Mechanistic Understanding of Oxidation of Tin‐based Perovskite Solar Cells and Mitigation Strategies

Tin (Sn)‐based perovskites as the most promising absorber materials for lead‐free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn‐based perovskites is a frequently concerned topic for Sn‐based PSCs, many studies have given vagu...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 45; p. e202308093
Main Authors Zhang, Zhihao, Huang, Yuanfang, Jin, Jialun, Jiang, Yiting, Xu, Yuliang, Zhu, Jingwei, Zhao, Dewei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.11.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tin (Sn)‐based perovskites as the most promising absorber materials for lead‐free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn‐based perovskites is a frequently concerned topic for Sn‐based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of an in‐depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn‐based perovskites and differentiate its detrimental effects at material‐ and device‐level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti‐oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn‐based PSCs “from the beginning to the end”.
AbstractList Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over 14%. Although suppressing the oxidation of Sn-based perovskites is a frequently concerned topic for Sn-based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of the in-depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn-based perovskites and differentiate its detrimental effects at material- and device-level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti-oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn-based PSCs "from the beginning to the end".
Tin (Sn)‐based perovskites as the most promising absorber materials for lead‐free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn‐based perovskites is a frequently concerned topic for Sn‐based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of an in‐depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn‐based perovskites and differentiate its detrimental effects at material‐ and device‐level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti‐oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn‐based PSCs “from the beginning to the end”.
Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn-based perovskites is a frequently concerned topic for Sn-based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of an in-depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn-based perovskites and differentiate its detrimental effects at material- and device-level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti-oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn-based PSCs "from the beginning to the end".Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn-based perovskites is a frequently concerned topic for Sn-based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of an in-depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn-based perovskites and differentiate its detrimental effects at material- and device-level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti-oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn-based PSCs "from the beginning to the end".
Author Zhao, Dewei
Zhu, Jingwei
Jiang, Yiting
Huang, Yuanfang
Xu, Yuliang
Zhang, Zhihao
Jin, Jialun
Author_xml – sequence: 1
  givenname: Zhihao
  surname: Zhang
  fullname: Zhang, Zhihao
  organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China
– sequence: 2
  givenname: Yuanfang
  surname: Huang
  fullname: Huang, Yuanfang
  organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China
– sequence: 3
  givenname: Jialun
  surname: Jin
  fullname: Jin, Jialun
  organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China
– sequence: 4
  givenname: Yiting
  surname: Jiang
  fullname: Jiang, Yiting
  organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China
– sequence: 5
  givenname: Yuliang
  surname: Xu
  fullname: Xu, Yuliang
  organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China
– sequence: 6
  givenname: Jingwei
  surname: Zhu
  fullname: Zhu, Jingwei
  organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China
– sequence: 7
  givenname: Dewei
  orcidid: 0000-0001-7914-6288
  surname: Zhao
  fullname: Zhao, Dewei
  organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37525424$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1OGzEUhS0EKn_dsqxG6qabCR7_zHiWVVQKEihIJOvRHftO6nRiU9up6K6P0Gfsk-AQYIHE6t4rfefq6Jxjsu-8Q0LOKjqpKGXn4CxOGGWcKtryPXJUSVaVvGn4ft4F52WjZHVIjmNcZV4pWn8gh7yRTAomjshwg_pHfhKT1cXCGQwxgTPWLQs_FLMHayBZ77bH3Lr_f__1ENEUtxj87_jTJizu_AihmOI4xiIrixub7HInuksBEi4txlNyMMAY8ePzPCGLi2_z6WV5Pft-Nf16XWpe81RWHKTsUWhjoFaqRQmDog1wzbN52gthYACjKBhmWhh4S2EwAnULvQJm-An5svt7H_yvDcbUrW3U2Rs49JvYMSVE3bS8lhn9_AZd-U1w2V2mFGvaWtY8U5-eqU2_RtPdB7uG8Kd7STADkx2gg48x4PCKVLTbVtRtK-peK8oC8UagbXrKK6dlx_dkj_IVlyw
CitedBy_id crossref_primary_10_1002_aenm_202403186
crossref_primary_10_1002_adfm_202420593
crossref_primary_10_1021_acsami_5c01338
crossref_primary_10_1002_adfm_202501020
crossref_primary_10_1021_acs_jpclett_4c03203
crossref_primary_10_1002_ifm2_8
crossref_primary_10_1002_smll_202402028
crossref_primary_10_1002_anie_202409330
crossref_primary_10_1021_jacs_3c10060
crossref_primary_10_1039_D4CC04000G
crossref_primary_10_1039_D4TC04420G
crossref_primary_10_1002_advs_202410015
crossref_primary_10_1002_anie_202402775
crossref_primary_10_1088_1361_648X_ad5ad0
crossref_primary_10_1002_adfm_202403680
crossref_primary_10_1002_adfm_202404792
crossref_primary_10_1002_aenm_202304234
crossref_primary_10_3390_nano14050437
crossref_primary_10_1002_sus2_233
crossref_primary_10_1021_jacs_3c10515
crossref_primary_10_1038_s41467_024_54160_x
crossref_primary_10_1039_D4MH01603C
crossref_primary_10_1002_ange_202409330
crossref_primary_10_1002_ange_202402775
crossref_primary_10_1021_jacs_4c08924
crossref_primary_10_1002_smll_202408302
crossref_primary_10_1039_D4NR00707G
crossref_primary_10_1038_s41467_024_53713_4
crossref_primary_10_1021_acsenergylett_4c03228
crossref_primary_10_1039_D4TA03291H
crossref_primary_10_1021_acsami_5c01653
Cites_doi 10.1002/adma.201401991
10.1039/D3EE00202K
10.1039/C9TA08679J
10.1016/j.matt.2020.11.012
10.1016/j.matt.2021.12.013
10.1038/ncomms15218
10.1038/nenergy.2017.18
10.1002/adma.202102300
10.1021/acsenergylett.0c00526
10.1038/s41560-019-0466-3
10.1021/acsenergylett.8b00645
10.1002/anie.202017148
10.1039/D2EE02510H
10.1002/cssc.201902000
10.1002/aenm.202202209
10.1021/acsenergylett.0c00402
10.1039/D1EE01562A
10.1038/s41560-023-01274-z
10.1016/j.jechem.2020.08.053
10.1039/D2CS00217E
10.1038/s41467-020-16726-3
10.1002/anie.201902418
10.1021/accountsmr.0c00111
10.1038/s41560-020-00705-5
10.1039/C8CS00262B
10.1039/C5TA00190K
10.1039/C6EE00409A
10.1002/anie.201503153
10.1002/solr.202200672
10.1038/s41467-019-10468-7
10.1126/sciadv.1701293
10.1016/j.joule.2018.09.012
10.1021/acsenergylett.7b00636
10.1038/s41586-023-05992-y
10.1021/acs.jpclett.1c03107
10.1021/acsenergylett.2c01749
10.1016/j.nanoen.2022.107818
10.1002/aenm.202101045
10.1039/D0EE04007J
10.1002/asia.202000160
10.1039/C8TA07699E
10.1002/adma.201803230
10.1002/adma.201804506
10.1002/aenm.201702019
10.1021/acsenergylett.0c02656
10.1039/C8TA11705E
10.1039/D3EE00601H
10.1002/adma.202008405
10.1002/solr.202200997
10.1002/adma.202107211
10.1021/acsenergylett.8b02216
10.1021/acsenergylett.2c00776
10.1021/acsmaterialslett.0c00571
10.1023/A:1005298426614
10.1038/s41560-022-01076-9
10.1038/s41560-018-0278-x
10.1021/acs.chemmater.0c02806
10.1038/s41467-019-13910-y
10.1002/adfm.202107710
10.1038/s41467-021-22864-z
10.1039/C7TA02662E
10.1021/ic401215x
10.1002/eem2.12075
10.1021/acsenergylett.0c01796
10.1126/science.aba0893
10.1002/eem2.12465
10.1021/acs.jpclett.0c03851
10.1039/D2CS00278G
10.1002/adfm.201808801
10.1002/adma.202206684
10.1021/acsenergylett.0c01174
10.1002/solr.201800136
10.1021/jacs.7b01815
10.1021/jacs.9b03662
10.1016/j.mser.2022.100710
10.1002/adma.201602992
10.1021/acs.jpclett.0c00725
10.1038/s41467-018-07382-9
10.1038/s41560-018-0192-2
10.1016/j.joule.2022.02.014
10.1016/j.orgel.2021.106198
10.1021/acsenergylett.0c01887
10.1021/jacs.2c00319
10.1021/jacs.6b09257
10.1021/acsenergylett.2c01659
10.1002/adfm.202001904
10.1016/j.electacta.2022.140172
10.1021/jacs.1c03032
10.1016/j.nanoen.2021.106495
10.1002/advs.201903540
10.1039/D2EE02796H
10.1021/acsami.3c00299
10.1002/chem.202103919
10.1021/acsami.1c23062
10.1002/anie.202213966
10.1021/jacs.5b06658
10.1039/C8TA11985F
10.1002/anie.201811539
10.1039/D0CC01106A
10.1021/acsenergylett.0c02305
ContentType Journal Article
Copyright 2023 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202308093
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
ExternalDocumentID 37525424
10_1002_anie_202308093
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CITATION
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AEUQT
AFPWT
NPM
RWI
VQA
WRC
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c363t-13a55be4cdda6889e5af807a3c30020b44dafad80ad2d9af390afd4ec9ab8a2d3
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 09:39:44 EDT 2025
Fri Jul 25 10:26:37 EDT 2025
Wed Feb 19 02:24:13 EST 2025
Tue Jul 01 01:47:17 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords oxidation
antioxidation
superoxide
oxygen
tin-based perovskite solar cells
Language English
License 2023 Wiley-VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c363t-13a55be4cdda6889e5af807a3c30020b44dafad80ad2d9af390afd4ec9ab8a2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7914-6288
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202308093
PMID 37525424
PQID 2882796563
PQPubID 946352
ParticipantIDs proquest_miscellaneous_2844679365
proquest_journals_2882796563
pubmed_primary_37525424
crossref_primary_10_1002_anie_202308093
crossref_citationtrail_10_1002_anie_202308093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-06
PublicationDateYYYYMMDD 2023-11-06
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-06
  day: 06
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – ident: e_1_2_10_25_1
  doi: 10.1002/adma.201401991
– ident: e_1_2_10_99_1
  doi: 10.1039/D3EE00202K
– ident: e_1_2_10_33_1
  doi: 10.1039/C9TA08679J
– ident: e_1_2_10_72_1
  doi: 10.1016/j.matt.2020.11.012
– ident: e_1_2_10_71_1
  doi: 10.1016/j.matt.2021.12.013
– ident: e_1_2_10_91_1
  doi: 10.1038/ncomms15218
– ident: e_1_2_10_65_1
  doi: 10.1038/nenergy.2017.18
– ident: e_1_2_10_48_1
  doi: 10.1002/adma.202102300
– ident: e_1_2_10_21_1
  doi: 10.1021/acsenergylett.0c00526
– ident: e_1_2_10_57_1
  doi: 10.1038/s41560-019-0466-3
– ident: e_1_2_10_58_1
  doi: 10.1021/acsenergylett.8b00645
– ident: e_1_2_10_98_1
  doi: 10.1002/anie.202017148
– ident: e_1_2_10_1_1
  doi: 10.1039/D2EE02510H
– ident: e_1_2_10_88_1
  doi: 10.1002/cssc.201902000
– ident: e_1_2_10_13_1
  doi: 10.1002/aenm.202202209
– ident: e_1_2_10_27_1
  doi: 10.1021/acsenergylett.0c00402
– ident: e_1_2_10_16_1
  doi: 10.1039/D1EE01562A
– ident: e_1_2_10_5_1
  doi: 10.1038/s41560-023-01274-z
– ident: e_1_2_10_12_1
  doi: 10.1016/j.jechem.2020.08.053
– ident: e_1_2_10_28_1
  doi: 10.1039/D2CS00217E
– ident: e_1_2_10_37_1
  doi: 10.1038/s41467-020-16726-3
– ident: e_1_2_10_60_1
  doi: 10.1002/anie.201902418
– ident: e_1_2_10_11_1
  doi: 10.1021/accountsmr.0c00111
– ident: e_1_2_10_62_1
  doi: 10.1038/s41560-020-00705-5
– ident: e_1_2_10_6_1
  doi: 10.1039/C8CS00262B
– ident: e_1_2_10_63_1
  doi: 10.1039/C5TA00190K
– ident: e_1_2_10_96_1
  doi: 10.1039/C6EE00409A
– ident: e_1_2_10_97_1
  doi: 10.1002/anie.201503153
– ident: e_1_2_10_41_1
  doi: 10.1002/solr.202200672
– ident: e_1_2_10_43_1
  doi: 10.1038/s41467-019-10468-7
– ident: e_1_2_10_85_1
  doi: 10.1126/sciadv.1701293
– ident: e_1_2_10_90_1
  doi: 10.1016/j.joule.2018.09.012
– ident: e_1_2_10_79_1
  doi: 10.1021/acsenergylett.7b00636
– ident: e_1_2_10_4_1
  doi: 10.1038/s41586-023-05992-y
– ident: e_1_2_10_59_1
  doi: 10.1021/acs.jpclett.1c03107
– ident: e_1_2_10_75_1
  doi: 10.1021/acsenergylett.2c01749
– ident: e_1_2_10_45_1
  doi: 10.1016/j.nanoen.2022.107818
– ident: e_1_2_10_66_1
  doi: 10.1002/aenm.202101045
– ident: e_1_2_10_80_1
  doi: 10.1039/D0EE04007J
– ident: e_1_2_10_55_1
  doi: 10.1002/asia.202000160
– ident: e_1_2_10_61_1
  doi: 10.1039/C8TA07699E
– ident: e_1_2_10_24_1
  doi: 10.1002/adma.201803230
– ident: e_1_2_10_47_1
  doi: 10.1002/adma.201804506
– ident: e_1_2_10_32_1
  doi: 10.1002/aenm.201702019
– ident: e_1_2_10_74_1
  doi: 10.1021/acsenergylett.0c02656
– ident: e_1_2_10_83_1
  doi: 10.1039/C8TA11705E
– ident: e_1_2_10_100_1
  doi: 10.1039/D3EE00601H
– ident: e_1_2_10_95_1
  doi: 10.1002/adma.202008405
– ident: e_1_2_10_30_1
  doi: 10.1002/solr.202200997
– ident: e_1_2_10_87_1
  doi: 10.1002/adma.202107211
– ident: e_1_2_10_35_1
  doi: 10.1021/acsenergylett.8b02216
– ident: e_1_2_10_42_1
  doi: 10.1021/acsenergylett.2c00776
– ident: e_1_2_10_31_1
  doi: 10.1021/acsmaterialslett.0c00571
– ident: e_1_2_10_73_1
  doi: 10.1023/A:1005298426614
– ident: e_1_2_10_2_1
  doi: 10.1038/s41560-022-01076-9
– ident: e_1_2_10_3_1
  doi: 10.1038/s41560-018-0278-x
– ident: e_1_2_10_82_1
  doi: 10.1021/acs.chemmater.0c02806
– ident: e_1_2_10_10_1
  doi: 10.1038/s41467-019-13910-y
– ident: e_1_2_10_22_1
  doi: 10.1002/adfm.202107710
– ident: e_1_2_10_81_1
  doi: 10.1038/s41467-021-22864-z
– ident: e_1_2_10_49_1
  doi: 10.1039/C7TA02662E
– ident: e_1_2_10_54_1
  doi: 10.1021/ic401215x
– ident: e_1_2_10_78_1
  doi: 10.1002/eem2.12075
– ident: e_1_2_10_20_1
  doi: 10.1021/acsenergylett.0c01796
– ident: e_1_2_10_51_1
  doi: 10.1126/science.aba0893
– ident: e_1_2_10_64_1
  doi: 10.1002/eem2.12465
– ident: e_1_2_10_94_1
  doi: 10.1021/acs.jpclett.0c03851
– ident: e_1_2_10_7_1
  doi: 10.1039/D2CS00278G
– ident: e_1_2_10_15_1
  doi: 10.1002/adfm.201808801
– ident: e_1_2_10_67_1
  doi: 10.1002/adma.202206684
– ident: e_1_2_10_44_1
  doi: 10.1021/acsenergylett.0c01174
– ident: e_1_2_10_56_1
  doi: 10.1002/solr.201800136
– ident: e_1_2_10_89_1
  doi: 10.1021/jacs.7b01815
– ident: e_1_2_10_84_1
  doi: 10.1021/jacs.9b03662
– ident: e_1_2_10_9_1
  doi: 10.1016/j.mser.2022.100710
– ident: e_1_2_10_68_1
  doi: 10.1002/adma.201602992
– ident: e_1_2_10_46_1
  doi: 10.1021/acs.jpclett.0c00725
– ident: e_1_2_10_86_1
  doi: 10.1038/s41467-018-07382-9
– ident: e_1_2_10_92_1
  doi: 10.1038/s41560-018-0192-2
– ident: e_1_2_10_70_1
  doi: 10.1016/j.joule.2022.02.014
– ident: e_1_2_10_40_1
  doi: 10.1016/j.orgel.2021.106198
– ident: e_1_2_10_38_1
  doi: 10.1021/acsenergylett.0c01887
– ident: e_1_2_10_76_1
  doi: 10.1021/jacs.2c00319
– ident: e_1_2_10_53_1
  doi: 10.1021/jacs.6b09257
– ident: e_1_2_10_19_1
  doi: 10.1021/acsenergylett.2c01659
– ident: e_1_2_10_14_1
  doi: 10.1002/adfm.202001904
– ident: e_1_2_10_52_1
  doi: 10.1016/j.electacta.2022.140172
– ident: e_1_2_10_17_1
  doi: 10.1021/jacs.1c03032
– ident: e_1_2_10_50_1
  doi: 10.1016/j.nanoen.2021.106495
– ident: e_1_2_10_77_1
  doi: 10.1002/advs.201903540
– ident: e_1_2_10_29_1
  doi: 10.1039/D2EE02796H
– ident: e_1_2_10_23_1
  doi: 10.1021/acsami.3c00299
– ident: e_1_2_10_26_1
  doi: 10.1002/chem.202103919
– ident: e_1_2_10_8_1
  doi: 10.1021/acsami.1c23062
– ident: e_1_2_10_18_1
  doi: 10.1002/anie.202213966
– ident: e_1_2_10_69_1
  doi: 10.1021/jacs.5b06658
– ident: e_1_2_10_93_1
  doi: 10.1039/C8TA11985F
– ident: e_1_2_10_34_1
  doi: 10.1002/anie.201811539
– ident: e_1_2_10_36_1
  doi: 10.1039/D0CC01106A
– ident: e_1_2_10_39_1
  doi: 10.1021/acsenergylett.0c02305
SSID ssj0028806
Score 2.6129775
SecondaryResourceType review_article
Snippet Tin (Sn)‐based perovskites as the most promising absorber materials for lead‐free perovskite solar cells (PSCs) have achieved the record efficiency of over 14...
Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over...
Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over 14...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage e202308093
SubjectTerms Oxidation
Oxidation process
Perovskites
Photovoltaic cells
Raw materials
Solar cells
Title Mechanistic Understanding of Oxidation of Tin‐based Perovskite Solar Cells and Mitigation Strategies
URI https://www.ncbi.nlm.nih.gov/pubmed/37525424
https://www.proquest.com/docview/2882796563
https://www.proquest.com/docview/2844679365
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXxJ2OgYyExEOV0fiSy-NUdZrQuknQSoWXyI5tFqlK0ZYC4omfgPiJ_BKOY-dSYIjxEqWOm0Q-X87F9vkOQs9FlBMTGhaIUFIIUCQPRMJlvVyoZRJrXq_ozk6iowV7teTLweB7b9fSppL7-Zc_5pX8j1ShDeRqs2SvINn2ptAA5yBfOIKE4fhPMp5pm7dbUy2PFltZKuACnn4uVOsPziH-b7Y1WMOl7Nb39ccLO3c7emPD29FEr1aOsHlWOOINq0qqhkqi78UelO_1J2ETAUY14YD-ZWJxqor--n47Kf3urDgT6w5JvvktnBjhTajdzeMrhMEAbsquseldVI259bMVhNZpe9EVdGJPFzNKgzjxfLTa62cSgk501U8aBR6RHlAdOeVvhsERzdqs_X37WuAnu8KM2wzcJ6fZ4eL4OJtPl_Nr6Drg1YXpr1tKMgL6zmWs-ZdriEDH5OX23bcdnUuil9qLmd9Gt3z4gQ8clu6ggS7vohuTpurfPWR6mMJbmMJrg1tM2R-AqR9fv9Vowh2acI0mXKMJwz9xhybcoek-WhxO55OjwNfiCHIa0SoIqeBcapYrJaIkSTUXJhnHgubURhySMSWMUMlYKKJSYWg6FkYxnadCJoIo-gDtlOtSP0KYJ2BXiBkLlkoWp0qoPFSKWGpAsAHaDFHQDFyWe6J6Wy9llTmKbZLZgc7agR6iF23_D46i5dKee40cMv8ZX2QgURKnENbA5WftZRh1u3ImSr3e2D4MHIqURnyIHjr5tY-iMSecEbb795s_Rje772EP7VTnG_0E_NlKPq0B9hOLVKXU
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Understanding+of+Oxidation+of+Tin%E2%80%90based+Perovskite+Solar+Cells+and+Mitigation+Strategies&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Zhihao&rft.au=Huang%2C+Yuanfang&rft.au=Jin%2C+Jialun&rft.au=Jiang%2C+Yiting&rft.date=2023-11-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=45&rft_id=info:doi/10.1002%2Fanie.202308093&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon