Probing the Origin of Viscosity of Liquid Electrolytes for Lithium Batteries
Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properti...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 41; p. e202305331 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.10.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation–anion and cation–solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next‐generation rechargeable batteries. |
---|---|
AbstractList | Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation-anion and cation-solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next-generation rechargeable batteries.Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation-anion and cation-solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next-generation rechargeable batteries. Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation–anion and cation–solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next‐generation rechargeable batteries. |
Author | Fu, Zhong‐Heng Hou, Ting‐Zheng Zhao, Chen‐Zi Zhang, Qiang Liu, Xinyan Gao, Yu‐Chen Yu, Legeng Yao, Nao Shen, Xin Zhang, Rui Chen, Xiang |
Author_xml | – sequence: 1 givenname: Nao orcidid: 0000-0003-1965-2917 surname: Yao fullname: Yao, Nao organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China – sequence: 2 givenname: Legeng orcidid: 0000-0002-9622-3334 surname: Yu fullname: Yu, Legeng organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China – sequence: 3 givenname: Zhong‐Heng orcidid: 0000-0001-8779-9086 surname: Fu fullname: Fu, Zhong‐Heng organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China – sequence: 4 givenname: Xin orcidid: 0000-0002-8637-3590 surname: Shen fullname: Shen, Xin organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China – sequence: 5 givenname: Ting‐Zheng orcidid: 0000-0002-7163-2561 surname: Hou fullname: Hou, Ting‐Zheng organization: Department of Materials Science and Engineering University of California Berkeley CA 94720 USA – sequence: 6 givenname: Xinyan orcidid: 0000-0002-3629-1730 surname: Liu fullname: Liu, Xinyan organization: Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 Sichuan China – sequence: 7 givenname: Yu‐Chen orcidid: 0000-0002-3143-4077 surname: Gao fullname: Gao, Yu‐Chen organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China – sequence: 8 givenname: Rui orcidid: 0000-0003-3740-8352 surname: Zhang fullname: Zhang, Rui organization: School of Materials Science and Engineering Advanced Research Institute for Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China – sequence: 9 givenname: Chen‐Zi orcidid: 0000-0002-1794-3086 surname: Zhao fullname: Zhao, Chen‐Zi organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China – sequence: 10 givenname: Xiang orcidid: 0000-0002-7686-6308 surname: Chen fullname: Chen, Xiang organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China – sequence: 11 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37173278$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kTtPwzAUhS1UxKOwMqJILCwptm8TuyNUvKRKZQDWyE6uqas0bm1n6L_HEY8Biek-9J2ro3tOyahzHRJyweiEUcpvVGdxwikHWgCwA3LCCs5yEAJGqZ8C5EIW7JichrBOvJS0PCLHIJgALuQJWbx4p233kcUVZktvP2yXOZO921C7YON-GBZ219smu2-xjt61-4ghM86nfVzZfpPdqRjRWwxn5NCoNuD5dx2Tt4f71_lTvlg-Ps9vF3kNJcScgebAwXAJvDRKiAaNnNaaMZS8lrqgiqFpRGMMllwKlsapLpU2CKD1DMbk-uvu1rtdjyFWm-QX21Z16PpQccmgKDmdFQm9-oOuXe-75K4aLhcFB0kTdflN9XqDTbX1dqP8vvr5UwImX0DtXQgezS_CaDUEUQ1BVL9BJMH0j6C2UUXruuiVbf-TfQJy84uy |
CitedBy_id | crossref_primary_10_1002_anie_202416506 crossref_primary_10_1016_j_ensm_2025_104009 crossref_primary_10_1002_smll_202311393 crossref_primary_10_1039_D4SC05464D crossref_primary_10_1021_acs_chemmater_4c00285 crossref_primary_10_1021_acs_jpcb_3c07999 crossref_primary_10_1021_jacs_3c11798 crossref_primary_10_1002_smll_202401610 crossref_primary_10_1016_j_molliq_2024_126526 crossref_primary_10_1016_j_cej_2025_159330 crossref_primary_10_1016_j_jcis_2024_08_151 crossref_primary_10_1016_j_cej_2024_154166 crossref_primary_10_1021_acsnano_3c06687 crossref_primary_10_1002_inf2_12653 crossref_primary_10_1016_j_jcis_2024_02_038 crossref_primary_10_1002_ange_202408902 crossref_primary_10_1002_ange_202416506 crossref_primary_10_1002_aenm_202400569 crossref_primary_10_1002_cssc_202401975 crossref_primary_10_1016_j_ensm_2024_103429 crossref_primary_10_1021_acsnano_4c17836 crossref_primary_10_1016_j_ensm_2024_103828 crossref_primary_10_1021_acsenergylett_4c00917 crossref_primary_10_1016_j_ensm_2024_103783 crossref_primary_10_1063_5_0242497 crossref_primary_10_1002_smll_202309286 crossref_primary_10_1016_j_ensm_2025_104195 crossref_primary_10_1002_aenm_202400564 crossref_primary_10_1016_j_cej_2024_158553 crossref_primary_10_1021_acs_jpclett_4c01613 crossref_primary_10_1002_anie_202408902 crossref_primary_10_1016_j_est_2024_112023 crossref_primary_10_1039_D4TA02189D crossref_primary_10_34133_energymatadv_0130 crossref_primary_10_1002_celc_202300759 crossref_primary_10_1093_nsr_nwae394 crossref_primary_10_1002_adfm_202413004 crossref_primary_10_1016_j_enrev_2024_100118 crossref_primary_10_1002_adma_202308675 crossref_primary_10_1016_j_ensm_2024_103219 |
Cites_doi | 10.1143/JPSJ.12.1203 10.1038/s41467-019-09792-9 10.1103/PhysRevE.90.022401 10.1002/aenm.201903568 10.1002/adma.201800561 10.1149/2.0981803jes 10.1021/acs.jctc.5b00351 10.1149/1945-7111/ac1735 10.1021/jp062885s 10.1073/pnas.2020357118 10.1002/batt.201800118 10.1093/oso/9780198803195.001.0001 10.1002/adma.201706102 10.1016/j.mtcomm.2020.101588 10.1016/j.chempr.2018.05.002 10.1002/slct.201700938 10.1002/aenm.202001440 10.1016/j.joule.2019.12.007 10.1103/PhysRev.112.1829 10.1021/acs.chemmater.0c00987 10.1002/anie.202107657 10.1021/jp211952y 10.1038/ncomms12032 10.1063/1.1421362 10.1080/00268970010011762 10.1016/j.molliq.2020.113288 10.1103/PhysRevE.85.066701 10.1038/nphys1185 10.1002/advs.201700032 10.1021/acs.accounts.0c00412 10.1080/08927020701675622 10.1080/00268977300102631 10.1038/ncomms7362 10.1038/s41560-019-0405-3 10.1063/1.1748449 10.1063/1.3330544 10.1038/s41560-020-0647-0 10.1149/1945-7111/abd60e 10.1115/1.1424298 10.1149/2.0081803jes 10.1246/cl.170284 10.1038/s41560-019-0336-z 10.1016/j.fluid.2004.09.008 10.1021/acs.chemrev.1c00904 10.1016/j.materresbull.2013.10.006 10.1002/aenm.201900161 10.1063/1.3274802 10.1021/acs.jpcc.6b12636 10.1038/nenergy.2017.108 |
ContentType | Journal Article |
Copyright | 2023 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202305331 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
ExternalDocumentID | 37173278 10_1002_anie_202305331 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Beijing Municipal Natural Science Foundation grantid: Z200011 – fundername: National Natural Science Foundation of China grantid: 22109086, 22209093, 22209094, and 21825501 – fundername: National Key Research and Development Program grantid: 2021YFB2500300 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CITATION CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AEUQT AFPWT NPM RWI VQA WRC YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c363t-13b2323f28326fa77def84cb11e82c8b50a1efd7dffe62871a1e4b6abfe33bb93 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:09:30 EDT 2025 Fri Jul 25 11:53:11 EDT 2025 Wed Feb 19 02:23:45 EST 2025 Thu Apr 24 23:05:24 EDT 2025 Tue Jul 01 01:47:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | Viscosity Lithium Battery Electrolyte Green-Kubo Relation Molecular Dynamics Simulation Screened Overlapping Method |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c363t-13b2323f28326fa77def84cb11e82c8b50a1efd7dffe62871a1e4b6abfe33bb93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7163-2561 0000-0001-8779-9086 0000-0002-9622-3334 0000-0002-3929-1541 0000-0002-1794-3086 0000-0003-1965-2917 0000-0002-3143-4077 0000-0003-3740-8352 0000-0002-3629-1730 0000-0002-8637-3590 0000-0002-7686-6308 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202305331 |
PMID | 37173278 |
PQID | 2871552380 |
PQPubID | 946352 |
ParticipantIDs | proquest_miscellaneous_2813562095 proquest_journals_2871552380 pubmed_primary_37173278 crossref_primary_10_1002_anie_202305331 crossref_citationtrail_10_1002_anie_202305331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-09 |
PublicationDateYYYYMMDD | 2023-10-09 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_26_3 e_1_2_7_28_1 e_1_2_7_26_4 Christian R. (e_1_2_7_37_1) 2011 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 |
References_xml | – ident: e_1_2_7_13_2 doi: 10.1143/JPSJ.12.1203 – ident: e_1_2_7_3_1 doi: 10.1038/s41467-019-09792-9 – ident: e_1_2_7_9_1 doi: 10.1103/PhysRevE.90.022401 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201903568 – ident: e_1_2_7_1_2 doi: 10.1002/adma.201800561 – ident: e_1_2_7_10_2 doi: 10.1149/2.0981803jes – ident: e_1_2_7_21_1 doi: 10.1021/acs.jctc.5b00351 – ident: e_1_2_7_6_1 doi: 10.1149/1945-7111/ac1735 – ident: e_1_2_7_20_1 doi: 10.1021/jp062885s – ident: e_1_2_7_8_1 doi: 10.1073/pnas.2020357118 – ident: e_1_2_7_32_1 doi: 10.1002/batt.201800118 – ident: e_1_2_7_15_1 doi: 10.1093/oso/9780198803195.001.0001 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201706102 – ident: e_1_2_7_10_1 doi: 10.1016/j.mtcomm.2020.101588 – ident: e_1_2_7_35_1 doi: 10.1016/j.chempr.2018.05.002 – ident: e_1_2_7_24_1 doi: 10.1002/slct.201700938 – ident: e_1_2_7_7_1 doi: 10.1002/aenm.202001440 – ident: e_1_2_7_26_3 doi: 10.1016/j.joule.2019.12.007 – ident: e_1_2_7_13_3 doi: 10.1103/PhysRev.112.1829 – ident: e_1_2_7_30_1 doi: 10.1021/acs.chemmater.0c00987 – ident: e_1_2_7_12_1 doi: 10.1002/anie.202107657 – ident: e_1_2_7_18_1 doi: 10.1021/jp211952y – ident: e_1_2_7_28_1 doi: 10.1038/ncomms12032 – ident: e_1_2_7_22_1 doi: 10.1063/1.1421362 – ident: e_1_2_7_17_2 doi: 10.1080/00268970010011762 – ident: e_1_2_7_19_1 doi: 10.1016/j.molliq.2020.113288 – volume-title: Solvents and solvent effects in organic chemistry year: 2011 ident: e_1_2_7_37_1 – ident: e_1_2_7_16_2 doi: 10.1103/PhysRevE.85.066701 – ident: e_1_2_7_14_1 doi: 10.1038/nphys1185 – ident: e_1_2_7_26_2 doi: 10.1002/advs.201700032 – ident: e_1_2_7_32_2 doi: 10.1021/acs.accounts.0c00412 – ident: e_1_2_7_11_1 doi: 10.1080/08927020701675622 – ident: e_1_2_7_25_1 doi: 10.1080/00268977300102631 – ident: e_1_2_7_27_1 doi: 10.1038/ncomms7362 – ident: e_1_2_7_5_1 doi: 10.1038/s41560-019-0405-3 – ident: e_1_2_7_13_1 doi: 10.1063/1.1748449 – ident: e_1_2_7_17_1 doi: 10.1063/1.3330544 – ident: e_1_2_7_33_1 doi: 10.1038/s41560-020-0647-0 – ident: e_1_2_7_34_1 doi: 10.1149/1945-7111/abd60e – ident: e_1_2_7_36_1 doi: 10.1115/1.1424298 – ident: e_1_2_7_10_4 doi: 10.1149/2.0081803jes – ident: e_1_2_7_26_1 doi: 10.1246/cl.170284 – ident: e_1_2_7_26_4 doi: 10.1038/s41560-019-0336-z – ident: e_1_2_7_10_3 doi: 10.1016/j.fluid.2004.09.008 – ident: e_1_2_7_12_2 doi: 10.1021/acs.chemrev.1c00904 – ident: e_1_2_7_23_1 doi: 10.1016/j.materresbull.2013.10.006 – ident: e_1_2_7_1_1 doi: 10.1002/aenm.201900161 – ident: e_1_2_7_16_1 doi: 10.1063/1.3274802 – ident: e_1_2_7_2_1 doi: 10.1021/acs.jpcc.6b12636 – ident: e_1_2_7_4_1 doi: 10.1038/nenergy.2017.108 |
SSID | ssj0028806 |
Score | 2.6348908 |
Snippet | Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | e202305331 |
SubjectTerms | Batteries Cations Diluents Electrolytes Ion transport Lithium Lithium batteries Molecular dynamics Rechargeable batteries Solvents Viscosity Wettability |
Title | Probing the Origin of Viscosity of Liquid Electrolytes for Lithium Batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37173278 https://www.proquest.com/docview/2871552380 https://www.proquest.com/docview/2813562095 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgPMAL4jeFgYyExEOV0dipkz5OU6sKRRtCLSpPke3YW6TRAEuEtr9-d7HjdsAQ4yVqHCuxfJ-vd_bdd4S8LYVEVrMy4oaXUSJTWHOGZZEVsLBsOQG13AXIHor5MvmwGq82YUVddkmj9vTFH_NK_keq0AZyxSzZG0g2vBQa4DfIF64gYbj-k4w_IomST3c66ipcoe33uTrTdR9qkVff26ocTl21m9Nz3GbFyMK8ak6q9uvQ8Wv2kYSBVfnY_JQY6D_sCAXMLxuH07LaPr__ImunqOvQ0nb-voGRH2-2pjH6t4-tmMOT4awNGzw-SWTlicD9PgRzEW030XZbWjbhPEozzzRrvOZlMWg7V9ekV82CbUHQEWT9pvIdhSzm4-_hsDC3ON78ufUH-odHxWyZ58ViulrcJncYOBWdA_4pkI0x0GQuF80Prqf4HLH3V99-1YS5xi_p7JPFA3LfOxZ036HkIbll1o_I3YO-nt9jknu0UEALdWihtaUBLXjj0EK30UIBLdSjhQa0PCHL2XRxMI98LY1Ic8GbKOYKbGdusTKVsBJWp7FZolUcm4zpTI1HMja2TEtrjUAvGm4TJaSyhnOlJvwp2VnXa_OcUKEmSkvOQbODe6lUJjX4xYngUk9SXsoBifrpKbQnmsd6J6eFo8hmBU5nEaZzQN6F_t8cxcq1PXf72S78MjwrcLDjMVieowF5Ex7D3OLJl1ybusU-MQdDH9yJAXnmpBQ-xTEOhaXZi7-__CW5t0H9LtlpfrTmFdijjXrdwegSmWyMBg |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+Origin+of+Viscosity+of+Liquid+Electrolytes+for+Lithium+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yao%2C+Nao&rft.au=Yu%2C+Legeng&rft.au=Zhong%E2%80%90Heng+Fu&rft.au=Shen%2C+Xin&rft.date=2023-10-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=41&rft_id=info:doi/10.1002%2Fanie.202305331&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |