Mechanistic Understanding of Oxidation of Tin‐based Perovskite Solar Cells and Mitigation Strategies
Tin (Sn)‐based perovskites as the most promising absorber materials for lead‐free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn‐based perovskites is a frequently concerned topic for Sn‐based PSCs, many studies have given vagu...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 45; p. e202308093 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
06.11.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tin (Sn)‐based perovskites as the most promising absorber materials for lead‐free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn‐based perovskites is a frequently concerned topic for Sn‐based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of an in‐depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn‐based perovskites and differentiate its detrimental effects at material‐ and device‐level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti‐oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn‐based PSCs “from the beginning to the end”. |
---|---|
AbstractList | Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over 14%. Although suppressing the oxidation of Sn-based perovskites is a frequently concerned topic for Sn-based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of the in-depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn-based perovskites and differentiate its detrimental effects at material- and device-level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti-oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn-based PSCs "from the beginning to the end". Tin (Sn)‐based perovskites as the most promising absorber materials for lead‐free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn‐based perovskites is a frequently concerned topic for Sn‐based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of an in‐depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn‐based perovskites and differentiate its detrimental effects at material‐ and device‐level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti‐oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn‐based PSCs “from the beginning to the end”. Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn-based perovskites is a frequently concerned topic for Sn-based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of an in-depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn-based perovskites and differentiate its detrimental effects at material- and device-level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti-oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn-based PSCs "from the beginning to the end".Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over 14 %. Although suppressing the oxidation of Sn-based perovskites is a frequently concerned topic for Sn-based PSCs, many studies have given vague explanations and the mechanisms are still under debate. This is in principal due to the lack of an in-depth understanding of various and complex intrinsic and extrinsic factors causing the oxidation process. In this context, we critically review the chemical mechanism of facile oxidation of Sn-based perovskites and differentiate its detrimental effects at material- and device-level. More importantly, we classify and introduce the intrinsic factors (raw materials and solvent of perovskite precursors) and extrinsic factors (exposure to neutral oxygen and superoxide) causing the oxidation with their corresponding anti-oxidation improvement methods. The presented comprehensive understanding and prospect of the oxidation provide insightful guidance for suppressing the oxidation in Sn-based PSCs "from the beginning to the end". |
Author | Zhao, Dewei Zhu, Jingwei Jiang, Yiting Huang, Yuanfang Xu, Yuliang Zhang, Zhihao Jin, Jialun |
Author_xml | – sequence: 1 givenname: Zhihao surname: Zhang fullname: Zhang, Zhihao organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China – sequence: 2 givenname: Yuanfang surname: Huang fullname: Huang, Yuanfang organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China – sequence: 3 givenname: Jialun surname: Jin fullname: Jin, Jialun organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China – sequence: 4 givenname: Yiting surname: Jiang fullname: Jiang, Yiting organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China – sequence: 5 givenname: Yuliang surname: Xu fullname: Xu, Yuliang organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China – sequence: 6 givenname: Jingwei surname: Zhu fullname: Zhu, Jingwei organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China – sequence: 7 givenname: Dewei orcidid: 0000-0001-7914-6288 surname: Zhao fullname: Zhao, Dewei organization: College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices Ministry of Education Sichuan University Chengdu 610065 China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37525424$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1OGzEUhS0EKn_dsqxG6qabCR7_zHiWVVQKEihIJOvRHftO6nRiU9up6K6P0Gfsk-AQYIHE6t4rfefq6Jxjsu-8Q0LOKjqpKGXn4CxOGGWcKtryPXJUSVaVvGn4ft4F52WjZHVIjmNcZV4pWn8gh7yRTAomjshwg_pHfhKT1cXCGQwxgTPWLQs_FLMHayBZ77bH3Lr_f__1ENEUtxj87_jTJizu_AihmOI4xiIrixub7HInuksBEi4txlNyMMAY8ePzPCGLi2_z6WV5Pft-Nf16XWpe81RWHKTsUWhjoFaqRQmDog1wzbN52gthYACjKBhmWhh4S2EwAnULvQJm-An5svt7H_yvDcbUrW3U2Rs49JvYMSVE3bS8lhn9_AZd-U1w2V2mFGvaWtY8U5-eqU2_RtPdB7uG8Kd7STADkx2gg48x4PCKVLTbVtRtK-peK8oC8UagbXrKK6dlx_dkj_IVlyw |
CitedBy_id | crossref_primary_10_1002_aenm_202403186 crossref_primary_10_1002_adfm_202420593 crossref_primary_10_1021_acsami_5c01338 crossref_primary_10_1002_adfm_202501020 crossref_primary_10_1021_acs_jpclett_4c03203 crossref_primary_10_1002_ifm2_8 crossref_primary_10_1002_smll_202402028 crossref_primary_10_1002_anie_202409330 crossref_primary_10_1021_jacs_3c10060 crossref_primary_10_1039_D4CC04000G crossref_primary_10_1039_D4TC04420G crossref_primary_10_1002_advs_202410015 crossref_primary_10_1002_anie_202402775 crossref_primary_10_1088_1361_648X_ad5ad0 crossref_primary_10_1002_adfm_202403680 crossref_primary_10_1002_adfm_202404792 crossref_primary_10_1002_aenm_202304234 crossref_primary_10_3390_nano14050437 crossref_primary_10_1002_sus2_233 crossref_primary_10_1021_jacs_3c10515 crossref_primary_10_1038_s41467_024_54160_x crossref_primary_10_1039_D4MH01603C crossref_primary_10_1002_ange_202409330 crossref_primary_10_1002_ange_202402775 crossref_primary_10_1021_jacs_4c08924 crossref_primary_10_1002_smll_202408302 crossref_primary_10_1039_D4NR00707G crossref_primary_10_1038_s41467_024_53713_4 crossref_primary_10_1021_acsenergylett_4c03228 crossref_primary_10_1039_D4TA03291H crossref_primary_10_1021_acsami_5c01653 |
Cites_doi | 10.1002/adma.201401991 10.1039/D3EE00202K 10.1039/C9TA08679J 10.1016/j.matt.2020.11.012 10.1016/j.matt.2021.12.013 10.1038/ncomms15218 10.1038/nenergy.2017.18 10.1002/adma.202102300 10.1021/acsenergylett.0c00526 10.1038/s41560-019-0466-3 10.1021/acsenergylett.8b00645 10.1002/anie.202017148 10.1039/D2EE02510H 10.1002/cssc.201902000 10.1002/aenm.202202209 10.1021/acsenergylett.0c00402 10.1039/D1EE01562A 10.1038/s41560-023-01274-z 10.1016/j.jechem.2020.08.053 10.1039/D2CS00217E 10.1038/s41467-020-16726-3 10.1002/anie.201902418 10.1021/accountsmr.0c00111 10.1038/s41560-020-00705-5 10.1039/C8CS00262B 10.1039/C5TA00190K 10.1039/C6EE00409A 10.1002/anie.201503153 10.1002/solr.202200672 10.1038/s41467-019-10468-7 10.1126/sciadv.1701293 10.1016/j.joule.2018.09.012 10.1021/acsenergylett.7b00636 10.1038/s41586-023-05992-y 10.1021/acs.jpclett.1c03107 10.1021/acsenergylett.2c01749 10.1016/j.nanoen.2022.107818 10.1002/aenm.202101045 10.1039/D0EE04007J 10.1002/asia.202000160 10.1039/C8TA07699E 10.1002/adma.201803230 10.1002/adma.201804506 10.1002/aenm.201702019 10.1021/acsenergylett.0c02656 10.1039/C8TA11705E 10.1039/D3EE00601H 10.1002/adma.202008405 10.1002/solr.202200997 10.1002/adma.202107211 10.1021/acsenergylett.8b02216 10.1021/acsenergylett.2c00776 10.1021/acsmaterialslett.0c00571 10.1023/A:1005298426614 10.1038/s41560-022-01076-9 10.1038/s41560-018-0278-x 10.1021/acs.chemmater.0c02806 10.1038/s41467-019-13910-y 10.1002/adfm.202107710 10.1038/s41467-021-22864-z 10.1039/C7TA02662E 10.1021/ic401215x 10.1002/eem2.12075 10.1021/acsenergylett.0c01796 10.1126/science.aba0893 10.1002/eem2.12465 10.1021/acs.jpclett.0c03851 10.1039/D2CS00278G 10.1002/adfm.201808801 10.1002/adma.202206684 10.1021/acsenergylett.0c01174 10.1002/solr.201800136 10.1021/jacs.7b01815 10.1021/jacs.9b03662 10.1016/j.mser.2022.100710 10.1002/adma.201602992 10.1021/acs.jpclett.0c00725 10.1038/s41467-018-07382-9 10.1038/s41560-018-0192-2 10.1016/j.joule.2022.02.014 10.1016/j.orgel.2021.106198 10.1021/acsenergylett.0c01887 10.1021/jacs.2c00319 10.1021/jacs.6b09257 10.1021/acsenergylett.2c01659 10.1002/adfm.202001904 10.1016/j.electacta.2022.140172 10.1021/jacs.1c03032 10.1016/j.nanoen.2021.106495 10.1002/advs.201903540 10.1039/D2EE02796H 10.1021/acsami.3c00299 10.1002/chem.202103919 10.1021/acsami.1c23062 10.1002/anie.202213966 10.1021/jacs.5b06658 10.1039/C8TA11985F 10.1002/anie.201811539 10.1039/D0CC01106A 10.1021/acsenergylett.0c02305 |
ContentType | Journal Article |
Copyright | 2023 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202308093 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
ExternalDocumentID | 37525424 10_1002_anie_202308093 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CITATION CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AEUQT AFPWT NPM RWI VQA WRC YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c363t-13a55be4cdda6889e5af807a3c30020b44dafad80ad2d9af390afd4ec9ab8a2d3 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 09:39:44 EDT 2025 Fri Jul 25 10:26:37 EDT 2025 Wed Feb 19 02:24:13 EST 2025 Tue Jul 01 01:47:17 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | oxidation antioxidation superoxide oxygen tin-based perovskite solar cells |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c363t-13a55be4cdda6889e5af807a3c30020b44dafad80ad2d9af390afd4ec9ab8a2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7914-6288 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202308093 |
PMID | 37525424 |
PQID | 2882796563 |
PQPubID | 946352 |
ParticipantIDs | proquest_miscellaneous_2844679365 proquest_journals_2882796563 pubmed_primary_37525424 crossref_primary_10_1002_anie_202308093 crossref_citationtrail_10_1002_anie_202308093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-06 |
PublicationDateYYYYMMDD | 2023-11-06 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – ident: e_1_2_10_25_1 doi: 10.1002/adma.201401991 – ident: e_1_2_10_99_1 doi: 10.1039/D3EE00202K – ident: e_1_2_10_33_1 doi: 10.1039/C9TA08679J – ident: e_1_2_10_72_1 doi: 10.1016/j.matt.2020.11.012 – ident: e_1_2_10_71_1 doi: 10.1016/j.matt.2021.12.013 – ident: e_1_2_10_91_1 doi: 10.1038/ncomms15218 – ident: e_1_2_10_65_1 doi: 10.1038/nenergy.2017.18 – ident: e_1_2_10_48_1 doi: 10.1002/adma.202102300 – ident: e_1_2_10_21_1 doi: 10.1021/acsenergylett.0c00526 – ident: e_1_2_10_57_1 doi: 10.1038/s41560-019-0466-3 – ident: e_1_2_10_58_1 doi: 10.1021/acsenergylett.8b00645 – ident: e_1_2_10_98_1 doi: 10.1002/anie.202017148 – ident: e_1_2_10_1_1 doi: 10.1039/D2EE02510H – ident: e_1_2_10_88_1 doi: 10.1002/cssc.201902000 – ident: e_1_2_10_13_1 doi: 10.1002/aenm.202202209 – ident: e_1_2_10_27_1 doi: 10.1021/acsenergylett.0c00402 – ident: e_1_2_10_16_1 doi: 10.1039/D1EE01562A – ident: e_1_2_10_5_1 doi: 10.1038/s41560-023-01274-z – ident: e_1_2_10_12_1 doi: 10.1016/j.jechem.2020.08.053 – ident: e_1_2_10_28_1 doi: 10.1039/D2CS00217E – ident: e_1_2_10_37_1 doi: 10.1038/s41467-020-16726-3 – ident: e_1_2_10_60_1 doi: 10.1002/anie.201902418 – ident: e_1_2_10_11_1 doi: 10.1021/accountsmr.0c00111 – ident: e_1_2_10_62_1 doi: 10.1038/s41560-020-00705-5 – ident: e_1_2_10_6_1 doi: 10.1039/C8CS00262B – ident: e_1_2_10_63_1 doi: 10.1039/C5TA00190K – ident: e_1_2_10_96_1 doi: 10.1039/C6EE00409A – ident: e_1_2_10_97_1 doi: 10.1002/anie.201503153 – ident: e_1_2_10_41_1 doi: 10.1002/solr.202200672 – ident: e_1_2_10_43_1 doi: 10.1038/s41467-019-10468-7 – ident: e_1_2_10_85_1 doi: 10.1126/sciadv.1701293 – ident: e_1_2_10_90_1 doi: 10.1016/j.joule.2018.09.012 – ident: e_1_2_10_79_1 doi: 10.1021/acsenergylett.7b00636 – ident: e_1_2_10_4_1 doi: 10.1038/s41586-023-05992-y – ident: e_1_2_10_59_1 doi: 10.1021/acs.jpclett.1c03107 – ident: e_1_2_10_75_1 doi: 10.1021/acsenergylett.2c01749 – ident: e_1_2_10_45_1 doi: 10.1016/j.nanoen.2022.107818 – ident: e_1_2_10_66_1 doi: 10.1002/aenm.202101045 – ident: e_1_2_10_80_1 doi: 10.1039/D0EE04007J – ident: e_1_2_10_55_1 doi: 10.1002/asia.202000160 – ident: e_1_2_10_61_1 doi: 10.1039/C8TA07699E – ident: e_1_2_10_24_1 doi: 10.1002/adma.201803230 – ident: e_1_2_10_47_1 doi: 10.1002/adma.201804506 – ident: e_1_2_10_32_1 doi: 10.1002/aenm.201702019 – ident: e_1_2_10_74_1 doi: 10.1021/acsenergylett.0c02656 – ident: e_1_2_10_83_1 doi: 10.1039/C8TA11705E – ident: e_1_2_10_100_1 doi: 10.1039/D3EE00601H – ident: e_1_2_10_95_1 doi: 10.1002/adma.202008405 – ident: e_1_2_10_30_1 doi: 10.1002/solr.202200997 – ident: e_1_2_10_87_1 doi: 10.1002/adma.202107211 – ident: e_1_2_10_35_1 doi: 10.1021/acsenergylett.8b02216 – ident: e_1_2_10_42_1 doi: 10.1021/acsenergylett.2c00776 – ident: e_1_2_10_31_1 doi: 10.1021/acsmaterialslett.0c00571 – ident: e_1_2_10_73_1 doi: 10.1023/A:1005298426614 – ident: e_1_2_10_2_1 doi: 10.1038/s41560-022-01076-9 – ident: e_1_2_10_3_1 doi: 10.1038/s41560-018-0278-x – ident: e_1_2_10_82_1 doi: 10.1021/acs.chemmater.0c02806 – ident: e_1_2_10_10_1 doi: 10.1038/s41467-019-13910-y – ident: e_1_2_10_22_1 doi: 10.1002/adfm.202107710 – ident: e_1_2_10_81_1 doi: 10.1038/s41467-021-22864-z – ident: e_1_2_10_49_1 doi: 10.1039/C7TA02662E – ident: e_1_2_10_54_1 doi: 10.1021/ic401215x – ident: e_1_2_10_78_1 doi: 10.1002/eem2.12075 – ident: e_1_2_10_20_1 doi: 10.1021/acsenergylett.0c01796 – ident: e_1_2_10_51_1 doi: 10.1126/science.aba0893 – ident: e_1_2_10_64_1 doi: 10.1002/eem2.12465 – ident: e_1_2_10_94_1 doi: 10.1021/acs.jpclett.0c03851 – ident: e_1_2_10_7_1 doi: 10.1039/D2CS00278G – ident: e_1_2_10_15_1 doi: 10.1002/adfm.201808801 – ident: e_1_2_10_67_1 doi: 10.1002/adma.202206684 – ident: e_1_2_10_44_1 doi: 10.1021/acsenergylett.0c01174 – ident: e_1_2_10_56_1 doi: 10.1002/solr.201800136 – ident: e_1_2_10_89_1 doi: 10.1021/jacs.7b01815 – ident: e_1_2_10_84_1 doi: 10.1021/jacs.9b03662 – ident: e_1_2_10_9_1 doi: 10.1016/j.mser.2022.100710 – ident: e_1_2_10_68_1 doi: 10.1002/adma.201602992 – ident: e_1_2_10_46_1 doi: 10.1021/acs.jpclett.0c00725 – ident: e_1_2_10_86_1 doi: 10.1038/s41467-018-07382-9 – ident: e_1_2_10_92_1 doi: 10.1038/s41560-018-0192-2 – ident: e_1_2_10_70_1 doi: 10.1016/j.joule.2022.02.014 – ident: e_1_2_10_40_1 doi: 10.1016/j.orgel.2021.106198 – ident: e_1_2_10_38_1 doi: 10.1021/acsenergylett.0c01887 – ident: e_1_2_10_76_1 doi: 10.1021/jacs.2c00319 – ident: e_1_2_10_53_1 doi: 10.1021/jacs.6b09257 – ident: e_1_2_10_19_1 doi: 10.1021/acsenergylett.2c01659 – ident: e_1_2_10_14_1 doi: 10.1002/adfm.202001904 – ident: e_1_2_10_52_1 doi: 10.1016/j.electacta.2022.140172 – ident: e_1_2_10_17_1 doi: 10.1021/jacs.1c03032 – ident: e_1_2_10_50_1 doi: 10.1016/j.nanoen.2021.106495 – ident: e_1_2_10_77_1 doi: 10.1002/advs.201903540 – ident: e_1_2_10_29_1 doi: 10.1039/D2EE02796H – ident: e_1_2_10_23_1 doi: 10.1021/acsami.3c00299 – ident: e_1_2_10_26_1 doi: 10.1002/chem.202103919 – ident: e_1_2_10_8_1 doi: 10.1021/acsami.1c23062 – ident: e_1_2_10_18_1 doi: 10.1002/anie.202213966 – ident: e_1_2_10_69_1 doi: 10.1021/jacs.5b06658 – ident: e_1_2_10_93_1 doi: 10.1039/C8TA11985F – ident: e_1_2_10_34_1 doi: 10.1002/anie.201811539 – ident: e_1_2_10_36_1 doi: 10.1039/D0CC01106A – ident: e_1_2_10_39_1 doi: 10.1021/acsenergylett.0c02305 |
SSID | ssj0028806 |
Score | 2.6129775 |
SecondaryResourceType | review_article |
Snippet | Tin (Sn)‐based perovskites as the most promising absorber materials for lead‐free perovskite solar cells (PSCs) have achieved the record efficiency of over 14... Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over... Tin (Sn)-based perovskites as the most promising absorber materials for lead-free perovskite solar cells (PSCs) have achieved the record efficiency of over 14... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | e202308093 |
SubjectTerms | Oxidation Oxidation process Perovskites Photovoltaic cells Raw materials Solar cells |
Title | Mechanistic Understanding of Oxidation of Tin‐based Perovskite Solar Cells and Mitigation Strategies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37525424 https://www.proquest.com/docview/2882796563 https://www.proquest.com/docview/2844679365 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXxJ2OgYyExEOV0fiSy-NUdZrQuknQSoWXyI5tFqlK0ZYC4omfgPiJ_BKOY-dSYIjxEqWOm0Q-X87F9vkOQs9FlBMTGhaIUFIIUCQPRMJlvVyoZRJrXq_ozk6iowV7teTLweB7b9fSppL7-Zc_5pX8j1ShDeRqs2SvINn2ptAA5yBfOIKE4fhPMp5pm7dbUy2PFltZKuACnn4uVOsPziH-b7Y1WMOl7Nb39ccLO3c7emPD29FEr1aOsHlWOOINq0qqhkqi78UelO_1J2ETAUY14YD-ZWJxqor--n47Kf3urDgT6w5JvvktnBjhTajdzeMrhMEAbsquseldVI259bMVhNZpe9EVdGJPFzNKgzjxfLTa62cSgk501U8aBR6RHlAdOeVvhsERzdqs_X37WuAnu8KM2wzcJ6fZ4eL4OJtPl_Nr6Drg1YXpr1tKMgL6zmWs-ZdriEDH5OX23bcdnUuil9qLmd9Gt3z4gQ8clu6ggS7vohuTpurfPWR6mMJbmMJrg1tM2R-AqR9fv9Vowh2acI0mXKMJwz9xhybcoek-WhxO55OjwNfiCHIa0SoIqeBcapYrJaIkSTUXJhnHgubURhySMSWMUMlYKKJSYWg6FkYxnadCJoIo-gDtlOtSP0KYJ2BXiBkLlkoWp0qoPFSKWGpAsAHaDFHQDFyWe6J6Wy9llTmKbZLZgc7agR6iF23_D46i5dKee40cMv8ZX2QgURKnENbA5WftZRh1u3ImSr3e2D4MHIqURnyIHjr5tY-iMSecEbb795s_Rje772EP7VTnG_0E_NlKPq0B9hOLVKXU |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Understanding+of+Oxidation+of+Tin%E2%80%90based+Perovskite+Solar+Cells+and+Mitigation+Strategies&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Zhihao&rft.au=Huang%2C+Yuanfang&rft.au=Jin%2C+Jialun&rft.au=Jiang%2C+Yiting&rft.date=2023-11-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=45&rft_id=info:doi/10.1002%2Fanie.202308093&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |