqnNj4kl2joaB5e9M6jij_lSh1ScspTe_Rq5wzdx2AwJUz0kJzf0A-MHvu_tvMW95iDH6gJu30-NVfKq_6YF9yQq071CW9_85S8L5_eFs_F-nX1snhcF6bm9VCwWnPQwMyMCYUNQjvXQteMC2BamKYTjRad5txCq-uWtRaZnotOqK5pVKXrKWHnuSaGlCJ2ch_dTsWjZCBP0uRWZmnyJE0Cl1laZsQ_xrhBnSQNUbn-IvlwJjG_9OkwymQceoPWxaxZ2uAu0N9l8Y62
CitedBy_id crossref_primary_10_1002_cjce_25242
crossref_primary_10_1016_j_ces_2016_02_038
crossref_primary_10_1155_2018_7038531
crossref_primary_10_1021_acs_iecr_9b03406
crossref_primary_10_1016_j_neucom_2020_04_075
crossref_primary_10_1252_jcej_17we055
crossref_primary_10_1016_j_chemolab_2017_01_007
crossref_primary_10_1021_acs_iecr_9b05547
crossref_primary_10_1016_j_compchemeng_2018_12_027
crossref_primary_10_1016_j_isatra_2019_05_013
crossref_primary_10_1109_ACCESS_2021_3052197
crossref_primary_10_1177_1475921719884019
crossref_primary_10_1016_j_neucom_2022_03_012
crossref_primary_10_1016_j_asoc_2021_107319
crossref_primary_10_1155_2016_9567967
crossref_primary_10_1109_ACCESS_2019_2892487
crossref_primary_10_1016_j_compchemeng_2018_04_009
crossref_primary_10_1016_j_buildenv_2022_109010
crossref_primary_10_1108_GS_05_2020_0066
crossref_primary_10_1177_1687814019833279
crossref_primary_10_1155_2015_705725
crossref_primary_10_1002_cjce_24716
crossref_primary_10_1016_j_conengprac_2018_11_020
crossref_primary_10_1016_j_ins_2020_06_062
crossref_primary_10_1016_j_ins_2015_10_029
crossref_primary_10_1002_cjce_23740
crossref_primary_10_1016_j_cie_2015_05_012
crossref_primary_10_1016_j_ins_2021_12_106
crossref_primary_10_3390_s19214612
crossref_primary_10_1021_ie401834e
crossref_primary_10_1109_TIM_2018_2872610
crossref_primary_10_1016_j_cmpb_2017_12_019
crossref_primary_10_1088_1361_6501_ab7bbd
crossref_primary_10_1016_j_measurement_2023_112504
crossref_primary_10_1109_TASE_2023_3290202
crossref_primary_10_1115_1_4066595
crossref_primary_10_1109_TII_2021_3119377
crossref_primary_10_1016_j_neunet_2017_04_005
crossref_primary_10_17122_ogbus_2019_5_202_238
crossref_primary_10_1016_j_jprocont_2020_03_007
crossref_primary_10_1016_j_isatra_2021_06_005
crossref_primary_10_1021_acs_iecr_5b04268
crossref_primary_10_1016_j_ins_2024_121435
crossref_primary_10_1016_j_jprocont_2023_03_003
crossref_primary_10_1007_s10845_021_01762_7
crossref_primary_10_1016_j_cjche_2018_12_021
crossref_primary_10_1002_cjce_23750
crossref_primary_10_1016_j_chemolab_2017_07_013
crossref_primary_10_1016_j_jfranklin_2022_04_021
crossref_primary_10_3390_pr8091123
crossref_primary_10_1109_TIE_2018_2877188
crossref_primary_10_1016_j_chemolab_2023_104846
crossref_primary_10_1109_TIM_2022_3150589
crossref_primary_10_1016_j_eswa_2018_06_055
crossref_primary_10_1109_TNB_2018_2873243
crossref_primary_10_1016_j_jprocont_2018_02_002
crossref_primary_10_1016_j_jfranklin_2020_01_049
crossref_primary_10_1007_s10845_017_1343_1
crossref_primary_10_1002_cem_3168
crossref_primary_10_1002_cjce_23762
crossref_primary_10_1016_j_chemolab_2021_104371
crossref_primary_10_1016_j_chemolab_2014_10_008
crossref_primary_10_1016_j_conengprac_2021_104816
crossref_primary_10_1177_01423312231194125
crossref_primary_10_1016_j_psep_2022_03_064
crossref_primary_10_1016_j_jprocont_2019_02_006
crossref_primary_10_1016_j_asoc_2017_04_071
crossref_primary_10_1016_j_isatra_2021_08_040
crossref_primary_10_1016_j_conengprac_2020_104386
crossref_primary_10_3390_pr8010024
crossref_primary_10_1515_nleng_2022_0003
crossref_primary_10_3390_electronics13244931
crossref_primary_10_1021_acs_iecr_8b05099
crossref_primary_10_1109_TII_2018_2810822
crossref_primary_10_1109_TAI_2022_3185024
crossref_primary_10_1515_revce_2017_0069
crossref_primary_10_1016_j_ymssp_2019_05_048
crossref_primary_10_1016_j_automatica_2021_110148
crossref_primary_10_1016_j_compchemeng_2020_107172
crossref_primary_10_1016_j_asoc_2019_105564
crossref_primary_10_1002_cjce_22855
crossref_primary_10_1016_j_ins_2023_119176
crossref_primary_10_3390_e26100815
crossref_primary_10_1021_acs_iecr_8b03463
crossref_primary_10_1016_j_compchemeng_2017_02_041
crossref_primary_10_1109_TASE_2021_3138925
crossref_primary_10_1016_j_ins_2016_05_016
crossref_primary_10_1016_j_chemolab_2015_09_010
crossref_primary_10_1063_1_4944976
crossref_primary_10_1007_s10586_020_03129_8
crossref_primary_10_3390_pr10020335
crossref_primary_10_1007_s10462_022_10260_y
crossref_primary_10_1016_j_chemolab_2020_104149
crossref_primary_10_1002_cjce_23319
crossref_primary_10_1109_TII_2020_3048990
crossref_primary_10_3390_en12040726
crossref_primary_10_1021_acs_iecr_9b00030
crossref_primary_10_1016_j_renene_2019_08_064
crossref_primary_10_1109_JSEN_2023_3277038
crossref_primary_10_1252_jcej_19we143
crossref_primary_10_1016_j_arcontrol_2022_09_005
crossref_primary_10_1016_j_chemolab_2019_103812
crossref_primary_10_1016_j_neucom_2016_03_015
crossref_primary_10_3390_en16155793
crossref_primary_10_1109_ACCESS_2019_2914960
crossref_primary_10_1016_j_engappai_2023_107493
crossref_primary_10_3233_JIFS_189034
crossref_primary_10_1515_auto_2023_0031
crossref_primary_10_1109_TCST_2017_2669151
crossref_primary_10_1016_j_cjche_2020_05_003
Cites_doi 10.1021/ie071304y
10.1109/29.57576
10.1021/ie900521b
10.1016/j.ces.2004.04.031
10.1016/S0959-1524(01)00027-0
10.1016/j.ins.2011.08.028
10.1016/j.jprocont.2010.10.005
10.1016/j.ces.2009.01.050
10.1016/j.ins.2012.06.016
10.1021/ie070579a
10.1016/j.ces.2004.08.007
10.1016/j.jprocont.2003.09.004
10.1016/0169-7439(95)00076-3
10.1016/j.ins.2011.08.030
10.1016/0098-1354(94)00057-U
10.1016/j.ins.2010.08.006
10.1016/0098-1354(93)80018-I
10.1016/j.ces.2010.10.008
10.1016/j.ces.2008.10.012
10.1016/j.neucom.2010.11.033
10.1016/0098-1354(94)88019-0
10.1002/cem.800
10.1016/j.jprocont.2011.11.005
10.1007/s00521-011-0665-8
10.1109/72.761722
10.1021/ie9018947
10.1021/ie8012874
10.1016/j.ins.2010.11.005
10.1002/cjce.5450850414
10.1016/S0893-6080(00)00026-5
10.1016/j.ins.2011.10.022
10.1021/ie071496x
10.1016/0098-1354(95)00003-K
10.1016/0959-1524(96)00010-8
10.1016/j.eswa.2010.06.101
10.1002/aic.690370209
10.1080/00401706.1995.10485888
10.1016/0169-7439(87)80084-9
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2013.06.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EndPage 379
ExternalDocumentID 10_1016_j_ins_2013_06_021
S0020025513004477
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SSH
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
AAAKG
AAQXK
AAYXX
ABEFU
ABWVN
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
ADVLN
AFFNX
AFJKZ
AGQPQ
AIGII
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
ID FETCH-LOGICAL-c363t-13b60b01c417ae5e089b7b316701b7c5f75b7fb66d08b3818de1b97f7af55a2b3
IEDL.DBID AIKHN
ISSN 0020-0255
IngestDate Thu Apr 24 23:12:51 EDT 2025
Tue Jul 01 04:16:24 EDT 2025
Fri Jul 18 18:51:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Non-linear non-Gaussian dynamic processes
Non-linear contribution plot
TE process
Independent component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-13b60b01c417ae5e089b7b316701b7c5f75b7fb66d08b3818de1b97f7af55a2b3
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_ins_2013_06_021
crossref_citationtrail_10_1016_j_ins_2013_06_021
elsevier_sciencedirect_doi_10_1016_j_ins_2013_06_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-20
PublicationDateYYYYMMDD 2014-02-20
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-20
  day: 20
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Cao (b0180) 2011; 181
Nomikos, MacGrego (b0130) 1995; 37
Zhang, Ma (b0195) 2011; 66
Chen, Liao (b0020) 2002; 12
Wang, Conilione (b0155) 2012; 21
Lee, Yoo, Lee (b0100) 2004; 59
Wang, Zhang, Cao, Zhu (b0160) 2012; 22
Kramer (b0075) 1991; 37
Wu, Law (b0170) 2010; 180
Ge, Yang, Song (b0050) 2009; 64
Chiang, Russell, Braatz (b0030) 2001
Banerjee, Das (b0015) 2012; 217
Cho, Lee, Choi, Lee, Lee (b0035) 2005; 60
Ku, Storer, Georgakis (b0080) 1995; 30
Man, Lee, Wang, Cao, Miao (b0115) 2011; 74
Zhang (b0190) 2009; 64
Ge, Yang, Song, Wang (b0055) 2008; 47
Alcala, Qin (b0005) 2010; 49
Downs, Vogel (b0045) 1993; 17
Zhang (b0185) 2008; 47
Dong, McAvoy (b0040) 1996; 20
Stefatos, Hamza (b0145) 2010; 37
Yao, Gao (b0175) 2007; 46
Martin, Morris (b0120) 1996; 6
Hyvärinen, Oja (b0070) 2000; 13
Alcala, Qin (b0010) 2011; 21
Cheng, Hsu, Chen (b0025) 2010; 49
Giannakis, Mendel (b0060) 1990; 38
Qin (b0135) 2003; 17
Lee, Qin, Lee (b0090) 2007; 85
Lee, Yoo, Lee (b0095) 2004; 14
Lyman, Georgakis (b0110) 1995; 19
Lemos, Caminhas, Gomide (b0085) 2013; 220
Hyvärinen (b0065) 1999; 10
Wold, Esbensen, Geladi (b0165) 1987; 2
Zhao, Gao, Wang (b0200) 2009; 48
Rakotomamonjy (b0140) 2003; 3
Li, Tsai, Hsu (b0105) 2012; 187
McAvoy, Ye (b0125) 1994; 18
Sun, Li, Yang, Luo, Bai (b0150) 2012; 184
Martin (10.1016/j.ins.2013.06.021_b0120) 1996; 6
Chiang (10.1016/j.ins.2013.06.021_b0030) 2001
Stefatos (10.1016/j.ins.2013.06.021_b0145) 2010; 37
Rakotomamonjy (10.1016/j.ins.2013.06.021_b0140) 2003; 3
Lee (10.1016/j.ins.2013.06.021_b0090) 2007; 85
Nomikos (10.1016/j.ins.2013.06.021_b0130) 1995; 37
Giannakis (10.1016/j.ins.2013.06.021_b0060) 1990; 38
Lee (10.1016/j.ins.2013.06.021_b0100) 2004; 59
Wu (10.1016/j.ins.2013.06.021_b0170) 2010; 180
Zhang (10.1016/j.ins.2013.06.021_b0195) 2011; 66
Zhao (10.1016/j.ins.2013.06.021_b0200) 2009; 48
Banerjee (10.1016/j.ins.2013.06.021_b0015) 2012; 217
Qin (10.1016/j.ins.2013.06.021_b0135) 2003; 17
Li (10.1016/j.ins.2013.06.021_b0105) 2012; 187
Sun (10.1016/j.ins.2013.06.021_b0150) 2012; 184
Chen (10.1016/j.ins.2013.06.021_b0020) 2002; 12
Yao (10.1016/j.ins.2013.06.021_b0175) 2007; 46
Downs (10.1016/j.ins.2013.06.021_b0045) 1993; 17
Alcala (10.1016/j.ins.2013.06.021_b0010) 2011; 21
Ge (10.1016/j.ins.2013.06.021_b0050) 2009; 64
Lyman (10.1016/j.ins.2013.06.021_b0110) 1995; 19
Zhang (10.1016/j.ins.2013.06.021_b0180) 2011; 181
Lee (10.1016/j.ins.2013.06.021_b0095) 2004; 14
Dong (10.1016/j.ins.2013.06.021_b0040) 1996; 20
Hyvärinen (10.1016/j.ins.2013.06.021_b0065) 1999; 10
Zhang (10.1016/j.ins.2013.06.021_b0190) 2009; 64
Cheng (10.1016/j.ins.2013.06.021_b0025) 2010; 49
Cho (10.1016/j.ins.2013.06.021_b0035) 2005; 60
Ge (10.1016/j.ins.2013.06.021_b0055) 2008; 47
Kramer (10.1016/j.ins.2013.06.021_b0075) 1991; 37
Wang (10.1016/j.ins.2013.06.021_b0155) 2012; 21
Ku (10.1016/j.ins.2013.06.021_b0080) 1995; 30
Man (10.1016/j.ins.2013.06.021_b0115) 2011; 74
Alcala (10.1016/j.ins.2013.06.021_b0005) 2010; 49
Zhang (10.1016/j.ins.2013.06.021_b0185) 2008; 47
Lemos (10.1016/j.ins.2013.06.021_b0085) 2013; 220
Hyvärinen (10.1016/j.ins.2013.06.021_b0070) 2000; 13
McAvoy (10.1016/j.ins.2013.06.021_b0125) 1994; 18
Wang (10.1016/j.ins.2013.06.021_b0160) 2012; 22
Wold (10.1016/j.ins.2013.06.021_b0165) 1987; 2
References_xml – year: 2001
  ident: b0030
  article-title: Fault Detection and Diagnosis in Industrial Systems
– volume: 21
  start-page: 683
  year: 2012
  end-page: 694
  ident: b0155
  article-title: Machine learning approach for face image retrieval
  publication-title: Neural Computing and Applications
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: b0045
  article-title: A plant-wide industrial process control problem
  publication-title: Computers and Chemical Engineering
– volume: 3
  start-page: 1357
  year: 2003
  end-page: 1370
  ident: b0140
  article-title: Variable selection using SVM-based criteria
  publication-title: The Journal of Machine Learning Research
– volume: 180
  start-page: 4514
  year: 2010
  end-page: 4528
  ident: b0170
  article-title: Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization
  publication-title: Information Sciences
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: b0070
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Networks
– volume: 37
  start-page: 8606
  year: 2010
  end-page: 8617
  ident: b0145
  article-title: Dynamic independent component analysis approach for fault detection and diagnosis
  publication-title: Expert Systems with Applications
– volume: 49
  start-page: 7849
  year: 2010
  end-page: 7857
  ident: b0005
  article-title: Reconstruction-based contribution for process monitoring with kernel principal component analysis
  publication-title: Industrial and Engineering Chemistry Research
– volume: 47
  start-page: 4775
  year: 2008
  end-page: 4783
  ident: b0055
  article-title: Robust online monitoring for multimode processes based on nonlinear external analysis
  publication-title: Industrial and Engineering Chemistry Research
– volume: 74
  start-page: 2491
  year: 2011
  end-page: 2501
  ident: b0115
  article-title: A new robust training algorithm for a class of single-hidden layer feedforward neural networks
  publication-title: Neurocomputing
– volume: 64
  start-page: 801
  year: 2009
  end-page: 811
  ident: b0190
  article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
  publication-title: Chemical Engineering Science
– volume: 64
  start-page: 2245
  year: 2009
  end-page: 2255
  ident: b0050
  article-title: Improved kernel PCA-based monitoring approach for nonlinear processes
  publication-title: Chemical Engineering Science
– volume: 17
  start-page: 480
  year: 2003
  end-page: 502
  ident: b0135
  article-title: Statistical process monitoring: basics and beyond
  publication-title: Journal of Chemometrics
– volume: 30
  start-page: 179
  year: 1995
  end-page: 196
  ident: b0080
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 85
  start-page: 526
  year: 2007
  end-page: 536
  ident: b0090
  article-title: Fault detection of non-linear processes using kernel independent component analysis
  publication-title: The Canadian Journal of Chemical Engineering
– volume: 66
  start-page: 64
  year: 2011
  end-page: 72
  ident: b0195
  article-title: Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
  publication-title: Chemical Engineering Science
– volume: 60
  start-page: 279
  year: 2005
  end-page: 288
  ident: b0035
  article-title: Fault identification for process monitoring using kernel principal component analysis
  publication-title: Chemical Engineering Science
– volume: 21
  start-page: 322
  year: 2011
  end-page: 330
  ident: b0010
  article-title: Analysis and generalization of fault diagnosis methods for process monitoring
  publication-title: Journal of Process Control
– volume: 38
  start-page: 1411
  year: 1990
  end-page: 1423
  ident: b0060
  article-title: Cumulant-based order determination of non-Gaussian ARMA models
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
– volume: 49
  start-page: 2254
  year: 2010
  end-page: 2262
  ident: b0025
  article-title: Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
  publication-title: Industrial and Engineering Chemistry Research
– volume: 37
  start-page: 233
  year: 1991
  end-page: 243
  ident: b0075
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE Journal
– volume: 14
  start-page: 467
  year: 2004
  end-page: 485
  ident: b0095
  article-title: Statistical process monitoring with independent component analysis
  publication-title: Journal of Process Control
– volume: 19
  start-page: 321
  year: 1995
  end-page: 331
  ident: b0110
  article-title: Plant-wide control of the Tennessee Eastman problem
  publication-title: Computers and Chemical Engineering
– volume: 22
  start-page: 477
  year: 2012
  end-page: 487
  ident: b0160
  article-title: Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error
  publication-title: Journal of Process Control
– volume: 18
  start-page: 384
  year: 1994
  end-page: 413
  ident: b0125
  article-title: Base control for the Tennessee Eastman problem
  publication-title: Computers and Chemical Engineering
– volume: 47
  start-page: 6961
  year: 2008
  end-page: 6971
  ident: b0185
  article-title: Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM)
  publication-title: Industrial and Engineering Chemistry Research
– volume: 20
  start-page: 65
  year: 1996
  end-page: 78
  ident: b0040
  article-title: Nonlinear principal component analysis-based on principal curves and neural networks
  publication-title: Computers and Chemical Engineering
– volume: 6
  start-page: 349
  year: 1996
  end-page: 358
  ident: b0120
  article-title: Non-parametric confidence bounds for process performance monitoring charts
  publication-title: Journal of Process Control
– volume: 46
  start-page: 8033
  year: 2007
  end-page: 8043
  ident: b0175
  article-title: Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA)
  publication-title: Industrial and Engineering Chemistry Research
– volume: 12
  start-page: 277
  year: 2002
  end-page: 289
  ident: b0020
  article-title: Dynamic process fault monitoring based on neural network and PCA
  publication-title: Journal of Process Control
– volume: 37
  start-page: 4159
  year: 1995
  ident: b0130
  article-title: Multivariate SPC charts for monitoring batch processes
  publication-title: Technometrics
– volume: 187
  start-page: 291
  year: 2012
  end-page: 297
  ident: b0105
  article-title: A fast fault-identification algorithm for bijective connection graphs using the PMC model
  publication-title: Information Sciences
– volume: 220
  start-page: 64
  year: 2013
  end-page: 85
  ident: b0085
  article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier
  publication-title: Information Sciences
– volume: 2
  start-page: 37
  year: 1987
  end-page: 52
  ident: b0165
  article-title: Principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 59
  start-page: 2995
  year: 2004
  end-page: 3006
  ident: b0100
  article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis
  publication-title: Chemical Engineering Science
– volume: 217
  start-page: 96
  year: 2012
  end-page: 107
  ident: b0015
  article-title: Multi-sensor data fusion using support vector machine for motor fault detection
  publication-title: Information Sciences
– volume: 10
  start-page: 626
  year: 1999
  end-page: 634
  ident: b0065
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Transactions on Neural Networks
– volume: 181
  start-page: 4658
  year: 2011
  end-page: 4672
  ident: b0180
  article-title: A novel ant-based clustering algorithm using the kernel method
  publication-title: Information Sciences
– volume: 48
  start-page: 9163
  year: 2009
  end-page: 9174
  ident: b0200
  article-title: Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)
  publication-title: Industrial and Engineering Chemistry Research
– volume: 184
  start-page: 140
  year: 2012
  end-page: 154
  ident: b0150
  article-title: Scaling the kernel function based on the separating boundary in input space: a data-dependent way for improving the performance of kernel methods
  publication-title: Information Sciences
– volume: 47
  start-page: 4775
  year: 2008
  ident: 10.1016/j.ins.2013.06.021_b0055
  article-title: Robust online monitoring for multimode processes based on nonlinear external analysis
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie071304y
– volume: 38
  start-page: 1411
  year: 1990
  ident: 10.1016/j.ins.2013.06.021_b0060
  article-title: Cumulant-based order determination of non-Gaussian ARMA models
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
  doi: 10.1109/29.57576
– volume: 49
  start-page: 2254
  year: 2010
  ident: 10.1016/j.ins.2013.06.021_b0025
  article-title: Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie900521b
– volume: 59
  start-page: 2995
  year: 2004
  ident: 10.1016/j.ins.2013.06.021_b0100
  article-title: Statistical monitoring of dynamic processes based on dynamic independent component analysis
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2004.04.031
– volume: 12
  start-page: 277
  year: 2002
  ident: 10.1016/j.ins.2013.06.021_b0020
  article-title: Dynamic process fault monitoring based on neural network and PCA
  publication-title: Journal of Process Control
  doi: 10.1016/S0959-1524(01)00027-0
– year: 2001
  ident: 10.1016/j.ins.2013.06.021_b0030
– volume: 184
  start-page: 140
  year: 2012
  ident: 10.1016/j.ins.2013.06.021_b0150
  article-title: Scaling the kernel function based on the separating boundary in input space: a data-dependent way for improving the performance of kernel methods
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.08.028
– volume: 21
  start-page: 322
  year: 2011
  ident: 10.1016/j.ins.2013.06.021_b0010
  article-title: Analysis and generalization of fault diagnosis methods for process monitoring
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2010.10.005
– volume: 64
  start-page: 2245
  year: 2009
  ident: 10.1016/j.ins.2013.06.021_b0050
  article-title: Improved kernel PCA-based monitoring approach for nonlinear processes
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2009.01.050
– volume: 217
  start-page: 96
  year: 2012
  ident: 10.1016/j.ins.2013.06.021_b0015
  article-title: Multi-sensor data fusion using support vector machine for motor fault detection
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.06.016
– volume: 46
  start-page: 8033
  year: 2007
  ident: 10.1016/j.ins.2013.06.021_b0175
  article-title: Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA)
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie070579a
– volume: 60
  start-page: 279
  year: 2005
  ident: 10.1016/j.ins.2013.06.021_b0035
  article-title: Fault identification for process monitoring using kernel principal component analysis
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2004.08.007
– volume: 3
  start-page: 1357
  year: 2003
  ident: 10.1016/j.ins.2013.06.021_b0140
  article-title: Variable selection using SVM-based criteria
  publication-title: The Journal of Machine Learning Research
– volume: 14
  start-page: 467
  year: 2004
  ident: 10.1016/j.ins.2013.06.021_b0095
  article-title: Statistical process monitoring with independent component analysis
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2003.09.004
– volume: 30
  start-page: 179
  year: 1995
  ident: 10.1016/j.ins.2013.06.021_b0080
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/0169-7439(95)00076-3
– volume: 220
  start-page: 64
  year: 2013
  ident: 10.1016/j.ins.2013.06.021_b0085
  article-title: Adaptive fault detection and diagnosis using an evolving fuzzy classifier
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.08.030
– volume: 19
  start-page: 321
  year: 1995
  ident: 10.1016/j.ins.2013.06.021_b0110
  article-title: Plant-wide control of the Tennessee Eastman problem
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/0098-1354(94)00057-U
– volume: 180
  start-page: 4514
  year: 2010
  ident: 10.1016/j.ins.2013.06.021_b0170
  article-title: Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.08.006
– volume: 17
  start-page: 245
  year: 1993
  ident: 10.1016/j.ins.2013.06.021_b0045
  article-title: A plant-wide industrial process control problem
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/0098-1354(93)80018-I
– volume: 66
  start-page: 64
  year: 2011
  ident: 10.1016/j.ins.2013.06.021_b0195
  article-title: Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2010.10.008
– volume: 64
  start-page: 801
  year: 2009
  ident: 10.1016/j.ins.2013.06.021_b0190
  article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2008.10.012
– volume: 74
  start-page: 2491
  year: 2011
  ident: 10.1016/j.ins.2013.06.021_b0115
  article-title: A new robust training algorithm for a class of single-hidden layer feedforward neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.033
– volume: 18
  start-page: 384
  year: 1994
  ident: 10.1016/j.ins.2013.06.021_b0125
  article-title: Base control for the Tennessee Eastman problem
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/0098-1354(94)88019-0
– volume: 17
  start-page: 480
  year: 2003
  ident: 10.1016/j.ins.2013.06.021_b0135
  article-title: Statistical process monitoring: basics and beyond
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.800
– volume: 22
  start-page: 477
  year: 2012
  ident: 10.1016/j.ins.2013.06.021_b0160
  article-title: Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error
  publication-title: Journal of Process Control
  doi: 10.1016/j.jprocont.2011.11.005
– volume: 21
  start-page: 683
  year: 2012
  ident: 10.1016/j.ins.2013.06.021_b0155
  article-title: Machine learning approach for face image retrieval
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-011-0665-8
– volume: 10
  start-page: 626
  year: 1999
  ident: 10.1016/j.ins.2013.06.021_b0065
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.761722
– volume: 49
  start-page: 7849
  year: 2010
  ident: 10.1016/j.ins.2013.06.021_b0005
  article-title: Reconstruction-based contribution for process monitoring with kernel principal component analysis
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie9018947
– volume: 48
  start-page: 9163
  year: 2009
  ident: 10.1016/j.ins.2013.06.021_b0200
  article-title: Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie8012874
– volume: 181
  start-page: 4658
  year: 2011
  ident: 10.1016/j.ins.2013.06.021_b0180
  article-title: A novel ant-based clustering algorithm using the kernel method
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.11.005
– volume: 85
  start-page: 526
  year: 2007
  ident: 10.1016/j.ins.2013.06.021_b0090
  article-title: Fault detection of non-linear processes using kernel independent component analysis
  publication-title: The Canadian Journal of Chemical Engineering
  doi: 10.1002/cjce.5450850414
– volume: 13
  start-page: 411
  year: 2000
  ident: 10.1016/j.ins.2013.06.021_b0070
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 187
  start-page: 291
  year: 2012
  ident: 10.1016/j.ins.2013.06.021_b0105
  article-title: A fast fault-identification algorithm for bijective connection graphs using the PMC model
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.10.022
– volume: 47
  start-page: 6961
  year: 2008
  ident: 10.1016/j.ins.2013.06.021_b0185
  article-title: Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM)
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie071496x
– volume: 20
  start-page: 65
  year: 1996
  ident: 10.1016/j.ins.2013.06.021_b0040
  article-title: Nonlinear principal component analysis-based on principal curves and neural networks
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/0098-1354(95)00003-K
– volume: 6
  start-page: 349
  year: 1996
  ident: 10.1016/j.ins.2013.06.021_b0120
  article-title: Non-parametric confidence bounds for process performance monitoring charts
  publication-title: Journal of Process Control
  doi: 10.1016/0959-1524(96)00010-8
– volume: 37
  start-page: 8606
  year: 2010
  ident: 10.1016/j.ins.2013.06.021_b0145
  article-title: Dynamic independent component analysis approach for fault detection and diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.06.101
– volume: 37
  start-page: 233
  year: 1991
  ident: 10.1016/j.ins.2013.06.021_b0075
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE Journal
  doi: 10.1002/aic.690370209
– volume: 37
  start-page: 4159
  year: 1995
  ident: 10.1016/j.ins.2013.06.021_b0130
  article-title: Multivariate SPC charts for monitoring batch processes
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10485888
– volume: 2
  start-page: 37
  year: 1987
  ident: 10.1016/j.ins.2013.06.021_b0165
  article-title: Principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/0169-7439(87)80084-9
SSID ssj0004766
Score 2.4881647
Snippet •Kernel dynamic ICA (KDICA) is proposed for non-linear non-Gaussian dynamic processes.•Its main idea is applying ICA in kernel space of augmented measurement...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 369
SubjectTerms Independent component analysis
Non-linear contribution plot
Non-linear non-Gaussian dynamic processes
TE process
Title Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis
URI https://dx.doi.org/10.1016/j.ins.2013.06.021
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoEBQQHxlgfEgBSIEz-SsUKUAoIJJLbIdhwUqNKqTVd-O7nEKSABA5vzOMmyHd85933fAZzEmZEmVMLLFKYZTRx7UaCoJ3StFhaY2CB3-P5BjJ7Y7TN_7sBly4VBWKXb-5s9vd6t3Z0LN5oX0zxHjm9QR8SYkGFMyhXoBWEseBd6g5u70cMnPVI2KUs8KaFBm9ysYV55gaLdNKxVPAP6s3v64nKGG7DuYkUyaLqzCR1b9GHti4JgH44c74CcEkcswoEm7ovdgvehWoxLktqyhlwVRBUpSRt4XT4nk4xUx38PQ001q5vXajFHXiVJm1L1ZNowCeycIET-hbzZWWHHy8f5soxuSRCePimwpZzUyTY8Da8eL0eeK7ngmVCEWJheC_w1ahiVynLrR7GWGtnyPtXS8ExyLTMtROpHGp19aqmOZSZVxrkKdLgD3aqzdheIpamsTnMRMyJmPDRaaEsVM2m1FiLj2z3w25FOjNMjx7IY46QFnr0m1eQkODkJgu8CugdnS5NpI8bx18usnb7k24pKKmfxu9n-_8wOYLW6YjXZ3T-Ebjlb2KMqXCn1Maycv9Njtyg_AGrg7B0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH5icNh2QNBtomMFH6YdJmXEiWMnR4QoBVpOIPUW2Y4zBapQtem1vx0_x-k6iXHYLYptyfJz_J7zvu97AN-zUgsdSx6UEtOMOsuCNJI04MqphUU608gdntzx0QO7mSbTHbjouDAIq_Rnf3umu9Pavznzq3k2ryrk-EYuIsaEDGNCvIM9lsQCcX2_1n9wHky0CUu8J2H3LrXpQF5VjZLdNHYanhF93TltOZzhAez7SJGct5M5hB1T9-Djln5gDwaedUB-EE8rwmUm_nv9BOuhXM0aUpjGAa5qIuuCFC24rlqS55LYy3-AgaZcuMcruVoiq5IUbaF6Mm95BGZJECD_mzyZRW1mm-ZqU0S3IQhOf67xSXqhk8_wMLy8vxgFvuBCoGMeY1l6xfHHqGZUSJOYMM2UUMiVD6kSOilFokSpOC_CVKGrLwxVmSiFLJNERir-Art2suYIiKGFsHe5lGmeWatoxZWhkunC7oRUh6YPYbfSufZq5FgUY5Z3sLPH3BonR-PkCL2LaB9-bobMWymOtzqzznz5X_spt67i38O-_t-wU3g_up-M8_H13e0xfLAtzNHew2-w2yxWZmADl0aduI35Am1o7Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+detection+and+diagnosis+of+non-linear+non-Gaussian+dynamic+processes+using+kernel+dynamic+independent+component+analysis&rft.jtitle=Information+sciences&rft.au=Fan%2C+Jicong&rft.au=Wang%2C+Youqing&rft.date=2014-02-20&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.volume=259&rft.spage=369&rft.epage=379&rft_id=info:doi/10.1016%2Fj.ins.2013.06.021&rft.externalDocID=S0020025513004477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon