Trifluorodiazoethane: A versatile building block to access trifluoromethylated heterocycles
Trifluoromethylated heterocycles have attracted remarkable interest in the last decades. The beneficial physicochemical and biological properties imparted by the incorporation of trifluoromethyl group into heterocycles have been the key factors to the frequent occurrence of trifluoromethyl group in...
Saved in:
Published in | Journal of heterocyclic chemistry Vol. 59; no. 4; pp. 607 - 632 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Inc
01.04.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Trifluoromethylated heterocycles have attracted remarkable interest in the last decades. The beneficial physicochemical and biological properties imparted by the incorporation of trifluoromethyl group into heterocycles have been the key factors to the frequent occurrence of trifluoromethyl group in several heterocycles of pharmaceutical and agrochemical relevance. In consequence, the construction of this class of compounds has become a major subject of research in recent years. In this context, 2,2,2‐trifluorodiazoethane (CF3CHN2) has emerged as an important reagent in the synthesis of trifluoromethylated heterocycles, thanks to the versatility of this reagent in undergoing a multitude of synthetic transformations. CF3CHN2 readily participates in [2 + 1]‐, [3 + 2]‐, and [3 + 3]‐cycloaddition reactions, as a trifluoromethyl‐containing dipole, thereby creating new approaches to trifluoromethylated heterocycles. The last decade has witnessed phenomenal growth in this area, and now, several methods are available to access highly functionalized 5‐ and 6‐membered trifluoromethyl‐containing heterocycles. In this review, we aim to demonstrate the use of CF3CHN2 in the preparation of different classes of CF3‐substituted heterocycles, giving emphasis to the past 10 years.
This account details the recent advances in exploring the synthetic utility of trifluorodiazoethane for the construction of trifluoromethylated heterocycles. |
---|---|
AbstractList | Trifluoromethylated heterocycles have attracted remarkable interest in the last decades. The beneficial physicochemical and biological properties imparted by the incorporation of trifluoromethyl group into heterocycles have been the key factors to the frequent occurrence of trifluoromethyl group in several heterocycles of pharmaceutical and agrochemical relevance. In consequence, the construction of this class of compounds has become a major subject of research in recent years. In this context, 2,2,2‐trifluorodiazoethane (CF3CHN2) has emerged as an important reagent in the synthesis of trifluoromethylated heterocycles, thanks to the versatility of this reagent in undergoing a multitude of synthetic transformations. CF3CHN2 readily participates in [2 + 1]‐, [3 + 2]‐, and [3 + 3]‐cycloaddition reactions, as a trifluoromethyl‐containing dipole, thereby creating new approaches to trifluoromethylated heterocycles. The last decade has witnessed phenomenal growth in this area, and now, several methods are available to access highly functionalized 5‐ and 6‐membered trifluoromethyl‐containing heterocycles. In this review, we aim to demonstrate the use of CF3CHN2 in the preparation of different classes of CF3‐substituted heterocycles, giving emphasis to the past 10 years. Trifluoromethylated heterocycles have attracted remarkable interest in the last decades. The beneficial physicochemical and biological properties imparted by the incorporation of trifluoromethyl group into heterocycles have been the key factors to the frequent occurrence of trifluoromethyl group in several heterocycles of pharmaceutical and agrochemical relevance. In consequence, the construction of this class of compounds has become a major subject of research in recent years. In this context, 2,2,2‐trifluorodiazoethane (CF 3 CHN 2 ) has emerged as an important reagent in the synthesis of trifluoromethylated heterocycles, thanks to the versatility of this reagent in undergoing a multitude of synthetic transformations. CF 3 CHN 2 readily participates in [2 + 1]‐, [3 + 2]‐, and [3 + 3]‐cycloaddition reactions, as a trifluoromethyl‐containing dipole, thereby creating new approaches to trifluoromethylated heterocycles. The last decade has witnessed phenomenal growth in this area, and now, several methods are available to access highly functionalized 5‐ and 6‐membered trifluoromethyl‐containing heterocycles. In this review, we aim to demonstrate the use of CF 3 CHN 2 in the preparation of different classes of CF 3 ‐substituted heterocycles, giving emphasis to the past 10 years. Trifluoromethylated heterocycles have attracted remarkable interest in the last decades. The beneficial physicochemical and biological properties imparted by the incorporation of trifluoromethyl group into heterocycles have been the key factors to the frequent occurrence of trifluoromethyl group in several heterocycles of pharmaceutical and agrochemical relevance. In consequence, the construction of this class of compounds has become a major subject of research in recent years. In this context, 2,2,2‐trifluorodiazoethane (CF3CHN2) has emerged as an important reagent in the synthesis of trifluoromethylated heterocycles, thanks to the versatility of this reagent in undergoing a multitude of synthetic transformations. CF3CHN2 readily participates in [2 + 1]‐, [3 + 2]‐, and [3 + 3]‐cycloaddition reactions, as a trifluoromethyl‐containing dipole, thereby creating new approaches to trifluoromethylated heterocycles. The last decade has witnessed phenomenal growth in this area, and now, several methods are available to access highly functionalized 5‐ and 6‐membered trifluoromethyl‐containing heterocycles. In this review, we aim to demonstrate the use of CF3CHN2 in the preparation of different classes of CF3‐substituted heterocycles, giving emphasis to the past 10 years. This account details the recent advances in exploring the synthetic utility of trifluorodiazoethane for the construction of trifluoromethylated heterocycles. |
Author | Mohanan, Kishor Khan, Waqas Ahmad Ahamad, Shakir Kumar, Anuj |
Author_xml | – sequence: 1 givenname: Anuj surname: Kumar fullname: Kumar, Anuj organization: CSIR‐Central Drug Research Institute – sequence: 2 givenname: Waqas Ahmad surname: Khan fullname: Khan, Waqas Ahmad organization: Aligarh Muslim University – sequence: 3 givenname: Shakir orcidid: 0000-0002-9873-7806 surname: Ahamad fullname: Ahamad, Shakir email: shakirzaheer111@gmail.com organization: Aligarh Muslim University – sequence: 4 givenname: Kishor surname: Mohanan fullname: Mohanan, Kishor email: kishor.mohanan@cdri.res.in organization: Academy of Scientific and Innovative Research |
BookMark | eNp9kM1KAzEURoNUsK0ufIMBVy6mzd9MZtyVUq1ScFNBcBEySWpTp5OaZJTx6U2tbgRdXS73fN-FMwC9xjYagHMERwhCPN6sdRhRivIj0EclJWmGStID_XjDKcrw4wkYeL-JKyKM9cHT0plV3VpnlREfVoe1aPRVMknetPMimFonVWtqZZrnpKqtfEmCTYSU2vsk_ES3MdbVImiVxPfaWdnJWvtTcLwStddn33MIHq5ny-k8Xdzf3E4ni1SSnOQpy2nBqFxBnRVYUUZVhRlFmkFCZVaVGZGKkByWmApcMEVQxhApYCaqslBVSYbg4tC7c_a11T7wjW1dE19ynNMooYQ5itTlgZLOeu_0iu-c2QrXcQT53h3fu-N7d5Ed_2KlCdGGbYITpv4v8R6VdX9X87v5bPmV-AQVcoN6 |
CitedBy_id | crossref_primary_10_1016_j_jfluchem_2024_110273 crossref_primary_10_1039_D4QO00537F crossref_primary_10_1002_ejoc_202400304 crossref_primary_10_1016_j_jfluchem_2024_110256 crossref_primary_10_1039_D4OB00849A crossref_primary_10_1002_adsc_202300322 crossref_primary_10_1002_adsc_202400207 crossref_primary_10_1021_acs_orglett_2c04297 crossref_primary_10_1002_adsc_202400385 crossref_primary_10_1016_j_jfluchem_2023_110238 crossref_primary_10_1021_acs_joc_3c02200 crossref_primary_10_1021_acs_orglett_3c01437 crossref_primary_10_1021_acs_orglett_3c00464 crossref_primary_10_1002_anie_202305776 crossref_primary_10_1021_acs_orglett_3c00801 crossref_primary_10_1039_D4OB00877D crossref_primary_10_1039_D4RA06651K crossref_primary_10_1039_D3CC03897A crossref_primary_10_1002_adsc_202300373 crossref_primary_10_1002_chem_202303599 crossref_primary_10_1039_D3GC03528J crossref_primary_10_1039_D3QO01461D crossref_primary_10_1021_acs_orglett_4c04127 crossref_primary_10_1016_j_jfluchem_2023_110129 crossref_primary_10_3390_ma16020856 crossref_primary_10_1021_acs_orglett_3c02053 crossref_primary_10_6023_A23040154 crossref_primary_10_1002_cjoc_202400402 crossref_primary_10_1002_ange_202305776 crossref_primary_10_3762_bjoc_19_127 |
Cites_doi | 10.1039/B610213C 10.1021/acs.orglett.9b03740 10.1039/C9QO00324J 10.1002/anie.201301870 10.1021/jm800219f 10.1039/C4OB02365J 10.1021/ol401402d 10.1039/C5CC02749G 10.1002/slct.201601113 10.2165/00003495-199856060-00014 10.1021/acs.orglett.5b03437 10.1055/s-2006-926451 10.1021/acs.orglett.1c02139 10.1002/9781444312096 10.1021/jm4017625 10.1002/chem.201801171 10.1021/acs.chemrev.0c00406 10.1021/acs.orglett.6b00194 10.1002/chem.201901840 10.1002/anie.201704529 10.1021/ol202423s 10.1111/j.1365-2885.2010.01165.x 10.1039/jr9640001881 10.1021/acs.orglett.9b01468 10.1021/acs.joc.8b02504 10.1002/9783527634880.ch1 10.3762/bjoc.11.3 10.1002/ejoc.201701755 10.1021/cr500277b 10.1021/acs.orglett.7b01362 10.1021/ol300539e 10.1021/acs.orglett.6b01565 10.1021/jm960803q 10.1016/j.bmcl.2005.08.034 10.1039/C6OB01618A 10.1002/slct.201702384 10.1016/j.inoche.2014.06.007 10.1002/anie.201507219 10.1039/B711844A 10.1002/ejoc.201301852 10.1021/ja00541a075 10.1021/ol200983s 10.1021/acs.orglett.6b01191 10.1002/anie.201700955 10.1039/C4OB02670E 10.1016/j.tetlet.2006.03.132 10.1021/ol401636d 10.1021/acscatal.9b00846 10.1021/jacs.7b00768 10.1021/acs.orglett.7b04028 10.1016/j.tetlet.2017.09.086 10.1016/S0040-4039(00)94114-5 10.1002/anie.201408191 10.1016/j.tet.2004.10.092 10.1039/C8QO01421C 10.1021/acscatal.8b02066 10.1021/acsomega.0c00830 10.1002/ejoc.201700992 10.1039/C5QO00219B 10.1007/s00432-005-0063-7 10.1021/acs.orglett.1c01969 10.1039/C6GC03187K 10.1016/j.jfluchem.2014.06.002 10.1039/C9QO00856J 10.1021/jacs.6b01183 10.1021/cr400473a 10.1002/ejoc.202100521 10.1021/ja01248a005 10.1021/acs.jmedchem.8b01610 10.1126/science.1131943 10.1055/s-0036-1588664 10.1016/j.bmcl.2007.06.084 10.1055/s-0029-1217141 10.1002/cmdc.201402502 10.1021/np100013r 10.1016/j.tet.2018.08.035 10.1039/j39680001507 10.1021/acs.orglett.0c00395 10.1021/acs.orglett.7b02866 10.1021/ol500203m 10.1021/acs.orglett.9b01159 10.1002/adsc.201800445 10.1021/np9001948 10.1039/C5OB01382H 10.1039/c2cc35246j 10.1002/9780470281895 10.1016/j.bmcl.2007.11.040 10.1038/s41467-018-07882-8 10.1021/jm0613976 10.1002/ajoc.201700216 10.1016/S0022-1139(00)81083-0 10.1002/asia.201901620 10.1016/S0022-1139(00)82989-9 10.1021/acscatal.0c00972 10.1021/acs.orglett.8b02816 10.1007/BF00863115 10.1039/C5CC07324C 10.1016/S0040-4039(00)60032-1 10.1016/j.jfluchem.2007.04.026 10.1016/j.ica.2010.02.014 10.1071/CH13021 10.1002/ajoc.201800340 10.1002/anie.200905573 10.1021/ol501249h 10.1002/asia.201901799 10.1016/j.poly.2014.04.025 10.1002/9781119998372.ch1 10.1002/anie.201915500 10.1039/j39670001450 10.1038/s42004-019-0168-6 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC. 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION |
DOI | 10.1002/jhet.4416 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1943-5193 |
EndPage | 632 |
ExternalDocumentID | 10_1002_jhet_4416 JHET4416 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Science and Engineering Research Board, DST, Govt. of India funderid: EMR/2017/003344 |
GroupedDBID | --- -~X .GJ 05W 0R~ 1L6 1OB 1OC 31~ 33P 3EH 3SF 3WU 4.4 52U 52V 53G 5GY 6TJ 8-0 8-1 8UM 8WZ A00 A6W AABCJ AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCUV ABDBF ABDPE ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BNHUX BOGZA BRXPI BTSUX DCZOG DRFUL DRMAN DRSTM EBD EBS EJD ESX F5P FEDTE FUBAC G-S GODZA HF~ HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O66 O9- OIG P2W P4E PALCI QRW RIWAO RJQFR ROL RWI SAMSI SJN SUPJJ TN5 TUS VH1 WBFHL WBKPD WH7 WIH WIJ WIK WOHZO WXSBR WYISQ WYJ XV2 Y6R YCJ ZCG ZZTAW ~S- AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3636-764874cf0e582d474db2741e7034c5b953cd3360924a287d315713805ab98db93 |
ISSN | 0022-152X |
IngestDate | Fri Jul 25 12:09:14 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Tue Jul 01 02:40:47 EDT 2025 Wed Jan 22 16:25:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3636-764874cf0e582d474db2741e7034c5b953cd3360924a287d315713805ab98db93 |
Notes | Funding information Science and Engineering Research Board, DST, Govt. of India, Grant/Award Number: EMR/2017/003344 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9873-7806 |
PQID | 2649439061 |
PQPubID | 1006406 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2649439061 crossref_primary_10_1002_jhet_4416 crossref_citationtrail_10_1002_jhet_4416 wiley_primary_10_1002_jhet_4416_JHET4416 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Hoboken |
PublicationTitle | Journal of heterocyclic chemistry |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 6 2021; 23 2018; 360 2007 2006 2005 1998; 17 132 15 56 2015 2014 2013; 54 53 15 2020; 15 2011; 13 2018; 83 2012; 14 2018 2017 2016 2016 2015 2015; 7 2 1 18 13 13 2015; 174 2013; 15 2020 2019 2017 2014; 10 9 19 16 2019; 21 2013; 52 2014; 16 2014 2012 2012 2011 2011 2010 2009; 57 73 72 2020 2020 2018 2018 2018 2015 2015 2007; 59 15 8 2018 74 115 115 128 2017 2011 2006 1967 1964; 139 13 2006 2014 2014 2013 2010 2006 2005; 46 78 66 363 47 61 1983; 24 2015 2009 2008; 10 1980; 102 2021; 2021 2015; 13 2015; 2 2020 2019 2019; 5 25 62 1979; 13 2019; 6 2010; 2010 1979; 14 2017; 2017 2019; 2 2015; 51 2020 2016; 120 14 2013; 45 2015; 11 2014; 2014 2018; 20 2018; 24 2019 2018 2016; 21 20 18 2010; 49 2007; 317 1943; 65 2017; 58 2010 2008 1997; 33 18 40 2017; 56 2008 2008 2008; 51 37 37 2017; 19 2016; 138 2020; 22 2016 2016; 18 18 1964; 13 2012; 48 2016; 28 2019 2007 1992; 10 50 33 1968 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_5_1 e_1_2_8_5_3 Be'gue J.‐P. (e_1_2_8_7_3) 2008 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_22_2 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_11_7 e_1_2_8_11_8 Ameta K. L. (e_1_2_8_2_2) 2012 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_11_4 e_1_2_8_11_5 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_11_6 e_1_2_8_19_3 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_11_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_2_6 e_1_2_8_2_5 e_1_2_8_6_1 e_1_2_8_2_7 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_21_3 e_1_2_8_63_1 Artamonov O. (e_1_2_8_44_1) 2013; 45 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_18_3 e_1_2_8_10_4 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_10_2 e_1_2_8_10_3 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_28_1 e_1_2_8_20_5 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_3_3 e_1_2_8_3_2 e_1_2_8_3_5 e_1_2_8_7_1 e_1_2_8_3_4 Eicher T. (e_1_2_8_2_3) 2012 e_1_2_8_3_6 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_20_2 e_1_2_8_20_3 e_1_2_8_20_4 e_1_2_8_62_1 e_1_2_8_13_5 e_1_2_8_17_1 e_1_2_8_13_6 e_1_2_8_17_2 e_1_2_8_17_3 e_1_2_8_17_4 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_13_3 e_1_2_8_13_4 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_51_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_8_3 e_1_2_8_4_1 e_1_2_8_8_2 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_12_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – volume: 2010 start-page: 443 year: 2010 publication-title: Synthesis – volume: 16 start-page: 3122 year: 2014 publication-title: Org. Lett. – volume: 58 start-page: 4344 year: 2017 publication-title: Tetrahedron Lett. – volume: 19 start-page: 3406 year: 2017 publication-title: Org. Lett. – volume: 59 15 8 2018 74 115 115 128 start-page: 5572 360 7287 1426 6033 826 683 975 year: 2020 2020 2018 2018 2018 2015 2015 2007 publication-title: Angew. Chem. Int. Ed. Chem. Asian J. ACS Catal. Eur. J. Org. Chem. Tetrahedron Chem. Rev. Chem. Rev. J. Fluor. Chem. – volume: 139 13 2006 start-page: 5293 3080 1701 1450 1881 year: 2017 2011 2006 1967 1964 publication-title: J. Am. Chem. Soc. Org. Lett. Synthesis J. Chem. Soc. C Org. J. Chem. Soc. – volume: 14 start-page: 1900 year: 2012 publication-title: Org. Lett. – volume: 138 start-page: 5004 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 2021 start-page: 2950 year: 2021 publication-title: Eur. J. Org. Chem. – volume: 2014 start-page: 2487 year: 2014 publication-title: Eur. J. Org. Chem. – volume: 54 53 15 start-page: 14503 14181 4284 year: 2015 2014 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Org. Lett. – volume: 102 start-page: 6633 year: 1980 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 6255 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 21 start-page: 9860 year: 2019 publication-title: Org. Lett. – volume: 13 start-page: 147 year: 1979 publication-title: J. Fluor. Chem. – volume: 51 start-page: 16545 year: 2015 publication-title: Chem. Commun. – volume: 6 start-page: 1109 year: 2019 publication-title: Org. Chem. Front. – volume: 360 start-page: 2945 year: 2018 publication-title: Adv. Synth. Catal. – volume: 33 18 40 start-page: 461 749 1347 year: 2010 2008 1997 publication-title: J. Vet. Pharmacol. Ther. Bioorg. Med. Chem. Lett. J. Med. Chem. – volume: 83 start-page: 14811 year: 2018 publication-title: J. Org. Chem. – volume: 45 start-page: 225 year: 2013 publication-title: Synthesis – volume: 24 start-page: 5469 year: 1983 publication-title: Tetrahedron Lett. – volume: 317 start-page: 1881 year: 2007 publication-title: Science – volume: 23 start-page: 6062 year: 2021 publication-title: Org. Lett. – volume: 10 50 33 start-page: 1 3857 6161 year: 2019 2007 1992 publication-title: Nat. Commun. J. Med. Chem. Tetrahedron Lett. – volume: 5 25 62 start-page: 10633 11797 4265 year: 2020 2019 2019 publication-title: ACS Omega Chem. Eur. J. J. Med. Chem. – volume: 17 132 15 56 start-page: 5199 223 4898 1055 year: 2007 2006 2005 1998 publication-title: Bioorg. Med. Chem. Lett. J. Cancer Res. Clin. Oncol. Bioorg. Med. Chem. Lett. Drugs – volume: 6 start-page: 3657 year: 2019 publication-title: Org. Chem. Front. – volume: 15 start-page: 757 year: 2020 publication-title: Chem. Asian J. – volume: 28 start-page: 673 year: 2016 publication-title: Synlett – volume: 2017 start-page: 6566 year: 2017 publication-title: Eur. J. Org. Chem. – volume: 11 start-page: 16 year: 2015 publication-title: Beilstein J. Org. Chem. – volume: 20 start-page: 860 year: 2018 publication-title: Org. Lett. – volume: 15 start-page: 3166 year: 2013 publication-title: Org. Lett. – volume: 6 start-page: 927 year: 2017 publication-title: Asian J. Org. Chem. – volume: 14 start-page: 19 year: 1979 publication-title: J. Fluor. Chem. – volume: 7 2 1 18 13 13 start-page: 1698 11995 5276 280 9783 1492 year: 2018 2017 2016 2016 2015 2015 publication-title: Asian J. Org. Chem ChemistrySelect ChemistrySelect Org. Lett. Org. Biomol. Chem. Org. Biomol. Chem. – volume: 18 18 start-page: 3406 4170 year: 2016 2016 publication-title: Org. Lett. Org. Lett. – volume: 10 start-page: 461 year: 2015 2009 2008 publication-title: ChemMedChem – volume: 21 20 18 start-page: 4280 6994 1076 year: 2019 2018 2016 publication-title: Org. Lett. Org. Lett. Org. Lett. – volume: 2 start-page: 69 year: 2019 publication-title: Commun. Chem. – volume: 21 start-page: 2962 year: 2019 publication-title: Org. Lett. – volume: 51 37 37 start-page: 4359 320 308 year: 2008 2008 2008 publication-title: J. Med. Chem. Chem. Soc. Rev. Chem. Soc. Rev. – volume: 56 start-page: 8823 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 1136 year: 1964 publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. – volume: 57 73 72 start-page: 5845 217 1 1 1 1180 1279 year: 2014 2012 2012 2011 2011 2010 2009 publication-title: J. Med. Chem. J. Nat. Prod. J. Nat. Prod. – volume: 174 start-page: 88 year: 2015 publication-title: J. Fluor. Chem. – volume: 6 start-page: 1775 year: 2019 publication-title: Org. Chem. Front. – volume: 22 start-page: 2012 year: 2020 publication-title: Org. Lett. – volume: 51 start-page: 8946 year: 2015 publication-title: Chem. Commun. – volume: 13 start-page: 5984 year: 2011 publication-title: Org. Lett. – volume: 24 start-page: 7749 year: 2018 publication-title: Chem. Eur. J. – volume: 120 14 start-page: 12718 10547 year: 2020 2016 publication-title: Chem. Rev. Org. Biomol. Chem. – volume: 23 start-page: 5815 year: 2021 publication-title: Org. Lett. – volume: 10 9 19 16 start-page: 4559 4600 5689 1606 year: 2020 2019 2017 2014 publication-title: ACS Catal. ACS Catal. Org. Lett. Org. Lett. – volume: 13 start-page: 3438 year: 2015 publication-title: Org. Biomol. Chem. – volume: 56 start-page: 4569 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 905 year: 2017 publication-title: Green Chem. – volume: 2 start-page: 1468 year: 2015 publication-title: Org. Chem. Front. – start-page: 1507 year: 1968 publication-title: J. Chem. Soc. C Org. – volume: 46 78 66 363 47 61 start-page: 234 135 685 1947 3727 623 year: 2014 2014 2013 2010 2006 2005 publication-title: Inorg. Chem. Commun. Polyhedron Aust. J. Chem. Inorg. Chim. Acta Tetrahedron Lett. Tetrahedron – volume: 48 start-page: 9471 year: 2012 publication-title: Chem. Commun. – volume: 49 start-page: 938 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 65 start-page: 1458 year: 1943 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_5_2 doi: 10.1039/B610213C – ident: e_1_2_8_36_1 doi: 10.1021/acs.orglett.9b03740 – ident: e_1_2_8_35_1 doi: 10.1039/C9QO00324J – ident: e_1_2_8_25_1 doi: 10.1002/anie.201301870 – ident: e_1_2_8_5_1 doi: 10.1021/jm800219f – ident: e_1_2_8_13_6 doi: 10.1039/C4OB02365J – ident: e_1_2_8_49_1 doi: 10.1021/ol401402d – ident: e_1_2_8_52_1 doi: 10.1039/C5CC02749G – ident: e_1_2_8_13_3 doi: 10.1002/slct.201601113 – ident: e_1_2_8_10_4 doi: 10.2165/00003495-199856060-00014 – ident: e_1_2_8_13_4 doi: 10.1021/acs.orglett.5b03437 – ident: e_1_2_8_20_3 doi: 10.1055/s-2006-926451 – ident: e_1_2_8_48_1 doi: 10.1021/acs.orglett.1c02139 – ident: e_1_2_8_7_2 doi: 10.1002/9781444312096 – ident: e_1_2_8_2_1 doi: 10.1021/jm4017625 – ident: e_1_2_8_46_1 doi: 10.1002/chem.201801171 – start-page: 217 volume-title: Bioactive Heterocycles: Synthesis and Biological Evaluation year: 2012 ident: e_1_2_8_2_2 – ident: e_1_2_8_12_1 doi: 10.1021/acs.chemrev.0c00406 – ident: e_1_2_8_21_3 doi: 10.1021/acs.orglett.6b00194 – ident: e_1_2_8_8_2 doi: 10.1002/chem.201901840 – ident: e_1_2_8_31_1 doi: 10.1002/anie.201704529 – ident: e_1_2_8_63_1 doi: 10.1021/ol202423s – ident: e_1_2_8_9_1 doi: 10.1111/j.1365-2885.2010.01165.x – volume: 45 start-page: 225 year: 2013 ident: e_1_2_8_44_1 publication-title: Synthesis – ident: e_1_2_8_20_5 doi: 10.1039/jr9640001881 – ident: e_1_2_8_21_1 doi: 10.1021/acs.orglett.9b01468 – ident: e_1_2_8_50_1 doi: 10.1021/acs.joc.8b02504 – ident: e_1_2_8_2_5 doi: 10.1002/9783527634880.ch1 – ident: e_1_2_8_29_1 doi: 10.3762/bjoc.11.3 – ident: e_1_2_8_11_4 doi: 10.1002/ejoc.201701755 – ident: e_1_2_8_11_6 doi: 10.1021/cr500277b – ident: e_1_2_8_43_1 doi: 10.1021/acs.orglett.7b01362 – ident: e_1_2_8_58_1 doi: 10.1021/ol300539e – ident: e_1_2_8_22_1 doi: 10.1021/acs.orglett.6b01565 – ident: e_1_2_8_9_3 doi: 10.1021/jm960803q – ident: e_1_2_8_10_3 doi: 10.1016/j.bmcl.2005.08.034 – ident: e_1_2_8_12_2 doi: 10.1039/C6OB01618A – ident: e_1_2_8_13_2 doi: 10.1002/slct.201702384 – ident: e_1_2_8_3_1 doi: 10.1016/j.inoche.2014.06.007 – ident: e_1_2_8_18_1 doi: 10.1002/anie.201507219 – ident: e_1_2_8_5_3 doi: 10.1039/B711844A – ident: e_1_2_8_27_1 doi: 10.1002/ejoc.201301852 – ident: e_1_2_8_39_1 doi: 10.1021/ja00541a075 – ident: e_1_2_8_20_2 doi: 10.1021/ol200983s – ident: e_1_2_8_22_2 doi: 10.1021/acs.orglett.6b01191 – ident: e_1_2_8_33_1 doi: 10.1002/anie.201700955 – ident: e_1_2_8_28_1 doi: 10.1039/C4OB02670E – ident: e_1_2_8_3_5 doi: 10.1016/j.tetlet.2006.03.132 – ident: e_1_2_8_18_3 doi: 10.1021/ol401636d – ident: e_1_2_8_17_2 doi: 10.1021/acscatal.9b00846 – ident: e_1_2_8_20_1 doi: 10.1021/jacs.7b00768 – ident: e_1_2_8_53_1 doi: 10.1021/acs.orglett.7b04028 – ident: e_1_2_8_30_1 doi: 10.1016/j.tetlet.2017.09.086 – ident: e_1_2_8_40_1 doi: 10.1016/S0040-4039(00)94114-5 – ident: e_1_2_8_18_2 doi: 10.1002/anie.201408191 – ident: e_1_2_8_3_6 doi: 10.1016/j.tet.2004.10.092 – ident: e_1_2_8_51_1 doi: 10.1039/C8QO01421C – ident: e_1_2_8_11_3 doi: 10.1021/acscatal.8b02066 – ident: e_1_2_8_8_1 doi: 10.1021/acsomega.0c00830 – ident: e_1_2_8_32_1 doi: 10.1002/ejoc.201700992 – ident: e_1_2_8_54_1 doi: 10.1039/C5QO00219B – ident: e_1_2_8_10_2 doi: 10.1007/s00432-005-0063-7 – ident: e_1_2_8_62_1 doi: 10.1021/acs.orglett.1c01969 – ident: e_1_2_8_45_1 doi: 10.1039/C6GC03187K – ident: e_1_2_8_64_1 doi: 10.1016/j.jfluchem.2014.06.002 – ident: e_1_2_8_57_1 doi: 10.1039/C9QO00856J – ident: e_1_2_8_4_1 doi: 10.1021/jacs.6b01183 – ident: e_1_2_8_11_7 doi: 10.1021/cr400473a – ident: e_1_2_8_47_1 doi: 10.1002/ejoc.202100521 – ident: e_1_2_8_15_1 doi: 10.1021/ja01248a005 – ident: e_1_2_8_8_3 doi: 10.1021/acs.jmedchem.8b01610 – ident: e_1_2_8_6_1 doi: 10.1126/science.1131943 – ident: e_1_2_8_42_1 doi: 10.1055/s-0036-1588664 – ident: e_1_2_8_10_1 doi: 10.1016/j.bmcl.2007.06.084 – ident: e_1_2_8_41_1 doi: 10.1055/s-0029-1217141 – ident: e_1_2_8_7_1 doi: 10.1002/cmdc.201402502 – ident: e_1_2_8_2_6 doi: 10.1021/np100013r – ident: e_1_2_8_11_5 doi: 10.1016/j.tet.2018.08.035 – ident: e_1_2_8_23_1 doi: 10.1039/j39680001507 – ident: e_1_2_8_37_1 doi: 10.1021/acs.orglett.0c00395 – ident: e_1_2_8_17_3 doi: 10.1021/acs.orglett.7b02866 – ident: e_1_2_8_17_4 doi: 10.1021/ol500203m – start-page: 1 volume-title: Chemistry of Heterocycles: Structures, Reactions, Synthesis and Applications year: 2012 ident: e_1_2_8_2_3 – ident: e_1_2_8_55_1 doi: 10.1021/acs.orglett.9b01159 – ident: e_1_2_8_60_1 doi: 10.1002/adsc.201800445 – ident: e_1_2_8_2_7 doi: 10.1021/np9001948 – ident: e_1_2_8_13_5 doi: 10.1039/C5OB01382H – ident: e_1_2_8_59_1 doi: 10.1039/c2cc35246j – volume-title: Bioorganic and Medicinal Chemistry of Fluorine year: 2008 ident: e_1_2_8_7_3 doi: 10.1002/9780470281895 – ident: e_1_2_8_9_2 doi: 10.1016/j.bmcl.2007.11.040 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-018-07882-8 – ident: e_1_2_8_19_2 doi: 10.1021/jm0613976 – ident: e_1_2_8_65_1 doi: 10.1002/ajoc.201700216 – ident: e_1_2_8_24_1 doi: 10.1016/S0022-1139(00)81083-0 – ident: e_1_2_8_11_2 doi: 10.1002/asia.201901620 – ident: e_1_2_8_14_1 doi: 10.1016/S0022-1139(00)82989-9 – ident: e_1_2_8_17_1 doi: 10.1021/acscatal.0c00972 – ident: e_1_2_8_21_2 doi: 10.1021/acs.orglett.8b02816 – ident: e_1_2_8_38_1 doi: 10.1007/BF00863115 – ident: e_1_2_8_56_1 doi: 10.1039/C5CC07324C – ident: e_1_2_8_19_3 doi: 10.1016/S0040-4039(00)60032-1 – ident: e_1_2_8_11_8 doi: 10.1016/j.jfluchem.2007.04.026 – ident: e_1_2_8_3_4 doi: 10.1016/j.ica.2010.02.014 – ident: e_1_2_8_3_3 doi: 10.1071/CH13021 – ident: e_1_2_8_13_1 doi: 10.1002/ajoc.201800340 – ident: e_1_2_8_16_1 doi: 10.1002/anie.200905573 – ident: e_1_2_8_26_1 doi: 10.1021/ol501249h – ident: e_1_2_8_61_1 doi: 10.1002/asia.201901799 – ident: e_1_2_8_3_2 doi: 10.1016/j.poly.2014.04.025 – ident: e_1_2_8_2_4 doi: 10.1002/9781119998372.ch1 – ident: e_1_2_8_11_1 doi: 10.1002/anie.201915500 – ident: e_1_2_8_20_4 doi: 10.1039/j39670001450 – ident: e_1_2_8_34_1 doi: 10.1038/s42004-019-0168-6 |
SSID | ssj0021377 |
Score | 2.4366963 |
SecondaryResourceType | review_article |
Snippet | Trifluoromethylated heterocycles have attracted remarkable interest in the last decades. The beneficial physicochemical and biological properties imparted by... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 607 |
SubjectTerms | Agrochemicals Biological properties Cycloaddition Dipoles Reagents |
Title | Trifluorodiazoethane: A versatile building block to access trifluoromethylated heterocycles |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjhet.4416 https://www.proquest.com/docview/2649439061 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gAXxFMUCrIQB6TIxfau1zE3t7SKisqFVETiYO2ubdkljSFxDu3v4gcy410_UBypcLGizaytzHze_WYzD0LeYXIkF2FoqyzjNpNc2tJNfdvNMhaA30y9DBOFL77w6SU7n_vz0eh3L2ppU8kjdTuYV_I_VoUxsCtmyf6DZdubwgB8BvvCFSwM17vZeFVki00Ja2AhbssUT8FNqjkGW4DQIh1L0_caQ9TVD6Saou6ROK6aydhE-mYhkHrmGBxTqhsMldtBWzuRQo1V0y6u-0fIRGxHy81VO5jrU9Zv4pdYj6P8WiQtznJxrUH2NQcu20YKX5QwR8_6XKzzctU_nQDHtgtqqXeO7fCfrRjPOqEAaMRcb0l6HQ4ZtZFc9hdqUzq86J9C1Ksu141zzQbO9YHp1t6ga81egZqOgAMO1N9uhfydYvXGfz49neFX98i-B84JrK770fGn47PW0ccqjk2VevxhTUUrx_vQ3vdvHtQ5N30XqeY4s0fkobGyFWmkPSajdPmE3D9pjPyUfB9C3Ecrslq8WQ3erBpvVlVaGm_WAN6sPt6ekcuz09nJ1DbtOWxFOeV2wMHZZSpzUn_iJSxgicRaSCnsIUz5MvSpSijlDnj4AvzyhLp-4NKJ4wsZThIZ0udkb1ku0xfEAhIvJUt9UFzGFA0mVIAfpbA2kXIdnhyQ942yYmVq12MLlUWsq257Meo1Rr0ekLet6E9dsGVI6LDReGze53UMrgGgLgSCC4-rrbD7BnGDgZd3F31FHnRvyCHZq1ab9DUw2kq-MQD6AxEWo3E |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trifluorodiazoethane%3A+A+versatile+building+block+to+access+trifluoromethylated+heterocycles&rft.jtitle=Journal+of+heterocyclic+chemistry&rft.au=Kumar%2C+Anuj&rft.au=Khan%2C+Waqas+Ahmad&rft.au=Ahamad%2C+Shakir&rft.au=Mohanan%2C+Kishor&rft.date=2022-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0022-152X&rft.eissn=1943-5193&rft.volume=59&rft.issue=4&rft.spage=607&rft.epage=632&rft_id=info:doi/10.1002%2Fjhet.4416&rft.externalDBID=10.1002%252Fjhet.4416&rft.externalDocID=JHET4416 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-152X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-152X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-152X&client=summon |