Towards User‐Centered Active Learning Algorithms

The labeling of data sets is a time‐consuming task, which is, however, an important prerequisite for machine learning and visual analytics. Visual‐interactive labeling (VIAL) provides users an active role in the process of labeling, with the goal to combine the potentials of humans and machines to m...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 37; no. 3; pp. 121 - 132
Main Authors Bernard, Jürgen, Zeppelzauer, Matthias, Lehmann, Markus, Müller, Martin, Sedlmair, Michael
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The labeling of data sets is a time‐consuming task, which is, however, an important prerequisite for machine learning and visual analytics. Visual‐interactive labeling (VIAL) provides users an active role in the process of labeling, with the goal to combine the potentials of humans and machines to make labeling more efficient. Recent experiments showed that users apply different strategies when selecting instances for labeling with visual‐interactive interfaces. In this paper, we contribute a systematic quantitative analysis of such user strategies. We identify computational building blocks of user strategies, formalize them, and investigate their potentials for different machine learning tasks in systematic experiments. The core insights of our experiments are as follows. First, we identified that particular user strategies can be used to considerably mitigate the bootstrap (cold start) problem in early labeling phases. Second, we observed that they have the potential to outperform existing active learning strategies in later phases. Third, we analyzed the identified core building blocks, which can serve as the basis for novel selection strategies. Overall, we observed that data‐based user strategies (clusters, dense areas) work considerably well in early phases, while model‐based user strategies (e.g., class separation) perform better during later phases. The insights gained from this work can be applied to develop novel active learning approaches as well as to better guide users in visual interactive labeling.
AbstractList The labeling of data sets is a time‐consuming task, which is, however, an important prerequisite for machine learning and visual analytics. Visual‐interactive labeling (VIAL) provides users an active role in the process of labeling, with the goal to combine the potentials of humans and machines to make labeling more efficient. Recent experiments showed that users apply different strategies when selecting instances for labeling with visual‐interactive interfaces. In this paper, we contribute a systematic quantitative analysis of such user strategies. We identify computational building blocks of user strategies, formalize them, and investigate their potentials for different machine learning tasks in systematic experiments. The core insights of our experiments are as follows. First, we identified that particular user strategies can be used to considerably mitigate the bootstrap (cold start) problem in early labeling phases. Second, we observed that they have the potential to outperform existing active learning strategies in later phases. Third, we analyzed the identified core building blocks, which can serve as the basis for novel selection strategies. Overall, we observed that data‐based user strategies (clusters, dense areas) work considerably well in early phases, while model‐based user strategies (e.g., class separation) perform better during later phases. The insights gained from this work can be applied to develop novel active learning approaches as well as to better guide users in visual interactive labeling.
Author Zeppelzauer, Matthias
Bernard, Jürgen
Müller, Martin
Sedlmair, Michael
Lehmann, Markus
Author_xml – sequence: 1
  givenname: Jürgen
  surname: Bernard
  fullname: Bernard, Jürgen
– sequence: 2
  givenname: Matthias
  surname: Zeppelzauer
  fullname: Zeppelzauer, Matthias
  organization: St. Pölten University of Applied Sciences
– sequence: 3
  givenname: Markus
  surname: Lehmann
  fullname: Lehmann, Markus
– sequence: 4
  givenname: Martin
  surname: Müller
  fullname: Müller, Martin
– sequence: 5
  givenname: Michael
  surname: Sedlmair
  fullname: Sedlmair, Michael
  organization: Jacobs University Bremen
BookMark eNp9kMFOAjEURRuDiYAu_INJXLkYaKfTli7JRNCExA2sm06nxZKhxXaQsPMT-Ea_xCquTPQt3nuLc-9N7gD0nHcagFsERyjNWK3NCOES0gvQRyVl-YQS3gN9iNLPICFXYBDjBkJYMkr6oFj6gwxNzFZRh4_3U6Vdp4Nusqnq7JvOFloGZ906m7ZrH2z3so3X4NLINuqbnzsEq9nDsnrMF8_zp2q6yBWmmOashlApWfMJr7WGRdpcGlNQNiG8IMwozBiVkNG6bjghDebcqAYxjWXJixoPwd3Zdxf8617HTmz8PrgUKQpIGYIlQmWi7s-UCj7GoI3YBbuV4SgQFF-ViFSJ-K4kseNfrLKd7Kx3XZC2_U9xsK0-_m0tqvnsrPgEytVz-w
CitedBy_id crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_1111_cgf_14034
crossref_primary_10_1109_TVCG_2022_3233548
crossref_primary_10_1016_j_knosys_2022_108651
crossref_primary_10_1109_TVCG_2023_3326586
crossref_primary_10_1038_s41467_024_55780_z
crossref_primary_10_3390_app122211386
crossref_primary_10_1016_j_eswa_2020_114372
crossref_primary_10_1016_j_csl_2023_101537
crossref_primary_10_1145_3589280
crossref_primary_10_1109_TVCG_2024_3456329
crossref_primary_10_1145_3439333
crossref_primary_10_1109_TVCG_2024_3357065
crossref_primary_10_1109_TVCG_2021_3084694
crossref_primary_10_1007_s41095_023_0393_x
crossref_primary_10_1145_3385188
crossref_primary_10_1007_s00371_022_02648_2
crossref_primary_10_1109_TVCG_2021_3114793
crossref_primary_10_1111_cgf_13973
crossref_primary_10_1109_TVCG_2020_3012063
crossref_primary_10_1109_MCG_2021_3130314
crossref_primary_10_1111_cgf_14329
crossref_primary_10_1111_cgf_14726
crossref_primary_10_1016_j_ipm_2019_102132
crossref_primary_10_1016_j_visinf_2019_03_002
crossref_primary_10_1631_FITEE_1900549
crossref_primary_10_1145_3429448
crossref_primary_10_1016_j_cag_2024_104062
Cites_doi 10.1145/1135777.1135870
10.1109/VAST.2014.7042480
10.2200/S00429ED1V01Y201207AIM018
10.6028/NIST.SP.500-251.video-amsterdam_isis
10.1016/j.patrec.2008.08.010
10.1109/ICME.2006.262442
10.1109/VAST.2012.6400486
10.1080/01969727408546059
10.1016/0893-6080(89)90020-8
10.5220/0006116400750087
10.1016/j.patrec.2009.09.011
10.1016/0377‐0427(87)90125‐7
10.1016/B978-1-55860-377-6.50027-X
10.1109/CVPR.2009.5206627
10.1109/TVCG.2012.277
10.1109/TPAMI.1979.4766909
10.1111/cgf.12116
10.1145/130385.130417
10.1109/VLHCC.2016.7739668
10.1145/1015330.1015385
10.1109/JSTSP.2011.2139193
10.1007/BF00994018
10.1109/TVCG.2014.2346578
10.1145/3038462.3038469
10.3115/1613715.1613855
10.1109/TPAMI.2008.218
10.1007/3-540-44816-0_31
10.1109/SSCI.2015.33
10.1145/1964897.1964906
10.1002/j.1538-7305.1948.tb01338.x
10.1007/11788034_13
10.1109/5.726791
10.1109/ICDMW.2010.181
10.1111/cgf.12632
10.21236/ADA440382
10.1023/A:1010933404324
10.1109/CVPR.2012.6248050
10.1145/361219.361220
10.1145/2836034.2836035
10.1145/1899412.1899414
10.1109/VAST.2012.6400492
ContentType Journal Article
Copyright 2018 The Author(s) Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2018 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2018 The Author(s) Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2018 The Eurographics Association and John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1111/cgf.13406
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 132
ExternalDocumentID 10_1111_cgf_13406
CGF13406
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3636-7b00ccab989bee029be9aff267859257fc3776a076bbd955d399fcd17e3a492b3
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Sat Jul 26 02:30:49 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Tue Jul 01 02:23:09 EDT 2025
Wed Jan 22 16:43:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3636-7b00ccab989bee029be9aff267859257fc3776a076bbd955d399fcd17e3a492b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2067104114
PQPubID 30877
PageCount 12
ParticipantIDs proquest_journals_2067104114
crossref_primary_10_1111_cgf_13406
crossref_citationtrail_10_1111_cgf_13406
wiley_primary_10_1111_cgf_13406_CGF13406
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2018
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1989; 2
2015; 34
2010; 31
2011; 2
2012
2011
2010
1975; 18
2009
1998
2008
1995
2006
2005
2012; 18
2011; 12
2004
1992
2002
2001; 45
2011; 5
2014; 22
1974; 4
2014; 20
1995; 20
2009; 30
1987; 20
2009; 31
2001
2013; 32
2017
2016
2015
1979; 1
2014
2013
1973; 2
1948; 27
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
Bernard J. (e_1_2_8_11_2) 2014; 22
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_59_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_57_2
e_1_2_8_30_2
e_1_2_8_55_2
e_1_2_8_32_2
e_1_2_8_53_2
e_1_2_8_51_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
Duda R. O. (e_1_2_8_18_2) 1973
e_1_2_8_50_2
References_xml – year: 2009
– volume: 2
  year: 1973
– start-page: 69
  year: 2017
  end-page: 74
– start-page: 013
  year: 2016
  end-page: 017
– start-page: 1
  year: 2015
  end-page: 8
– volume: 27
  year: 1948
  article-title: A mathematical theory of communication
  publication-title: Bell system technical journal
– start-page: 83
  year: 2012
  end-page: 92
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  end-page: 666
  article-title: Data clustering: 50 years beyond k‐means
  publication-title: Pattern Recognition Letters
– volume: 20
  start-page: 1643
  issue: 12
  year: 2014
  end-page: 1652
  article-title: Opening the black box: Strategies for increased user involvement in existing algorithm implementations
  publication-title: IEEE Transactions on Visualization and Computer Graphics (TVCG)
– start-page: 287
  year: 1992
  end-page: 294
– year: 1998
– volume: 30
  start-page: 27
  issue: 1
  year: 2009
  end-page: 38
  article-title: An experimental comparison of performance measures for classification
  publication-title: Pattern Recognition Letters
– volume: 34
  start-page: 201
  issue: 3
  year: 2015
  end-page: 210
  article-title: Data‐driven evaluation of visual quality measures
  publication-title: Computer Graphics Forum (CGF)
– volume: 2
  start-page: 10:1
  issue: 2
  year: 2011
  end-page: 10:21
  article-title: Active learning in multimedia annotation and retrieval: A survey
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– start-page: 529
  year: 2006
  end-page: 532
– start-page: 2372
  year: 2009
  end-page: 2379
– start-page: 633
  year: 2006
  end-page: 642
– start-page: 159
  year: 2015
  end-page: 166
– start-page: 1070
  year: 2008
  end-page: 1079
– volume: 18
  start-page: 613
  issue: 11
  year: 1975
  end-page: 620
  article-title: A vector space model for automatic indexing
  publication-title: Communications of the ACM
– start-page: 75
  year: 2017
  end-page: 87
– volume: 4
  start-page: 95
  issue: 1
  year: 1974
  end-page: 104
  article-title: Well‐separated clusters and optimal fuzzy partitions
  publication-title: Journal of Cybernetics
– start-page: 150
  year: 1995
  end-page: 157
– start-page: 47
  year: 2011
  end-page: 57
– volume: 22
  year: 2014
  article-title: User‐based visual‐interactive similarity definition for mixed data objects‐concept and first implementation
  publication-title: Journal of WSCG
– start-page: 78
  year: 2016
  end-page: 86
– start-page: 2278
  year: 1998
  end-page: 2324
– start-page: 23
  year: 2012
  end-page: 32
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– start-page: 350
  year: 1998
  end-page: 358
– volume: 31
  start-page: 1880
  issue: 10
  year: 2009
  end-page: 1897
  article-title: Two‐dimensional multilabel active learning with an efficient online adaptation model for image classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
– year: 2016
– start-page: 392
  year: 1998
  end-page: 403
– start-page: 1289
  year: 2008
  end-page: 1296
– volume: 20
  start-page: 53
  issue: 1
  year: 1987
  end-page: 65
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: Journal of Computational and Applied Mathematics
– volume: 32
  start-page: 291
  issue: 3
  year: 2013
  end-page: 299
  article-title: User‐driven feature space transformation
  publication-title: Computer Graphics Forum (CGF)
– start-page: 418
  year: 2010
  end-page: 425
– start-page: 584
  year: 2004
  end-page: 591
– start-page: 309
  year: 2001
  end-page: 318
– year: 2012
– start-page: 746
  year: 2005
  end-page: 751
– start-page: 4226
  year: 2017
  end-page: 4236
– volume: 5
  start-page: 606
  issue: 3
  year: 2011
  end-page: 617
  article-title: A survey of active learning algorithms for supervised remote sensing image classification
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– start-page: 43
  year: 2014
  end-page: 52
– volume: 1
  start-page: 224
  issue: 2
  year: 1979
  end-page: 227
  article-title: A cluster separation measure
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
– year: 2002
– start-page: 3162
  year: 2012
  end-page: 3169
– volume: 12
  start-page: 36
  issue: 2
  year: 2011
  end-page: 41
  article-title: Inactive learning?: Difficulties employing active learning in practice
  publication-title: SIGKDD Explor. Newsl.
– start-page: 123
  year: 2006
  end-page: 132
– year: 2017
– volume: 18
  start-page: 2839
  issue: 12
  year: 2012
  end-page: 2848
  article-title: Visual classifier training for text document retrieval
  publication-title: IEEE Transactions on Visualization and Computer Graphics (TVCG)
– start-page: 2
  year: 2017
  end-page: 14
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Machine Learning
– year: 2013
– ident: e_1_2_8_22_2
  doi: 10.1145/1135777.1135870
– volume-title: Pattern classification
  year: 1973
  ident: e_1_2_8_18_2
– ident: e_1_2_8_6_2
  doi: 10.1109/VAST.2014.7042480
– ident: e_1_2_8_48_2
  doi: 10.2200/S00429ED1V01Y201207AIM018
– ident: e_1_2_8_57_2
  doi: 10.6028/NIST.SP.500-251.video-amsterdam_isis
– ident: e_1_2_8_21_2
  doi: 10.1016/j.patrec.2008.08.010
– ident: e_1_2_8_59_2
  doi: 10.1109/ICME.2006.262442
– ident: e_1_2_8_30_2
– ident: e_1_2_8_7_2
  doi: 10.1109/VAST.2012.6400486
– ident: e_1_2_8_12_2
– ident: e_1_2_8_20_2
  doi: 10.1080/01969727408546059
– ident: e_1_2_8_26_2
  doi: 10.1016/0893-6080(89)90020-8
– ident: e_1_2_8_53_2
– ident: e_1_2_8_9_2
  doi: 10.5220/0006116400750087
– ident: e_1_2_8_34_2
– ident: e_1_2_8_27_2
  doi: 10.1016/j.patrec.2009.09.011
– ident: e_1_2_8_31_2
– ident: e_1_2_8_42_2
  doi: 10.1016/0377‐0427(87)90125‐7
– ident: e_1_2_8_3_2
– ident: e_1_2_8_17_2
  doi: 10.1016/B978-1-55860-377-6.50027-X
– ident: e_1_2_8_28_2
  doi: 10.1109/CVPR.2009.5206627
– ident: e_1_2_8_23_2
  doi: 10.1109/TVCG.2012.277
– ident: e_1_2_8_39_2
– ident: e_1_2_8_16_2
  doi: 10.1109/TPAMI.1979.4766909
– ident: e_1_2_8_33_2
– ident: e_1_2_8_35_2
  doi: 10.1111/cgf.12116
– ident: e_1_2_8_51_2
  doi: 10.1145/130385.130417
– ident: e_1_2_8_52_2
  doi: 10.1109/VLHCC.2016.7739668
– ident: e_1_2_8_36_2
  doi: 10.1145/1015330.1015385
– ident: e_1_2_8_55_2
  doi: 10.1109/JSTSP.2011.2139193
– ident: e_1_2_8_15_2
  doi: 10.1007/BF00994018
– ident: e_1_2_8_47_2
– ident: e_1_2_8_38_2
  doi: 10.1109/TVCG.2014.2346578
– ident: e_1_2_8_5_2
– ident: e_1_2_8_24_2
  doi: 10.1145/3038462.3038469
– ident: e_1_2_8_44_2
  doi: 10.3115/1613715.1613855
– ident: e_1_2_8_41_2
  doi: 10.1109/TPAMI.2008.218
– ident: e_1_2_8_46_2
  doi: 10.1007/3-540-44816-0_31
– ident: e_1_2_8_40_2
  doi: 10.1109/SSCI.2015.33
– ident: e_1_2_8_2_2
  doi: 10.1145/1964897.1964906
– ident: e_1_2_8_50_2
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: e_1_2_8_29_2
– ident: e_1_2_8_19_2
  doi: 10.1007/11788034_13
– ident: e_1_2_8_32_2
  doi: 10.1109/5.726791
– ident: e_1_2_8_37_2
– ident: e_1_2_8_49_2
  doi: 10.1109/ICDMW.2010.181
– ident: e_1_2_8_43_2
  doi: 10.1111/cgf.12632
– ident: e_1_2_8_45_2
– ident: e_1_2_8_14_2
  doi: 10.21236/ADA440382
– ident: e_1_2_8_8_2
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_56_2
  doi: 10.1109/CVPR.2012.6248050
– ident: e_1_2_8_54_2
  doi: 10.1145/361219.361220
– volume: 22
  year: 2014
  ident: e_1_2_8_11_2
  article-title: User‐based visual‐interactive similarity definition for mixed data objects‐concept and first implementation
  publication-title: Journal of WSCG
– ident: e_1_2_8_10_2
  doi: 10.1145/2836034.2836035
– ident: e_1_2_8_58_2
  doi: 10.1145/1899412.1899414
– ident: e_1_2_8_4_2
– ident: e_1_2_8_13_2
– ident: e_1_2_8_25_2
  doi: 10.1109/VAST.2012.6400492
SSID ssj0004765
Score 2.4626975
Snippet The labeling of data sets is a time‐consuming task, which is, however, an important prerequisite for machine learning and visual analytics. Visual‐interactive...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121
SubjectTerms Active learning
Analytics
Artificial intelligence
Categories and Subject Descriptors (according to ACM CCS)
Cold starts
Experiments
I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve generation
Labeling
Machine learning
Phases
Quantitative analysis
Title Towards User‐Centered Active Learning Algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13406
https://www.proquest.com/docview/2067104114
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarBPHgJaVN9pHFUynWIuhBWuhBCLub3SrWVpr04smf4G_0lzi7SdoqCuIl5LB5zc63880y-QahMy4ka2JtfBNE1IcILXwuCPYDBs4QCYmNa9N5c0t7A3w9JMMKuij_hcn1IRYbbhYZbr22ABcyXQG5GplGK8RObtvWallCdLeUjsKMklLX2yrGFKpCtopnceXXWLQkmKs01cWZ7ia6L98wLy95aswz2VCv38Qb__kJW2ij4J9eO3eYbVTRkx20vqJKuIuCviulTb0BuOfH27vdALYdPb22Wxu9QpJ15LXHo-nsMXt4TvfQoHvZ7_T8orWCr0IaUp8B2mDuJI-41LoZwJELYwIIXYQDio0KGaOiyaiUCSckAR5jVNJiOhSYBzLcR9XJdKIPkEeM1YMJaGhaAtgfljQxVgQGMktJtNI1dF4aOVaF7rhtfzGOy_wDzBA7M9TQ6WLoSy628dOgejlTcYG3NLYi9JBYQnIHj3Mm__0Gceeq604O_z70CK0BU4ryGrE6qmazuT4GNpLJE-d2nzRa2Ww
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT8JAEIA3BA_qwbcRRW2MBy8l0O6jTbwQFFGBg4GEi2l22100IhgoF0_-BH-jv8TZbQtoNDFemh62r9mZnZnN9BuETn0uWBlLZSvHozZ4aG77nGDbYaAMHhdYmTadrTZtdPFNj_Ry6Dz7FybhQ8w23LRlmPVaG7jekF6w8rCvShUXa972ku7orcn5F3dzeBRmlGRkb82MSblCuo5ndulXbzQPMRcDVeNp6uvoPnvHpMDkqTSNRSl8_YZv_O9HbKC1NAS1qonObKKcHG6h1QUw4TZyOqaadmJ1QUM_3t71HrBu6mlVzfJopVTWvlUd9Efjx_jhebKDuvXLTq1hp90V7NClLrUZGBxMn_A9X0hZduDoc6Uc8F7EB0NWocsY5WVGhYh8QiIIZVQYVZh0OfYd4e6i_HA0lHvIIkojYRzqqgqHABALGinNgYHkUhAZygI6y6QchCl6XHfAGARZCgJiCIwYCuhkNvQl4W38NKiYTVWQmtwk0Bx6yC0hv4PHGZn_foOgdlU3J_t_H3qMlhudVjNoXrdvD9AKBE5eUjJWRPl4PJWHEJzE4sjo4CfY4d2I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEICXoiB68C1Wqwbx4CUlTTa7WTyV1lhfRaSFHoSQTXarWNvSphdP_gR_o7_E2U3SVlEQLyGHzWt2ZmdmmXyD0AkLObWwkKa0PWKChw5NFrrYtCkogxdyLHWbztsmabTxVcftFNBZ_i9MyoeYbrgpy9DrtTLwYSznjDzqynLFwQq3vYiJxVTfhvr9jB2FKXFzsLdCxmRYIVXGM730qzOaRZjzcap2NP4aeshfMa0veS5PEl6OXr_RG__5DetoNQtAjWqqMRuoIPqbaGUOS7iF7JaupR0bbdDPj7d3tQOsWnoaVb04GhmTtWtUe93B6Cl5fBlvo7Z_3qo1zKy3ghk5xCEmBXODyePMY1wIy4YjC6W0wXe5DMxYRg6lJLQo4TxmrhtDICOjuEKFE2Jmc2cHLfQHfbGLDFcqIIxNHFkJIfzDnMRSUWAgteSuiEQRneZCDqIMPK76X_SCPAEBMQRaDEV0PB06TGkbPw0q5TMVZAY3DhSFHjJLyO7gcVrkv98gqF34-mTv70OP0NJd3Q9uLpvX-2gZoiYvrRcroYVkNBEHEJkk_FBr4CdfHtw3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+User%E2%80%90Centered+Active+Learning+Algorithms&rft.jtitle=Computer+graphics+forum&rft.au=Bernard%2C+J%C3%BCrgen&rft.au=Zeppelzauer%2C+Matthias&rft.au=Lehmann%2C+Markus&rft.au=M%C3%BCller%2C+Martin&rft.date=2018-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=37&rft.issue=3&rft.spage=121&rft.epage=132&rft_id=info:doi/10.1111%2Fcgf.13406&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon