Probing the Origin of Viscosity of Liquid Electrolytes for Lithium Batteries

Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properti...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 41; p. e202305331
Main Authors Yao, Nao, Yu, Legeng, Fu, Zhong‐Heng, Shen, Xin, Hou, Ting‐Zheng, Liu, Xinyan, Gao, Yu‐Chen, Zhang, Rui, Zhao, Chen‐Zi, Chen, Xiang, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.10.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation–anion and cation–solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next‐generation rechargeable batteries.
AbstractList Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation-anion and cation-solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next-generation rechargeable batteries.Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation-anion and cation-solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next-generation rechargeable batteries.
Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation–anion and cation–solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next‐generation rechargeable batteries.
Author Fu, Zhong‐Heng
Hou, Ting‐Zheng
Zhao, Chen‐Zi
Zhang, Qiang
Liu, Xinyan
Gao, Yu‐Chen
Yu, Legeng
Yao, Nao
Shen, Xin
Zhang, Rui
Chen, Xiang
Author_xml – sequence: 1
  givenname: Nao
  orcidid: 0000-0003-1965-2917
  surname: Yao
  fullname: Yao, Nao
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
– sequence: 2
  givenname: Legeng
  orcidid: 0000-0002-9622-3334
  surname: Yu
  fullname: Yu, Legeng
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
– sequence: 3
  givenname: Zhong‐Heng
  orcidid: 0000-0001-8779-9086
  surname: Fu
  fullname: Fu, Zhong‐Heng
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
– sequence: 4
  givenname: Xin
  orcidid: 0000-0002-8637-3590
  surname: Shen
  fullname: Shen, Xin
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
– sequence: 5
  givenname: Ting‐Zheng
  orcidid: 0000-0002-7163-2561
  surname: Hou
  fullname: Hou, Ting‐Zheng
  organization: Department of Materials Science and Engineering University of California Berkeley CA 94720 USA
– sequence: 6
  givenname: Xinyan
  orcidid: 0000-0002-3629-1730
  surname: Liu
  fullname: Liu, Xinyan
  organization: Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 Sichuan China
– sequence: 7
  givenname: Yu‐Chen
  orcidid: 0000-0002-3143-4077
  surname: Gao
  fullname: Gao, Yu‐Chen
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
– sequence: 8
  givenname: Rui
  orcidid: 0000-0003-3740-8352
  surname: Zhang
  fullname: Zhang, Rui
  organization: School of Materials Science and Engineering Advanced Research Institute for Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
– sequence: 9
  givenname: Chen‐Zi
  orcidid: 0000-0002-1794-3086
  surname: Zhao
  fullname: Zhao, Chen‐Zi
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
– sequence: 10
  givenname: Xiang
  orcidid: 0000-0002-7686-6308
  surname: Chen
  fullname: Chen, Xiang
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
– sequence: 11
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology Department of Chemical Engineering Tsinghua University Beijing 100084 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37173278$$D View this record in MEDLINE/PubMed
BookMark eNp1kTtPwzAUhS1UxKOwMqJILCwptm8TuyNUvKRKZQDWyE6uqas0bm1n6L_HEY8Biek-9J2ro3tOyahzHRJyweiEUcpvVGdxwikHWgCwA3LCCs5yEAJGqZ8C5EIW7JichrBOvJS0PCLHIJgALuQJWbx4p233kcUVZktvP2yXOZO921C7YON-GBZ219smu2-xjt61-4ghM86nfVzZfpPdqRjRWwxn5NCoNuD5dx2Tt4f71_lTvlg-Ps9vF3kNJcScgebAwXAJvDRKiAaNnNaaMZS8lrqgiqFpRGMMllwKlsapLpU2CKD1DMbk-uvu1rtdjyFWm-QX21Z16PpQccmgKDmdFQm9-oOuXe-75K4aLhcFB0kTdflN9XqDTbX1dqP8vvr5UwImX0DtXQgezS_CaDUEUQ1BVL9BJMH0j6C2UUXruuiVbf-TfQJy84uy
CitedBy_id crossref_primary_10_1002_anie_202416506
crossref_primary_10_1016_j_ensm_2025_104009
crossref_primary_10_1002_smll_202311393
crossref_primary_10_1039_D4SC05464D
crossref_primary_10_1021_acs_chemmater_4c00285
crossref_primary_10_1021_acs_jpcb_3c07999
crossref_primary_10_1021_jacs_3c11798
crossref_primary_10_1002_smll_202401610
crossref_primary_10_1016_j_molliq_2024_126526
crossref_primary_10_1016_j_cej_2025_159330
crossref_primary_10_1016_j_jcis_2024_08_151
crossref_primary_10_1016_j_cej_2024_154166
crossref_primary_10_1021_acsnano_3c06687
crossref_primary_10_1002_inf2_12653
crossref_primary_10_1016_j_jcis_2024_02_038
crossref_primary_10_1002_ange_202408902
crossref_primary_10_1002_ange_202416506
crossref_primary_10_1002_aenm_202400569
crossref_primary_10_1002_cssc_202401975
crossref_primary_10_1016_j_ensm_2024_103429
crossref_primary_10_1021_acsnano_4c17836
crossref_primary_10_1016_j_ensm_2024_103828
crossref_primary_10_1021_acsenergylett_4c00917
crossref_primary_10_1016_j_ensm_2024_103783
crossref_primary_10_1063_5_0242497
crossref_primary_10_1002_smll_202309286
crossref_primary_10_1016_j_ensm_2025_104195
crossref_primary_10_1002_aenm_202400564
crossref_primary_10_1016_j_cej_2024_158553
crossref_primary_10_1021_acs_jpclett_4c01613
crossref_primary_10_1002_anie_202408902
crossref_primary_10_1016_j_est_2024_112023
crossref_primary_10_1039_D4TA02189D
crossref_primary_10_34133_energymatadv_0130
crossref_primary_10_1002_celc_202300759
crossref_primary_10_1093_nsr_nwae394
crossref_primary_10_1002_adfm_202413004
crossref_primary_10_1016_j_enrev_2024_100118
crossref_primary_10_1002_adma_202308675
crossref_primary_10_1016_j_ensm_2024_103219
Cites_doi 10.1143/JPSJ.12.1203
10.1038/s41467-019-09792-9
10.1103/PhysRevE.90.022401
10.1002/aenm.201903568
10.1002/adma.201800561
10.1149/2.0981803jes
10.1021/acs.jctc.5b00351
10.1149/1945-7111/ac1735
10.1021/jp062885s
10.1073/pnas.2020357118
10.1002/batt.201800118
10.1093/oso/9780198803195.001.0001
10.1002/adma.201706102
10.1016/j.mtcomm.2020.101588
10.1016/j.chempr.2018.05.002
10.1002/slct.201700938
10.1002/aenm.202001440
10.1016/j.joule.2019.12.007
10.1103/PhysRev.112.1829
10.1021/acs.chemmater.0c00987
10.1002/anie.202107657
10.1021/jp211952y
10.1038/ncomms12032
10.1063/1.1421362
10.1080/00268970010011762
10.1016/j.molliq.2020.113288
10.1103/PhysRevE.85.066701
10.1038/nphys1185
10.1002/advs.201700032
10.1021/acs.accounts.0c00412
10.1080/08927020701675622
10.1080/00268977300102631
10.1038/ncomms7362
10.1038/s41560-019-0405-3
10.1063/1.1748449
10.1063/1.3330544
10.1038/s41560-020-0647-0
10.1149/1945-7111/abd60e
10.1115/1.1424298
10.1149/2.0081803jes
10.1246/cl.170284
10.1038/s41560-019-0336-z
10.1016/j.fluid.2004.09.008
10.1021/acs.chemrev.1c00904
10.1016/j.materresbull.2013.10.006
10.1002/aenm.201900161
10.1063/1.3274802
10.1021/acs.jpcc.6b12636
10.1038/nenergy.2017.108
ContentType Journal Article
Copyright 2023 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202305331
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
ExternalDocumentID 37173278
10_1002_anie_202305331
Genre Journal Article
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation
  grantid: Z200011
– fundername: National Natural Science Foundation of China
  grantid: 22109086, 22209093, 22209094, and 21825501
– fundername: National Key Research and Development Program
  grantid: 2021YFB2500300
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CITATION
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AEUQT
AFPWT
NPM
RWI
VQA
WRC
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c363t-13b2323f28326fa77def84cb11e82c8b50a1efd7dffe62871a1e4b6abfe33bb93
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:09:30 EDT 2025
Fri Jul 25 11:53:11 EDT 2025
Wed Feb 19 02:23:45 EST 2025
Thu Apr 24 23:05:24 EDT 2025
Tue Jul 01 01:47:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Viscosity
Lithium Battery Electrolyte
Green-Kubo Relation
Molecular Dynamics Simulation
Screened Overlapping Method
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-13b2323f28326fa77def84cb11e82c8b50a1efd7dffe62871a1e4b6abfe33bb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7163-2561
0000-0001-8779-9086
0000-0002-9622-3334
0000-0002-3929-1541
0000-0002-1794-3086
0000-0003-1965-2917
0000-0002-3143-4077
0000-0003-3740-8352
0000-0002-3629-1730
0000-0002-8637-3590
0000-0002-7686-6308
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202305331
PMID 37173278
PQID 2871552380
PQPubID 946352
ParticipantIDs proquest_miscellaneous_2813562095
proquest_journals_2871552380
pubmed_primary_37173278
crossref_primary_10_1002_anie_202305331
crossref_citationtrail_10_1002_anie_202305331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-09
PublicationDateYYYYMMDD 2023-10-09
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-09
  day: 09
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_26_3
e_1_2_7_28_1
e_1_2_7_26_4
Christian R. (e_1_2_7_37_1) 2011
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – ident: e_1_2_7_13_2
  doi: 10.1143/JPSJ.12.1203
– ident: e_1_2_7_3_1
  doi: 10.1038/s41467-019-09792-9
– ident: e_1_2_7_9_1
  doi: 10.1103/PhysRevE.90.022401
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201903568
– ident: e_1_2_7_1_2
  doi: 10.1002/adma.201800561
– ident: e_1_2_7_10_2
  doi: 10.1149/2.0981803jes
– ident: e_1_2_7_21_1
  doi: 10.1021/acs.jctc.5b00351
– ident: e_1_2_7_6_1
  doi: 10.1149/1945-7111/ac1735
– ident: e_1_2_7_20_1
  doi: 10.1021/jp062885s
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.2020357118
– ident: e_1_2_7_32_1
  doi: 10.1002/batt.201800118
– ident: e_1_2_7_15_1
  doi: 10.1093/oso/9780198803195.001.0001
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_7_10_1
  doi: 10.1016/j.mtcomm.2020.101588
– ident: e_1_2_7_35_1
  doi: 10.1016/j.chempr.2018.05.002
– ident: e_1_2_7_24_1
  doi: 10.1002/slct.201700938
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.202001440
– ident: e_1_2_7_26_3
  doi: 10.1016/j.joule.2019.12.007
– ident: e_1_2_7_13_3
  doi: 10.1103/PhysRev.112.1829
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.chemmater.0c00987
– ident: e_1_2_7_12_1
  doi: 10.1002/anie.202107657
– ident: e_1_2_7_18_1
  doi: 10.1021/jp211952y
– ident: e_1_2_7_28_1
  doi: 10.1038/ncomms12032
– ident: e_1_2_7_22_1
  doi: 10.1063/1.1421362
– ident: e_1_2_7_17_2
  doi: 10.1080/00268970010011762
– ident: e_1_2_7_19_1
  doi: 10.1016/j.molliq.2020.113288
– volume-title: Solvents and solvent effects in organic chemistry
  year: 2011
  ident: e_1_2_7_37_1
– ident: e_1_2_7_16_2
  doi: 10.1103/PhysRevE.85.066701
– ident: e_1_2_7_14_1
  doi: 10.1038/nphys1185
– ident: e_1_2_7_26_2
  doi: 10.1002/advs.201700032
– ident: e_1_2_7_32_2
  doi: 10.1021/acs.accounts.0c00412
– ident: e_1_2_7_11_1
  doi: 10.1080/08927020701675622
– ident: e_1_2_7_25_1
  doi: 10.1080/00268977300102631
– ident: e_1_2_7_27_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_7_5_1
  doi: 10.1038/s41560-019-0405-3
– ident: e_1_2_7_13_1
  doi: 10.1063/1.1748449
– ident: e_1_2_7_17_1
  doi: 10.1063/1.3330544
– ident: e_1_2_7_33_1
  doi: 10.1038/s41560-020-0647-0
– ident: e_1_2_7_34_1
  doi: 10.1149/1945-7111/abd60e
– ident: e_1_2_7_36_1
  doi: 10.1115/1.1424298
– ident: e_1_2_7_10_4
  doi: 10.1149/2.0081803jes
– ident: e_1_2_7_26_1
  doi: 10.1246/cl.170284
– ident: e_1_2_7_26_4
  doi: 10.1038/s41560-019-0336-z
– ident: e_1_2_7_10_3
  doi: 10.1016/j.fluid.2004.09.008
– ident: e_1_2_7_12_2
  doi: 10.1021/acs.chemrev.1c00904
– ident: e_1_2_7_23_1
  doi: 10.1016/j.materresbull.2013.10.006
– ident: e_1_2_7_1_1
  doi: 10.1002/aenm.201900161
– ident: e_1_2_7_16_1
  doi: 10.1063/1.3274802
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.jpcc.6b12636
– ident: e_1_2_7_4_1
  doi: 10.1038/nenergy.2017.108
SSID ssj0028806
Score 2.6348908
Snippet Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage e202305331
SubjectTerms Batteries
Cations
Diluents
Electrolytes
Ion transport
Lithium
Lithium batteries
Molecular dynamics
Rechargeable batteries
Solvents
Viscosity
Wettability
Title Probing the Origin of Viscosity of Liquid Electrolytes for Lithium Batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/37173278
https://www.proquest.com/docview/2871552380
https://www.proquest.com/docview/2813562095
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgPMAL4jeFgYyExEOV0dipkz5OU6sKRRtCLSpPke3YW6TRAEuEtr9-d7HjdsAQ4yVqHCuxfJ-vd_bdd4S8LYVEVrMy4oaXUSJTWHOGZZEVsLBsOQG13AXIHor5MvmwGq82YUVddkmj9vTFH_NK_keq0AZyxSzZG0g2vBQa4DfIF64gYbj-k4w_IomST3c66ipcoe33uTrTdR9qkVff26ocTl21m9Nz3GbFyMK8ak6q9uvQ8Wv2kYSBVfnY_JQY6D_sCAXMLxuH07LaPr__ImunqOvQ0nb-voGRH2-2pjH6t4-tmMOT4awNGzw-SWTlicD9PgRzEW030XZbWjbhPEozzzRrvOZlMWg7V9ekV82CbUHQEWT9pvIdhSzm4-_hsDC3ON78ufUH-odHxWyZ58ViulrcJncYOBWdA_4pkI0x0GQuF80Prqf4HLH3V99-1YS5xi_p7JPFA3LfOxZ036HkIbll1o_I3YO-nt9jknu0UEALdWihtaUBLXjj0EK30UIBLdSjhQa0PCHL2XRxMI98LY1Ic8GbKOYKbGdusTKVsBJWp7FZolUcm4zpTI1HMja2TEtrjUAvGm4TJaSyhnOlJvwp2VnXa_OcUKEmSkvOQbODe6lUJjX4xYngUk9SXsoBifrpKbQnmsd6J6eFo8hmBU5nEaZzQN6F_t8cxcq1PXf72S78MjwrcLDjMVieowF5Ex7D3OLJl1ybusU-MQdDH9yJAXnmpBQ-xTEOhaXZi7-__CW5t0H9LtlpfrTmFdijjXrdwegSmWyMBg
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+Origin+of+Viscosity+of+Liquid+Electrolytes+for+Lithium+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yao%2C+Nao&rft.au=Yu%2C+Legeng&rft.au=Zhong%E2%80%90Heng+Fu&rft.au=Shen%2C+Xin&rft.date=2023-10-09&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=41&rft_id=info:doi/10.1002%2Fanie.202305331&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon