In vitro exposure of pig neonatal isletlike cell clusters to human blood
Background Pig islet grafts have been successful in treating diabetes in animal models. One remaining question is whether neonatal pig isletlike cell clusters (NICC) are resistant to the early loss of islets from the instant blood‐mediated inflammatory reaction (IBMIR). Methods Neonatal isletlike ce...
Saved in:
Published in | Xenotransplantation (Københaven) Vol. 22; no. 4; pp. 317 - 324 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Denmark
Blackwell Publishing Ltd
01.07.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0908-665X 1399-3089 1399-3089 |
DOI | 10.1111/xen.12178 |
Cover
Abstract | Background
Pig islet grafts have been successful in treating diabetes in animal models. One remaining question is whether neonatal pig isletlike cell clusters (NICC) are resistant to the early loss of islets from the instant blood‐mediated inflammatory reaction (IBMIR).
Methods
Neonatal isletlike cell clusters were harvested from three groups of piglets—(i) wild‐type (genetically unmodified), (ii) α1,3‐galactosyltransferase gene‐knockout (GTKO)/CD46, and (iii) GTKO/CD46/CD39. NICC samples were mixed with human blood in vitro, and the following measurements were made—antibody binding; complement activation; speed of islet‐induced coagulation; C‐peptide; glutamic acid decarboxylase (GAD65) release; viability.
Results
Time to coagulation and viability were both reduced in all groups compared to freshly drawn non‐anticoagulated human blood and autologous combinations, respectively. Antibody binding to the NICC occurred in all groups.
Conclusions
Neonatal isletlike cell clusters were subject to humoral injury with no difference associated to their genetic characteristics. |
---|---|
AbstractList | Pig islet grafts have been successful in treating diabetes in animal models. One remaining question is whether neonatal pig isletlike cell clusters (NICC) are resistant to the early loss of islets from the instant blood-mediated inflammatory reaction (IBMIR).
Neonatal isletlike cell clusters were harvested from three groups of piglets-(i) wild-type (genetically unmodified), (ii) α1,3-galactosyltransferase gene-knockout (GTKO)/CD46, and (iii) GTKO/CD46/CD39. NICC samples were mixed with human blood in vitro, and the following measurements were made-antibody binding; complement activation; speed of islet-induced coagulation; C-peptide; glutamic acid decarboxylase (GAD65) release; viability.
Time to coagulation and viability were both reduced in all groups compared to freshly drawn non-anticoagulated human blood and autologous combinations, respectively. Antibody binding to the NICC occurred in all groups.
Neonatal isletlike cell clusters were subject to humoral injury with no difference associated to their genetic characteristics. Pig islet grafts have been successful in treating diabetes in animal models. One remaining question is whether neonatal pig isletlike cell clusters (NICC) are resistant to the early loss of islets from the instant blood-mediated inflammatory reaction (IBMIR).BACKGROUNDPig islet grafts have been successful in treating diabetes in animal models. One remaining question is whether neonatal pig isletlike cell clusters (NICC) are resistant to the early loss of islets from the instant blood-mediated inflammatory reaction (IBMIR).Neonatal isletlike cell clusters were harvested from three groups of piglets-(i) wild-type (genetically unmodified), (ii) α1,3-galactosyltransferase gene-knockout (GTKO)/CD46, and (iii) GTKO/CD46/CD39. NICC samples were mixed with human blood in vitro, and the following measurements were made-antibody binding; complement activation; speed of islet-induced coagulation; C-peptide; glutamic acid decarboxylase (GAD65) release; viability.METHODSNeonatal isletlike cell clusters were harvested from three groups of piglets-(i) wild-type (genetically unmodified), (ii) α1,3-galactosyltransferase gene-knockout (GTKO)/CD46, and (iii) GTKO/CD46/CD39. NICC samples were mixed with human blood in vitro, and the following measurements were made-antibody binding; complement activation; speed of islet-induced coagulation; C-peptide; glutamic acid decarboxylase (GAD65) release; viability.Time to coagulation and viability were both reduced in all groups compared to freshly drawn non-anticoagulated human blood and autologous combinations, respectively. Antibody binding to the NICC occurred in all groups.RESULTSTime to coagulation and viability were both reduced in all groups compared to freshly drawn non-anticoagulated human blood and autologous combinations, respectively. Antibody binding to the NICC occurred in all groups.Neonatal isletlike cell clusters were subject to humoral injury with no difference associated to their genetic characteristics.CONCLUSIONSNeonatal isletlike cell clusters were subject to humoral injury with no difference associated to their genetic characteristics. Background Pig islet grafts have been successful in treating diabetes in animal models. One remaining question is whether neonatal pig isletlike cell clusters (NICC) are resistant to the early loss of islets from the instant blood‐mediated inflammatory reaction (IBMIR). Methods Neonatal isletlike cell clusters were harvested from three groups of piglets—(i) wild‐type (genetically unmodified), (ii) α1,3‐galactosyltransferase gene‐knockout (GTKO)/CD46, and (iii) GTKO/CD46/CD39. NICC samples were mixed with human blood in vitro, and the following measurements were made—antibody binding; complement activation; speed of islet‐induced coagulation; C‐peptide; glutamic acid decarboxylase (GAD65) release; viability. Results Time to coagulation and viability were both reduced in all groups compared to freshly drawn non‐anticoagulated human blood and autologous combinations, respectively. Antibody binding to the NICC occurred in all groups. Conclusions Neonatal isletlike cell clusters were subject to humoral injury with no difference associated to their genetic characteristics. |
Author | Ayares, David Hara, Hidetaka Trucco, Massimo Bertera, Suzanne Rayat, Gina R. Cooper, David K. C. Bottino, Rita Tanaka, Takayuki Wijkstrom, Martin Nagaraju, Santosh |
Author_xml | – sequence: 1 givenname: Santosh surname: Nagaraju fullname: Nagaraju, Santosh organization: Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, PA, Pittsburgh, USA – sequence: 2 givenname: Suzanne surname: Bertera fullname: Bertera, Suzanne organization: Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA, Pittsburgh, USA – sequence: 3 givenname: Takayuki surname: Tanaka fullname: Tanaka, Takayuki organization: Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, PA, Pittsburgh, USA – sequence: 4 givenname: Hidetaka surname: Hara fullname: Hara, Hidetaka organization: Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, PA, Pittsburgh, USA – sequence: 5 givenname: Gina R. surname: Rayat fullname: Rayat, Gina R. organization: Department of Surgery, University of Alberta, AB, Edmonton, Canada – sequence: 6 givenname: Martin surname: Wijkstrom fullname: Wijkstrom, Martin organization: Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, PA, Pittsburgh, USA – sequence: 7 givenname: David surname: Ayares fullname: Ayares, David organization: Revivicor, Inc., VA, Blacksburg, USA – sequence: 8 givenname: Massimo surname: Trucco fullname: Trucco, Massimo organization: Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA, Pittsburgh, USA – sequence: 9 givenname: David K. C. surname: Cooper fullname: Cooper, David K. C. organization: Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, PA, Pittsburgh, USA – sequence: 10 givenname: Rita surname: Bottino fullname: Bottino, Rita email: rbottino@wpahs.org organization: Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA, Pittsburgh, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26179209$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtOwzAQRS0EgvJY8APIS1gE_EjiZAkVpTwEQgLBznLSMRjcuNgOlL8npS0LBLPxLM65Gt9NtNq4BhDapeSQdnM0heaQMiqKFdSjvCwTTopyFfVISYokz7PHDbQZwgshhGdFto42WE5FyUjZQ8PzBr-b6B2G6cSF1gN2Gk_ME27ANSoqi02wEK15BVyDtbi2bYjgA44OP7dj1eDKOjfaRmta2QA7i3cL3Q9O7_rD5Orm7Lx_fJXUPOdFkmrOaE1VTtNUV6MqLYDlBVWEjYhIWZ6qSuk005BRYAxY1i2VFlxXQtQqpXwL7c9zJ969tRCiHJswO0x1B7dBUkEIJRkXM3RvgbbVGEZy4s1Y-U-5_H0HHM2B2rsQPGhZm6iicU30ylhJiZz1K7t-5Xe_nXHwy1iG_sUu0j-Mhc__Qfl4er00krlhuoanP4byrzIXXGTy4fpMFvx2eDK4vJAD_gX_oZhY |
CitedBy_id | crossref_primary_10_1016_j_ijsu_2019_07_032 crossref_primary_10_1111_xen_12663 crossref_primary_10_1097_TXD_0000000000000590 crossref_primary_10_1111_xen_12197 crossref_primary_10_3389_fmed_2021_660877 crossref_primary_10_3389_fimmu_2022_854883 crossref_primary_10_3389_fimmu_2024_1366530 crossref_primary_10_3389_ti_2024_13122 crossref_primary_10_3727_096368917X694859 crossref_primary_10_1002_advs_202401385 crossref_primary_10_1111_xen_12229 crossref_primary_10_1111_xen_12219 |
Cites_doi | 10.1111/j.1399-3089.2008.00482.x 10.1111/j.1399-3089.2007.00384.x 10.1111/j.1399-3089.2004.00121.x 10.1097/TP.0000000000000069 10.2337/diabetes.54.2.443 10.1155/2008/961421 10.1084/jem.160.5.1519 10.3727/000000005783983034 10.1038/icb.2008.107 10.2337/diabetes.48.10.1907 10.1111/xen.12019 10.1517/03009734000000059 10.1677/joe.0.1770127 10.1097/00007890-199903150-00018 10.1111/j.1399-3089.2007.00419.x 10.2337/db12-0033 10.1136/bmj.287.6405.1578 10.1111/j.1600-6143.2012.04031.x 10.1016/j.transproceed.2004.11.062 10.1016/S0140-6736(94)90570-3 10.1111/j.1600-6143.2007.01933.x 10.1097/MOT.0b013e3283449dec 10.1097/TP.0b013e3182106091 10.1126/science.1078942 10.1006/jaut.1996.0004 10.1111/j.1600-6143.2009.02850.x 10.1016/j.transproceed.2005.09.038 10.1097/01.TP.0000157273.60147.7C 10.2337/diabetes.47.9.1406 10.1111/j.1399-3089.2006.00335.x 10.3727/096368912X662372 10.1111/ajt.12744 10.1034/j.1399-3089.2002.0o128.x 10.1111/j.1600-6143.2011.03720.x 10.1038/nm1369 10.1111/xen.12130 10.1111/j.1365-2249.2010.04273.x 10.1056/NEJM200007273430401 10.1016/j.transproceed.2004.04.038 10.1097/01.tp.0000238677.00750.32 10.1111/ajt.12558 10.3727/096368912X653011 10.1111/j.1399-3089.2005.00206.x 10.1155/2011/560850 10.1111/ajt.12722 10.1111/j.1399-0012.1992.tb00614.x 10.1111/ajt.12868 10.1097/00007890-200003150-00007 10.1172/JCI118649 10.1016/S0140-6736(11)61091-X |
ContentType | Journal Article |
Copyright | 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/xen.12178 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1399-3089 |
EndPage | 324 |
ExternalDocumentID | 26179209 10_1111_xen_12178 XEN12178 ark_67375_WNG_83QHBFKJ_F |
Genre | shortCommunication Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Department of Defense funderid: W81XWH‐06‐1‐0317 – fundername: NIH funderid: #U19 AI090959‐01; #U01 AI068642; #R21 A1074844 – fundername: University of Pittsburgh – fundername: Revivicor, Inc., Blacksburg, VA – fundername: JDRF funderid: 6‐2005‐1180 – fundername: NIAID NIH HHS grantid: U01 AI068642 – fundername: NIAID NIH HHS grantid: U19 AI090959-01 – fundername: PHS HHS grantid: R21 A1074844 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHBH AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FD6 FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HKTDT HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH YUY ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3638-4f321c1a6144fbdb48e2681a02d074264abaf45fe51e22e25e51bf73fb77ca413 |
IEDL.DBID | DR2 |
ISSN | 0908-665X 1399-3089 |
IngestDate | Fri Sep 05 03:18:01 EDT 2025 Tue Jul 15 03:06:20 EDT 2025 Thu Jul 03 08:35:14 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Wed Jan 22 16:34:21 EST 2025 Wed Oct 30 09:49:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | pigs genetically engineered islets neonatal instant blood-mediated inflammatory reaction diabetes mellitus xenotransplantation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3638-4f321c1a6144fbdb48e2681a02d074264abaf45fe51e22e25e51bf73fb77ca413 |
Notes | Revivicor, Inc., Blacksburg, VA ArticleID:XEN12178 University of Pittsburgh JDRF - No. 6-2005-1180 NIH - No. #U19 AI090959-01; No. #U01 AI068642; No. #R21 A1074844 istex:B877BD30A139607F898FD42912FFAA7F4DD615EA ark:/67375/WNG-83QHBFKJ-F Department of Defense - No. W81XWH-06-1-0317 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26179209 |
PQID | 1700105371 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1700105371 pubmed_primary_26179209 crossref_citationtrail_10_1111_xen_12178 crossref_primary_10_1111_xen_12178 wiley_primary_10_1111_xen_12178_XEN12178 istex_primary_ark_67375_WNG_83QHBFKJ_F |
PublicationCentury | 2000 |
PublicationDate | 2015-07 July/August 2015 2015-07-00 2015 Jul-Aug 20150701 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07 |
PublicationDecade | 2010 |
PublicationPlace | Denmark |
PublicationPlace_xml | – name: Denmark |
PublicationTitle | Xenotransplantation (Københaven) |
PublicationTitleAlternate | Xenotransplantation |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Korbutt GS, Elliott JF, Ao Z et al. Large scale isolation, growth, and function of porcine neonatal islet cells. J Clin Invest 1996; 97: 2119-2129. Luca G, Nastruzzi C, Calvitti M et al. Accelerated functional maturation of isolated neonatal porcine cell clusters: in vitro and In vivo results in NOD mice. Cell Transplant 2005; 14: 249-261. Naziruddin B, Iwahashi S, Kanak MA et al. Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. Am J Transplant 2014; 14: 428-437. van der Windt DJ, Bottino R, Casu A et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with CD46 transgenic porcine islets. Am J Transplant 2009; 9: 2716-2726. Elliott RB. Towards xenotransplantation of pig islets in the clinic. Curr Opin Organ Transplant 2011; 16: 195-200. Ekser B, Ezzelarab M, Hara H et al. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379: 672-683. Hering BJ, Wijkstrom M, Graham ML et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med 2006; 12: 301-303. Goto M, Tjernberg J, Dufrane D et al. Dissecting the instant blood mediated inflammatory reaction in islet xenotransplantation. Xenotransplantation 2008; 15: 225-234. Elliott RB, Escobar L, Tan PL et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc 2005; 37: 3505-3508. Valdes-Gonzalez R, Rodriguez-Ventura AL, White DJ et al. Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets. Clin Exp Immunol 2010; 162: 537-542. Kang HJ, Lee H, Ha J et al. The role of the alternative complement pathway in early graft loss after intraportal porcine islet xenotransplantation. Transplantation 2014; 97: 999-1008. Hawthorne WJ, Salvaris EJ, Phillips P et al. Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. Am J Transplant 2014; 14: 1300-1309. van der Windt DJ, Bottino R, Casu A, Campanile N, Cooper DKC. Rapid loss of intraportally-transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation 2007; 14: 288-297. Shapiro AM, Lakey JR, Ryan EA et al. Islet transplantation in seven patients with Type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343: 230-238. Ji M, Yi S, Smith-Hurst H et al. The importance of tissue factor expression by porcine NICC in triggering IBMIR in the xenograft setting. Transplantation 2011; 91: 841-846. Wang W, Mo Z, Ye B et al. A clinical trial of xenotransplantation of neonatal pig islets for diabetic patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2011; 36: 1134-1140. Arefanian H, Tredget EB, Mok DCM et al. Characterization of the cell composition and function of islets isolated from different ages of newborn pigs. Xenotransplantation 2009; 16: 355. Thompson P, Badell IR, Lowe M et al. Islet xenotransplantation using Gal-deficient neonatal donors improves engraftment and function. Am J Transplant 2011; 11: 2593-2602. van der Windt DJ, Bottino R, Kumar G et al. Clinical islet xenotransplantation - how close are we? Diabetes 2012; 61: 3046-3055. Bennet W, Sundberg B, Groth CG et al. Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical transplantation? Diabetes 1999; 48: 1907-1914. Cowan PJ, d'Apice AJF. Complement activation and coagulation in xenotransplantation. Immunol Cell Biol 2009; 87: 203-208. Lutz AJ, Li P, Estrada JL et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 2013; 20: 27-35. Komoda H, Miyagawa S, Kubo T et al. A study of the xenoantigenicity of adult pig islets cells. Xenotransplantation 2004; 11: 237-246. Phelps CJ, Koike C, Vaught TD et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 2003; 299: 411-414. Cooper DKC. Depletion of natural antibodies in non-human primates - a step towards successful discordant xenografting in humans. Clin Transplant 1992; 6: 178-183. Elliott RB, Escobar L, Tan PL et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 2007; 14: 157-161. Park JY, Park MR, Kwon DN et al. Alpha 1,3-Galactosyltransferase deficiency in pigs increases sialyltransferase activities that potentially raise non-Gal xenogenicity. J Biomed Biotechnol 2011; 2011: 56085. Nagaraju S, Bottino R, Wijkstrom M, Trucco M, Cooper DK. Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation 2015; 22: 7-19. Lamb M, Laugenour K, Liang O et al. In vitro maturation of viable islets from partially digested young pig pancreas. Cell Transplant 2014; 23: 263-272. Thompson P, Badell IR, Lowe M et al. Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival. Am J Transplant 2012; 12: 1765-1775. Omori T, Nishida T, Komoda H et al. A study of the xenoantigenicity of neonatal porcine islet-like cell clusters (NPCC) and the efficiency of adenovirus-mediated DAF (CD55) expression. Xenotransplantation 2006; 13: 455-464. Burlak C, Paris LL, Lutz AJ et al. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs. Am J Transplant 2014; 14: 1895-1900. Cardona K, Korbutt GS, Milas Z et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med 2006; 12: 304-306. Rayat GR, Rajotte RV, Elliott JF, Korbutt GS. Expression of Gal alpha(1,3)gal on neonatal porcine islet beta-cells and susceptibility to human antibody/complement lysis. Diabetes 1998; 47: 1406-1411. Schlosser M, Walschus U, Klöting I, Walther R. Determination of glutamic acid decarboxylase (GAD65) in pancreatic islets and its in vitro and in vivo degradation kinetics in serum using a highly sensitive enzyme immunoassay. Dis Markers 2008; 24: 191-198. Korsgren O, Nilsson B, Berne C et al. Current status of clinical islet transplantation. Transplantation 2005; 79: 1289-1293. Cardona K, Milas Z, Strobert E et al. Engraftment of adult porcine islet xenografts in diabetic nonhuman primates through targeting of costimulation pathways. Am J Transplant 2007; 7: 2260-2268. Bottino R, Wijkstrom M, van der Windt DJ et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant 2014; 14: 2275-2287. Rayat GR, Gill RG. Indefinite survival of neonatal porcine islet xenografts by simultaneous targeting of LFA-1 and CD154 or CD45RB. Diabetes 2005; 54: 443-451. Greene SA, Smith MA, Cartwright B, Baum JD. Comparison of human versus porcine insulin in treatment of diabetes in children. Br Med J (Clin Res Ed) 1983; 287: 1578-1579. Juang JH, Hsu BRS, Kuo CH et al. Characteristics and transplantation of the porcine neonatal pancreatic cell clusters isolated from 1- to 3-day-old versus 1- month-old pigs. Transplant Proc 2004; 36: 1203-1205. Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med 1984; 160: 1519-1531. Emamaullee JA, Shapiro AM, Rajotte RV, Korbutt G, Elliott JF. Neonatal porcine islets exhibit natural resistance to hypoxia-induced apoptosis. Transplantation 2006; 82: 945-952. Vizzardelli C, Molano RD, Pileggi A et al. Neonatal porcine pancreatic cell clusters as a potential source for transplantation in humans: characterization of proliferation, apoptosis, xenoantigen expression and gene delivery with recombinant AAV. Xenotransplantation 2002; 9: 14-24. Reddy S, Wu D, Poole CA. Glutamic acid decarboxylase 65 and 67 isoforms in fetal, neonatal and adult porcine islets: predominant beta cell co-localization by light and confocal microscopy. J Autoimmun 1996; 9: 21-27. Bennet W, Sundberg B, Lundgren T et al. Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin. Transplantation 2000; 69: 711-719. Bennet W, Groth CG, Larsson R, Nilsson B, Korsgren O. Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Ups J Med Sci 2000; 105: 125-133. Groth CG, Korsgren O, Tibell A et al. Transplantation of porcine fetal pancreas to diabetic patients. Lancet 1994; 344: 1402-1404. Bloch K, Assa S, Lazard D et al. Neonatal pig islets induce a lower T-cell response than adult pig islets in IDDM patients. Transplantation 1999; 67: 748-752. Rayat GR, Rajotte RV, Hering BJ, Binette TM, Korbutt GS. In vitro and in vivo expression of Galalpha-(1,3)Gal on porcine islet cells is age dependent. J Endocrinol 2003; 177: 127-135. Good AH, Cooper DKC, Malcolm AJ et al. Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in man. Transplant Proc 1992; 24: 559-562. van der Windt DJ, Marigliano M, He J et al. Early islet damage after direct exposure of pig islets to blood: has humoral immunity been underestimated? Cell Transplant 2012; 21: 1791-1802. Isaac JR, Skinner S, Elliot R et al. Transplantation of neonatal porcine islets and sertoli cells into nonimmunosuppressed nonhuman primates. Transplant Proc 2005; 37: 487-488. 2012; 61 1984; 160 2009; 87 2006; 12 2002; 9 2000; 69 2006; 13 1999; 48 2013; 20 1999; 67 2008; 15 2011; 11 2010; 162 2011; 36 2011; 16 2012; 12 2003; 299 2014; 23 2003; 177 2007; 14 1996; 97 1998; 47 1992; 6 1994; 344 2006; 82 2004; 11 2011; 2011 1983; 287 2011; 91 2000; 105 2004; 36 2015; 22 2009; 9 2014; 14 2007; 7 2005; 54 2008; 24 1992; 24 2000; 343 2005; 37 2012; 379 2009; 16 2012; 21 1996; 9 2005; 79 2005; 14 2014; 97 e_1_2_8_28_1 Arefanian H (e_1_2_8_23_1) 2009; 16 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 Cooper DKC (e_1_2_8_37_1) 1992; 6 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 Rayat GR (e_1_2_8_35_1) 2003; 177 e_1_2_8_36_1 e_1_2_8_15_1 Wang W (e_1_2_8_13_1) 2011; 36 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 Bennet W (e_1_2_8_47_1) 2000; 69 e_1_2_8_30_1 e_1_2_8_29_1 Good AH (e_1_2_8_38_1) 1992; 24 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – reference: Lamb M, Laugenour K, Liang O et al. In vitro maturation of viable islets from partially digested young pig pancreas. Cell Transplant 2014; 23: 263-272. – reference: Bennet W, Groth CG, Larsson R, Nilsson B, Korsgren O. Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Ups J Med Sci 2000; 105: 125-133. – reference: Korsgren O, Nilsson B, Berne C et al. Current status of clinical islet transplantation. Transplantation 2005; 79: 1289-1293. – reference: Groth CG, Korsgren O, Tibell A et al. Transplantation of porcine fetal pancreas to diabetic patients. Lancet 1994; 344: 1402-1404. – reference: Cardona K, Milas Z, Strobert E et al. Engraftment of adult porcine islet xenografts in diabetic nonhuman primates through targeting of costimulation pathways. Am J Transplant 2007; 7: 2260-2268. – reference: van der Windt DJ, Bottino R, Casu A, Campanile N, Cooper DKC. Rapid loss of intraportally-transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation 2007; 14: 288-297. – reference: Hering BJ, Wijkstrom M, Graham ML et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med 2006; 12: 301-303. – reference: Komoda H, Miyagawa S, Kubo T et al. A study of the xenoantigenicity of adult pig islets cells. Xenotransplantation 2004; 11: 237-246. – reference: Schlosser M, Walschus U, Klöting I, Walther R. Determination of glutamic acid decarboxylase (GAD65) in pancreatic islets and its in vitro and in vivo degradation kinetics in serum using a highly sensitive enzyme immunoassay. Dis Markers 2008; 24: 191-198. – reference: Elliott RB, Escobar L, Tan PL et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc 2005; 37: 3505-3508. – reference: Elliott RB, Escobar L, Tan PL et al. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 2007; 14: 157-161. – reference: Isaac JR, Skinner S, Elliot R et al. Transplantation of neonatal porcine islets and sertoli cells into nonimmunosuppressed nonhuman primates. Transplant Proc 2005; 37: 487-488. – reference: Bennet W, Sundberg B, Lundgren T et al. Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin. Transplantation 2000; 69: 711-719. – reference: Bennet W, Sundberg B, Groth CG et al. Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical transplantation? Diabetes 1999; 48: 1907-1914. – reference: Emamaullee JA, Shapiro AM, Rajotte RV, Korbutt G, Elliott JF. Neonatal porcine islets exhibit natural resistance to hypoxia-induced apoptosis. Transplantation 2006; 82: 945-952. – reference: Good AH, Cooper DKC, Malcolm AJ et al. Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in man. Transplant Proc 1992; 24: 559-562. – reference: Ekser B, Ezzelarab M, Hara H et al. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379: 672-683. – reference: Wang W, Mo Z, Ye B et al. A clinical trial of xenotransplantation of neonatal pig islets for diabetic patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2011; 36: 1134-1140. – reference: van der Windt DJ, Marigliano M, He J et al. Early islet damage after direct exposure of pig islets to blood: has humoral immunity been underestimated? Cell Transplant 2012; 21: 1791-1802. – reference: Lutz AJ, Li P, Estrada JL et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 2013; 20: 27-35. – reference: Juang JH, Hsu BRS, Kuo CH et al. Characteristics and transplantation of the porcine neonatal pancreatic cell clusters isolated from 1- to 3-day-old versus 1- month-old pigs. Transplant Proc 2004; 36: 1203-1205. – reference: Rayat GR, Rajotte RV, Hering BJ, Binette TM, Korbutt GS. In vitro and in vivo expression of Galalpha-(1,3)Gal on porcine islet cells is age dependent. J Endocrinol 2003; 177: 127-135. – reference: Omori T, Nishida T, Komoda H et al. A study of the xenoantigenicity of neonatal porcine islet-like cell clusters (NPCC) and the efficiency of adenovirus-mediated DAF (CD55) expression. Xenotransplantation 2006; 13: 455-464. – reference: Naziruddin B, Iwahashi S, Kanak MA et al. Evidence for instant blood-mediated inflammatory reaction in clinical autologous islet transplantation. Am J Transplant 2014; 14: 428-437. – reference: Hawthorne WJ, Salvaris EJ, Phillips P et al. Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. Am J Transplant 2014; 14: 1300-1309. – reference: Nagaraju S, Bottino R, Wijkstrom M, Trucco M, Cooper DK. Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation 2015; 22: 7-19. – reference: Korbutt GS, Elliott JF, Ao Z et al. Large scale isolation, growth, and function of porcine neonatal islet cells. J Clin Invest 1996; 97: 2119-2129. – reference: Luca G, Nastruzzi C, Calvitti M et al. Accelerated functional maturation of isolated neonatal porcine cell clusters: in vitro and In vivo results in NOD mice. Cell Transplant 2005; 14: 249-261. – reference: Arefanian H, Tredget EB, Mok DCM et al. Characterization of the cell composition and function of islets isolated from different ages of newborn pigs. Xenotransplantation 2009; 16: 355. – reference: Reddy S, Wu D, Poole CA. Glutamic acid decarboxylase 65 and 67 isoforms in fetal, neonatal and adult porcine islets: predominant beta cell co-localization by light and confocal microscopy. J Autoimmun 1996; 9: 21-27. – reference: Burlak C, Paris LL, Lutz AJ et al. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs. Am J Transplant 2014; 14: 1895-1900. – reference: Ji M, Yi S, Smith-Hurst H et al. The importance of tissue factor expression by porcine NICC in triggering IBMIR in the xenograft setting. Transplantation 2011; 91: 841-846. – reference: Goto M, Tjernberg J, Dufrane D et al. Dissecting the instant blood mediated inflammatory reaction in islet xenotransplantation. Xenotransplantation 2008; 15: 225-234. – reference: Bottino R, Wijkstrom M, van der Windt DJ et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant 2014; 14: 2275-2287. – reference: Kang HJ, Lee H, Ha J et al. The role of the alternative complement pathway in early graft loss after intraportal porcine islet xenotransplantation. Transplantation 2014; 97: 999-1008. – reference: Cardona K, Korbutt GS, Milas Z et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med 2006; 12: 304-306. – reference: Cowan PJ, d'Apice AJF. Complement activation and coagulation in xenotransplantation. Immunol Cell Biol 2009; 87: 203-208. – reference: Thompson P, Badell IR, Lowe M et al. Islet xenotransplantation using Gal-deficient neonatal donors improves engraftment and function. Am J Transplant 2011; 11: 2593-2602. – reference: Thompson P, Badell IR, Lowe M et al. Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival. Am J Transplant 2012; 12: 1765-1775. – reference: Elliott RB. Towards xenotransplantation of pig islets in the clinic. Curr Opin Organ Transplant 2011; 16: 195-200. – reference: Shapiro AM, Lakey JR, Ryan EA et al. Islet transplantation in seven patients with Type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343: 230-238. – reference: Valdes-Gonzalez R, Rodriguez-Ventura AL, White DJ et al. Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets. Clin Exp Immunol 2010; 162: 537-542. – reference: Rayat GR, Gill RG. Indefinite survival of neonatal porcine islet xenografts by simultaneous targeting of LFA-1 and CD154 or CD45RB. Diabetes 2005; 54: 443-451. – reference: Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med 1984; 160: 1519-1531. – reference: Greene SA, Smith MA, Cartwright B, Baum JD. Comparison of human versus porcine insulin in treatment of diabetes in children. Br Med J (Clin Res Ed) 1983; 287: 1578-1579. – reference: Bloch K, Assa S, Lazard D et al. Neonatal pig islets induce a lower T-cell response than adult pig islets in IDDM patients. Transplantation 1999; 67: 748-752. – reference: Vizzardelli C, Molano RD, Pileggi A et al. Neonatal porcine pancreatic cell clusters as a potential source for transplantation in humans: characterization of proliferation, apoptosis, xenoantigen expression and gene delivery with recombinant AAV. Xenotransplantation 2002; 9: 14-24. – reference: van der Windt DJ, Bottino R, Kumar G et al. Clinical islet xenotransplantation - how close are we? Diabetes 2012; 61: 3046-3055. – reference: Park JY, Park MR, Kwon DN et al. Alpha 1,3-Galactosyltransferase deficiency in pigs increases sialyltransferase activities that potentially raise non-Gal xenogenicity. J Biomed Biotechnol 2011; 2011: 56085. – reference: Phelps CJ, Koike C, Vaught TD et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 2003; 299: 411-414. – reference: van der Windt DJ, Bottino R, Casu A et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with CD46 transgenic porcine islets. Am J Transplant 2009; 9: 2716-2726. – reference: Rayat GR, Rajotte RV, Elliott JF, Korbutt GS. Expression of Gal alpha(1,3)gal on neonatal porcine islet beta-cells and susceptibility to human antibody/complement lysis. Diabetes 1998; 47: 1406-1411. – reference: Cooper DKC. Depletion of natural antibodies in non-human primates - a step towards successful discordant xenografting in humans. Clin Transplant 1992; 6: 178-183. – volume: 24 start-page: 559 year: 1992 end-page: 562 article-title: Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in man publication-title: Transplant Proc – volume: 12 start-page: 1765 year: 2012 end-page: 1775 article-title: Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway‐sparing regimens promote xenograft survival publication-title: Am J Transplant – volume: 21 start-page: 1791 year: 2012 end-page: 1802 article-title: Early islet damage after direct exposure of pig islets to blood: has humoral immunity been underestimated? publication-title: Cell Transplant – volume: 162 start-page: 537 year: 2010 end-page: 542 article-title: Long‐term follow‐up of patients with type 1 diabetes transplanted with neonatal pig islets publication-title: Clin Exp Immunol – volume: 287 start-page: 1578 year: 1983 end-page: 1579 article-title: Comparison of human versus porcine insulin in treatment of diabetes in children publication-title: Br Med J (Clin Res Ed) – volume: 11 start-page: 237 year: 2004 end-page: 246 article-title: A study of the xenoantigenicity of adult pig islets cells publication-title: Xenotransplantation – volume: 36 start-page: 1203 year: 2004 end-page: 1205 article-title: Characteristics and transplantation of the porcine neonatal pancreatic cell clusters isolated from 1‐ to 3‐day‐old versus 1‐ month‐old pigs publication-title: Transplant Proc – volume: 177 start-page: 127 year: 2003 end-page: 135 article-title: In vitro and in vivo expression of Galalpha‐(1,3)Gal on porcine islet cells is age dependent publication-title: J Endocrinol – volume: 6 start-page: 178 year: 1992 end-page: 183 article-title: Depletion of natural antibodies in non‐human primates – a step towards successful discordant xenografting in humans publication-title: Clin Transplant – volume: 36 start-page: 1134 year: 2011 end-page: 1140 article-title: A clinical trial of xenotransplantation of neonatal pig islets for diabetic patients publication-title: Zhong Nan Da Xue Xue Bao Yi Xue Ban – volume: 14 start-page: 1300 year: 2014 end-page: 1309 article-title: Control of IBMIR in neonatal porcine islet xenotransplantation in baboons publication-title: Am J Transplant – volume: 299 start-page: 411 year: 2003 end-page: 414 article-title: Production of alpha 1,3‐galactosyltransferase‐deficient pigs publication-title: Science – volume: 11 start-page: 2593 year: 2011 end-page: 2602 article-title: Islet xenotransplantation using Gal‐deficient neonatal donors improves engraftment and function publication-title: Am J Transplant – volume: 160 start-page: 1519 year: 1984 end-page: 1531 article-title: A unique natural human IgG antibody with anti‐alpha‐galactosyl specificity publication-title: J Exp Med – volume: 379 start-page: 672 year: 2012 end-page: 683 article-title: Clinical xenotransplantation: the next medical revolution? publication-title: Lancet – volume: 13 start-page: 455 year: 2006 end-page: 464 article-title: A study of the xenoantigenicity of neonatal porcine islet‐like cell clusters (NPCC) and the efficiency of adenovirus‐mediated DAF (CD55) expression publication-title: Xenotransplantation – volume: 87 start-page: 203 year: 2009 end-page: 208 article-title: Complement activation and coagulation in xenotransplantation publication-title: Immunol Cell Biol – volume: 79 start-page: 1289 year: 2005 end-page: 1293 article-title: Current status of clinical islet transplantation publication-title: Transplantation – volume: 12 start-page: 301 year: 2006 end-page: 303 article-title: Prolonged diabetes reversal after intraportal xenotransplantation of wild‐type porcine islets in immunosuppressed nonhuman primates publication-title: Nat Med – volume: 15 start-page: 225 year: 2008 end-page: 234 article-title: Dissecting the instant blood mediated inflammatory reaction in islet xenotransplantation publication-title: Xenotransplantation – volume: 22 start-page: 7 year: 2015 end-page: 19 article-title: Islet xenotransplantation: what is the optimal age of the islet‐source pig? publication-title: Xenotransplantation – volume: 14 start-page: 2275 year: 2014 end-page: 2287 article-title: Pig‐to‐monkey islet xenotransplantation using multi‐transgenic pigs publication-title: Am J Transplant – volume: 23 start-page: 263 year: 2014 end-page: 272 article-title: In vitro maturation of viable islets from partially digested young pig pancreas publication-title: Cell Transplant – volume: 82 start-page: 945 year: 2006 end-page: 952 article-title: Neonatal porcine islets exhibit natural resistance to hypoxia‐induced apoptosis publication-title: Transplantation – volume: 97 start-page: 2119 year: 1996 end-page: 2129 article-title: Large scale isolation, growth, and function of porcine neonatal islet cells publication-title: J Clin Invest – volume: 69 start-page: 711 year: 2000 end-page: 719 article-title: Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin publication-title: Transplantation – volume: 343 start-page: 230 year: 2000 end-page: 238 article-title: Islet transplantation in seven patients with Type 1 diabetes mellitus using a glucocorticoid‐free immunosuppressive regimen publication-title: N Engl J Med – volume: 37 start-page: 487 year: 2005 end-page: 488 article-title: Transplantation of neonatal porcine islets and sertoli cells into nonimmunosuppressed nonhuman primates publication-title: Transplant Proc – volume: 91 start-page: 841 year: 2011 end-page: 846 article-title: The importance of tissue factor expression by porcine NICC in triggering IBMIR in the xenograft setting publication-title: Transplantation – volume: 37 start-page: 3505 year: 2005 end-page: 3508 article-title: Intraperitoneal alginate‐encapsulated neonatal porcine islets in a placebo‐controlled study with 16 diabetic cynomolgus primates publication-title: Transplant Proc – volume: 14 start-page: 428 year: 2014 end-page: 437 article-title: Evidence for instant blood‐mediated inflammatory reaction in clinical autologous islet transplantation publication-title: Am J Transplant – volume: 54 start-page: 443 year: 2005 end-page: 451 article-title: Indefinite survival of neonatal porcine islet xenografts by simultaneous targeting of LFA‐1 and CD154 or CD45RB publication-title: Diabetes – volume: 9 start-page: 2716 year: 2009 end-page: 2726 article-title: Long‐term controlled normoglycemia in diabetic non‐human primates after transplantation with CD46 transgenic porcine islets publication-title: Am J Transplant – volume: 9 start-page: 14 year: 2002 end-page: 24 article-title: Neonatal porcine pancreatic cell clusters as a potential source for transplantation in humans: characterization of proliferation, apoptosis, xenoantigen expression and gene delivery with recombinant AAV publication-title: Xenotransplantation – volume: 14 start-page: 1895 year: 2014 end-page: 1900 article-title: Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs publication-title: Am J Transplant – volume: 16 start-page: 195 year: 2011 end-page: 200 article-title: Towards xenotransplantation of pig islets in the clinic publication-title: Curr Opin Organ Transplant – volume: 47 start-page: 1406 year: 1998 end-page: 1411 article-title: Expression of Gal alpha(1,3)gal on neonatal porcine islet beta‐cells and susceptibility to human antibody/complement lysis publication-title: Diabetes – volume: 20 start-page: 27 year: 2013 end-page: 35 article-title: Double knockout pigs deficient in N‐glycolylneuraminic acid and galactose α1,3‐galactose reduce the humoral barrier to xenotransplantation publication-title: Xenotransplantation – volume: 2011 start-page: 56085 year: 2011 article-title: Alpha 1,3‐Galactosyltransferase deficiency in pigs increases sialyltransferase activities that potentially raise non‐Gal xenogenicity publication-title: J Biomed Biotechnol – volume: 16 start-page: 355 year: 2009 article-title: Characterization of the cell composition and function of islets isolated from different ages of newborn pigs publication-title: Xenotransplantation – volume: 12 start-page: 304 year: 2006 end-page: 306 article-title: Long‐term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways publication-title: Nat Med – volume: 61 start-page: 3046 year: 2012 end-page: 3055 article-title: Clinical islet xenotransplantation – how close are we? publication-title: Diabetes – volume: 48 start-page: 1907 year: 1999 end-page: 1914 article-title: Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical transplantation? publication-title: Diabetes – volume: 105 start-page: 125 year: 2000 end-page: 133 article-title: Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes publication-title: Ups J Med Sci – volume: 67 start-page: 748 year: 1999 end-page: 752 article-title: Neonatal pig islets induce a lower T‐cell response than adult pig islets in IDDM patients publication-title: Transplantation – volume: 9 start-page: 21 year: 1996 end-page: 27 article-title: Glutamic acid decarboxylase 65 and 67 isoforms in fetal, neonatal and adult porcine islets: predominant beta cell co‐localization by light and confocal microscopy publication-title: J Autoimmun – volume: 14 start-page: 249 year: 2005 end-page: 261 article-title: Accelerated functional maturation of isolated neonatal porcine cell clusters: in vitro and In vivo results in NOD mice publication-title: Cell Transplant – volume: 97 start-page: 999 year: 2014 end-page: 1008 article-title: The role of the alternative complement pathway in early graft loss after intraportal porcine islet xenotransplantation publication-title: Transplantation – volume: 14 start-page: 157 year: 2007 end-page: 161 article-title: Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation publication-title: Xenotransplantation – volume: 7 start-page: 2260 year: 2007 end-page: 2268 article-title: Engraftment of adult porcine islet xenografts in diabetic nonhuman primates through targeting of costimulation pathways publication-title: Am J Transplant – volume: 344 start-page: 1402 year: 1994 end-page: 1404 article-title: Transplantation of porcine fetal pancreas to diabetic patients publication-title: Lancet – volume: 14 start-page: 288 year: 2007 end-page: 297 article-title: Rapid loss of intraportally‐transplanted islets: an overview of pathophysiology and preventive strategies publication-title: Xenotransplantation – volume: 24 start-page: 191 year: 2008 end-page: 198 article-title: Determination of glutamic acid decarboxylase (GAD65) in pancreatic islets and its in vitro and in vivo degradation kinetics in serum using a highly sensitive enzyme immunoassay publication-title: Dis Markers – ident: e_1_2_8_46_1 doi: 10.1111/j.1399-3089.2008.00482.x – ident: e_1_2_8_10_1 doi: 10.1111/j.1399-3089.2007.00384.x – ident: e_1_2_8_48_1 doi: 10.1111/j.1399-3089.2004.00121.x – ident: e_1_2_8_42_1 doi: 10.1097/TP.0000000000000069 – ident: e_1_2_8_40_1 doi: 10.2337/diabetes.54.2.443 – ident: e_1_2_8_54_1 doi: 10.1155/2008/961421 – ident: e_1_2_8_36_1 doi: 10.1084/jem.160.5.1519 – ident: e_1_2_8_22_1 doi: 10.3727/000000005783983034 – ident: e_1_2_8_41_1 doi: 10.1038/icb.2008.107 – ident: e_1_2_8_14_1 doi: 10.2337/diabetes.48.10.1907 – ident: e_1_2_8_51_1 doi: 10.1111/xen.12019 – ident: e_1_2_8_15_1 doi: 10.1517/03009734000000059 – volume: 177 start-page: 127 year: 2003 ident: e_1_2_8_35_1 article-title: In vitro and in vivo expression of Galalpha‐(1,3)Gal on porcine islet cells is age dependent publication-title: J Endocrinol doi: 10.1677/joe.0.1770127 – ident: e_1_2_8_26_1 doi: 10.1097/00007890-199903150-00018 – ident: e_1_2_8_17_1 doi: 10.1111/j.1399-3089.2007.00419.x – ident: e_1_2_8_8_1 doi: 10.2337/db12-0033 – ident: e_1_2_8_43_1 doi: 10.1136/bmj.287.6405.1578 – ident: e_1_2_8_32_1 doi: 10.1111/j.1600-6143.2012.04031.x – ident: e_1_2_8_30_1 doi: 10.1016/j.transproceed.2004.11.062 – ident: e_1_2_8_9_1 doi: 10.1016/S0140-6736(94)90570-3 – ident: e_1_2_8_5_1 doi: 10.1111/j.1600-6143.2007.01933.x – ident: e_1_2_8_11_1 doi: 10.1097/MOT.0b013e3283449dec – ident: e_1_2_8_28_1 doi: 10.1097/TP.0b013e3182106091 – volume: 36 start-page: 1134 year: 2011 ident: e_1_2_8_13_1 article-title: A clinical trial of xenotransplantation of neonatal pig islets for diabetic patients publication-title: Zhong Nan Da Xue Xue Bao Yi Xue Ban – ident: e_1_2_8_34_1 doi: 10.1126/science.1078942 – ident: e_1_2_8_53_1 doi: 10.1006/jaut.1996.0004 – ident: e_1_2_8_6_1 doi: 10.1111/j.1600-6143.2009.02850.x – ident: e_1_2_8_29_1 doi: 10.1016/j.transproceed.2005.09.038 – ident: e_1_2_8_16_1 doi: 10.1097/01.TP.0000157273.60147.7C – ident: e_1_2_8_45_1 doi: 10.2337/diabetes.47.9.1406 – ident: e_1_2_8_49_1 doi: 10.1111/j.1399-3089.2006.00335.x – ident: e_1_2_8_24_1 doi: 10.3727/096368912X662372 – ident: e_1_2_8_52_1 doi: 10.1111/ajt.12744 – ident: e_1_2_8_25_1 doi: 10.1034/j.1399-3089.2002.0o128.x – ident: e_1_2_8_31_1 doi: 10.1111/j.1600-6143.2011.03720.x – ident: e_1_2_8_3_1 doi: 10.1038/nm1369 – ident: e_1_2_8_19_1 doi: 10.1111/xen.12130 – ident: e_1_2_8_12_1 doi: 10.1111/j.1365-2249.2010.04273.x – ident: e_1_2_8_2_1 doi: 10.1056/NEJM200007273430401 – ident: e_1_2_8_21_1 doi: 10.1016/j.transproceed.2004.04.038 – ident: e_1_2_8_27_1 doi: 10.1097/01.tp.0000238677.00750.32 – ident: e_1_2_8_18_1 doi: 10.1111/ajt.12558 – ident: e_1_2_8_39_1 doi: 10.3727/096368912X653011 – ident: e_1_2_8_4_1 doi: 10.1111/j.1399-3089.2005.00206.x – volume: 24 start-page: 559 year: 1992 ident: e_1_2_8_38_1 article-title: Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in man publication-title: Transplant Proc – ident: e_1_2_8_50_1 doi: 10.1155/2011/560850 – ident: e_1_2_8_33_1 doi: 10.1111/ajt.12722 – volume: 6 start-page: 178 year: 1992 ident: e_1_2_8_37_1 article-title: Depletion of natural antibodies in non‐human primates – a step towards successful discordant xenografting in humans publication-title: Clin Transplant doi: 10.1111/j.1399-0012.1992.tb00614.x – volume: 16 start-page: 355 year: 2009 ident: e_1_2_8_23_1 article-title: Characterization of the cell composition and function of islets isolated from different ages of newborn pigs publication-title: Xenotransplantation – ident: e_1_2_8_7_1 doi: 10.1111/ajt.12868 – volume: 69 start-page: 711 year: 2000 ident: e_1_2_8_47_1 article-title: Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin publication-title: Transplantation doi: 10.1097/00007890-200003150-00007 – ident: e_1_2_8_20_1 doi: 10.1172/JCI118649 – ident: e_1_2_8_44_1 doi: 10.1016/S0140-6736(11)61091-X |
SSID | ssj0003585 |
Score | 2.1379101 |
Snippet | Background
Pig islet grafts have been successful in treating diabetes in animal models. One remaining question is whether neonatal pig isletlike cell clusters... Pig islet grafts have been successful in treating diabetes in animal models. One remaining question is whether neonatal pig isletlike cell clusters (NICC) are... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 317 |
SubjectTerms | Animals Animals, Genetically Modified Animals, Newborn Antigens, CD - genetics Antigens, CD - immunology Apyrase - genetics Apyrase - immunology Blood - immunology Blood Coagulation Complement Activation diabetes mellitus Diabetes Mellitus - therapy Galactosyltransferases - deficiency Galactosyltransferases - genetics Galactosyltransferases - immunology Gene Knockout Techniques genetically engineered Humans In Vitro Techniques instant blood-mediated inflammatory reaction islets Islets of Langerhans Transplantation - adverse effects Islets of Langerhans Transplantation - immunology Islets of Langerhans Transplantation - pathology Membrane Cofactor Protein - genetics Membrane Cofactor Protein - immunology neonatal pigs Recombinant Proteins - genetics Recombinant Proteins - immunology Sus scrofa Transplantation, Heterologous - adverse effects Transplantation, Heterologous - methods xenotransplantation |
Title | In vitro exposure of pig neonatal isletlike cell clusters to human blood |
URI | https://api.istex.fr/ark:/67375/WNG-83QHBFKJ-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fxen.12178 https://www.ncbi.nlm.nih.gov/pubmed/26179209 https://www.proquest.com/docview/1700105371 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5NQ0i8wNiAlTFkEJp4yRQndpJqTxuslCFVAjHRByTLTmxUtSRVm6Juv547pwkMDQnx5oeL5Zzv4u8u5-8AXhmEqTYSLhAiNAHiWx1kNnRBEUrT5yZ3hfFsn6NkeCkuxnK8BSftXZiGH6JLuJFn-O81Obg2y9-cfG1LokZI6aIvjxPizX_76Rd1VCx9O86wH2ZBksjxhlWIqni6J2-cRXdIrevbgOZN3OoPnsED-Nouuak3mR6vanOcX__B5vif77QD9zeAlJ02FvQQtmy5C3unJQbj36_YEfMloj73vgt3m86VV3swfF-yH5N6UTG7nleUZWSVY_PJN1ZaysfjjJMlmsRsMrWMfg6wfLYiToYlqyvmGwMyXzP_CC4H55_fDINNU4Ygj9FXA-HiiOdcUyDpTGFEZqMk4zqMCgqzE6GNdkI6K7mNIhtJHBiXxs6kaa7xyHwM22VV2n1gRgvt0tSGsTXCSWMw-CswvEpS7gqcvwev2-1R-YaxnBpnzFQbuaC-lNdXD152ovOGpuM2oSO_x52EXkypri2V6svoncrij8OzwYcLNejBi9YIFHobaUmj9lZLRWyGnChweA-eNNbRzUbc9v0o7OOy_R7_fSFqfD7yg6f_LnoA9xCryaZS-Bls14uVPUQ8VJvn3vB_AoCfBSU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgguPFoey9MgVHFJlYedZCUuBbqkD1YCtWIvlWUnNlrtkqx2s2jLr2fG2QSKioS4-TCxnPFM_M148g3AK40w1YTcepz72kN8q7zU-NYrfKH7gc5toR3b5zDOzvjRSIw24E37L0zDD9El3Mgz3PeaHJwS0r95-cqUxI2QpNdgiyPQoNDr_edf5FGRcA05_b6fenEsRmteIarj6R69dBptkWJXV0HNy8jVHT2D23DeLrqpOJnsLWu9l__4g8_xf9_qDtxaY1K23xjRXdgw5Tbs7JcYj3-7YLvMVYm69Ps2XG-aV17sQHZYsu_jel4xs5pVlGhklWWz8VdWGkrJ44zjBVrFdDwxjO4HWD5dEi3DgtUVc70BmSubvwdng4PTd5m37svg5RG6q8dtFAZ5oCiWtLrQPDVhnAbKDwuKtGOutLJcWCMCE4YmFDjQNomsTpJc4al5HzbLqjQPgWnFlU0S40dGcyu0xvivwAgrTgJb4Pw9eN3uj8zXpOXUO2Mq2-AF9SWdvnrwshOdNUwdVwntuk3uJNR8QqVtiZBfhh9kGn3K3g6Oj-SgBy9aK5DocKQlhdpbLiQRGgbEghP04EFjHt1sRG_fD_0-Lttt8t8XIkcHQzd49O-iz-FGdvrxRJ4cDo8fw02EbqIpHH4Cm_V8aZ4iPKr1M-cFPwHUzwlE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTSBe-NiAlU-D0MRLpnzYSSqeBix0G6oAMdGHSZad2Khql1Rtijr-eu6cJjA0JMSbHy6Wc76Lf3e-_A7gpUaYakJuPc597SG-VV5qfOsVvtD9QOe20I7tcxgPTvnxSIw24HX7L0zDD9El3Mgz3PeaHHxW2N-cfGVKokZI0muwxWNEEoSIPv_ijoqE68fp9_3Ui2MxWtMKURlP9-ilw2iL9Lq6CmleBq7u5Mluw1m75qbgZLK_rPV-_uMPOsf_fKk7cGuNSNlBY0J3YcOU27BzUGI0fn7B9pirEXXJ92243rSuvNiBwVHJvo_recXMalZRmpFVls3G31hpKCGPM44XaBPT8cQwuh1g-XRJpAwLVlfMdQZkrmj-Hpxmh1_eDrx1VwYvj9BZPW6jMMgDRZGk1YXmqQnjNFB-WFCcHXOlleXCGhGYMDShwIG2SWR1kuQKz8z7sFlWpdkFphVXNkmMHxnNrdAao78C46s4CWyB8_fgVbs9Ml9TllPnjKlsQxfUl3T66sGLTnTW8HRcJbTn9riTUPMJFbYlQn4dvpdp9GnwJjs5llkPnrdGINHdSEsKtbdcSKIzDIgDJ-jBg8Y6utmI3L4f-n1cttvjvy9Ejg6HbvDw30WfwY2P7zL54Wh48ghuIm4TTdXwY9is50vzBLFRrZ86H_gJtH8H8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+exposure+of+pig+neonatal+isletlike+cell+clusters+to+human+blood&rft.jtitle=Xenotransplantation+%28K%C3%B8benhaven%29&rft.au=Nagaraju%2C+Santosh&rft.au=Bertera%2C+Suzanne&rft.au=Tanaka%2C+Takayuki&rft.au=Hara%2C+Hidetaka&rft.date=2015-07-01&rft.issn=0908-665X&rft.eissn=1399-3089&rft.volume=22&rft.issue=4&rft.spage=317&rft.epage=324&rft_id=info:doi/10.1111%2Fxen.12178&rft.externalDBID=10.1111%252Fxen.12178&rft.externalDocID=XEN12178 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0908-665X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0908-665X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0908-665X&client=summon |