Two Arabidopsis MYB‐SHAQKYF transcription repressors regulate leaf wax biosynthesis via transcriptional suppression on DEWAX
Summary Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis...
Saved in:
Published in | The New phytologist Vol. 236; no. 6; pp. 2115 - 2130 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lancaster
Wiley Subscription Services, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0028-646X 1469-8137 1469-8137 |
DOI | 10.1111/nph.18498 |
Cover
Loading…
Abstract | Summary
Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis regulated by the diurnal cycle remains largely unknown. Here, we identified two Arabidopsis MYB‐SHAQKYF transcription factors, MYS1 and MYS2, as new regulators in wax biosynthesis and drought tolerance.
Mutations of both MYS1 and MYS2 caused significantly reduced leaf wax, whereas overexpression of MYS1 or MYS2 increased leaf wax biosynthesis and enhanced drought tolerance. Our results demonstrated that MYS1 and MYS2 act as transcription repressors and directly suppress DEWAX expression via ethylene response factor‐associated amphiphilic repression motifs.
Genetic interaction analysis with DEWAX, SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN‐LIKE 9), and CER1 (ECERIFERUM 1) in wax biosynthesis and under drought stresses demonstrated that MYS1 and MYS2 act upstream of the DEWAX‐SPL9 module, thus regulating CER1 expression. Expression analysis suggested that the diurnal expression pattern of DEWAX is partly regulated by MYS1 and MYS2.
Our findings demonstrate the roles of two unidentified transcription repressors, MYS1 and MYS2, in wax biosynthesis and provide insights into the mechanism of diurnal cycle‐regulated wax biosynthesis. |
---|---|
AbstractList | Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis regulated by the diurnal cycle remains largely unknown. Here, we identified two Arabidopsis MYB-SHAQKYF transcription factors, MYS1 and MYS2, as new regulators in wax biosynthesis and drought tolerance. Mutations of both MYS1 and MYS2 caused significantly reduced leaf wax, whereas overexpression of MYS1 or MYS2 increased leaf wax biosynthesis and enhanced drought tolerance. Our results demonstrated that MYS1 and MYS2 act as transcription repressors and directly suppress DEWAX expression via ethylene response factor-associated amphiphilic repression motifs. Genetic interaction analysis with DEWAX, SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9), and CER1 (ECERIFERUM 1) in wax biosynthesis and under drought stresses demonstrated that MYS1 and MYS2 act upstream of the DEWAX-SPL9 module, thus regulating CER1 expression. Expression analysis suggested that the diurnal expression pattern of DEWAX is partly regulated by MYS1 and MYS2. Our findings demonstrate the roles of two unidentified transcription repressors, MYS1 and MYS2, in wax biosynthesis and provide insights into the mechanism of diurnal cycle-regulated wax biosynthesis.Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis regulated by the diurnal cycle remains largely unknown. Here, we identified two Arabidopsis MYB-SHAQKYF transcription factors, MYS1 and MYS2, as new regulators in wax biosynthesis and drought tolerance. Mutations of both MYS1 and MYS2 caused significantly reduced leaf wax, whereas overexpression of MYS1 or MYS2 increased leaf wax biosynthesis and enhanced drought tolerance. Our results demonstrated that MYS1 and MYS2 act as transcription repressors and directly suppress DEWAX expression via ethylene response factor-associated amphiphilic repression motifs. Genetic interaction analysis with DEWAX, SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9), and CER1 (ECERIFERUM 1) in wax biosynthesis and under drought stresses demonstrated that MYS1 and MYS2 act upstream of the DEWAX-SPL9 module, thus regulating CER1 expression. Expression analysis suggested that the diurnal expression pattern of DEWAX is partly regulated by MYS1 and MYS2. Our findings demonstrate the roles of two unidentified transcription repressors, MYS1 and MYS2, in wax biosynthesis and provide insights into the mechanism of diurnal cycle-regulated wax biosynthesis. Summary Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis regulated by the diurnal cycle remains largely unknown. Here, we identified two Arabidopsis MYB‐SHAQKYF transcription factors, MYS1 and MYS2, as new regulators in wax biosynthesis and drought tolerance. Mutations of both MYS1 and MYS2 caused significantly reduced leaf wax, whereas overexpression of MYS1 or MYS2 increased leaf wax biosynthesis and enhanced drought tolerance. Our results demonstrated that MYS1 and MYS2 act as transcription repressors and directly suppress DEWAX expression via ethylene response factor‐associated amphiphilic repression motifs. Genetic interaction analysis with DEWAX, SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN‐LIKE 9), and CER1 (ECERIFERUM 1) in wax biosynthesis and under drought stresses demonstrated that MYS1 and MYS2 act upstream of the DEWAX‐SPL9 module, thus regulating CER1 expression. Expression analysis suggested that the diurnal expression pattern of DEWAX is partly regulated by MYS1 and MYS2. Our findings demonstrate the roles of two unidentified transcription repressors, MYS1 and MYS2, in wax biosynthesis and provide insights into the mechanism of diurnal cycle‐regulated wax biosynthesis. Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis regulated by the diurnal cycle remains largely unknown. Here, we identified two Arabidopsis MYB‐SHAQKYF transcription factors, MYS1 and MYS2, as new regulators in wax biosynthesis and drought tolerance. Mutations of both MYS1 and MYS2 caused significantly reduced leaf wax, whereas overexpression of MYS1 or MYS2 increased leaf wax biosynthesis and enhanced drought tolerance. Our results demonstrated that MYS1 and MYS2 act as transcription repressors and directly suppress DEWAX expression via ethylene response factor‐associated amphiphilic repression motifs. Genetic interaction analysis with DEWAX, SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN‐LIKE 9), and CER1 (ECERIFERUM 1) in wax biosynthesis and under drought stresses demonstrated that MYS1 and MYS2 act upstream of the DEWAX‐SPL9 module, thus regulating CER1 expression. Expression analysis suggested that the diurnal expression pattern of DEWAX is partly regulated by MYS1 and MYS2. Our findings demonstrate the roles of two unidentified transcription repressors, MYS1 and MYS2, in wax biosynthesis and provide insights into the mechanism of diurnal cycle‐regulated wax biosynthesis. Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays a vital role in diurnal wax biosynthesis. However, how DEWAX expression is controlled and the molecular mechanism of wax biosynthesis regulated by the diurnal cycle remains largely unknown. Here, we identified two Arabidopsis MYB‐SHAQKYF transcription factors, MYS1 and MYS2, as new regulators in wax biosynthesis and drought tolerance. Mutations of both MYS1 and MYS2 caused significantly reduced leaf wax, whereas overexpression of MYS1 or MYS2 increased leaf wax biosynthesis and enhanced drought tolerance. Our results demonstrated that MYS1 and MYS2 act as transcription repressors and directly suppress DEWAX expression via ethylene response factor‐associated amphiphilic repression motifs. Genetic interaction analysis with DEWAX , SPL9 ( SQUAMOSA PROMOTER BINDING PROTEIN‐LIKE 9 ), and CER1 ( ECERIFERUM 1 ) in wax biosynthesis and under drought stresses demonstrated that MYS1 and MYS2 act upstream of the DEWAX‐SPL9 module, thus regulating CER1 expression. Expression analysis suggested that the diurnal expression pattern of DEWAX is partly regulated by MYS1 and MYS2. Our findings demonstrate the roles of two unidentified transcription repressors, MYS1 and MYS2, in wax biosynthesis and provide insights into the mechanism of diurnal cycle‐regulated wax biosynthesis. |
Author | Chen, Yongqiang Hu, Honghong Qu, Tingting Huang, Haodong Wang, Zhipeng Xu, Danyun Liu, Qing Lü, Shiyou Yue, Zhichuang |
Author_xml | – sequence: 1 givenname: Qing surname: Liu fullname: Liu, Qing organization: Huazhong Agricultural University – sequence: 2 givenname: Haodong orcidid: 0000-0002-6109-8860 surname: Huang fullname: Huang, Haodong organization: Hubei University – sequence: 3 givenname: Yongqiang surname: Chen fullname: Chen, Yongqiang organization: Huazhong Agricultural University – sequence: 4 givenname: Zhichuang surname: Yue fullname: Yue, Zhichuang organization: Huazhong Agricultural University – sequence: 5 givenname: Zhipeng surname: Wang fullname: Wang, Zhipeng organization: Huazhong Agricultural University – sequence: 6 givenname: Tingting surname: Qu fullname: Qu, Tingting organization: Huazhong Agricultural University – sequence: 7 givenname: Danyun surname: Xu fullname: Xu, Danyun organization: Huazhong Agricultural University – sequence: 8 givenname: Shiyou orcidid: 0000-0003-0449-2471 surname: Lü fullname: Lü, Shiyou organization: Hubei University – sequence: 9 givenname: Honghong orcidid: 0000-0003-0538-6646 surname: Hu fullname: Hu, Honghong email: huhh@mail.hzau.edu.cn organization: Huazhong Agricultural University |
BookMark | eNqFkc1KxDAUhYMoOP4sfIOCG11UkyZNm-WooyP-o6KuSpq51UhtatI6zkZ8BJ_RJzF13CiKl8DN4jsH7jkLaLYyFSC0QvAG8bNZ1XcbJGUinUE9wrgIU0KTWdTDOEpDzvj1PFpw7h5jLGIe9dDLxdgEfStzPTK10y44utl6f307H_bPDm52g8bKyimr60abKrBQW3DOWOe_t20pGwhKkEUwls9Bro2bVM0ddC5PWn7XyjJwbf0p75z82xlc9a-X0FwhSwfLX3sRXe4OLraH4eHJ3v52_zBUlNM0TFTEOTBaRCmjEWdKCpHTQqg8ZyCUiGMB8SiXhEKBRwUugCpOEzKCiHqY00W0NvWtrXlswTXZg3YKylJWYFqXRSkhIolFzP5HExIzFvNUeHT1B3pvWutv7Sia-Mw57gw3p5SyxjkLRaZ0I7tQfEK6zAjOuuoyX132WZ1XrP9Q1FY_SDv5lf1yH-sSJn-D2fHpcKr4ANmorVE |
CitedBy_id | crossref_primary_10_1093_plcell_koae136 crossref_primary_10_1093_jxb_erae202 crossref_primary_10_1007_s10725_024_01236_9 crossref_primary_10_1093_plphys_kiae377 crossref_primary_10_1016_j_hpj_2024_01_003 crossref_primary_10_1016_j_scienta_2022_111744 crossref_primary_10_1093_plcell_koae226 crossref_primary_10_1016_j_indcrop_2024_120007 crossref_primary_10_3389_fpls_2023_1227859 crossref_primary_10_3389_fpls_2022_1064390 crossref_primary_10_1093_g3journal_jkae241 crossref_primary_10_1016_j_ijbiomac_2024_138588 crossref_primary_10_1016_j_gene_2025_149247 crossref_primary_10_1016_j_jgg_2024_05_004 crossref_primary_10_3390_ijms24054287 crossref_primary_10_3390_ijms26062387 crossref_primary_10_1111_jipb_13540 crossref_primary_10_1111_ppl_14366 crossref_primary_10_3390_plants13131794 |
Cites_doi | 10.1111/j.1365-313X.2005.02617.x 10.1105/tpc.112.099796 10.1186/1746-4811-1-13 10.1199/tab.0161 10.1111/j.1365-313X.2007.03310.x 10.1104/pp.106.086785 10.1016/j.isci.2019.04.005 10.1104/pp.109.141911 10.1111/tpj.12060 10.1104/pp.111.172320 10.1016/j.plipres.2012.10.002 10.1016/j.cub.2013.02.001 10.1105/tpc.111.084525 10.1046/j.1365-313X.2003.01676.x 10.1093/pcp/pcw147 10.1104/pp.113.222737 10.1016/j.pbi.2006.03.001 10.1111/tpj.13248 10.1016/j.molp.2016.04.001 10.1104/pp.108.123471 10.1371/journal.pgen.1008678 10.3389/fpls.2021.748543 10.1105/tpc.114.123307 10.1023/A:1006496308160 10.1016/0031-9422(95)00281-B 10.3390/ijms23084450 10.1126/science.208.4447.990 10.1104/pp.18.01075 10.1105/tpc.15.00829 10.4161/psb.26826 10.1073/pnas.0305574101 10.1016/0031-9422(75)85160-0 10.1111/j.1365-313X.2008.03467.x 10.1111/nph.16997 10.1105/tpc.111.083485 10.1104/pp.109.151704 10.1146/annurev.arplant.59.103006.093219 10.1105/tpc.111.088625 10.1111/j.1365-313X.2009.03892.x 10.1111/nph.16741 10.1093/pcp/pcy033 10.1104/pp.20.00913 10.1111/nph.16571 10.1046/j.1365-313x.2000.00712.x 10.1104/pp.107.107300 10.1093/pcp/pcx191 10.1111/j.1365-313X.2012.05049.x 10.1105/tpc.113.110783 10.1016/j.molp.2015.04.007 10.1105/tpc.104.022897 |
ContentType | Journal Article |
Copyright | 2022 The Authors. © 2022 New Phytologist Foundation. Copyright © 2022 New Phytologist Trust 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. |
Copyright_xml | – notice: 2022 The Authors. © 2022 New Phytologist Foundation. – notice: Copyright © 2022 New Phytologist Trust – notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. |
DBID | AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.18498 |
DatabaseName | CrossRef Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 2130 |
ExternalDocumentID | 10_1111_nph_18498 NPH18498 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 32170721; 31970730 – fundername: State Key Laboratory of Hybrid Rice funderid: KF202101 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3638-7c266e43f2843264ca99b3f9cbb4e9c9559e5dba13ef0df0fe3c6371de234ca63 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:28:46 EDT 2025 Fri Jul 11 05:04:31 EDT 2025 Sun Jul 13 04:42:54 EDT 2025 Tue Jul 01 02:28:43 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 Wed Jan 22 16:24:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3638-7c266e43f2843264ca99b3f9cbb4e9c9559e5dba13ef0df0fe3c6371de234ca63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0449-2471 0000-0003-0538-6646 0000-0002-6109-8860 |
PQID | 2737002604 |
PQPubID | 2026848 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2811975954 proquest_miscellaneous_2715445689 proquest_journals_2737002604 crossref_citationtrail_10_1111_nph_18498 crossref_primary_10_1111_nph_18498 wiley_primary_10_1111_nph_18498_NPH18498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Lancaster |
PublicationPlace_xml | – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 101 2007; 145 2013; 25 1975; 1914 2020; 184 2019; 31 2013; 23 2000; 22 2019; 15 2006; 9 2021; 229 2000; 42 2022; 23 2014; 26 2020; 16 2008; 59 2020; 228 2020; 227 2008; 54 2013; 163 2009; 151 2008; 148 2008; 53 2013; 8 2015; 8 2011; 156 2016; 57 2003; 33 2012; 72 1995; 40 2015; 27 1980; 208 2021; 12 2006; 45 2013; 11 2004; 16 2013; 73 2013; 52 2010; 152 2019; 179 2006; 142 2005; 1 2011; 23 2012; 24 2016; 9 2018; 59 2009; 59 2016; 88 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 Li RJ (e_1_2_8_30_1) 2019; 31 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 151 start-page: 1918 year: 2009 end-page: 1929 article-title: The impact of water deficiency on leaf cuticle lipids of Arabidopsis publication-title: Plant Physiology – volume: 179 start-page: 415 year: 2019 end-page: 432 article-title: Arabidopsis CER1‐LIKE1 functions in a cuticular very‐long‐chain alkane‐forming complex publication-title: Plant Physiology – volume: 72 start-page: 31 year: 2012 end-page: 42 article-title: Genome‐wide binding‐site analysis of REVOLUTA reveals a link between leaf patterning and light‐mediated growth responses publication-title: The Plant Journal – volume: 9 start-page: 926 year: 2016 end-page: 938 article-title: Dissecting abscisic acid signaling pathways involved in cuticle formation publication-title: Molecular Plant – volume: 184 start-page: 1998 year: 2020 end-page: 2010 article-title: Origins and evolution of cuticle biosynthetic machinery in land plants publication-title: Plant Physiology – volume: 25 start-page: 1609 year: 2013 end-page: 1624 article-title: MIXTA‐like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and publication-title: Plant Cell – volume: 59 start-page: 553 year: 2009 end-page: 564 article-title: Arabidopsis CER8 encodes LONG‐CHAIN ACYL‐COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis publication-title: The Plant Journal – volume: 8 start-page: 1274 year: 2015 end-page: 1284 article-title: A robust CRISPR/Cas9 system for convenient, high‐efficiency multiplex genome editing in monocot and dicot plants publication-title: Molecular Plant – volume: 9 start-page: 281 year: 2006 end-page: 287 article-title: Unraveling the complex network of cuticular structure and function publication-title: Current Opinion in Plant Biology – volume: 23 start-page: 1512 year: 2011 end-page: 1522 article-title: Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156‐targeted SPL transcription factor publication-title: Plant Cell – volume: 163 start-page: 5 year: 2013 end-page: 20 article-title: The formation and function of plant cuticles publication-title: Plant Physiology – volume: 54 start-page: 670 year: 2008 end-page: 683 article-title: Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels publication-title: The Plant Journal – volume: 22 start-page: 39 year: 2000 end-page: 50 article-title: Understanding carbon precursor supply for fatty acid synthesis in leaf tissue publication-title: The Plant Journal – volume: 148 start-page: 97 year: 2008 end-page: 107 article-title: Identification of the wax ester synthase/acyl‐coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis publication-title: Plant Physiology – volume: 33 start-page: 949 year: 2003 end-page: 956 article-title: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus publication-title: The Plant Journal – volume: 27 start-page: 3112 year: 2015 end-page: 3127 article-title: The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating genes in Arabidopsis publication-title: Plant Cell – volume: 227 start-page: 698 year: 2020 end-page: 713 article-title: Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress publication-title: New Phytologist – volume: 88 start-page: 257 year: 2016 end-page: 270 article-title: Cuticular wax biosynthesis is positively regulated by WRINKLED4, an AP2/ERF‐type transcription factor, in Arabidopsis stems publication-title: The Plant Journal – volume: 23 start-page: 1138 year: 2011 end-page: 1152 article-title: The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis publication-title: Plant Cell – volume: 228 start-page: 1880 year: 2020 end-page: 1896 article-title: GDSL lipase occluded stomatal pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation publication-title: New Phytologist – volume: 23 start-page: 4450 year: 2022 article-title: Arabidopsis and play redundant roles in wax synthesis publication-title: International Journal of Molecular Sciences – volume: 31 start-page: 2711 year: 2019 end-page: 2733 article-title: Diurnal regulation of plant epidermal wax synthesis through antagonistic roles of the transcription factors SPL9 and DEWAX publication-title: Plant Cell – volume: 23 start-page: 479 year: 2013 end-page: 484 article-title: A Dof transcription factor, SCAP1, is essential for the development of functional stomata in Arabidopsis publication-title: Current Biology – volume: 16 start-page: 2463 year: 2004 end-page: 2480 article-title: The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis publication-title: Plant Cell – volume: 52 start-page: 110 year: 2013 end-page: 129 article-title: Arabidopsis cuticular waxes: advances in synthesis, export and regulation publication-title: Progress in Lipid Research – volume: 1914 start-page: 921 year: 1975 end-page: 929 article-title: Effects of light and temperature on the composition of epicuticular wax of barley leaves publication-title: Phytochemistry – volume: 208 start-page: 990 year: 1980 end-page: 1000 article-title: Biopolyester membranes of plants: cutin and suberin publication-title: Science – volume: 23 start-page: 3392 year: 2011 end-page: 3411 article-title: CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis publication-title: Plant Cell – volume: 59 start-page: 966 year: 2018 end-page: 977 article-title: DEWAX2 transcription factor negatively regulates cuticular wax biosynthesis in Arabidopsis leaves publication-title: Plant Cell Physiology – volume: 42 start-page: 819 year: 2000 end-page: 832 article-title: pGreen: a versatile and flexible binary Ti vector for ‐mediated plant transformation publication-title: Plant Molecular Biology – volume: 156 start-page: 29 year: 2011 end-page: 45 article-title: Overexpression of Arabidopsis promotes wax very‐long‐chain alkane biosynthesis and influences plant response to biotic and abiotic stresses publication-title: Plant Physiology – volume: 26 start-page: 1666 year: 2014 end-page: 1680 article-title: Arabidopsis cuticular wax biosynthesis is negatively regulated by the gene encoding an AP2/ERF‐type transcription factor publication-title: Plant Cell – volume: 57 start-page: 2300 year: 2016 end-page: 2311 article-title: MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis publication-title: Plant Cell Physiology – volume: 16 year: 2020 article-title: Light affects tissue patterning of the hypocotyl in the shade‐avoidance response publication-title: PLoS Genetics – volume: 229 start-page: 2324 year: 2021 end-page: 2338 article-title: The land plant‐specific MIXTA‐MYB lineage is implicated in the early evolution of the plant cuticle and the colonization of land publication-title: New Phytologist – volume: 1 start-page: 13 year: 2005 article-title: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants publication-title: Plant Methods – volume: 24 start-page: 3106 year: 2012 end-page: 3118 article-title: Reconstitution of plant alkane biosynthesis in yeast demonstrates that ECERIFERUM1 and ECERIFERUM3 are core components of a very‐long‐chain alkane synthesis complex publication-title: Plant Cell – volume: 101 start-page: 4706 year: 2004 end-page: 4711 article-title: WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 142 start-page: 866 year: 2006 end-page: 877 article-title: CER4 encodes an alcohol‐forming fatty acyl‐coenzyme A reductase involved in cuticular wax production in Arabidopsis publication-title: Plant Physiology – volume: 53 start-page: 53 year: 2008 end-page: 64 article-title: Over‐expression of the Arabidopsis gene alters cell expansion and leaf surface permeability publication-title: The Plant Journal – volume: 152 start-page: 1109 year: 2010 end-page: 1134 article-title: Genome‐wide analysis of ethylene‐responsive element binding factor‐associated amphiphilic repression motif‐containing transcriptional regulators in Arabidopsis publication-title: Plant Physiology – volume: 15 start-page: 611 year: 2019 end-page: 622 article-title: Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity publication-title: iScience – volume: 59 start-page: 683 year: 2008 end-page: 707 article-title: Sealing plant surfaces: cuticular wax formation by epidermal cells publication-title: Annual Review of Plant Biology – volume: 12 year: 2021 article-title: Expression pattern and functional analyses of Arabidopsis guard cell‐enriched GDSL lipases publication-title: Frontiers in Plant Science – volume: 73 start-page: 733 year: 2013 end-page: 746 article-title: The Arabidopsis mutant, like the mutant, is specifically affected in the very long chain fatty acid elongation process publication-title: The Plant Journal – volume: 45 start-page: 616 year: 2006 end-page: 629 article-title: Gateway‐compatible vectors for plant functional genomics and proteomics publication-title: The Plant Journal – volume: 40 start-page: 407 year: 1995 end-page: 417 article-title: Effects of environment on the composition of epicuticular wax from kale and swede publication-title: Phytochemistry – volume: 145 start-page: 653 year: 2007 end-page: 667 article-title: The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis publication-title: Plant Physiology – volume: 8 year: 2013 article-title: The MIXTA‐like transcription factor MYB16 is a major regulator of cuticle formation in vegetative organs publication-title: Plant Signaling & Behavior – volume: 11 year: 2013 article-title: Acyl‐lipid metabolism publication-title: The Arabidopsis Book – volume: 59 year: 2018 article-title: ATTED‐II in 2018: a plant coexpression database based on investigation of the statistical property of the mutual rank index publication-title: Plant Cell Physiology – ident: e_1_2_8_11_1 doi: 10.1111/j.1365-313X.2005.02617.x – ident: e_1_2_8_4_1 doi: 10.1105/tpc.112.099796 – ident: e_1_2_8_18_1 doi: 10.1186/1746-4811-1-13 – volume: 31 start-page: 2711 year: 2019 ident: e_1_2_8_30_1 article-title: Diurnal regulation of plant epidermal wax synthesis through antagonistic roles of the transcription factors SPL9 and DEWAX publication-title: Plant Cell – ident: e_1_2_8_31_1 doi: 10.1199/tab.0161 – ident: e_1_2_8_9_1 doi: 10.1111/j.1365-313X.2007.03310.x – ident: e_1_2_8_43_1 doi: 10.1104/pp.106.086785 – ident: e_1_2_8_17_1 doi: 10.1016/j.isci.2019.04.005 – ident: e_1_2_8_26_1 doi: 10.1104/pp.109.141911 – ident: e_1_2_8_42_1 doi: 10.1111/tpj.12060 – ident: e_1_2_8_6_1 doi: 10.1104/pp.111.172320 – ident: e_1_2_8_5_1 doi: 10.1016/j.plipres.2012.10.002 – ident: e_1_2_8_35_1 doi: 10.1016/j.cub.2013.02.001 – ident: e_1_2_8_14_1 doi: 10.1105/tpc.111.084525 – ident: e_1_2_8_48_1 doi: 10.1046/j.1365-313X.2003.01676.x – ident: e_1_2_8_27_1 doi: 10.1093/pcp/pcw147 – ident: e_1_2_8_52_1 doi: 10.1104/pp.113.222737 – ident: e_1_2_8_34_1 doi: 10.1016/j.pbi.2006.03.001 – ident: e_1_2_8_40_1 doi: 10.1111/tpj.13248 – ident: e_1_2_8_10_1 doi: 10.1016/j.molp.2016.04.001 – ident: e_1_2_8_29_1 doi: 10.1104/pp.108.123471 – ident: e_1_2_8_39_1 doi: 10.1371/journal.pgen.1008678 – ident: e_1_2_8_50_1 doi: 10.3389/fpls.2021.748543 – ident: e_1_2_8_13_1 doi: 10.1105/tpc.114.123307 – ident: e_1_2_8_19_1 doi: 10.1023/A:1006496308160 – ident: e_1_2_8_46_1 doi: 10.1016/0031-9422(95)00281-B – ident: e_1_2_8_20_1 doi: 10.3390/ijms23084450 – ident: e_1_2_8_24_1 doi: 10.1126/science.208.4447.990 – ident: e_1_2_8_41_1 doi: 10.1104/pp.18.01075 – ident: e_1_2_8_16_1 doi: 10.1105/tpc.15.00829 – ident: e_1_2_8_37_1 doi: 10.4161/psb.26826 – ident: e_1_2_8_8_1 doi: 10.1073/pnas.0305574101 – ident: e_1_2_8_12_1 doi: 10.1016/0031-9422(75)85160-0 – ident: e_1_2_8_21_1 doi: 10.1111/j.1365-313X.2008.03467.x – ident: e_1_2_8_51_1 doi: 10.1111/nph.16997 – ident: e_1_2_8_45_1 doi: 10.1105/tpc.111.083485 – ident: e_1_2_8_22_1 doi: 10.1104/pp.109.151704 – ident: e_1_2_8_44_1 doi: 10.1146/annurev.arplant.59.103006.093219 – ident: e_1_2_8_49_1 doi: 10.1105/tpc.111.088625 – ident: e_1_2_8_32_1 doi: 10.1111/j.1365-313X.2009.03892.x – ident: e_1_2_8_47_1 doi: 10.1111/nph.16741 – ident: e_1_2_8_23_1 doi: 10.1093/pcp/pcy033 – ident: e_1_2_8_25_1 doi: 10.1104/pp.20.00913 – ident: e_1_2_8_28_1 doi: 10.1111/nph.16571 – ident: e_1_2_8_3_1 doi: 10.1046/j.1365-313x.2000.00712.x – ident: e_1_2_8_15_1 doi: 10.1104/pp.107.107300 – ident: e_1_2_8_36_1 doi: 10.1093/pcp/pcx191 – ident: e_1_2_8_7_1 doi: 10.1111/j.1365-313X.2012.05049.x – ident: e_1_2_8_38_1 doi: 10.1105/tpc.113.110783 – ident: e_1_2_8_33_1 doi: 10.1016/j.molp.2015.04.007 – ident: e_1_2_8_2_1 doi: 10.1105/tpc.104.022897 |
SSID | ssj0009562 |
Score | 2.5031521 |
Snippet | Summary
Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX... Plant cuticular wax accumulation limits nonstomatal transpiration and is regulated by external environmental stresses. DEWAX (DECREASE WAX BIOSYNTHESIS) plays... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2115 |
SubjectTerms | Arabidopsis Biosynthesis Cuticular wax DEWAX Dewaxing Diurnal diurnal cycle Diurnal variations Drought Drought resistance drought tolerance Environmental stress Epicuticular wax ethylene Genetic analysis Leaves light–dark changes Mutation MYS1 MYS2 Repressors Stresses Transcription transcription (genetics) Transcription factors transcription repressor Transpiration wax biosynthesis Waxes |
Title | Two Arabidopsis MYB‐SHAQKYF transcription repressors regulate leaf wax biosynthesis via transcriptional suppression on DEWAX |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18498 https://www.proquest.com/docview/2737002604 https://www.proquest.com/docview/2715445689 https://www.proquest.com/docview/2811975954 |
Volume | 236 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYQ4oGXbVymdcBkEA-8pGpj14m1p3KpKhBobCCKhBT5qlWgpGpabg9oP4HfuF-yYycpZWIITcqDJR87ju3j8zk-5zNCm2FkieINGlhmeEBpqAMZRjoQMWOakoZVPnzs8Ih1T-l-r9WbQV-rWJiCH2Lyw81phl-vnYILmU8peTr4WYftCXeBvs5XywGi7-EU4S4LKwZmRlmvZBVyXjyTks9t0RPAnIap3s503qOLqoWFe8llfTySdXX_F3njf37CB_SuxJ-4XUyYBTRj0kU0t50BRrxbQg8nNxnkCdnX2SDv5_jwfPv3r8cf3fbxwXkHj5xhq5YZPCycaLNhDkl_o73BV0ZYfCNusexn-V0K6NLVct0Xz8tCC_LxoPTBTTE8u3tn7d4yOu3snex0g_KGhkARUNwgUmDfDSUWjBzgQKoE55JYrqSkhivHbmdaWoomMbahbcMaohiJmtqEBIQZ-Yhm0yw1nxC2TMtYER6rpqQ2tDzmTFh3qkpMJIWuoa1qrBJV0pe7WzSukmobA72Z-N6soY2J6KDg7HhJaLUa8KRU2zyBl0WeZY3W0PokGxTOnaKI1GRjJ-MJjFjMX5GJ3elsi7egni0_A_7dkOToW9cnPr9ddAXNhy4Mw7vVrKLZ0XBs1gAcjeQXrwV_AI25Dtc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aGxK8cEcUBvMQD3tJ1cauE0t76diqwNaKSye6BxT5qlWbkqpp2cYD4ifwG_kls52kdAgmhJQHSzl2HNufz7F9_B2AV2FksGQtEhiqWUBIqAIRRirgMaWK4JaR_vpYf0CTQ_J21BmtwHZ9F6bkh1hsuDlk-PnaAdxtSC-hPJscN-36hMU3YM1F9PYLqg_hEuUuDWsOZkroqOIVcn48i6xXtdEvE3PZUPWapncXPtd1LB1MTprzmWjKr7_RN_7vT9yDO5UJirrlmLkPKzp7ADd3cmsmXjyEb8Oz3L7jYqzySTEuUP9o5-f3Hx-T7vv9ox6aOd1WzzRoWvrR5tPCJn1Qe41ONTfojJ8jMc6Li8wamK6UL2N-Na-tQTGfVG64GbLP7t6n7ugRHPb2hq-ToArSEEhssRtE0qp4TbCxes6agkRyxgQ2TApBNJOO4E53lOBtrE1LmZbRWFIctZUOsRWm-DGsZnmmnwAyVIlYYhbLtiAmNCxmlBt3sIp1JLhqwFbdWamsGMxdII3TtF7J2NZMfWs24OVCdFLSdvxJaL3u8bRCbpHaj0WeaI00YHPx2mLOHaTwTOdzJ-M5jGjMrpGJ3QFth3VsOVt-CPy9IungXeITT_9ddANuJcP-QXrwZrD_DG6H7laG97JZh9XZdK6fW1tpJl54SFwCXAcS8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFD4aAyFuNn5FtwEGcbGbVGnsOrG46uiqwlg1YBOdNCnyr6g2JVHTso0LxCPwjDwJtpOUDgFCSLmw5GPnxPbncxwffwZ4HsUGSxaSwFDNAkIiFYgoVgFPKFUEh0b642P7Izo8Iq_H3fEKvGjOwlT8EIsfbg4Zfr52AC-UWQJ5Vnxs2-UJS67BdULDxA3p_rtoiXGXRg0FMyV0XNMKuTCeRdGrxuinh7nsp3pDM1iHk0bFKr7ktD2fibb8_At7439-w21Yqx1Q1KtGzB1Y0dlduLGTWyfx8h58OTzPbR4XE5UX5aRE-8c7379-ez_svd07HqCZs2zNPIOmVRRtPi1t0l9pr9GZ5gad8wskJnl5mVn30tXyacKvlrUalPOiDsLNkH36ux964_twNNg9fDkM6isaAoktcoNYWgOvCTbWyllHkEjOmMCGSSGIZtLR2-muEryDtQmVCY3GkuK4o3SErTDFD2A1yzP9EJChSiQSs0R2BDGRYQmj3LhtVaxjwVULtpu-SmXNX-6u0ThLm3WMbc3Ut2YLni1Ei4q043dCW02HpzVuy9S-LPY0a6QFTxfZFnFuG4VnOp87Gc9gRBP2F5nEbc92WdfWs-1HwJ8VSUcHQ5_Y-HfRJ3DzoD9I37wa7W3CrcgdyfAhNluwOpvO9SPrKM3EYw-IHz8UEao |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Arabidopsis+MYB%E2%80%90SHAQKYF+transcription+repressors+regulate+leaf+wax+biosynthesis+via+transcriptional+suppression+on+DEWAX&rft.jtitle=The+New+phytologist&rft.au=Liu%2C+Qing&rft.au=Huang%2C+Haodong&rft.au=Chen%2C+Yongqiang&rft.au=Yue%2C+Zhichuang&rft.date=2022-12-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=236&rft.issue=6&rft.spage=2115&rft.epage=2130&rft_id=info:doi/10.1111%2Fnph.18498&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_18498 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |