Local temperature increases reduce soil microbial residues and carbon stocks

Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon (MRC). However, the relative contribution of MRC to soil organic carbon (SOC) across temperature gradients is poorly understood. Here, we inves...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 28; no. 21; pp. 6433 - 6445
Main Authors Zeng, Xiao‐Min, Feng, Jiao, Yu, Dai‐Lin, Wen, Shu‐Hai, Zhang, Qianggong, Huang, Qiaoyun, Delgado‐Baquerizo, Manuel, Liu, Yu‐Rong
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon (MRC). However, the relative contribution of MRC to soil organic carbon (SOC) across temperature gradients is poorly understood. Here, we investigated the contribution of MRC to SOC along two independent elevation gradients of our model system (i.e., the Tibetan Plateau and Shennongjia Mountain in China). Our results showed that local temperature increases were negatively correlated with MRC and SOC. Further analyses revealed that rising temperature reduced SOC via decreasing MRC, which helps to explain future reductions in SOC under climate warming. Our findings demonstrate that climate warming has the potential to reduce C sequestration by increasing the decomposition of MRC, exacerbating the positive feedback between rising temperature and CO2 efflux. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life‐style strategies and metabolic efficiency. Together, our work suggests an important mechanism underlying long‐term soil C sequestration, which has important implications for the microbial‐mediated C process in the face of global climate change. The contribution of microbial residue carbon (MRC) to soil organic carbon (SOC) was dependent on local temperature along two independent elevation gradients. Local temperature increases could reduce SOC accumulation mainly by decreasing MRC due to the increasing MRC decomposition. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life‐style strategies and metabolic efficiency. Our work suggests an important mechanism underlying long‐term soil carbon sequestration, which has important implications for the microbial‐mediated carbon process under global climate change.
AbstractList Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon (MRC). However, the relative contribution of MRC to soil organic carbon (SOC) across temperature gradients is poorly understood. Here, we investigated the contribution of MRC to SOC along two independent elevation gradients of our model system (i.e., the Tibetan Plateau and Shennongjia Mountain in China). Our results showed that local temperature increases were negatively correlated with MRC and SOC. Further analyses revealed that rising temperature reduced SOC via decreasing MRC, which helps to explain future reductions in SOC under climate warming. Our findings demonstrate that climate warming has the potential to reduce C sequestration by increasing the decomposition of MRC, exacerbating the positive feedback between rising temperature and CO2 efflux. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life-style strategies and metabolic efficiency. Together, our work suggests an important mechanism underlying long-term soil C sequestration, which has important implications for the microbial-mediated C process in the face of global climate change.Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon (MRC). However, the relative contribution of MRC to soil organic carbon (SOC) across temperature gradients is poorly understood. Here, we investigated the contribution of MRC to SOC along two independent elevation gradients of our model system (i.e., the Tibetan Plateau and Shennongjia Mountain in China). Our results showed that local temperature increases were negatively correlated with MRC and SOC. Further analyses revealed that rising temperature reduced SOC via decreasing MRC, which helps to explain future reductions in SOC under climate warming. Our findings demonstrate that climate warming has the potential to reduce C sequestration by increasing the decomposition of MRC, exacerbating the positive feedback between rising temperature and CO2 efflux. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life-style strategies and metabolic efficiency. Together, our work suggests an important mechanism underlying long-term soil C sequestration, which has important implications for the microbial-mediated C process in the face of global climate change.
Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon (MRC). However, the relative contribution of MRC to soil organic carbon (SOC) across temperature gradients is poorly understood. Here, we investigated the contribution of MRC to SOC along two independent elevation gradients of our model system (i.e., the Tibetan Plateau and Shennongjia Mountain in China). Our results showed that local temperature increases were negatively correlated with MRC and SOC. Further analyses revealed that rising temperature reduced SOC via decreasing MRC, which helps to explain future reductions in SOC under climate warming. Our findings demonstrate that climate warming has the potential to reduce C sequestration by increasing the decomposition of MRC, exacerbating the positive feedback between rising temperature and CO 2 efflux. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life‐style strategies and metabolic efficiency. Together, our work suggests an important mechanism underlying long‐term soil C sequestration, which has important implications for the microbial‐mediated C process in the face of global climate change.
Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon (MRC). However, the relative contribution of MRC to soil organic carbon (SOC) across temperature gradients is poorly understood. Here, we investigated the contribution of MRC to SOC along two independent elevation gradients of our model system (i.e., the Tibetan Plateau and Shennongjia Mountain in China). Our results showed that local temperature increases were negatively correlated with MRC and SOC. Further analyses revealed that rising temperature reduced SOC via decreasing MRC, which helps to explain future reductions in SOC under climate warming. Our findings demonstrate that climate warming has the potential to reduce C sequestration by increasing the decomposition of MRC, exacerbating the positive feedback between rising temperature and CO2 efflux. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life‐style strategies and metabolic efficiency. Together, our work suggests an important mechanism underlying long‐term soil C sequestration, which has important implications for the microbial‐mediated C process in the face of global climate change.
Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon (MRC). However, the relative contribution of MRC to soil organic carbon (SOC) across temperature gradients is poorly understood. Here, we investigated the contribution of MRC to SOC along two independent elevation gradients of our model system (i.e., the Tibetan Plateau and Shennongjia Mountain in China). Our results showed that local temperature increases were negatively correlated with MRC and SOC. Further analyses revealed that rising temperature reduced SOC via decreasing MRC, which helps to explain future reductions in SOC under climate warming. Our findings demonstrate that climate warming has the potential to reduce C sequestration by increasing the decomposition of MRC, exacerbating the positive feedback between rising temperature and CO₂ efflux. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life‐style strategies and metabolic efficiency. Together, our work suggests an important mechanism underlying long‐term soil C sequestration, which has important implications for the microbial‐mediated C process in the face of global climate change.
Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon (MRC). However, the relative contribution of MRC to soil organic carbon (SOC) across temperature gradients is poorly understood. Here, we investigated the contribution of MRC to SOC along two independent elevation gradients of our model system (i.e., the Tibetan Plateau and Shennongjia Mountain in China). Our results showed that local temperature increases were negatively correlated with MRC and SOC. Further analyses revealed that rising temperature reduced SOC via decreasing MRC, which helps to explain future reductions in SOC under climate warming. Our findings demonstrate that climate warming has the potential to reduce C sequestration by increasing the decomposition of MRC, exacerbating the positive feedback between rising temperature and CO2 efflux. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life‐style strategies and metabolic efficiency. Together, our work suggests an important mechanism underlying long‐term soil C sequestration, which has important implications for the microbial‐mediated C process in the face of global climate change. The contribution of microbial residue carbon (MRC) to soil organic carbon (SOC) was dependent on local temperature along two independent elevation gradients. Local temperature increases could reduce SOC accumulation mainly by decreasing MRC due to the increasing MRC decomposition. Our study also considered the influence of multiple environmental factors such as soil pH and moisture, which were more important in controlling SOC than microbial traits such as microbial life‐style strategies and metabolic efficiency. Our work suggests an important mechanism underlying long‐term soil carbon sequestration, which has important implications for the microbial‐mediated carbon process under global climate change.
Author Delgado‐Baquerizo, Manuel
Liu, Yu‐Rong
Zeng, Xiao‐Min
Zhang, Qianggong
Huang, Qiaoyun
Yu, Dai‐Lin
Feng, Jiao
Wen, Shu‐Hai
Author_xml – sequence: 1
  givenname: Xiao‐Min
  surname: Zeng
  fullname: Zeng, Xiao‐Min
  organization: Huazhong Agricultural University
– sequence: 2
  givenname: Jiao
  surname: Feng
  fullname: Feng, Jiao
  organization: Huazhong Agricultural University
– sequence: 3
  givenname: Dai‐Lin
  surname: Yu
  fullname: Yu, Dai‐Lin
  organization: Huazhong Agricultural University
– sequence: 4
  givenname: Shu‐Hai
  surname: Wen
  fullname: Wen, Shu‐Hai
  organization: Huazhong Agricultural University
– sequence: 5
  givenname: Qianggong
  surname: Zhang
  fullname: Zhang, Qianggong
  organization: Institute of Tibetan Plateau Research, Chinese Academy of Sciences
– sequence: 6
  givenname: Qiaoyun
  orcidid: 0000-0002-2733-8066
  surname: Huang
  fullname: Huang, Qiaoyun
  organization: Huazhong Agricultural University
– sequence: 7
  givenname: Manuel
  orcidid: 0000-0002-6499-576X
  surname: Delgado‐Baquerizo
  fullname: Delgado‐Baquerizo, Manuel
  email: m.delgadobaquerizo@gmail.com
  organization: Universidad Pablo de Olavide
– sequence: 8
  givenname: Yu‐Rong
  orcidid: 0000-0003-1112-4255
  surname: Liu
  fullname: Liu, Yu‐Rong
  email: yrliu@mail.hzau.edu.cn
  organization: Huazhong Agricultural University
BookMark eNqFkU1PwzAMhiM0JDbgwD-oxAUO3fLVND3CBAOpEpfdoyx1UEbXjKQV2r8nYztNIHyxJT-vZfudoFHnO0DohuApSTF7N6spEYyXZ2hMmChyyqUY7euC5wQTdoEmMa4xxoxiMUZ17Y1usx42Wwi6HwJkrjMBdISYBWgGA1n0rs02zgS_cokNEF0zpLbumszosPJdFntvPuIVOre6jXB9zJdo-fy0nL_k9dvidf5Q54YJVuZSgjWNLrQ20jYV443EwKqyYkRYSQi1AhihnBe6sbioNMeltVYTwjBnll2iu8PYbfCfaZFebVw00La6Az9ERSsp0nGlkP-joiqoFLikCb09Qdd-CF26Q9GSYloyRnmiZgcqfSPGAFYZ1-ve-a4P2rWKYLX3QSUf1I8PSXF_otgGt9Fh9yt7nP7lWtj9DarF_PGg-AZkjZgX
CitedBy_id crossref_primary_10_1016_j_apsoil_2024_105320
crossref_primary_10_1016_j_jclepro_2024_143217
crossref_primary_10_1016_j_scitotenv_2024_172731
crossref_primary_10_1016_j_ecolind_2024_113005
crossref_primary_10_5194_soil_9_461_2023
crossref_primary_10_1002_ecs2_4801
crossref_primary_10_3390_agronomy14030551
crossref_primary_10_3389_ffgc_2023_1154934
crossref_primary_10_1007_s11270_024_07320_0
crossref_primary_10_1016_j_scitotenv_2024_176651
crossref_primary_10_1016_j_soilbio_2024_109649
crossref_primary_10_1016_j_scitotenv_2024_172191
crossref_primary_10_1016_j_soilbio_2024_109529
crossref_primary_10_1029_2024JG008287
crossref_primary_10_1016_j_catena_2024_108667
crossref_primary_10_1016_j_scitotenv_2023_166977
crossref_primary_10_1016_j_scitotenv_2025_178563
crossref_primary_10_1016_j_catena_2024_107891
crossref_primary_10_1016_j_soilbio_2023_109146
crossref_primary_10_1007_s11104_024_06772_x
crossref_primary_10_1111_gcb_16983
crossref_primary_10_1016_j_envres_2024_120196
crossref_primary_10_1111_gcb_16760
crossref_primary_10_1111_gcb_16660
crossref_primary_10_1016_j_apsoil_2024_105431
crossref_primary_10_1016_j_apsoil_2025_106049
crossref_primary_10_1016_j_apsoil_2024_105798
crossref_primary_10_3390_f14081678
crossref_primary_10_1016_j_catena_2023_107281
crossref_primary_10_1016_j_geoderma_2024_117030
crossref_primary_10_1021_acs_est_4c05242
crossref_primary_10_1016_j_geoderma_2025_117211
crossref_primary_10_1016_j_ecolind_2023_109956
crossref_primary_10_1007_s44246_023_00088_8
crossref_primary_10_1016_j_gecco_2024_e03159
crossref_primary_10_1007_s11104_024_07142_3
crossref_primary_10_1016_j_soilbio_2024_109438
crossref_primary_10_1016_j_soilbio_2024_109499
crossref_primary_10_1016_j_agee_2024_108926
crossref_primary_10_1111_gcb_17386
Cites_doi 10.1016/j.geoderma.2020.114922
10.1007/s10531‐014‐0658‐x
10.1016/j.geoderma.2020.114397
10.1111/gcb.14603
10.1007/s42832‐020‐0052‐4
10.1111/gcb.15407
10.1038/ismej.2017.135
10.1038/nrmicro2386‐c1
10.1016/j.soilbio.2020.107762
10.3354/cr00822
10.1016/j.soilbio.2015.10.017
10.1016/j.soilbio.2019.03.018
10.1016/j.soilbio.2020.107951
10.1016/j.soilbio.2020.107970
10.1016/j.soilbio.2019.107660
10.1016/j.soilbio.2020.108000
10.1038/s41467‐019‐11488‐z
10.1016/j.soilbio.2019.04.004
10.1038/s41559‐017‐0259‐7
10.1038/nclimate1951
10.1126/science.aal1319
10.1093/nar/gku1201
10.1016/j.soilbio.2021.108486
10.1111/gcb.15206
10.1016/j.catena.2021.105707
10.1007/s11427‐018‐9364‐7
10.1111/gcb.15492
10.1046/j.1365‐2699.2002.00707.x
10.3791/3767
10.1016/j.soilbio.2020.107814
10.1126/science.aan2874
10.1016/j.orggeochem.2016.01.010
10.1016/j.soilbio.2021.108213
10.1111/nph.13688
10.1016/j.sjbs.2020.06.038
10.1038/nmicrobiol.2017.105
10.1016/j.soilbio.2020.108112
10.1038/s41558‐020‐0759‐3
10.1111/gcb.15593
10.1038/s41559‐018‐0771‐4
10.1016/0038‐0717(87)90052‐6
10.1016/j.ejsobi.2014.06.002
10.1038/s41467‐020‐18451‐3
10.1111/gcb.14781
10.1186/s40663‐021‐00334‐8
10.1016/j.soilbio.2020.107764
10.1038/s43017‐021‐00178‐4
10.1016/j.soilbio.2009.02.029
10.1021/acs.est.0c01545
10.1016/j.funeco.2015.06.006
10.1016/j.soilbio.2021.108335
10.1007/s00374‐021‐01557‐1
10.1111/j.1365‐2486.2007.01415.x
10.1128/aem.38.3.454‐460.1979
10.1016/j.soilbio.2020.108059
10.1016/j.soilbio.2010.05.007
10.1016/j.geoderma.2018.12.018
10.1111/geb.13159
10.1111/gcb.15550
10.1038/ngeo2520
10.1038/ncomms2224
10.1097/00010694‐194704000‐00001
10.1038/s43705‐021‐00076‐2
10.1016/j.scitotenv.2022.153257
10.1111/ele.13379
10.1126/science.263.5144.185
10.1111/gcb.15541
10.1016/j.soilbio.2021.108422
10.1038/s41561‐018‐0168‐7
10.1016/j.tim.2019.06.003
10.1016/S0038‐0717(01)00079‐7
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.16347
DatabaseName CrossRef
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 6445
ExternalDocumentID 10_1111_gcb_16347
GCB16347
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 41830756; 32071595
– fundername: the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014‐2020 Objetivo temático “01 ‐ Refuerzo de la investigación, el desarrollo tecnológico y la innovación”)
  funderid: P20_00879 (ANDABIOMA)
– fundername: Spanish Ministry of Science and Innovation
  funderid: PID2020‐115813RA‐I00; MCIN/AEI/10.13039/501100011033
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2662019QD055
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c3637-88efcda5aac8fd934d80e3979316f8112f6e312445adf059a407fffa113043f3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:24:14 EDT 2025
Fri Jul 11 06:11:10 EDT 2025
Fri Jul 25 19:38:39 EDT 2025
Tue Jul 01 03:53:09 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Wed Jan 22 16:21:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3637-88efcda5aac8fd934d80e3979316f8112f6e312445adf059a407fffa113043f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6499-576X
0000-0002-2733-8066
0000-0003-1112-4255
PQID 2720273324
PQPubID 30327
PageCount 13
ParticipantIDs proquest_miscellaneous_2986206768
proquest_miscellaneous_2695286072
proquest_journals_2720273324
crossref_citationtrail_10_1111_gcb_16347
crossref_primary_10_1111_gcb_16347
wiley_primary_10_1111_gcb_16347_GCB16347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1979; 38
2021; 27
2009; 41
2017; 1
2013; 3
2017; 2
2019; 10
2021; 207
2021; 160
2021; 162
2020; 11
2020; 10
2021; 165
2020; 54
2017; 355
2014; 23
2017; 358
2014; 64
2020; 2
2020; 372
2021; 156
2019; 22
1994; 263
2019; 25
2015; 43
2019; 27
2021; 153
2012; 63
2021; 8
2019; 3
2021; 2
2016; 209
2020; 141
2020; 143
2007
2020; 144
2016; 94
2016; 93
2021; 386
1947; 63
2018; 61
2020; 147
2021; 1
2015; 8
1987; 19
2007; 13
2011; 9
2021; 57
2010; 42
2012; 3
2002; 29
2020; 151
2017; 11
2020; 150
2020; 27
2016; 20
2019; 135
2020; 26
2019; 339
2001; 33
2018; 11
2019; 134
2022; 820
2020; 29
2009; 39
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
IUSS Working Group (e_1_2_8_27_1) 2007
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 358
  start-page: 101
  issue: 6359
  year: 2017
  end-page: 105
  article-title: Long‐term pattern and magnitude of soil carbon feedback to the climate system in a warming world
  publication-title: Science
– volume: 61
  start-page: 1451
  issue: 12
  year: 2018
  end-page: 1462
  article-title: QMEC: A tool for high‐throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling
  publication-title: Science China Life Sciences
– volume: 20
  start-page: 241
  year: 2016
  end-page: 248
  article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild
  publication-title: Fungal Ecology
– volume: 165
  year: 2021
  article-title: Revisiting the quantitative contribution of microbial necromass to soil carbon pool: Stoichiometric control by microbes and soil
  publication-title: Soil Biology and Biochemistry
– volume: 63
  issue: 63
  year: 2012
  article-title: GC‐based detection of aldononitrile acetate derivatized glucosamine and muramic acid for microbial residue determination in soil
  publication-title: Journal of Visualized Experiments
– volume: 339
  start-page: 1
  issue: 1
  year: 2019
  end-page: 8
  article-title: Spatial distribution of microbial biomass and residues across soil aggregate fractions at different elevations in the central Austrian Alps
  publication-title: Geoderma
– volume: 42
  start-page: 1385
  issue: 9
  year: 2010
  end-page: 1395
  article-title: Considering fungal:Bacterial dominance in soils–Methods, controls, and ecosystem implications
  publication-title: Soil Biology and Biochemistry
– volume: 27
  start-page: 2039
  issue: 10
  year: 2021
  end-page: 2048
  article-title: Large‐scale importance of microbial carbon use efficiency and necromass to soil organic carbon
  publication-title: Global Change Biology
– volume: 11
  start-page: 2874
  issue: 12
  year: 2017
  end-page: 2878
  article-title: Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters
  publication-title: The ISME Journal
– volume: 263
  start-page: 185
  issue: 5144
  year: 1994
  end-page: 190
  article-title: Carbon pools and flux of global forest ecosystems
  publication-title: Science
– volume: 11
  start-page: 4721
  issue: 1
  year: 2020
  article-title: The influence of soil age on ecosystem structure and function across biomes
  publication-title: Nature Communications
– volume: 820
  issue: 10
  year: 2022
  article-title: Microbial assemblies associated with temperature sensitivity of soil respiration along an altitudinal gradient
  publication-title: Science of the Total Environment
– volume: 8
  start-page: 776
  issue: 10
  year: 2015
  end-page: 779
  article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss
  publication-title: Nature Geoscience
– volume: 27
  start-page: 814
  issue: 10
  year: 2019
  end-page: 823
  article-title: Making the most of trait‐based approaches for microbial ecology
  publication-title: Trends in Microbiology
– volume: 25
  start-page: 1839
  issue: 5
  year: 2019
  end-page: 1851
  article-title: Effects of climate warming on carbon fluxes in grasslands‐ a global meta‐analysis
  publication-title: Global Change Biology
– volume: 64
  start-page: 6
  year: 2014
  end-page: 14
  article-title: Soil microbial community structure and activity along a montane elevational gradient on the Tibetan plateau
  publication-title: European Journal of Soil Biology
– volume: 1
  start-page: 1339
  issue: 9
  year: 2017
  end-page: 1347
  article-title: Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities
  publication-title: Nature Ecology and Evolution
– volume: 156
  year: 2021
  article-title: Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai‐Tibet alpine grasslands
  publication-title: Soil Biology and Biochemistry
– volume: 150
  year: 2020
  article-title: Microbial necromass on the rise: The growing focus on its role in soil organic matter development
  publication-title: Soil Biology and Biochemistry
– volume: 2
  start-page: 241
  issue: 4
  year: 2020
  end-page: 254
  article-title: Soil microbial carbon pump: Mechanism and appraisal
  publication-title: Soil Ecology Letters
– volume: 27
  start-page: 2241
  issue: 10
  year: 2021
  end-page: 2253
  article-title: Inactive and inefficient: Warming and drought effect on microbial carbon processing in alpine grassland at depth
  publication-title: Global Change Biology
– volume: 41
  start-page: 1180
  issue: 6
  year: 2009
  end-page: 1186
  article-title: The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB‐linked substrates and l‐DOPA
  publication-title: Soil Biology and Biochemistry
– volume: 93
  start-page: 38
  year: 2016
  end-page: 49
  article-title: The decomposition of ectomycorrhizal fungal necromass
  publication-title: Soil Biology and Biochemistry
– volume: 57
  start-page: 673
  year: 2021
  end-page: 684
  article-title: Long‐term elevated CO and warming enhance microbial necromass carbon accumulation in a paddy soil
  publication-title: Biology and Fertility of Soils
– volume: 27
  start-page: 454
  issue: 2
  year: 2021
  end-page: 466
  article-title: Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest
  publication-title: Global Change Biology
– volume: 134
  start-page: 15
  year: 2019
  end-page: 24
  article-title: Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27‐year field experiment
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 75
  issue: 1
  year: 2011
  article-title: Microbial production of recalcitrant organic matter in global soils: Implications for productivity and climate policy
  publication-title: Nature Reviews Microbiology
– volume: 8
  start-page: 57
  issue: 1
  year: 2021
  article-title: Linkage of microbial living communities and residues to soil organic carbon accumulation along a forest restoration gradient in southern China
  publication-title: Forest Ecosystems
– volume: 54
  start-page: 10472
  issue: 17
  year: 2020
  end-page: 10482
  article-title: Response of soil respiration and its components to warming and dominant species removal along an elevation gradient in alpine meadow of the Qinghai‐Tibetan plateau
  publication-title: Environmental Science and Technology
– volume: 27
  start-page: 2763
  issue: 12
  year: 2021
  end-page: 2779
  article-title: Temperature sensitivity of SOM decomposition is linked with a K‐selected microbial community
  publication-title: Global Change Biology
– volume: 151
  year: 2020
  article-title: Patterns and determinants of soil microbial residues from tropical to boreal forests
  publication-title: Soil Biology and Biochemistry
– volume: 160
  year: 2021
  article-title: Shifts in microbial metabolic pathway for soil carbon accumulation along subtropical forest succession
  publication-title: Soil Biology and Biochemistry
– volume: 209
  start-page: 1540
  issue: 4
  year: 2016
  end-page: 1552
  article-title: Biocrust‐forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands
  publication-title: New Phytologist
– volume: 29
  start-page: 1829
  issue: 10
  year: 2020
  end-page: 1839
  article-title: The vertical distribution and control of microbial necromass carbon in forest soils
  publication-title: Global Ecology and Biogeography
– volume: 372
  issue: 1
  year: 2020
  article-title: Soil thermal regime alteration under experimental warming in permafrost regions of the central Tibetan plateau
  publication-title: Geoderma
– volume: 43
  start-page: 593
  issue: D1
  year: 2015
  end-page: 598
  article-title: rrnDB: Improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development
  publication-title: Nucleic Acids Research
– volume: 23
  start-page: 1619
  issue: 7
  year: 2014
  end-page: 1637
  article-title: Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology
  publication-title: Biodiversity and Conservation
– volume: 11
  start-page: 589
  issue: 8
  year: 2018
  end-page: 593
  article-title: Links among warming, carbon and microbial dynamics mediated by soil mineral weathering
  publication-title: Nature Geoscience
– volume: 13
  start-page: 2018
  issue: 9
  year: 2007
  end-page: 2035
  article-title: Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture
  publication-title: Global Change Biology
– volume: 26
  start-page: 5277
  issue: 9
  year: 2020
  end-page: 5289
  article-title: Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover
  publication-title: Global Change Biology
– year: 2007
– volume: 3
  start-page: 1222
  year: 2012
  article-title: Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool
  publication-title: Nature Communications
– volume: 207
  year: 2021
  article-title: Climatic and edaphic controls over the elevational pattern of microbial necromass in subtropical forests
  publication-title: Catena
– volume: 144
  year: 2020
  article-title: Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls
  publication-title: Soil Biology and Biochemistry
– volume: 143
  year: 2020
  article-title: A quantitative assessment of amino sugars in soil profiles
  publication-title: Soil Biology and Biochemistry
– volume: 3
  start-page: 909
  issue: 10
  year: 2013
  end-page: 912
  article-title: Global soil carbon projections are improved by modelling microbial processes
  publication-title: Nature Climate Change
– volume: 27
  start-page: 1365
  issue: 7
  year: 2021
  end-page: 1386
  article-title: High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high‐mountain soils
  publication-title: Global Change Biology
– volume: 2
  start-page: 17105
  year: 2017
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nature Microbiology
– volume: 3
  start-page: 223
  issue: 2
  year: 2019
  end-page: 231
  article-title: Cross‐biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation
  publication-title: Nature Ecology and Evolution
– volume: 135
  start-page: 13
  year: 2019
  end-page: 19
  article-title: Warming increases microbial residue contribution to soil organic carbon in an alpine meadow
  publication-title: Soil Biology and Biochemistry
– volume: 29
  start-page: 573
  issue: 5–6
  year: 2002
  end-page: 582
  article-title: Oceanic islands as model systems for ecological studies
  publication-title: Journal of Biogeography
– volume: 1
  start-page: 71
  issue: 1
  year: 2021
  article-title: Soil microbial trait‐based strategies drive metabolic efficiency along an altitude gradient
  publication-title: ISME Communications
– volume: 27
  start-page: 2778
  issue: 10
  year: 2020
  end-page: 2789
  article-title: Microbial diversity of some sabkha and desert sites in Saudi Arabia
  publication-title: Saudi Journal of Biological Sciences
– volume: 147
  year: 2020
  article-title: Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region
  publication-title: Soil Biology & Biochemistry
– volume: 39
  start-page: 227
  year: 2009
  end-page: 234
  article-title: Influence of altitude on phenology of selected plant species in the alpine region (1971–2000)
  publication-title: Climate Research
– volume: 63
  start-page: 251
  issue: 4
  year: 1947
  end-page: 264
  article-title: A critical examination of a rapid method for determining organic carbon in soils–Effect of variations in digestion conditions and of inorganic soil constituents
  publication-title: Soil Science
– volume: 2
  start-page: 507
  issue: 7
  year: 2021
  end-page: 517
  article-title: Evidence for large microbial‐mediated losses of soil carbon under anthropogenic warming
  publication-title: Nature Reviews Earth and Environment
– volume: 25
  start-page: 3578
  issue: 11
  year: 2019
  end-page: 3590
  article-title: Quantitative assessment of microbial necromass contribution to soil organic matter
  publication-title: Global Change Biology
– volume: 150
  year: 2020
  article-title: The role of land management and elevation in shaping soil microbial communities: Insights from the central European Alps
  publication-title: Soil Biology and Biochemistry
– volume: 386
  issue: 15
  year: 2021
  article-title: Microbial necromass formation, enzyme activities and community structure in two alpine elevation gradients with different bedrock types
  publication-title: Geoderma
– volume: 141
  year: 2020
  article-title: Direct measurement of the in situ decomposition of microbial‐derived soil organic matter
  publication-title: Soil Biology and Biochemistry
– volume: 22
  start-page: 1889
  issue: 11
  year: 2019
  end-page: 1899
  article-title: Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient
  publication-title: Ecology Letters
– volume: 153
  year: 2021
  article-title: Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 550
  issue: 6
  year: 2020
  end-page: 554
  article-title: The proportion of soil‐borne pathogens increases with warming at the global scale
  publication-title: Nature Climate Change
– volume: 355
  start-page: 1420
  issue: 6332
  year: 2017
  end-page: 1423
  article-title: The whole‐soil carbon flux in response to warming
  publication-title: Science
– volume: 19
  start-page: 703
  issue: 6
  year: 1987
  end-page: 707
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biology and Biochemistry
– volume: 162
  year: 2021
  article-title: Microbial necromass as the source of soil organic carbon in global ecosystems
  publication-title: Soil Biology and Biochemistry
– volume: 153
  year: 2021
  article-title: Identification of microbial strategies for labile substrate utilization at phylogenetic classification using a microcosm approach
  publication-title: Soil Biology and Biochemistry
– volume: 33
  start-page: 1633
  issue: 12–13
  year: 2001
  end-page: 1640
  article-title: A microplate fluorimetric assay for the study of enzyme diversity in soils
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 3568
  issue: 1
  year: 2019
  article-title: Microbial carbon use efficiency predicted from genome‐scale metabolic models
  publication-title: Nature Communications
– volume: 94
  start-page: 21
  year: 2016
  end-page: 31
  article-title: Impacts of pH and temperature on soil bacterial 3‐hydroxy fatty acids: Development of novel terrestrial proxies
  publication-title: Organic Geochemistry
– volume: 38
  start-page: 454
  issue: 3
  year: 1979
  end-page: 460
  article-title: Decomposition of microbial cell components in a semi‐arid grassland soil
  publication-title: Applied and Environmental Microbiology
– ident: e_1_2_8_3_1
  doi: 10.1016/j.geoderma.2020.114922
– ident: e_1_2_8_4_1
  doi: 10.1007/s10531‐014‐0658‐x
– ident: e_1_2_8_7_1
  doi: 10.1016/j.geoderma.2020.114397
– ident: e_1_2_8_59_1
  doi: 10.1111/gcb.14603
– ident: e_1_2_8_30_1
  doi: 10.1007/s42832‐020‐0052‐4
– ident: e_1_2_8_66_1
  doi: 10.1111/gcb.15407
– ident: e_1_2_8_63_1
  doi: 10.1038/ismej.2017.135
– ident: e_1_2_8_32_1
  doi: 10.1038/nrmicro2386‐c1
– ident: e_1_2_8_46_1
  doi: 10.1016/j.soilbio.2020.107762
– ident: e_1_2_8_73_1
  doi: 10.3354/cr00822
– ident: e_1_2_8_23_1
  doi: 10.1016/j.soilbio.2015.10.017
– ident: e_1_2_8_65_1
  doi: 10.1016/j.soilbio.2019.03.018
– ident: e_1_2_8_48_1
  doi: 10.1016/j.soilbio.2020.107951
– ident: e_1_2_8_61_1
  doi: 10.1016/j.soilbio.2020.107970
– ident: e_1_2_8_26_1
  doi: 10.1016/j.soilbio.2019.107660
– volume-title: World soil resources reports no. 103
  year: 2007
  ident: e_1_2_8_27_1
– ident: e_1_2_8_34_1
  doi: 10.1016/j.soilbio.2020.108000
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467‐019‐11488‐z
– ident: e_1_2_8_17_1
  doi: 10.1016/j.soilbio.2019.04.004
– ident: e_1_2_8_12_1
  doi: 10.1038/s41559‐017‐0259‐7
– ident: e_1_2_8_62_1
  doi: 10.1038/nclimate1951
– ident: e_1_2_8_25_1
  doi: 10.1126/science.aal1319
– ident: e_1_2_8_51_1
  doi: 10.1093/nar/gku1201
– ident: e_1_2_8_16_1
  doi: 10.1016/j.soilbio.2021.108486
– ident: e_1_2_8_60_1
  doi: 10.1111/gcb.15206
– ident: e_1_2_8_41_1
  doi: 10.1016/j.catena.2021.105707
– ident: e_1_2_8_70_1
  doi: 10.1007/s11427‐018‐9364‐7
– ident: e_1_2_8_21_1
  doi: 10.1111/gcb.15492
– ident: e_1_2_8_54_1
  doi: 10.1046/j.1365‐2699.2002.00707.x
– ident: e_1_2_8_35_1
  doi: 10.3791/3767
– ident: e_1_2_8_9_1
  doi: 10.1016/j.soilbio.2020.107814
– ident: e_1_2_8_40_1
  doi: 10.1126/science.aan2874
– ident: e_1_2_8_57_1
  doi: 10.1016/j.orggeochem.2016.01.010
– ident: e_1_2_8_69_1
  doi: 10.1016/j.soilbio.2021.108213
– ident: e_1_2_8_14_1
  doi: 10.1111/nph.13688
– ident: e_1_2_8_2_1
  doi: 10.1016/j.sjbs.2020.06.038
– ident: e_1_2_8_36_1
  doi: 10.1038/nmicrobiol.2017.105
– ident: e_1_2_8_50_1
  doi: 10.1016/j.soilbio.2020.108112
– ident: e_1_2_8_13_1
  doi: 10.1038/s41558‐020‐0759‐3
– ident: e_1_2_8_29_1
  doi: 10.1111/gcb.15593
– ident: e_1_2_8_5_1
  doi: 10.1038/s41559‐018‐0771‐4
– ident: e_1_2_8_53_1
  doi: 10.1016/0038‐0717(87)90052‐6
– ident: e_1_2_8_64_1
  doi: 10.1016/j.ejsobi.2014.06.002
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467‐020‐18451‐3
– ident: e_1_2_8_31_1
  doi: 10.1111/gcb.14781
– ident: e_1_2_8_68_1
  doi: 10.1186/s40663‐021‐00334‐8
– ident: e_1_2_8_38_1
  doi: 10.1016/j.soilbio.2020.107764
– ident: e_1_2_8_24_1
  doi: 10.1038/s43017‐021‐00178‐4
– ident: e_1_2_8_11_1
  doi: 10.1016/j.soilbio.2009.02.029
– ident: e_1_2_8_20_1
  doi: 10.1021/acs.est.0c01545
– ident: e_1_2_8_44_1
  doi: 10.1016/j.funeco.2015.06.006
– ident: e_1_2_8_71_1
  doi: 10.1016/j.soilbio.2021.108335
– ident: e_1_2_8_37_1
  doi: 10.1007/s00374‐021‐01557‐1
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1365‐2486.2007.01415.x
– ident: e_1_2_8_43_1
  doi: 10.1128/aem.38.3.454‐460.1979
– ident: e_1_2_8_6_1
  doi: 10.1016/j.soilbio.2020.108059
– ident: e_1_2_8_52_1
  doi: 10.1016/j.soilbio.2010.05.007
– ident: e_1_2_8_42_1
  doi: 10.1016/j.geoderma.2018.12.018
– ident: e_1_2_8_45_1
  doi: 10.1111/geb.13159
– ident: e_1_2_8_58_1
  doi: 10.1111/gcb.15550
– ident: e_1_2_8_8_1
  doi: 10.1038/ngeo2520
– ident: e_1_2_8_33_1
  doi: 10.1038/ncomms2224
– ident: e_1_2_8_55_1
  doi: 10.1097/00010694‐194704000‐00001
– ident: e_1_2_8_22_1
  doi: 10.1038/s43705‐021‐00076‐2
– ident: e_1_2_8_67_1
  doi: 10.1016/j.scitotenv.2022.153257
– ident: e_1_2_8_47_1
  doi: 10.1111/ele.13379
– ident: e_1_2_8_18_1
  doi: 10.1126/science.263.5144.185
– ident: e_1_2_8_72_1
  doi: 10.1111/gcb.15541
– ident: e_1_2_8_56_1
  doi: 10.1016/j.soilbio.2021.108422
– ident: e_1_2_8_19_1
  doi: 10.1038/s41561‐018‐0168‐7
– ident: e_1_2_8_28_1
  doi: 10.1016/j.tim.2019.06.003
– ident: e_1_2_8_39_1
  doi: 10.1016/S0038‐0717(01)00079‐7
SSID ssj0003206
Score 2.6043155
Snippet Warming is known to reduce soil carbon (C) stocks by promoting microbial respiration, which is associated with the decomposition of microbial residue carbon...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6433
SubjectTerms Carbon
Carbon dioxide
carbon sequestration
China
climate
Climate change
climate warming
Decomposition
Efflux
elevation gradient
Environmental factors
Global climate
Global warming
lifestyle
microbial residue carbon
microbial traits
Microorganisms
Moisture effects
Organic carbon
Positive feedback
Residues
Soil
soil carbon storage
Soil chemistry
Soil moisture
soil organic carbon
Soil pH
soil properties
Soil temperature
Soils
Stocks
temperature
Temperature gradients
Title Local temperature increases reduce soil microbial residues and carbon stocks
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.16347
https://www.proquest.com/docview/2720273324
https://www.proquest.com/docview/2695286072
https://www.proquest.com/docview/2986206768
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fa9swEMePUCjsZW2zlmbrijbG6ItDbMmKzZ7akK6Mdg-jhT4UjKwfxTSzR5w8dH_97mQ7acs6yt4cfAFF0uk-F-m-AvjkVCpiIaLASSkCYeM8yI1Dv8oRJ8YGl8yUipMvvsuzK_HtOr7uwZeuFqbRh1j94Uae4ddrcnCV1w-c_FbnQ4QJQZXkdFaLgOjHWjqKR_5ezZDHApeakLeqQnSKZ_XNx7FoDZgPMdXHmdMtuOla2BwvuRsuF_lQ_34i3vifP2EbXrf8yY6bCbMDPVv2YbO5kfK-D3vTdeEbmrWeX_dhcIF0Xc29GfvMJrMCUdd_egPn5xQQGalctRLNrCiJRmtbszlpw1pWV8WM_Sy87BPaYpJfGOwGpkrDtJrnVckQQ_VdvQuXp9PLyVnQ3tIQaC45hrjEOm1UrJROnEm5MMnI0m4hD6VLEOectJwoIlbGIcwpTCGdcyrE6Cm443uwUVal3QdmRnasYxEmNG8iJdKxkUYZzAk1Yk6oBnDUDVemWwVzukhjlnWZDHZo5jt0AB9Xpr8a2Y6_GR10Y561nltntC-NSIecOYAPq9foc7SRokpbLdFGpnGUyNE4-odNirkiooBMsNl-EjzfkOzr5MQ_vH256Tt4FVElhi-LPICNxXxp3yMfLfJD7wh_AI3XC3A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdPYwjBy4DCRMcAgxDiJVUTO04i8QLVRoF2D6hIe0GR4x9TtJKgpn2Av547J2kHAoR4a9WL5Do-3-fi3PcAnjuViViIKHBSikDYuAgK49CvCsSJxOCWmVFx8vxMTj-J9-fx-R686mthWn2I7QM38gy_X5OD0wPpK15-oYsR0oRIrsF16ujtE6qPO_EoHvnOmiGPBW42Ie90heg9nu2lP0ejHWJeBVUfaU5vw-d-jO0LJpejzboY6e-_yDf-75-4AwcdgrLX7Zq5C3u2GsCNtinltwEcnuxq39Csc_5mAMM5Ana98mbsBZssS6Rd_-0ezGYUExkJXXUqzaysCEgb27AVycNa1tTlkn0pvfIT2mKeXxqcB6Yqw7RaFXXFkET1ZXMfFqcni8k06Bo1BJpLjlEutU4bFSulU2cyLkw6tnRgyEPpUiQ6Jy0nkIiVcchzCrNI55wKMYAK7vgh7Fd1ZR8AM2Ob6FiEKS2dSIksMdIog2mhRtIJ1RBe9vcr152IOfXSWOZ9MoMTmvsJHcKzrenXVrnjd0bH_U3PO-dtcjqaRqpD1BzC0-3P6HZ0lqIqW2_QRmZxlMpxEv3FJsN0EWlApjhsvwr-PJD87eSN_3D076ZP4OZ0MZ_ls3dnHx7CrYgKM3yV5DHsr1cb-whxaV089l7xAzZzD4s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdPoxOIF7YVJjo68BBCvKRqYsdJxNPWrRusmxAa0h6QIsc_pmhdMjXtA_z1nJ2kHWhMiLdEuUiO4_N9Ls59DfDOiISFjAWe4Zx5TIeZlymDfpUhTkQKp8zEFiefnfOTb-zzZXi5Bh_bWphaH2L5wc16hpuvrYPfKnPHya9kNkCYYNEjWGd8GNshffh1pR1FA7expk9DhnONTxtZIfsbz_LW34PRijDvcqoLNOMN-N42sf6_5HqwmGcD-fMP9cb_fIZNeNYAKNmvR8wWrOmiC4_rLSl_dGH7aFX5hmaN61dd6J0hXpczZ0bek9E0R9Z1Z89hMrERkViZq0ajmeSFxdFKV2RmxWE1qcp8Sm5yp_uEtpjl5wq7gYhCESlmWVkQ5FB5Xb2Ai_HRxejEa7Zp8CTlFGNcrI1UIhRCxkYllKl4qO1yIfW5iZHnDNfUYkQolEGaE5hDGmOEj-GTUUO3oVOUhX4JRA11JEPmx3bgBIIlkeJKKEwKJXKOL3rwoX1dqWwkzO1OGtO0TWWwQ1PXoT14uzS9rXU77jPqt-88bVy3Su3CNDIdgmYP9paX0ensSooodLlAG56EQcyHUfCATYLJIrIAj7HZbhD8vSHp8ejAHez8u-kbePLlcJxOPp2fvoKnga3KcCWSfejMZwu9i6w0z147n_gFGokOQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+temperature+increases+reduce+soil+microbial+residues+and+carbon+stocks&rft.jtitle=Global+change+biology&rft.au=Zeng%2C+Xiao%E2%80%90Min&rft.au=Feng%2C+Jiao&rft.au=Yu%2C+Dai%E2%80%90Lin&rft.au=Wen%2C+Shu%E2%80%90Hai&rft.date=2022-11-01&rft.issn=1354-1013&rft.volume=28&rft.issue=21+p.6433-6445&rft.spage=6433&rft.epage=6445&rft_id=info:doi/10.1111%2Fgcb.16347&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon