Charge order and superconductivity in kagome materials

Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of materials with a kagome lattice structure. In particular, the compounds KV 3 Sb 5 , CsV 3 Sb 5 and RbV 3 Sb 5 all feature a kagome net of van...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 18; no. 2; pp. 137 - 143
Main Authors Neupert, Titus, Denner, M. Michael, Yin, Jia-Xin, Thomale, Ronny, Hasan, M. Zahid
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of materials with a kagome lattice structure. In particular, the compounds KV 3 Sb 5 , CsV 3 Sb 5 and RbV 3 Sb 5 all feature a kagome net of vanadium atoms. These materials have recently been shown to exhibit superconductivity at low temperature and an unusual charge order at high temperature, revealing a connection to the underlying topological nature of the band structure. We highlight these discoveries, place them in the context of wider research efforts in topological physics and superconductivity, and discuss the open problems for this field. Superconductivity and ordered states formed by interactions—both of which could be unconventional—have recently been observed in a family of kagome materials.
AbstractList Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of materials with a kagome lattice structure. In particular, the compounds KV 3 Sb 5 , CsV 3 Sb 5 and RbV 3 Sb 5 all feature a kagome net of vanadium atoms. These materials have recently been shown to exhibit superconductivity at low temperature and an unusual charge order at high temperature, revealing a connection to the underlying topological nature of the band structure. We highlight these discoveries, place them in the context of wider research efforts in topological physics and superconductivity, and discuss the open problems for this field. Superconductivity and ordered states formed by interactions—both of which could be unconventional—have recently been observed in a family of kagome materials.
Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of materials with a kagome lattice structure. In particular, the compounds KV3Sb5, CsV3Sb5 and RbV3Sb5 all feature a kagome net of vanadium atoms. These materials have recently been shown to exhibit superconductivity at low temperature and an unusual charge order at high temperature, revealing a connection to the underlying topological nature of the band structure. We highlight these discoveries, place them in the context of wider research efforts in topological physics and superconductivity, and discuss the open problems for this field.Superconductivity and ordered states formed by interactions—both of which could be unconventional—have recently been observed in a family of kagome materials.
Author Denner, M. Michael
Neupert, Titus
Hasan, M. Zahid
Thomale, Ronny
Yin, Jia-Xin
Author_xml – sequence: 1
  givenname: Titus
  orcidid: 0000-0003-0604-041X
  surname: Neupert
  fullname: Neupert, Titus
  email: titus.neupert@uzh.ch
  organization: Department of Physics, University of Zurich
– sequence: 2
  givenname: M. Michael
  orcidid: 0000-0002-1762-9687
  surname: Denner
  fullname: Denner, M. Michael
  email: michael.denner@physik.uzh.ch
  organization: Department of Physics, University of Zurich
– sequence: 3
  givenname: Jia-Xin
  orcidid: 0000-0003-2661-4206
  surname: Yin
  fullname: Yin, Jia-Xin
  email: jiaxiny@princeton.edu
  organization: Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University
– sequence: 4
  givenname: Ronny
  orcidid: 0000-0002-3979-8836
  surname: Thomale
  fullname: Thomale, Ronny
  email: rthomale@physik.uni-wuerzburg.de
  organization: Institute for Theoretical Physics, University of Würzburg, Department of Physics and Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) Group, Indian Institute of Technology Madras
– sequence: 5
  givenname: M. Zahid
  orcidid: 0000-0001-9730-3128
  surname: Hasan
  fullname: Hasan, M. Zahid
  email: mzhasan@princeton.edu
  organization: Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Lawrence Berkeley National Laboratory, Princeton Institute for the Science and Technology of Materials, Princeton University, Quantum Science Center
BookMark eNp9kLFOwzAQhi1UJNrCCzBFYg74bCdxRlQBRarEArPlxpfi0trFdpDy9gSCQGLo9N9w3_2nb0Ymzjsk5BLoNVAub6KAoqxyyiCnIKjI-xMyhUoUORMSJr9zxc_ILMYtpYKVwKekXLzqsMHMB4Mh085ksTtgaLwzXZPsh019Zl32pjd-j9leJwxW7-I5OW2HwIufnJOX-7vnxTJfPT08Lm5XecNLnnJgoBFqXawLaI0xhQQj9VqItiyxhpZqQGBNZSRSiVihqOvKrFsQBjUvKJ-Tq_HuIfj3DmNSW98FN1QqVjIpgEophy02bjXBxxiwVYdg9zr0Cqj68qNGP2rwo779qH6A5D-osUkn610K2u6Oo3xE49DjNhj-vjpCfQKVsX0H
CitedBy_id crossref_primary_10_7566_JPSJ_93_111001
crossref_primary_10_3390_nano13030476
crossref_primary_10_1016_j_cap_2024_01_011
crossref_primary_10_1103_PhysRevB_105_245123
crossref_primary_10_1103_PhysRevResearch_5_023037
crossref_primary_10_1103_PhysRevB_109_134501
crossref_primary_10_1002_advs_202305059
crossref_primary_10_1103_PhysRevB_105_174518
crossref_primary_10_1103_PhysRevB_108_165413
crossref_primary_10_1021_jacs_4c07285
crossref_primary_10_1063_5_0232167
crossref_primary_10_1088_1674_1056_acd8b1
crossref_primary_10_1103_PhysRevB_108_115143
crossref_primary_10_1103_PhysRevB_110_054518
crossref_primary_10_1088_1361_6668_ad7641
crossref_primary_10_1103_PhysRevResearch_6_043291
crossref_primary_10_1063_5_0185873
crossref_primary_10_1103_PhysRevB_107_104413
crossref_primary_10_1016_j_cap_2024_08_009
crossref_primary_10_1103_PhysRevLett_132_146501
crossref_primary_10_1038_d41586_024_02559_3
crossref_primary_10_1103_PhysRevB_110_245138
crossref_primary_10_1088_1361_648X_ac9813
crossref_primary_10_1103_PhysRevB_106_235151
crossref_primary_10_1103_PhysRevB_111_054113
crossref_primary_10_1038_s41586_022_05516_0
crossref_primary_10_1088_1361_6528_ada569
crossref_primary_10_1021_acsnano_3c00229
crossref_primary_10_1103_PhysRevX_13_031030
crossref_primary_10_1038_s41535_023_00609_z
crossref_primary_10_1088_1361_6668_ad9adb
crossref_primary_10_1038_s41467_024_52688_6
crossref_primary_10_1038_s41467_023_40515_3
crossref_primary_10_1038_s41535_023_00574_7
crossref_primary_10_1103_PhysRevMaterials_8_126201
crossref_primary_10_1002_advs_202415012
crossref_primary_10_1038_s41467_022_35718_z
crossref_primary_10_1103_PhysRevB_110_245128
crossref_primary_10_1016_j_scib_2023_07_002
crossref_primary_10_1103_PhysRevLett_134_056001
crossref_primary_10_1103_PhysRevB_107_205131
crossref_primary_10_1103_PhysRevB_111_064504
crossref_primary_10_1103_PhysRevB_108_035138
crossref_primary_10_1557_s43578_024_01473_8
crossref_primary_10_1038_s41567_023_02053_z
crossref_primary_10_1103_PhysRevB_109_014517
crossref_primary_10_1007_s42247_024_00652_x
crossref_primary_10_1063_5_0145859
crossref_primary_10_1002_adma_202309803
crossref_primary_10_1103_PhysRevB_107_174510
crossref_primary_10_1016_j_ijhydene_2025_02_215
crossref_primary_10_1038_s41467_023_36341_2
crossref_primary_10_1088_1674_1056_ad925d
crossref_primary_10_1103_PhysRevB_111_064514
crossref_primary_10_1088_1361_648X_ad3096
crossref_primary_10_1103_PhysRevB_106_L241108
crossref_primary_10_1103_PhysRevB_109_054501
crossref_primary_10_1088_1361_6633_ad124f
crossref_primary_10_1103_PhysRevB_109_054506
crossref_primary_10_1038_s41467_024_46729_3
crossref_primary_10_1038_s41586_023_05907_x
crossref_primary_10_1038_s41467_024_47728_0
crossref_primary_10_1038_s41427_024_00567_3
crossref_primary_10_1038_s41467_024_47766_8
crossref_primary_10_1088_2053_1583_acfe88
crossref_primary_10_1038_s41467_024_52456_6
crossref_primary_10_1038_s41567_023_02374_z
crossref_primary_10_1103_PhysRevB_110_024512
crossref_primary_10_1088_1674_1056_ad7578
crossref_primary_10_1103_PhysRevB_108_035117
crossref_primary_10_1088_0256_307X_40_4_047102
crossref_primary_10_1038_s41467_023_40942_2
crossref_primary_10_1088_1361_6528_ad1442
crossref_primary_10_1103_PhysRevB_110_235144
crossref_primary_10_1140_epjp_s13360_023_03937_y
crossref_primary_10_1103_PhysRevB_107_024503
crossref_primary_10_1007_s11433_023_2360_y
crossref_primary_10_1038_s42254_023_00635_7
crossref_primary_10_1103_PhysRevResearch_6_043078
crossref_primary_10_1103_PhysRevB_108_205203
crossref_primary_10_1016_j_xcrp_2025_102504
crossref_primary_10_1063_5_0191185
crossref_primary_10_1016_j_rinp_2023_106742
crossref_primary_10_1038_s41467_023_43170_w
crossref_primary_10_1038_s43246_024_00681_3
crossref_primary_10_1088_1361_6668_ad8bf9
crossref_primary_10_1088_0256_307X_41_4_047503
crossref_primary_10_1103_PhysRevB_108_L060503
crossref_primary_10_1103_PhysRevB_109_L081104
crossref_primary_10_1103_PhysRevMaterials_7_014205
crossref_primary_10_1021_acs_nanolett_4c01368
crossref_primary_10_3389_fphy_2023_1256166
crossref_primary_10_1103_PhysRevLett_129_247602
crossref_primary_10_1103_PhysRevB_108_075102
crossref_primary_10_1088_1361_648X_ada09d
crossref_primary_10_1103_PhysRevLett_131_196702
crossref_primary_10_1007_s42864_022_00192_z
crossref_primary_10_1126_sciadv_adg7269
crossref_primary_10_1016_j_jallcom_2023_170356
crossref_primary_10_1039_D2CP04054A
crossref_primary_10_1103_PhysRevB_111_085137
crossref_primary_10_1103_PhysRevB_110_235129
crossref_primary_10_1103_PhysRevB_108_115162
crossref_primary_10_1103_PhysRevB_109_235145
crossref_primary_10_1088_1361_6668_ad883d
crossref_primary_10_1002_advs_202300845
crossref_primary_10_1088_1361_648X_ad52e0
crossref_primary_10_1038_s41467_023_36273_x
crossref_primary_10_1088_0256_307X_40_1_017402
crossref_primary_10_1103_PhysRevB_109_024402
crossref_primary_10_1021_acsnano_3c11381
crossref_primary_10_1103_PhysRevB_111_094505
crossref_primary_10_1103_PhysRevB_106_014501
crossref_primary_10_1103_PhysRevB_108_014424
crossref_primary_10_1038_s41467_024_54702_3
crossref_primary_10_1038_s41563_022_01418_8
crossref_primary_10_1002_smtd_202402163
crossref_primary_10_1103_PhysRevB_107_184504
crossref_primary_10_1103_PhysRevLett_129_216402
crossref_primary_10_1038_s44160_022_00182_6
crossref_primary_10_1103_PhysRevB_109_245402
crossref_primary_10_1103_PhysRevResearch_6_043328
crossref_primary_10_1103_PhysRevB_106_195103
crossref_primary_10_1021_acs_jpcc_3c07068
crossref_primary_10_1088_1674_1056_ad3dcf
crossref_primary_10_1038_s41467_023_37605_7
crossref_primary_10_1021_acs_inorgchem_4c03925
crossref_primary_10_1038_s41567_023_02031_5
crossref_primary_10_1103_PhysRevB_108_L081117
crossref_primary_10_1021_acs_chemmater_3c01894
crossref_primary_10_1038_s43246_024_00676_0
crossref_primary_10_1103_PhysRevB_111_054511
crossref_primary_10_1103_PhysRevLett_133_116403
crossref_primary_10_1039_D3RA06988E
crossref_primary_10_1063_10_0019691
crossref_primary_10_1103_PhysRevB_108_205125
crossref_primary_10_3390_cryst13020321
crossref_primary_10_1021_acs_chemmater_2c01309
crossref_primary_10_1103_PhysRevMaterials_7_074801
crossref_primary_10_1103_PhysRevB_109_075168
crossref_primary_10_1103_PhysRevX_14_031015
crossref_primary_10_1103_PhysRevResearch_6_023295
crossref_primary_10_7498_aps_73_20240917
crossref_primary_10_1002_advs_202309003
crossref_primary_10_1038_s41467_023_39620_0
crossref_primary_10_1103_PhysRevB_107_174107
crossref_primary_10_1002_apxr_202200061
crossref_primary_10_1103_PhysRevB_109_075150
crossref_primary_10_1002_apxr_202300025
crossref_primary_10_1103_PhysRevB_106_165112
crossref_primary_10_1038_s42005_024_01673_y
crossref_primary_10_1038_s43246_023_00407_x
crossref_primary_10_1021_acsaelm_4c00359
crossref_primary_10_1021_acsnano_4c15519
crossref_primary_10_21468_SciPostPhys_16_2_046
crossref_primary_10_1002_aelm_202300461
crossref_primary_10_1021_acs_nanolett_4c01050
crossref_primary_10_1021_acs_nanolett_4c00762
crossref_primary_10_1103_PhysRevB_109_035167
crossref_primary_10_1007_s44214_024_00066_0
crossref_primary_10_1038_s41586_024_07798_y
crossref_primary_10_1038_s41586_022_04855_2
crossref_primary_10_1038_s41467_023_38257_3
crossref_primary_10_1360_SSPMA_2023_0297
crossref_primary_10_1103_PhysRevB_107_064506
crossref_primary_10_1038_s41535_023_00577_4
crossref_primary_10_1103_PhysRevB_107_085425
crossref_primary_10_1021_jacs_3c06394
crossref_primary_10_1002_aelm_202300212
crossref_primary_10_1038_s41535_024_00623_9
crossref_primary_10_1007_s10948_024_06884_6
crossref_primary_10_1038_s43246_023_00430_y
crossref_primary_10_1002_adma_202209010
crossref_primary_10_1103_PhysRevB_111_075147
crossref_primary_10_1103_PhysRevMaterials_7_115002
crossref_primary_10_1103_PhysRevLett_134_096401
crossref_primary_10_1088_1361_648X_ad20a2
crossref_primary_10_1088_1674_1056_ad7afe
crossref_primary_10_1038_s42005_022_01011_0
crossref_primary_10_3390_ma15207372
crossref_primary_10_1103_PhysRevLett_133_236503
crossref_primary_10_1103_PhysRevB_108_224115
crossref_primary_10_1038_s41598_023_42940_2
crossref_primary_10_1002_asia_202301113
crossref_primary_10_1063_5_0141112
crossref_primary_10_1103_PhysRevB_109_014418
crossref_primary_10_1016_j_jssc_2022_123620
crossref_primary_10_1038_s41524_024_01463_8
crossref_primary_10_1021_acs_chemmater_3c00760
crossref_primary_10_1103_PhysRevResearch_4_023244
crossref_primary_10_1039_D3NA00216K
crossref_primary_10_1088_1367_2630_ac8e24
crossref_primary_10_1038_s41467_024_47043_8
crossref_primary_10_1103_PhysRevB_107_195137
crossref_primary_10_1103_PhysRevLett_129_166401
crossref_primary_10_1088_1361_6633_acfd3d
crossref_primary_10_1103_PhysRevLett_132_256501
crossref_primary_10_1038_s41586_022_05127_9
crossref_primary_10_1103_PhysRevB_105_235134
crossref_primary_10_1103_PhysRevResearch_5_L012008
crossref_primary_10_1038_s41467_024_46514_2
crossref_primary_10_1088_0256_307X_41_4_047103
crossref_primary_10_1016_j_apsusc_2024_159801
crossref_primary_10_1103_PhysRevB_108_125136
crossref_primary_10_1103_PhysRevB_109_L180504
crossref_primary_10_1038_s41586_023_06005_8
crossref_primary_10_1002_adom_202301614
crossref_primary_10_1021_acs_nanolett_4c01526
crossref_primary_10_1103_PhysRevLett_131_226001
crossref_primary_10_1038_s41586_022_05034_z
crossref_primary_10_1103_PhysRevLett_132_266505
crossref_primary_10_1038_s41467_023_43503_9
crossref_primary_10_1103_PhysRevB_105_235145
crossref_primary_10_1103_PhysRevB_109_104512
crossref_primary_10_1140_epjp_s13360_022_03118_3
crossref_primary_10_1038_s41467_023_44190_2
crossref_primary_10_1103_PhysRevB_110_054511
crossref_primary_10_1016_j_ceramint_2025_03_089
crossref_primary_10_1088_1674_1056_ad553b
crossref_primary_10_1103_PhysRevResearch_4_033072
crossref_primary_10_1007_s44214_022_00017_7
crossref_primary_10_1103_PhysRevLett_131_026601
crossref_primary_10_1002_pssr_202300083
crossref_primary_10_1038_s41467_024_53343_w
crossref_primary_10_1038_s41535_023_00599_y
crossref_primary_10_1103_PhysRevB_107_L020411
crossref_primary_10_1038_s41586_024_07761_x
crossref_primary_10_1103_PhysRevB_107_155131
crossref_primary_10_1016_j_pnsc_2024_11_001
crossref_primary_10_1103_PhysRevB_107_085103
crossref_primary_10_1103_PhysRevLett_130_256001
crossref_primary_10_1038_s41535_024_00629_3
crossref_primary_10_1103_PhysRevB_106_144504
Cites_doi 10.1103/PhysRevB.104.L041103
10.1088/0256-307X/38/5/057403
10.1103/PhysRevB.104.035131
10.1103/PhysRevLett.89.247003
10.1103/PhysRevB.104.075148
10.1080/00018730500459906
10.1103/PhysRevLett.61.2015
10.1038/s42254-021-00293-7
10.1103/PhysRevMaterials.5.034801
10.1103/PhysRevB.62.4880
10.1103/PhysRevB.104.045130
10.1103/PhysRevB.103.L220504
10.1103/PhysRevB.85.144402
10.1103/PhysRevLett.110.126405
10.1103/PhysRevB.87.115135
10.1103/PhysRevLett.127.046401
10.1103/PhysRevB.86.121105
10.1103/PhysRevLett.125.247002
10.1007/s11433-021-1747-7
10.1103/PhysRevMaterials.3.094407
10.1126/sciadv.abb6003
10.1088/0256-307X/38/3/037403
10.1016/j.scib.2021.04.043
10.1103/PhysRevLett.126.247001
10.1103/PhysRevB.104.045122
10.1088/1361-648X/abe8f9
10.1103/RevModPhys.87.457
10.1088/0256-307X/38/7/077402
10.1103/PhysRevLett.127.187004
10.1103/PhysRevB.104.L161112
10.1103/PhysRevX.11.041030
10.1103/PhysRevLett.127.236401
10.1038/s41586-020-2482-7
10.1103/PhysRevLett.127.217601
10.1103/PhysRevB.104.174507
10.1103/PhysRevX.11.041010
10.1038/s41467-021-23928-w
10.1103/PhysRevB.104.165110
10.1038/s41467-021-27946-6
10.1103/PhysRevMaterials.5.L111801
10.1038/s41563-021-01034-y
10.1143/ptp/6.3.306
10.1103/PhysRevLett.127.177001
10.1038/s41586-021-03983-5
10.1038/s41535-021-00420-8
10.1038/s41586-021-03946-w
10.1007/s11433-021-1826-1
10.1038/s41567-021-01451-5
10.21468/SciPostPhys.12.2.049
10.1038/s41567-021-01479-7
ContentType Journal Article
Copyright Springer Nature Limited 2021. corrected publication 2022
Springer Nature Limited 2021. corrected publication 2022.
Copyright_xml – notice: Springer Nature Limited 2021. corrected publication 2022
– notice: Springer Nature Limited 2021. corrected publication 2022.
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/s41567-021-01404-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Proquest Central Journals
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Proquest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 143
ExternalDocumentID 10_1038_s41567_021_01404_y
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 258499086 - SFB 1170
  funderid: https://doi.org/10.13039/501100001659
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: ERC-StG-Neupert-757867-PARATOP; ERC-StG-Neupert-757867-PARATOP
  funderid: https://doi.org/10.13039/100010663
– fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
  grantid: GBMF4547; GBMF9461; GBMF4547; GBMF9461
  funderid: https://doi.org/10.13039/100000936
– fundername: U.S. Department of Energy (DOE)
  grantid: DOE/BES DE-FG-02-05ER46200
  funderid: https://doi.org/10.13039/100000015
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c363t-121ae19a5b51fddd581d8ab44f66e91f0a1e12c7d8e08ee7e4997dbf14dea3503
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Sat Aug 16 21:25:26 EDT 2025
Tue Jul 01 00:25:41 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Fri Feb 21 02:38:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-121ae19a5b51fddd581d8ab44f66e91f0a1e12c7d8e08ee7e4997dbf14dea3503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0604-041X
0000-0003-2661-4206
0000-0002-3979-8836
0000-0002-1762-9687
0000-0001-9730-3128
OpenAccessLink https://www.zora.uzh.ch/id/eprint/219130/8/Review_AV3Sb5_for_Ronny_4.pdf
PQID 2628410888
PQPubID 27545
PageCount 7
ParticipantIDs proquest_journals_2628410888
crossref_primary_10_1038_s41567_021_01404_y
crossref_citationtrail_10_1038_s41567_021_01404_y
springer_journals_10_1038_s41567_021_01404_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Chen (CR15) 2021; 126
Yin, Pan, Zahid Hasan (CR6) 2021; 3
Ortiz (CR13) 2020; 125
CR39
CR38
Tan, Liu, Wang, Yan (CR11) 2021; 127
Du (CR14) 2021; 103
CR35
Duan (CR56) 2021; 64
Yin (CR25) 2021; 38
CR33
CR32
Yu, Li (CR3) 2012; 85
Syôzi (CR1) 1951; 6
Shumiya (CR37) 2021; 104
Yin (CR7) 2020; 583
CR48
Ortiz (CR9) 2019; 3
CR47
CR43
CR41
Lin, Nandkishore (CR42) 2021; 104
Ortiz (CR49) 2021; 5
Yang (CR46) 2020; 6
Yu (CR31) 2021; 104
Uykur (CR34) 2021; 104
CR19
CR18
Fradkin, Kivelson, Tranquada (CR51) 2015; 87
CR59
CR58
Simon, Varma (CR45) 2002; 89
CR57
CR12
Wang (CR36) 2021; 104
CR55
CR10
Liang (CR17) 2021; 11
Feng, Jiang, Wang, Hu (CR40) 2021; 66
CR53
CR52
Nayak (CR8) 2000; 62
Ni (CR54) 2021; 38
Kiesel, Thomale (CR2) 2012; 86
Wang, Li, Xiang, Wang (CR4) 2013; 87
Kenney, Ortiz, Wang, Wilson, Graf (CR30) 2021; 33
Mu (CR28) 2021; 38
Kiesel, Platt, Thomale (CR5) 2013; 110
CR29
Li (CR16) 2021; 11
CR27
Norman, Pines, Kallin (CR50) 2005; 54
CR26
CR24
CR23
CR22
CR21
CR20
CR61
CR60
Haldane (CR44) 1988; 61
F Du (1404_CR14) 2021; 103
ML Kiesel (1404_CR5) 2013; 110
1404_CR43
1404_CR41
MR Norman (1404_CR50) 2005; 54
H Tan (1404_CR11) 2021; 127
1404_CR48
J-X Yin (1404_CR6) 2021; 3
1404_CR47
C Mu (1404_CR28) 2021; 38
W Duan (1404_CR56) 2021; 64
S-L Yu (1404_CR3) 2012; 85
BR Ortiz (1404_CR9) 2019; 3
BR Ortiz (1404_CR13) 2020; 125
Z Wang (1404_CR36) 2021; 104
E Uykur (1404_CR34) 2021; 104
ML Kiesel (1404_CR2) 2012; 86
1404_CR55
1404_CR10
1404_CR53
1404_CR52
1404_CR19
1404_CR18
1404_CR59
1404_CR58
J-X Yin (1404_CR7) 2020; 583
1404_CR57
1404_CR12
E Fradkin (1404_CR51) 2015; 87
I Syôzi (1404_CR1) 1951; 6
BR Ortiz (1404_CR49) 2021; 5
Y-P Lin (1404_CR42) 2021; 104
H Li (1404_CR16) 2021; 11
FH Yu (1404_CR31) 2021; 104
1404_CR22
1404_CR21
1404_CR20
Z Liang (1404_CR17) 2021; 11
S-Y Yang (1404_CR46) 2020; 6
1404_CR61
C Nayak (1404_CR8) 2000; 62
1404_CR60
W-S Wang (1404_CR4) 2013; 87
1404_CR29
1404_CR27
1404_CR26
FDM Haldane (1404_CR44) 1988; 61
1404_CR24
N Shumiya (1404_CR37) 2021; 104
1404_CR23
S Ni (1404_CR54) 2021; 38
Q Yin (1404_CR25) 2021; 38
X Feng (1404_CR40) 2021; 66
ME Simon (1404_CR45) 2002; 89
1404_CR33
1404_CR32
KY Chen (1404_CR15) 2021; 126
1404_CR39
1404_CR38
EM Kenney (1404_CR30) 2021; 33
1404_CR35
References_xml – ident: CR22
– volume: 104
  start-page: L041103
  year: 2021
  ident: CR31
  article-title: Concurrence of anomalous hall effect and charge density wave in a superconducting topological kagome metal
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.L041103
– volume: 38
  start-page: 057403
  year: 2021
  ident: CR54
  article-title: Anisotropic superconducting properties of kagome metal CsV Sb
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/5/057403
– ident: CR39
– ident: CR12
– volume: 104
  start-page: 035131
  year: 2021
  ident: CR37
  article-title: Intrinsic nature of chiral charge order in the kagome superconductor RbV Sb
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.035131
– volume: 89
  start-page: 247003
  year: 2002
  ident: CR45
  article-title: Detection and implications of a time-reversal breaking state in underdoped cuprates
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.247003
– ident: CR35
– ident: CR29
– volume: 104
  start-page: 075148
  year: 2021
  ident: CR36
  article-title: Electronic nature of chiral charge order in the kagome superconductor CsV Sb
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.075148
– ident: CR61
– ident: CR58
– volume: 54
  start-page: 715
  year: 2005
  end-page: 733
  ident: CR50
  article-title: The pseudogap: friend or foe of high ?
  publication-title: Adv. Phys.
  doi: 10.1080/00018730500459906
– volume: 61
  start-page: 2015
  year: 1988
  end-page: 2018
  ident: CR44
  article-title: Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2015
– volume: 3
  start-page: 249
  year: 2021
  end-page: 263
  ident: CR6
  article-title: Probing topological quantum matter with scanning tunnelling microscopy
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00293-7
– ident: CR21
– ident: CR19
– volume: 5
  start-page: 034801
  year: 2021
  ident: CR49
  article-title: Superconductivity in the kagome metal KV Sb
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.034801
– volume: 62
  start-page: 4880
  year: 2000
  end-page: 4889
  ident: CR8
  article-title: Density-wave states of nonzero angular momentum
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.4880
– volume: 6
  start-page: 306
  year: 1951
  end-page: 308
  ident: CR1
  article-title: Statistics of kagomé lattice
  publication-title: Prog. Theor. Phys.
– volume: 104
  start-page: 045130
  year: 2021
  ident: CR34
  article-title: Low-energy optical properties of the nonmagnetic kagome metal CsV Sb
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.045130
– volume: 103
  start-page: L220504
  year: 2021
  ident: CR14
  article-title: Pressure-induced double superconducting domes and charge instability in the kagome metal KV Sb
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.L220504
– ident: CR57
– volume: 85
  start-page: 144402
  year: 2012
  ident: CR3
  article-title: Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.144402
– ident: CR32
– ident: CR60
– volume: 110
  start-page: 126405
  year: 2013
  ident: CR5
  article-title: Unconventional Fermi surface instabilities in the kagome Hubbard model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.126405
– volume: 87
  start-page: 115135
  year: 2013
  ident: CR4
  article-title: Competing electronic orders on kagome lattices at van Hove filling
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.115135
– volume: 127
  start-page: 046401
  year: 2021
  ident: CR11
  article-title: Charge density waves and electronic properties of superconducting kagome metals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.046401
– ident: CR26
– volume: 86
  start-page: 121105
  year: 2012
  ident: CR2
  article-title: Sublattice interference in the kagome Hubbard model
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.121105
– volume: 11
  start-page: 031050
  year: 2021
  ident: CR16
  article-title: Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors V Sb (  = Rb, Cs)
  publication-title: Phys. Rev. X
– volume: 11
  start-page: 031026
  year: 2021
  ident: CR17
  article-title: Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV Sb
  publication-title: Phys. Rev. X
– ident: CR18
– ident: CR43
– ident: CR47
– volume: 125
  start-page: 247002
  year: 2020
  ident: CR13
  article-title: CsV Sb : a topological kagome metal with a superconducting ground state
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.247002
– ident: CR53
– ident: CR10
– ident: CR33
– volume: 64
  start-page: 107462
  year: 2021
  ident: CR56
  article-title: Nodeless superconductivity in the kagome metal CsV Sb
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-021-1747-7
– volume: 3
  start-page: 094407
  year: 2019
  ident: CR9
  article-title: New kagome prototype materials: discovery of KV Sb , RbV Sb , and CsV Sb
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.094407
– volume: 6
  start-page: eabb6003
  year: 2020
  ident: CR46
  article-title: Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV Sb
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb6003
– volume: 38
  start-page: 037403
  year: 2021
  ident: CR25
  article-title: Superconductivity and normal-state properties of kagome metal RbV Sb single crystals
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/3/037403
– volume: 66
  start-page: 1384
  year: 2021
  end-page: 1388
  ident: CR40
  article-title: Chiral flux phase in the Kagome superconductor AV Sb
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2021.04.043
– ident: CR27
– volume: 126
  start-page: 247001
  year: 2021
  ident: CR15
  article-title: Double superconducting dome and triple enhancement of in the kagome superconductor CsV Sb under high pressure
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.247001
– ident: CR23
– volume: 583
  start-page: 533
  year: 2020
  end-page: 536
  ident: CR7
  article-title: Quantum-limit Chern topological magnetism in TbMn Sn
  publication-title: Nature
– volume: 104
  start-page: 045122
  year: 2021
  ident: CR42
  article-title: Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals Sb ( =K, Rb, Cs)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.045122
– ident: CR48
– ident: CR38
– volume: 33
  start-page: 235801
  year: 2021
  ident: CR30
  article-title: Absence of local moments in the kagome metal KV Sb as determined by muon spin spectroscopy
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/abe8f9
– ident: CR52
– volume: 87
  start-page: 457
  year: 2015
  end-page: 482
  ident: CR51
  article-title: Colloquium: theory of intertwined orders in high temperature superconductors
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.457
– ident: CR55
– ident: CR59
– ident: CR41
– ident: CR24
– volume: 38
  start-page: 077402
  year: 2021
  ident: CR28
  article-title: S-wave superconductivity in kagome metal CsV3sb5 revealed by 121/123sb NQR and 51v NMR measurements
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/7/077402
– ident: CR20
– volume: 87
  start-page: 457
  year: 2015
  ident: 1404_CR51
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.457
– ident: 1404_CR59
– ident: 1404_CR32
– ident: 1404_CR61
– ident: 1404_CR47
  doi: 10.1103/PhysRevLett.127.187004
– ident: 1404_CR55
– ident: 1404_CR22
  doi: 10.1103/PhysRevB.104.L161112
– ident: 1404_CR26
  doi: 10.1103/PhysRevX.11.041030
– volume: 127
  start-page: 046401
  year: 2021
  ident: 1404_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.046401
– volume: 11
  start-page: 031026
  year: 2021
  ident: 1404_CR17
  publication-title: Phys. Rev. X
– volume: 89
  start-page: 247003
  year: 2002
  ident: 1404_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.247003
– volume: 38
  start-page: 057403
  year: 2021
  ident: 1404_CR54
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/5/057403
– ident: 1404_CR38
  doi: 10.1103/PhysRevLett.127.236401
– volume: 583
  start-page: 533
  year: 2020
  ident: 1404_CR7
  publication-title: Nature
  doi: 10.1038/s41586-020-2482-7
– volume: 62
  start-page: 4880
  year: 2000
  ident: 1404_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.4880
– volume: 6
  start-page: eabb6003
  year: 2020
  ident: 1404_CR46
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb6003
– volume: 61
  start-page: 2015
  year: 1988
  ident: 1404_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2015
– volume: 33
  start-page: 235801
  year: 2021
  ident: 1404_CR30
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/abe8f9
– ident: 1404_CR41
  doi: 10.1103/PhysRevLett.127.217601
– volume: 86
  start-page: 121105
  year: 2012
  ident: 1404_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.121105
– ident: 1404_CR52
– ident: 1404_CR58
  doi: 10.1103/PhysRevB.104.174507
– volume: 54
  start-page: 715
  year: 2005
  ident: 1404_CR50
  publication-title: Adv. Phys.
  doi: 10.1080/00018730500459906
– ident: 1404_CR23
  doi: 10.1103/PhysRevX.11.041010
– volume: 38
  start-page: 077402
  year: 2021
  ident: 1404_CR28
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/7/077402
– volume: 5
  start-page: 034801
  year: 2021
  ident: 1404_CR49
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.034801
– volume: 3
  start-page: 249
  year: 2021
  ident: 1404_CR6
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00293-7
– ident: 1404_CR57
  doi: 10.1038/s41467-021-23928-w
– volume: 104
  start-page: 035131
  year: 2021
  ident: 1404_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.035131
– volume: 126
  start-page: 247001
  year: 2021
  ident: 1404_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.247001
– ident: 1404_CR35
  doi: 10.1103/PhysRevB.104.165110
– volume: 64
  start-page: 107462
  year: 2021
  ident: 1404_CR56
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-021-1747-7
– volume: 104
  start-page: 045122
  year: 2021
  ident: 1404_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.045122
– ident: 1404_CR39
  doi: 10.1038/s41467-021-27946-6
– volume: 103
  start-page: L220504
  year: 2021
  ident: 1404_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.L220504
– ident: 1404_CR21
– ident: 1404_CR33
  doi: 10.1103/PhysRevMaterials.5.L111801
– ident: 1404_CR53
– volume: 85
  start-page: 144402
  year: 2012
  ident: 1404_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.144402
– ident: 1404_CR10
  doi: 10.1038/s41563-021-01034-y
– volume: 6
  start-page: 306
  year: 1951
  ident: 1404_CR1
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/ptp/6.3.306
– ident: 1404_CR12
  doi: 10.1103/PhysRevLett.127.177001
– ident: 1404_CR19
  doi: 10.1038/s41586-021-03983-5
– ident: 1404_CR27
  doi: 10.1038/s41535-021-00420-8
– volume: 104
  start-page: 075148
  year: 2021
  ident: 1404_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.075148
– volume: 104
  start-page: L041103
  year: 2021
  ident: 1404_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.L041103
– ident: 1404_CR60
– volume: 38
  start-page: 037403
  year: 2021
  ident: 1404_CR25
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/3/037403
– volume: 3
  start-page: 094407
  year: 2019
  ident: 1404_CR9
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.094407
– volume: 104
  start-page: 045130
  year: 2021
  ident: 1404_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.045130
– volume: 11
  start-page: 031050
  year: 2021
  ident: 1404_CR16
  publication-title: Phys. Rev. X
– ident: 1404_CR18
  doi: 10.1038/s41586-021-03946-w
– ident: 1404_CR29
  doi: 10.1007/s11433-021-1826-1
– ident: 1404_CR24
  doi: 10.1038/s41567-021-01451-5
– ident: 1404_CR43
– volume: 87
  start-page: 115135
  year: 2013
  ident: 1404_CR4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.115135
– ident: 1404_CR48
  doi: 10.21468/SciPostPhys.12.2.049
– volume: 110
  start-page: 126405
  year: 2013
  ident: 1404_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.126405
– volume: 125
  start-page: 247002
  year: 2020
  ident: 1404_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.247002
– volume: 66
  start-page: 1384
  year: 2021
  ident: 1404_CR40
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2021.04.043
– ident: 1404_CR20
  doi: 10.1038/s41567-021-01479-7
SSID ssj0042613
Score 2.7160344
SecondaryResourceType review_article
Snippet Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137
SubjectTerms 639/301/119/1003
639/301/119/2792
639/301/119/2794
639/301/119/2795
639/301/119/995
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Electromagnetism
Geometry
High temperature
Kagome lattice
Low temperature
Magnetic fields
Material properties
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Perspective
Phase transitions
Physics
Physics and Astronomy
Spectrum analysis
Superconductivity
Symmetry
Theoretical
Topology
Vanadium
Title Charge order and superconductivity in kagome materials
URI https://link.springer.com/article/10.1038/s41567-021-01404-y
https://www.proquest.com/docview/2628410888
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ohuBF_InTOXrwpmFL06bpSZw4RXCIKHgrafI6RO2mnYf99yZp6lDQc9McviQv7-W9930Ax7kIU64Es2UVnERYhMQSFREVcmmuuyLG2PYO34759WN08xQ_-Qe3ypdVNjbRGWo9VfaNvB9yY0ipORPibPZOrGqUza56CY1VaBsTLEQL2sPL8d19Y4ttfMDqlsiYhFHCfNvMgIl-ZUOXhNgSBccxQxY_r6alv_krRepuntEmbHiXMTiv13gLVrDchjVXuqmqHeA2Yz7BwJFoBrLUQfU5ww8T51oqV6cNETyXwYucTN8wMA5qved24XF0-XBxTbwaAlGMszmhIZVIUxnnMS201rHxNIXMo6jgHFNaDCRFGqpECxwIxARNLJPovKCRRsniAduDVjktcR8CND6UxlQrITFCjHKrQIypsm2oqcGmA7QBIlOeKtwqVrxmLmXNRFaDlxnwMgdetujAyfc_s5oo49_R3QbfzB-aKlsucQdOG8yXn_-e7eD_2Q5hPbRNC67Wugut-ccnHhlXYp73YFWMrnrQPh8Nh-Oe3z1far3GiA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Rqqq9oFJasS0tPpQTtVg_4jiHqqrabpfyOIHEzXXsCUJAdksWof1T_EZsJ-mKSuXGOc4cvoznkZlvBuBjqXmhnBaxrUJRiRWncVARdVzZ4O6qDLPIHT44VONj-eskO1mC254LE9sqe5uYDLWfuPiPfIerYEhZuBP6y_QPjVujYnW1X6HRqsUezm9CytZ83v0evu8W56MfR9_GtNsqQJ1QYkYZZxZZYbMyY5X3PgsRm7allJVSWLBqaBky7nKvcagRcww5Qe7LikmPVmRDEeQ-gadSBE8ememjn73lj9mIaAmYGeUyFx1JZyj0ThMTpZzGhog00YbO7zvCRXT7T0E2-bnRS1jpAlTytdWoVVjC-hU8S42irlkDFevzp0jSyE5ia0-a6ylehaw6Do5NmyjIWU3O7enkEkkIh1sNfw3Hj4LSG1iuJzWuA8EQsXksvNMWJaIs475jLFwkvRYBmwGwHgjjusHkcT_GhUkFcqFNC54J4JkEnpkPYPvvO9N2LMeDpzd6fE13RRuzUKgBfOoxXzz-v7S3D0vbhOfjo4N9s797uPcOXvBIl0hd3huwPLu6xvchiJmVH5LmEPj92Kp6Bxh4APc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrUC9VHyKpQV8gBNYje3ESQ4IAe2qpbCqEJV6M449qVDb7NJshfav8evwOAkrkOit5yRzeHnxzMt8AbyoCllqVygqq9A8xVpyGlTEndQ2uLs6w4x6hz9P9f5x-vEkO1mDX0MvDJVVDmdiPKj9zNE_8h2pw0EqEhJsdV8WcbQ7eTv_wWmDFGVah3UaHUUOcfkzyLf2zcFueNcvpZzsff2wz_sNA9wprRZcSGFRlDarMlF777MQvRW2StNaayxFnViBQrrcF5gUiDkGfZD7qhapR6uyRAW7t2A9J1U0gvX3e9OjL4MfIG2iunbMjMs0V33LTqKKnZZkU86pPCLOt-HLv93iKtb9Jz0bvd7kLmz24Sp71_HrHqxhcx9ux7JR1z4ATdn6U2RxgCezjWft1Rwvg8amMbJxLwX73rAzezq7QBaC447vD-H4RnB6BKNm1uBjYBjiN4-ld4XFFDGtaPsxlo5aYMuAzRjEAIRx_Zhy2pZxbmK6XBWmA88E8EwEzyzH8OrPM_NuSMe1d28P-Jr-g23Nil5jeD1gvrr8f2tPrrf2HO4EmppPB9PDLdiQ1DsRS763YbS4vMKnIaJZVM966jD4dtNs_Q1bkgaJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+order+and+superconductivity+in+kagome+materials&rft.jtitle=Nature+physics&rft.au=Neupert+Titus&rft.au=Michael%2C+Denner+M&rft.au=Jia-Xin%2C+Yin&rft.au=Thomale+Ronny&rft.date=2022-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=18&rft.issue=2&rft.spage=137&rft.epage=143&rft_id=info:doi/10.1038%2Fs41567-021-01404-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon