Charge order and superconductivity in kagome materials
Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of materials with a kagome lattice structure. In particular, the compounds KV 3 Sb 5 , CsV 3 Sb 5 and RbV 3 Sb 5 all feature a kagome net of van...
Saved in:
Published in | Nature physics Vol. 18; no. 2; pp. 137 - 143 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of materials with a kagome lattice structure. In particular, the compounds KV
3
Sb
5
, CsV
3
Sb
5
and RbV
3
Sb
5
all feature a kagome net of vanadium atoms. These materials have recently been shown to exhibit superconductivity at low temperature and an unusual charge order at high temperature, revealing a connection to the underlying topological nature of the band structure. We highlight these discoveries, place them in the context of wider research efforts in topological physics and superconductivity, and discuss the open problems for this field.
Superconductivity and ordered states formed by interactions—both of which could be unconventional—have recently been observed in a family of kagome materials. |
---|---|
AbstractList | Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of materials with a kagome lattice structure. In particular, the compounds KV
3
Sb
5
, CsV
3
Sb
5
and RbV
3
Sb
5
all feature a kagome net of vanadium atoms. These materials have recently been shown to exhibit superconductivity at low temperature and an unusual charge order at high temperature, revealing a connection to the underlying topological nature of the band structure. We highlight these discoveries, place them in the context of wider research efforts in topological physics and superconductivity, and discuss the open problems for this field.
Superconductivity and ordered states formed by interactions—both of which could be unconventional—have recently been observed in a family of kagome materials. Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of materials with a kagome lattice structure. In particular, the compounds KV3Sb5, CsV3Sb5 and RbV3Sb5 all feature a kagome net of vanadium atoms. These materials have recently been shown to exhibit superconductivity at low temperature and an unusual charge order at high temperature, revealing a connection to the underlying topological nature of the band structure. We highlight these discoveries, place them in the context of wider research efforts in topological physics and superconductivity, and discuss the open problems for this field.Superconductivity and ordered states formed by interactions—both of which could be unconventional—have recently been observed in a family of kagome materials. |
Author | Denner, M. Michael Neupert, Titus Hasan, M. Zahid Thomale, Ronny Yin, Jia-Xin |
Author_xml | – sequence: 1 givenname: Titus orcidid: 0000-0003-0604-041X surname: Neupert fullname: Neupert, Titus email: titus.neupert@uzh.ch organization: Department of Physics, University of Zurich – sequence: 2 givenname: M. Michael orcidid: 0000-0002-1762-9687 surname: Denner fullname: Denner, M. Michael email: michael.denner@physik.uzh.ch organization: Department of Physics, University of Zurich – sequence: 3 givenname: Jia-Xin orcidid: 0000-0003-2661-4206 surname: Yin fullname: Yin, Jia-Xin email: jiaxiny@princeton.edu organization: Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University – sequence: 4 givenname: Ronny orcidid: 0000-0002-3979-8836 surname: Thomale fullname: Thomale, Ronny email: rthomale@physik.uni-wuerzburg.de organization: Institute for Theoretical Physics, University of Würzburg, Department of Physics and Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) Group, Indian Institute of Technology Madras – sequence: 5 givenname: M. Zahid orcidid: 0000-0001-9730-3128 surname: Hasan fullname: Hasan, M. Zahid email: mzhasan@princeton.edu organization: Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Lawrence Berkeley National Laboratory, Princeton Institute for the Science and Technology of Materials, Princeton University, Quantum Science Center |
BookMark | eNp9kLFOwzAQhi1UJNrCCzBFYg74bCdxRlQBRarEArPlxpfi0trFdpDy9gSCQGLo9N9w3_2nb0Ymzjsk5BLoNVAub6KAoqxyyiCnIKjI-xMyhUoUORMSJr9zxc_ILMYtpYKVwKekXLzqsMHMB4Mh085ksTtgaLwzXZPsh019Zl32pjd-j9leJwxW7-I5OW2HwIufnJOX-7vnxTJfPT08Lm5XecNLnnJgoBFqXawLaI0xhQQj9VqItiyxhpZqQGBNZSRSiVihqOvKrFsQBjUvKJ-Tq_HuIfj3DmNSW98FN1QqVjIpgEophy02bjXBxxiwVYdg9zr0Cqj68qNGP2rwo779qH6A5D-osUkn610K2u6Oo3xE49DjNhj-vjpCfQKVsX0H |
CitedBy_id | crossref_primary_10_7566_JPSJ_93_111001 crossref_primary_10_3390_nano13030476 crossref_primary_10_1016_j_cap_2024_01_011 crossref_primary_10_1103_PhysRevB_105_245123 crossref_primary_10_1103_PhysRevResearch_5_023037 crossref_primary_10_1103_PhysRevB_109_134501 crossref_primary_10_1002_advs_202305059 crossref_primary_10_1103_PhysRevB_105_174518 crossref_primary_10_1103_PhysRevB_108_165413 crossref_primary_10_1021_jacs_4c07285 crossref_primary_10_1063_5_0232167 crossref_primary_10_1088_1674_1056_acd8b1 crossref_primary_10_1103_PhysRevB_108_115143 crossref_primary_10_1103_PhysRevB_110_054518 crossref_primary_10_1088_1361_6668_ad7641 crossref_primary_10_1103_PhysRevResearch_6_043291 crossref_primary_10_1063_5_0185873 crossref_primary_10_1103_PhysRevB_107_104413 crossref_primary_10_1016_j_cap_2024_08_009 crossref_primary_10_1103_PhysRevLett_132_146501 crossref_primary_10_1038_d41586_024_02559_3 crossref_primary_10_1103_PhysRevB_110_245138 crossref_primary_10_1088_1361_648X_ac9813 crossref_primary_10_1103_PhysRevB_106_235151 crossref_primary_10_1103_PhysRevB_111_054113 crossref_primary_10_1038_s41586_022_05516_0 crossref_primary_10_1088_1361_6528_ada569 crossref_primary_10_1021_acsnano_3c00229 crossref_primary_10_1103_PhysRevX_13_031030 crossref_primary_10_1038_s41535_023_00609_z crossref_primary_10_1088_1361_6668_ad9adb crossref_primary_10_1038_s41467_024_52688_6 crossref_primary_10_1038_s41467_023_40515_3 crossref_primary_10_1038_s41535_023_00574_7 crossref_primary_10_1103_PhysRevMaterials_8_126201 crossref_primary_10_1002_advs_202415012 crossref_primary_10_1038_s41467_022_35718_z crossref_primary_10_1103_PhysRevB_110_245128 crossref_primary_10_1016_j_scib_2023_07_002 crossref_primary_10_1103_PhysRevLett_134_056001 crossref_primary_10_1103_PhysRevB_107_205131 crossref_primary_10_1103_PhysRevB_111_064504 crossref_primary_10_1103_PhysRevB_108_035138 crossref_primary_10_1557_s43578_024_01473_8 crossref_primary_10_1038_s41567_023_02053_z crossref_primary_10_1103_PhysRevB_109_014517 crossref_primary_10_1007_s42247_024_00652_x crossref_primary_10_1063_5_0145859 crossref_primary_10_1002_adma_202309803 crossref_primary_10_1103_PhysRevB_107_174510 crossref_primary_10_1016_j_ijhydene_2025_02_215 crossref_primary_10_1038_s41467_023_36341_2 crossref_primary_10_1088_1674_1056_ad925d crossref_primary_10_1103_PhysRevB_111_064514 crossref_primary_10_1088_1361_648X_ad3096 crossref_primary_10_1103_PhysRevB_106_L241108 crossref_primary_10_1103_PhysRevB_109_054501 crossref_primary_10_1088_1361_6633_ad124f crossref_primary_10_1103_PhysRevB_109_054506 crossref_primary_10_1038_s41467_024_46729_3 crossref_primary_10_1038_s41586_023_05907_x crossref_primary_10_1038_s41467_024_47728_0 crossref_primary_10_1038_s41427_024_00567_3 crossref_primary_10_1038_s41467_024_47766_8 crossref_primary_10_1088_2053_1583_acfe88 crossref_primary_10_1038_s41467_024_52456_6 crossref_primary_10_1038_s41567_023_02374_z crossref_primary_10_1103_PhysRevB_110_024512 crossref_primary_10_1088_1674_1056_ad7578 crossref_primary_10_1103_PhysRevB_108_035117 crossref_primary_10_1088_0256_307X_40_4_047102 crossref_primary_10_1038_s41467_023_40942_2 crossref_primary_10_1088_1361_6528_ad1442 crossref_primary_10_1103_PhysRevB_110_235144 crossref_primary_10_1140_epjp_s13360_023_03937_y crossref_primary_10_1103_PhysRevB_107_024503 crossref_primary_10_1007_s11433_023_2360_y crossref_primary_10_1038_s42254_023_00635_7 crossref_primary_10_1103_PhysRevResearch_6_043078 crossref_primary_10_1103_PhysRevB_108_205203 crossref_primary_10_1016_j_xcrp_2025_102504 crossref_primary_10_1063_5_0191185 crossref_primary_10_1016_j_rinp_2023_106742 crossref_primary_10_1038_s41467_023_43170_w crossref_primary_10_1038_s43246_024_00681_3 crossref_primary_10_1088_1361_6668_ad8bf9 crossref_primary_10_1088_0256_307X_41_4_047503 crossref_primary_10_1103_PhysRevB_108_L060503 crossref_primary_10_1103_PhysRevB_109_L081104 crossref_primary_10_1103_PhysRevMaterials_7_014205 crossref_primary_10_1021_acs_nanolett_4c01368 crossref_primary_10_3389_fphy_2023_1256166 crossref_primary_10_1103_PhysRevLett_129_247602 crossref_primary_10_1103_PhysRevB_108_075102 crossref_primary_10_1088_1361_648X_ada09d crossref_primary_10_1103_PhysRevLett_131_196702 crossref_primary_10_1007_s42864_022_00192_z crossref_primary_10_1126_sciadv_adg7269 crossref_primary_10_1016_j_jallcom_2023_170356 crossref_primary_10_1039_D2CP04054A crossref_primary_10_1103_PhysRevB_111_085137 crossref_primary_10_1103_PhysRevB_110_235129 crossref_primary_10_1103_PhysRevB_108_115162 crossref_primary_10_1103_PhysRevB_109_235145 crossref_primary_10_1088_1361_6668_ad883d crossref_primary_10_1002_advs_202300845 crossref_primary_10_1088_1361_648X_ad52e0 crossref_primary_10_1038_s41467_023_36273_x crossref_primary_10_1088_0256_307X_40_1_017402 crossref_primary_10_1103_PhysRevB_109_024402 crossref_primary_10_1021_acsnano_3c11381 crossref_primary_10_1103_PhysRevB_111_094505 crossref_primary_10_1103_PhysRevB_106_014501 crossref_primary_10_1103_PhysRevB_108_014424 crossref_primary_10_1038_s41467_024_54702_3 crossref_primary_10_1038_s41563_022_01418_8 crossref_primary_10_1002_smtd_202402163 crossref_primary_10_1103_PhysRevB_107_184504 crossref_primary_10_1103_PhysRevLett_129_216402 crossref_primary_10_1038_s44160_022_00182_6 crossref_primary_10_1103_PhysRevB_109_245402 crossref_primary_10_1103_PhysRevResearch_6_043328 crossref_primary_10_1103_PhysRevB_106_195103 crossref_primary_10_1021_acs_jpcc_3c07068 crossref_primary_10_1088_1674_1056_ad3dcf crossref_primary_10_1038_s41467_023_37605_7 crossref_primary_10_1021_acs_inorgchem_4c03925 crossref_primary_10_1038_s41567_023_02031_5 crossref_primary_10_1103_PhysRevB_108_L081117 crossref_primary_10_1021_acs_chemmater_3c01894 crossref_primary_10_1038_s43246_024_00676_0 crossref_primary_10_1103_PhysRevB_111_054511 crossref_primary_10_1103_PhysRevLett_133_116403 crossref_primary_10_1039_D3RA06988E crossref_primary_10_1063_10_0019691 crossref_primary_10_1103_PhysRevB_108_205125 crossref_primary_10_3390_cryst13020321 crossref_primary_10_1021_acs_chemmater_2c01309 crossref_primary_10_1103_PhysRevMaterials_7_074801 crossref_primary_10_1103_PhysRevB_109_075168 crossref_primary_10_1103_PhysRevX_14_031015 crossref_primary_10_1103_PhysRevResearch_6_023295 crossref_primary_10_7498_aps_73_20240917 crossref_primary_10_1002_advs_202309003 crossref_primary_10_1038_s41467_023_39620_0 crossref_primary_10_1103_PhysRevB_107_174107 crossref_primary_10_1002_apxr_202200061 crossref_primary_10_1103_PhysRevB_109_075150 crossref_primary_10_1002_apxr_202300025 crossref_primary_10_1103_PhysRevB_106_165112 crossref_primary_10_1038_s42005_024_01673_y crossref_primary_10_1038_s43246_023_00407_x crossref_primary_10_1021_acsaelm_4c00359 crossref_primary_10_1021_acsnano_4c15519 crossref_primary_10_21468_SciPostPhys_16_2_046 crossref_primary_10_1002_aelm_202300461 crossref_primary_10_1021_acs_nanolett_4c01050 crossref_primary_10_1021_acs_nanolett_4c00762 crossref_primary_10_1103_PhysRevB_109_035167 crossref_primary_10_1007_s44214_024_00066_0 crossref_primary_10_1038_s41586_024_07798_y crossref_primary_10_1038_s41586_022_04855_2 crossref_primary_10_1038_s41467_023_38257_3 crossref_primary_10_1360_SSPMA_2023_0297 crossref_primary_10_1103_PhysRevB_107_064506 crossref_primary_10_1038_s41535_023_00577_4 crossref_primary_10_1103_PhysRevB_107_085425 crossref_primary_10_1021_jacs_3c06394 crossref_primary_10_1002_aelm_202300212 crossref_primary_10_1038_s41535_024_00623_9 crossref_primary_10_1007_s10948_024_06884_6 crossref_primary_10_1038_s43246_023_00430_y crossref_primary_10_1002_adma_202209010 crossref_primary_10_1103_PhysRevB_111_075147 crossref_primary_10_1103_PhysRevMaterials_7_115002 crossref_primary_10_1103_PhysRevLett_134_096401 crossref_primary_10_1088_1361_648X_ad20a2 crossref_primary_10_1088_1674_1056_ad7afe crossref_primary_10_1038_s42005_022_01011_0 crossref_primary_10_3390_ma15207372 crossref_primary_10_1103_PhysRevLett_133_236503 crossref_primary_10_1103_PhysRevB_108_224115 crossref_primary_10_1038_s41598_023_42940_2 crossref_primary_10_1002_asia_202301113 crossref_primary_10_1063_5_0141112 crossref_primary_10_1103_PhysRevB_109_014418 crossref_primary_10_1016_j_jssc_2022_123620 crossref_primary_10_1038_s41524_024_01463_8 crossref_primary_10_1021_acs_chemmater_3c00760 crossref_primary_10_1103_PhysRevResearch_4_023244 crossref_primary_10_1039_D3NA00216K crossref_primary_10_1088_1367_2630_ac8e24 crossref_primary_10_1038_s41467_024_47043_8 crossref_primary_10_1103_PhysRevB_107_195137 crossref_primary_10_1103_PhysRevLett_129_166401 crossref_primary_10_1088_1361_6633_acfd3d crossref_primary_10_1103_PhysRevLett_132_256501 crossref_primary_10_1038_s41586_022_05127_9 crossref_primary_10_1103_PhysRevB_105_235134 crossref_primary_10_1103_PhysRevResearch_5_L012008 crossref_primary_10_1038_s41467_024_46514_2 crossref_primary_10_1088_0256_307X_41_4_047103 crossref_primary_10_1016_j_apsusc_2024_159801 crossref_primary_10_1103_PhysRevB_108_125136 crossref_primary_10_1103_PhysRevB_109_L180504 crossref_primary_10_1038_s41586_023_06005_8 crossref_primary_10_1002_adom_202301614 crossref_primary_10_1021_acs_nanolett_4c01526 crossref_primary_10_1103_PhysRevLett_131_226001 crossref_primary_10_1038_s41586_022_05034_z crossref_primary_10_1103_PhysRevLett_132_266505 crossref_primary_10_1038_s41467_023_43503_9 crossref_primary_10_1103_PhysRevB_105_235145 crossref_primary_10_1103_PhysRevB_109_104512 crossref_primary_10_1140_epjp_s13360_022_03118_3 crossref_primary_10_1038_s41467_023_44190_2 crossref_primary_10_1103_PhysRevB_110_054511 crossref_primary_10_1016_j_ceramint_2025_03_089 crossref_primary_10_1088_1674_1056_ad553b crossref_primary_10_1103_PhysRevResearch_4_033072 crossref_primary_10_1007_s44214_022_00017_7 crossref_primary_10_1103_PhysRevLett_131_026601 crossref_primary_10_1002_pssr_202300083 crossref_primary_10_1038_s41467_024_53343_w crossref_primary_10_1038_s41535_023_00599_y crossref_primary_10_1103_PhysRevB_107_L020411 crossref_primary_10_1038_s41586_024_07761_x crossref_primary_10_1103_PhysRevB_107_155131 crossref_primary_10_1016_j_pnsc_2024_11_001 crossref_primary_10_1103_PhysRevB_107_085103 crossref_primary_10_1103_PhysRevLett_130_256001 crossref_primary_10_1038_s41535_024_00629_3 crossref_primary_10_1103_PhysRevB_106_144504 |
Cites_doi | 10.1103/PhysRevB.104.L041103 10.1088/0256-307X/38/5/057403 10.1103/PhysRevB.104.035131 10.1103/PhysRevLett.89.247003 10.1103/PhysRevB.104.075148 10.1080/00018730500459906 10.1103/PhysRevLett.61.2015 10.1038/s42254-021-00293-7 10.1103/PhysRevMaterials.5.034801 10.1103/PhysRevB.62.4880 10.1103/PhysRevB.104.045130 10.1103/PhysRevB.103.L220504 10.1103/PhysRevB.85.144402 10.1103/PhysRevLett.110.126405 10.1103/PhysRevB.87.115135 10.1103/PhysRevLett.127.046401 10.1103/PhysRevB.86.121105 10.1103/PhysRevLett.125.247002 10.1007/s11433-021-1747-7 10.1103/PhysRevMaterials.3.094407 10.1126/sciadv.abb6003 10.1088/0256-307X/38/3/037403 10.1016/j.scib.2021.04.043 10.1103/PhysRevLett.126.247001 10.1103/PhysRevB.104.045122 10.1088/1361-648X/abe8f9 10.1103/RevModPhys.87.457 10.1088/0256-307X/38/7/077402 10.1103/PhysRevLett.127.187004 10.1103/PhysRevB.104.L161112 10.1103/PhysRevX.11.041030 10.1103/PhysRevLett.127.236401 10.1038/s41586-020-2482-7 10.1103/PhysRevLett.127.217601 10.1103/PhysRevB.104.174507 10.1103/PhysRevX.11.041010 10.1038/s41467-021-23928-w 10.1103/PhysRevB.104.165110 10.1038/s41467-021-27946-6 10.1103/PhysRevMaterials.5.L111801 10.1038/s41563-021-01034-y 10.1143/ptp/6.3.306 10.1103/PhysRevLett.127.177001 10.1038/s41586-021-03983-5 10.1038/s41535-021-00420-8 10.1038/s41586-021-03946-w 10.1007/s11433-021-1826-1 10.1038/s41567-021-01451-5 10.21468/SciPostPhys.12.2.049 10.1038/s41567-021-01479-7 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2021. corrected publication 2022 Springer Nature Limited 2021. corrected publication 2022. |
Copyright_xml | – notice: Springer Nature Limited 2021. corrected publication 2022 – notice: Springer Nature Limited 2021. corrected publication 2022. |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1038/s41567-021-01404-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Proquest Central Journals Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Proquest SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 143 |
ExternalDocumentID | 10_1038_s41567_021_01404_y |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 258499086 - SFB 1170 funderid: https://doi.org/10.13039/501100001659 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: ERC-StG-Neupert-757867-PARATOP; ERC-StG-Neupert-757867-PARATOP funderid: https://doi.org/10.13039/100010663 – fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation) grantid: GBMF4547; GBMF9461; GBMF4547; GBMF9461 funderid: https://doi.org/10.13039/100000936 – fundername: U.S. Department of Energy (DOE) grantid: DOE/BES DE-FG-02-05ER46200 funderid: https://doi.org/10.13039/100000015 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c363t-121ae19a5b51fddd581d8ab44f66e91f0a1e12c7d8e08ee7e4997dbf14dea3503 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Sat Aug 16 21:25:26 EDT 2025 Tue Jul 01 00:25:41 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Fri Feb 21 02:38:01 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-121ae19a5b51fddd581d8ab44f66e91f0a1e12c7d8e08ee7e4997dbf14dea3503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0604-041X 0000-0003-2661-4206 0000-0002-3979-8836 0000-0002-1762-9687 0000-0001-9730-3128 |
OpenAccessLink | https://www.zora.uzh.ch/id/eprint/219130/8/Review_AV3Sb5_for_Ronny_4.pdf |
PQID | 2628410888 |
PQPubID | 27545 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2628410888 crossref_primary_10_1038_s41567_021_01404_y crossref_citationtrail_10_1038_s41567_021_01404_y springer_journals_10_1038_s41567_021_01404_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Chen (CR15) 2021; 126 Yin, Pan, Zahid Hasan (CR6) 2021; 3 Ortiz (CR13) 2020; 125 CR39 CR38 Tan, Liu, Wang, Yan (CR11) 2021; 127 Du (CR14) 2021; 103 CR35 Duan (CR56) 2021; 64 Yin (CR25) 2021; 38 CR33 CR32 Yu, Li (CR3) 2012; 85 Syôzi (CR1) 1951; 6 Shumiya (CR37) 2021; 104 Yin (CR7) 2020; 583 CR48 Ortiz (CR9) 2019; 3 CR47 CR43 CR41 Lin, Nandkishore (CR42) 2021; 104 Ortiz (CR49) 2021; 5 Yang (CR46) 2020; 6 Yu (CR31) 2021; 104 Uykur (CR34) 2021; 104 CR19 CR18 Fradkin, Kivelson, Tranquada (CR51) 2015; 87 CR59 CR58 Simon, Varma (CR45) 2002; 89 CR57 CR12 Wang (CR36) 2021; 104 CR55 CR10 Liang (CR17) 2021; 11 Feng, Jiang, Wang, Hu (CR40) 2021; 66 CR53 CR52 Nayak (CR8) 2000; 62 Ni (CR54) 2021; 38 Kiesel, Thomale (CR2) 2012; 86 Wang, Li, Xiang, Wang (CR4) 2013; 87 Kenney, Ortiz, Wang, Wilson, Graf (CR30) 2021; 33 Mu (CR28) 2021; 38 Kiesel, Platt, Thomale (CR5) 2013; 110 CR29 Li (CR16) 2021; 11 CR27 Norman, Pines, Kallin (CR50) 2005; 54 CR26 CR24 CR23 CR22 CR21 CR20 CR61 CR60 Haldane (CR44) 1988; 61 F Du (1404_CR14) 2021; 103 ML Kiesel (1404_CR5) 2013; 110 1404_CR43 1404_CR41 MR Norman (1404_CR50) 2005; 54 H Tan (1404_CR11) 2021; 127 1404_CR48 J-X Yin (1404_CR6) 2021; 3 1404_CR47 C Mu (1404_CR28) 2021; 38 W Duan (1404_CR56) 2021; 64 S-L Yu (1404_CR3) 2012; 85 BR Ortiz (1404_CR9) 2019; 3 BR Ortiz (1404_CR13) 2020; 125 Z Wang (1404_CR36) 2021; 104 E Uykur (1404_CR34) 2021; 104 ML Kiesel (1404_CR2) 2012; 86 1404_CR55 1404_CR10 1404_CR53 1404_CR52 1404_CR19 1404_CR18 1404_CR59 1404_CR58 J-X Yin (1404_CR7) 2020; 583 1404_CR57 1404_CR12 E Fradkin (1404_CR51) 2015; 87 I Syôzi (1404_CR1) 1951; 6 BR Ortiz (1404_CR49) 2021; 5 Y-P Lin (1404_CR42) 2021; 104 H Li (1404_CR16) 2021; 11 FH Yu (1404_CR31) 2021; 104 1404_CR22 1404_CR21 1404_CR20 Z Liang (1404_CR17) 2021; 11 S-Y Yang (1404_CR46) 2020; 6 1404_CR61 C Nayak (1404_CR8) 2000; 62 1404_CR60 W-S Wang (1404_CR4) 2013; 87 1404_CR29 1404_CR27 1404_CR26 FDM Haldane (1404_CR44) 1988; 61 1404_CR24 N Shumiya (1404_CR37) 2021; 104 1404_CR23 S Ni (1404_CR54) 2021; 38 Q Yin (1404_CR25) 2021; 38 X Feng (1404_CR40) 2021; 66 ME Simon (1404_CR45) 2002; 89 1404_CR33 1404_CR32 KY Chen (1404_CR15) 2021; 126 1404_CR39 1404_CR38 EM Kenney (1404_CR30) 2021; 33 1404_CR35 |
References_xml | – ident: CR22 – volume: 104 start-page: L041103 year: 2021 ident: CR31 article-title: Concurrence of anomalous hall effect and charge density wave in a superconducting topological kagome metal publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.L041103 – volume: 38 start-page: 057403 year: 2021 ident: CR54 article-title: Anisotropic superconducting properties of kagome metal CsV Sb publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/5/057403 – ident: CR39 – ident: CR12 – volume: 104 start-page: 035131 year: 2021 ident: CR37 article-title: Intrinsic nature of chiral charge order in the kagome superconductor RbV Sb publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.035131 – volume: 89 start-page: 247003 year: 2002 ident: CR45 article-title: Detection and implications of a time-reversal breaking state in underdoped cuprates publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.247003 – ident: CR35 – ident: CR29 – volume: 104 start-page: 075148 year: 2021 ident: CR36 article-title: Electronic nature of chiral charge order in the kagome superconductor CsV Sb publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.075148 – ident: CR61 – ident: CR58 – volume: 54 start-page: 715 year: 2005 end-page: 733 ident: CR50 article-title: The pseudogap: friend or foe of high ? publication-title: Adv. Phys. doi: 10.1080/00018730500459906 – volume: 61 start-page: 2015 year: 1988 end-page: 2018 ident: CR44 article-title: Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly” publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2015 – volume: 3 start-page: 249 year: 2021 end-page: 263 ident: CR6 article-title: Probing topological quantum matter with scanning tunnelling microscopy publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00293-7 – ident: CR21 – ident: CR19 – volume: 5 start-page: 034801 year: 2021 ident: CR49 article-title: Superconductivity in the kagome metal KV Sb publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.034801 – volume: 62 start-page: 4880 year: 2000 end-page: 4889 ident: CR8 article-title: Density-wave states of nonzero angular momentum publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.4880 – volume: 6 start-page: 306 year: 1951 end-page: 308 ident: CR1 article-title: Statistics of kagomé lattice publication-title: Prog. Theor. Phys. – volume: 104 start-page: 045130 year: 2021 ident: CR34 article-title: Low-energy optical properties of the nonmagnetic kagome metal CsV Sb publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.045130 – volume: 103 start-page: L220504 year: 2021 ident: CR14 article-title: Pressure-induced double superconducting domes and charge instability in the kagome metal KV Sb publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.L220504 – ident: CR57 – volume: 85 start-page: 144402 year: 2012 ident: CR3 article-title: Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.144402 – ident: CR32 – ident: CR60 – volume: 110 start-page: 126405 year: 2013 ident: CR5 article-title: Unconventional Fermi surface instabilities in the kagome Hubbard model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.126405 – volume: 87 start-page: 115135 year: 2013 ident: CR4 article-title: Competing electronic orders on kagome lattices at van Hove filling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.115135 – volume: 127 start-page: 046401 year: 2021 ident: CR11 article-title: Charge density waves and electronic properties of superconducting kagome metals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.046401 – ident: CR26 – volume: 86 start-page: 121105 year: 2012 ident: CR2 article-title: Sublattice interference in the kagome Hubbard model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.121105 – volume: 11 start-page: 031050 year: 2021 ident: CR16 article-title: Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors V Sb ( = Rb, Cs) publication-title: Phys. Rev. X – volume: 11 start-page: 031026 year: 2021 ident: CR17 article-title: Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV Sb publication-title: Phys. Rev. X – ident: CR18 – ident: CR43 – ident: CR47 – volume: 125 start-page: 247002 year: 2020 ident: CR13 article-title: CsV Sb : a topological kagome metal with a superconducting ground state publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.247002 – ident: CR53 – ident: CR10 – ident: CR33 – volume: 64 start-page: 107462 year: 2021 ident: CR56 article-title: Nodeless superconductivity in the kagome metal CsV Sb publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-021-1747-7 – volume: 3 start-page: 094407 year: 2019 ident: CR9 article-title: New kagome prototype materials: discovery of KV Sb , RbV Sb , and CsV Sb publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.094407 – volume: 6 start-page: eabb6003 year: 2020 ident: CR46 article-title: Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV Sb publication-title: Sci. Adv. doi: 10.1126/sciadv.abb6003 – volume: 38 start-page: 037403 year: 2021 ident: CR25 article-title: Superconductivity and normal-state properties of kagome metal RbV Sb single crystals publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/3/037403 – volume: 66 start-page: 1384 year: 2021 end-page: 1388 ident: CR40 article-title: Chiral flux phase in the Kagome superconductor AV Sb publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.04.043 – ident: CR27 – volume: 126 start-page: 247001 year: 2021 ident: CR15 article-title: Double superconducting dome and triple enhancement of in the kagome superconductor CsV Sb under high pressure publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.247001 – ident: CR23 – volume: 583 start-page: 533 year: 2020 end-page: 536 ident: CR7 article-title: Quantum-limit Chern topological magnetism in TbMn Sn publication-title: Nature – volume: 104 start-page: 045122 year: 2021 ident: CR42 article-title: Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals Sb ( =K, Rb, Cs) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.045122 – ident: CR48 – ident: CR38 – volume: 33 start-page: 235801 year: 2021 ident: CR30 article-title: Absence of local moments in the kagome metal KV Sb as determined by muon spin spectroscopy publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/abe8f9 – ident: CR52 – volume: 87 start-page: 457 year: 2015 end-page: 482 ident: CR51 article-title: Colloquium: theory of intertwined orders in high temperature superconductors publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.457 – ident: CR55 – ident: CR59 – ident: CR41 – ident: CR24 – volume: 38 start-page: 077402 year: 2021 ident: CR28 article-title: S-wave superconductivity in kagome metal CsV3sb5 revealed by 121/123sb NQR and 51v NMR measurements publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/7/077402 – ident: CR20 – volume: 87 start-page: 457 year: 2015 ident: 1404_CR51 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.457 – ident: 1404_CR59 – ident: 1404_CR32 – ident: 1404_CR61 – ident: 1404_CR47 doi: 10.1103/PhysRevLett.127.187004 – ident: 1404_CR55 – ident: 1404_CR22 doi: 10.1103/PhysRevB.104.L161112 – ident: 1404_CR26 doi: 10.1103/PhysRevX.11.041030 – volume: 127 start-page: 046401 year: 2021 ident: 1404_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.046401 – volume: 11 start-page: 031026 year: 2021 ident: 1404_CR17 publication-title: Phys. Rev. X – volume: 89 start-page: 247003 year: 2002 ident: 1404_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.247003 – volume: 38 start-page: 057403 year: 2021 ident: 1404_CR54 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/5/057403 – ident: 1404_CR38 doi: 10.1103/PhysRevLett.127.236401 – volume: 583 start-page: 533 year: 2020 ident: 1404_CR7 publication-title: Nature doi: 10.1038/s41586-020-2482-7 – volume: 62 start-page: 4880 year: 2000 ident: 1404_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.4880 – volume: 6 start-page: eabb6003 year: 2020 ident: 1404_CR46 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb6003 – volume: 61 start-page: 2015 year: 1988 ident: 1404_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2015 – volume: 33 start-page: 235801 year: 2021 ident: 1404_CR30 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/abe8f9 – ident: 1404_CR41 doi: 10.1103/PhysRevLett.127.217601 – volume: 86 start-page: 121105 year: 2012 ident: 1404_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.121105 – ident: 1404_CR52 – ident: 1404_CR58 doi: 10.1103/PhysRevB.104.174507 – volume: 54 start-page: 715 year: 2005 ident: 1404_CR50 publication-title: Adv. Phys. doi: 10.1080/00018730500459906 – ident: 1404_CR23 doi: 10.1103/PhysRevX.11.041010 – volume: 38 start-page: 077402 year: 2021 ident: 1404_CR28 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/7/077402 – volume: 5 start-page: 034801 year: 2021 ident: 1404_CR49 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.034801 – volume: 3 start-page: 249 year: 2021 ident: 1404_CR6 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00293-7 – ident: 1404_CR57 doi: 10.1038/s41467-021-23928-w – volume: 104 start-page: 035131 year: 2021 ident: 1404_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.035131 – volume: 126 start-page: 247001 year: 2021 ident: 1404_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.247001 – ident: 1404_CR35 doi: 10.1103/PhysRevB.104.165110 – volume: 64 start-page: 107462 year: 2021 ident: 1404_CR56 publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-021-1747-7 – volume: 104 start-page: 045122 year: 2021 ident: 1404_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.045122 – ident: 1404_CR39 doi: 10.1038/s41467-021-27946-6 – volume: 103 start-page: L220504 year: 2021 ident: 1404_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.L220504 – ident: 1404_CR21 – ident: 1404_CR33 doi: 10.1103/PhysRevMaterials.5.L111801 – ident: 1404_CR53 – volume: 85 start-page: 144402 year: 2012 ident: 1404_CR3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.144402 – ident: 1404_CR10 doi: 10.1038/s41563-021-01034-y – volume: 6 start-page: 306 year: 1951 ident: 1404_CR1 publication-title: Prog. Theor. Phys. doi: 10.1143/ptp/6.3.306 – ident: 1404_CR12 doi: 10.1103/PhysRevLett.127.177001 – ident: 1404_CR19 doi: 10.1038/s41586-021-03983-5 – ident: 1404_CR27 doi: 10.1038/s41535-021-00420-8 – volume: 104 start-page: 075148 year: 2021 ident: 1404_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.075148 – volume: 104 start-page: L041103 year: 2021 ident: 1404_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.L041103 – ident: 1404_CR60 – volume: 38 start-page: 037403 year: 2021 ident: 1404_CR25 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/38/3/037403 – volume: 3 start-page: 094407 year: 2019 ident: 1404_CR9 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.094407 – volume: 104 start-page: 045130 year: 2021 ident: 1404_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.045130 – volume: 11 start-page: 031050 year: 2021 ident: 1404_CR16 publication-title: Phys. Rev. X – ident: 1404_CR18 doi: 10.1038/s41586-021-03946-w – ident: 1404_CR29 doi: 10.1007/s11433-021-1826-1 – ident: 1404_CR24 doi: 10.1038/s41567-021-01451-5 – ident: 1404_CR43 – volume: 87 start-page: 115135 year: 2013 ident: 1404_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.115135 – ident: 1404_CR48 doi: 10.21468/SciPostPhys.12.2.049 – volume: 110 start-page: 126405 year: 2013 ident: 1404_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.126405 – volume: 125 start-page: 247002 year: 2020 ident: 1404_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.247002 – volume: 66 start-page: 1384 year: 2021 ident: 1404_CR40 publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.04.043 – ident: 1404_CR20 doi: 10.1038/s41567-021-01479-7 |
SSID | ssj0042613 |
Score | 2.7160344 |
SecondaryResourceType | review_article |
Snippet | Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 137 |
SubjectTerms | 639/301/119/1003 639/301/119/2792 639/301/119/2794 639/301/119/2795 639/301/119/995 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Electromagnetism Geometry High temperature Kagome lattice Low temperature Magnetic fields Material properties Mathematical and Computational Physics Molecular Optical and Plasma Physics Perspective Phase transitions Physics Physics and Astronomy Spectrum analysis Superconductivity Symmetry Theoretical Topology Vanadium |
Title | Charge order and superconductivity in kagome materials |
URI | https://link.springer.com/article/10.1038/s41567-021-01404-y https://www.proquest.com/docview/2628410888 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7ohuBF_InTOXrwpmFL06bpSZw4RXCIKHgrafI6RO2mnYf99yZp6lDQc9McviQv7-W9930Ax7kIU64Es2UVnERYhMQSFREVcmmuuyLG2PYO34759WN08xQ_-Qe3ypdVNjbRGWo9VfaNvB9yY0ipORPibPZOrGqUza56CY1VaBsTLEQL2sPL8d19Y4ttfMDqlsiYhFHCfNvMgIl-ZUOXhNgSBccxQxY_r6alv_krRepuntEmbHiXMTiv13gLVrDchjVXuqmqHeA2Yz7BwJFoBrLUQfU5ww8T51oqV6cNETyXwYucTN8wMA5qved24XF0-XBxTbwaAlGMszmhIZVIUxnnMS201rHxNIXMo6jgHFNaDCRFGqpECxwIxARNLJPovKCRRsniAduDVjktcR8CND6UxlQrITFCjHKrQIypsm2oqcGmA7QBIlOeKtwqVrxmLmXNRFaDlxnwMgdetujAyfc_s5oo49_R3QbfzB-aKlsucQdOG8yXn_-e7eD_2Q5hPbRNC67Wugut-ccnHhlXYp73YFWMrnrQPh8Nh-Oe3z1far3GiA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Rqqq9oFJasS0tPpQTtVg_4jiHqqrabpfyOIHEzXXsCUJAdksWof1T_EZsJ-mKSuXGOc4cvoznkZlvBuBjqXmhnBaxrUJRiRWncVARdVzZ4O6qDLPIHT44VONj-eskO1mC254LE9sqe5uYDLWfuPiPfIerYEhZuBP6y_QPjVujYnW1X6HRqsUezm9CytZ83v0evu8W56MfR9_GtNsqQJ1QYkYZZxZZYbMyY5X3PgsRm7allJVSWLBqaBky7nKvcagRcww5Qe7LikmPVmRDEeQ-gadSBE8ememjn73lj9mIaAmYGeUyFx1JZyj0ThMTpZzGhog00YbO7zvCRXT7T0E2-bnRS1jpAlTytdWoVVjC-hU8S42irlkDFevzp0jSyE5ia0-a6ylehaw6Do5NmyjIWU3O7enkEkkIh1sNfw3Hj4LSG1iuJzWuA8EQsXksvNMWJaIs475jLFwkvRYBmwGwHgjjusHkcT_GhUkFcqFNC54J4JkEnpkPYPvvO9N2LMeDpzd6fE13RRuzUKgBfOoxXzz-v7S3D0vbhOfjo4N9s797uPcOXvBIl0hd3huwPLu6xvchiJmVH5LmEPj92Kp6Bxh4APc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrUC9VHyKpQV8gBNYje3ESQ4IAe2qpbCqEJV6M449qVDb7NJshfav8evwOAkrkOit5yRzeHnxzMt8AbyoCllqVygqq9A8xVpyGlTEndQ2uLs6w4x6hz9P9f5x-vEkO1mDX0MvDJVVDmdiPKj9zNE_8h2pw0EqEhJsdV8WcbQ7eTv_wWmDFGVah3UaHUUOcfkzyLf2zcFueNcvpZzsff2wz_sNA9wprRZcSGFRlDarMlF777MQvRW2StNaayxFnViBQrrcF5gUiDkGfZD7qhapR6uyRAW7t2A9J1U0gvX3e9OjL4MfIG2iunbMjMs0V33LTqKKnZZkU86pPCLOt-HLv93iKtb9Jz0bvd7kLmz24Sp71_HrHqxhcx9ux7JR1z4ATdn6U2RxgCezjWft1Rwvg8amMbJxLwX73rAzezq7QBaC447vD-H4RnB6BKNm1uBjYBjiN4-ld4XFFDGtaPsxlo5aYMuAzRjEAIRx_Zhy2pZxbmK6XBWmA88E8EwEzyzH8OrPM_NuSMe1d28P-Jr-g23Nil5jeD1gvrr8f2tPrrf2HO4EmppPB9PDLdiQ1DsRS763YbS4vMKnIaJZVM966jD4dtNs_Q1bkgaJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+order+and+superconductivity+in+kagome+materials&rft.jtitle=Nature+physics&rft.au=Neupert+Titus&rft.au=Michael%2C+Denner+M&rft.au=Jia-Xin%2C+Yin&rft.au=Thomale+Ronny&rft.date=2022-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=18&rft.issue=2&rft.spage=137&rft.epage=143&rft_id=info:doi/10.1038%2Fs41567-021-01404-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |