Optimization of immunization procedure for SWCNTs‐based subunit vaccine with mannose modification against spring viraemia of carp virus in common carp

Immersion vaccination of single‐walled carbon nanotubes loaded with mannose‐modified glycoprotein (SWCNTs‐MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. Howe...

Full description

Saved in:
Bibliographic Details
Published inJournal of fish diseases Vol. 44; no. 12; pp. 1925 - 1936
Main Authors Gong, Yu‐Ming, Zhang, Chen, Li, Yang, Chen, Guo, Wang, Gao‐Xue, Zhu, Bin
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immersion vaccination of single‐walled carbon nanotubes loaded with mannose‐modified glycoprotein (SWCNTs‐MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs‐MG vaccine against SVCV has not been reported. In this study, accordingly, a full‐factor experiment was designed to optimize the immunization procedure of SWCNTs‐MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L−1, 24 fish L−1 and 48 fish L−1) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L−1 and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune‐related genes and relative percentage survival (RPS). At 28 days post‐vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L−1, 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune‐related genes such as IL‐10, CD4 and MHC‐II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure 1. Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L−1 and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs‐MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine. 1 FIGURE The experiment process and timeline chart of the present research
AbstractList Immersion vaccination of single‐walled carbon nanotubes loaded with mannose‐modified glycoprotein (SWCNTs‐MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs‐MG vaccine against SVCV has not been reported. In this study, accordingly, a full‐factor experiment was designed to optimize the immunization procedure of SWCNTs‐MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L −1 , 24 fish L −1 and 48 fish L −1 ) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L −1 and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune‐related genes and relative percentage survival (RPS). At 28 days post‐vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L −1 , 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune‐related genes such as IL‐10 , CD4 and MHC‐II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure  1 . Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L −1 and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs‐MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine. The experiment process and timeline chart of the present research image
Immersion vaccination of single‐walled carbon nanotubes loaded with mannose‐modified glycoprotein (SWCNTs‐MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs‐MG vaccine against SVCV has not been reported. In this study, accordingly, a full‐factor experiment was designed to optimize the immunization procedure of SWCNTs‐MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L⁻¹, 24 fish L⁻¹ and 48 fish L⁻¹) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L⁻¹ and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune‐related genes and relative percentage survival (RPS). At 28 days post‐vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L⁻¹, 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune‐related genes such as IL‐10, CD4 and MHC‐II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure 1. Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L⁻¹ and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs‐MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine. [Figure: see text]
Immersion vaccination of single‐walled carbon nanotubes loaded with mannose‐modified glycoprotein (SWCNTs‐MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs‐MG vaccine against SVCV has not been reported. In this study, accordingly, a full‐factor experiment was designed to optimize the immunization procedure of SWCNTs‐MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L−1, 24 fish L−1 and 48 fish L−1) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L−1 and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune‐related genes and relative percentage survival (RPS). At 28 days post‐vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L−1, 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune‐related genes such as IL‐10, CD4 and MHC‐II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure 1. Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L−1 and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs‐MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine.1FIGUREThe experiment process and timeline chart of the present research
Immersion vaccination of single-walled carbon nanotubes loaded with mannose-modified glycoprotein (SWCNTs-MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs-MG vaccine against SVCV has not been reported. In this study, accordingly, a full-factor experiment was designed to optimize the immunization procedure of SWCNTs-MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L-1 , 24 fish L-1 and 48 fish L-1 ) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L-1 and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune-related genes and relative percentage survival (RPS). At 28 days post-vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L-1 , 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune-related genes such as IL-10, CD4 and MHC-II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure 1. Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L-1 and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs-MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine. [Figure: see text].Immersion vaccination of single-walled carbon nanotubes loaded with mannose-modified glycoprotein (SWCNTs-MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs-MG vaccine against SVCV has not been reported. In this study, accordingly, a full-factor experiment was designed to optimize the immunization procedure of SWCNTs-MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L-1 , 24 fish L-1 and 48 fish L-1 ) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L-1 and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune-related genes and relative percentage survival (RPS). At 28 days post-vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L-1 , 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune-related genes such as IL-10, CD4 and MHC-II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure 1. Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L-1 and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs-MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine. [Figure: see text].
Immersion vaccination of single‐walled carbon nanotubes loaded with mannose‐modified glycoprotein (SWCNTs‐MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs‐MG vaccine against SVCV has not been reported. In this study, accordingly, a full‐factor experiment was designed to optimize the immunization procedure of SWCNTs‐MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L−1, 24 fish L−1 and 48 fish L−1) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L−1 and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune‐related genes and relative percentage survival (RPS). At 28 days post‐vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L−1, 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune‐related genes such as IL‐10, CD4 and MHC‐II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure 1. Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L−1 and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs‐MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine. 1 FIGURE The experiment process and timeline chart of the present research
Author Zhang, Chen
Zhu, Bin
Gong, Yu‐Ming
Li, Yang
Wang, Gao‐Xue
Chen, Guo
Author_xml – sequence: 1
  givenname: Yu‐Ming
  surname: Gong
  fullname: Gong, Yu‐Ming
  organization: Northwest A&F University
– sequence: 2
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
  organization: Northwest A&F University
– sequence: 3
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: Northwest A&F University
– sequence: 4
  givenname: Guo
  surname: Chen
  fullname: Chen, Guo
  organization: Northwest A&F University
– sequence: 5
  givenname: Gao‐Xue
  surname: Wang
  fullname: Wang, Gao‐Xue
  organization: Northwest A&F University
– sequence: 6
  givenname: Bin
  orcidid: 0000-0001-5702-524X
  surname: Zhu
  fullname: Zhu, Bin
  email: zhubin1227@126.com
  organization: Northwest A&F University
BookMark eNqFkc9u1DAQxi1UJLaFA29giQsc0tpxbCdHtFD-qKIHijhGE9sps4rtxU5alROPwJHn40nwdsulAuHLyKPf941mvkNyEGJwhDzl7JiXd7IZ7TEXkqkHZMWFklWtFT8gK8YbVmmt5SNymPOGMa4lVyvy83w7o8dvMGMMNI4UvV_Cn_82RePskhwdY6IfP68_XORf338MkJ2leRkKOdMrMAaDo9c4f6EeQojZUR8tjmj2NnAJGPJM8zZhuKRXmMB5hN04A2m7ayyZYqAmel_4XfMxeTjClN2Tu3pEPp2-vli_rc7O37xbvzyrjFBCVboRnYXRiUEosNBYXutBSQMt060cGO9AdLKBWvFBsbqWbWe4HQCssKqVII7I871v2fXr4vLce8zGTRMEF5fc12WKaEXb1f9HpeJNq1utC_rsHrqJSwplkUJ1kgsmVVOokz1lUsw5ubE3ON-ebE6AU89Zvwu1L6H2t6EWxYt7inJSD-nmr-yd-zVO7ubfYP_-9NVe8RtOGrYZ
CitedBy_id crossref_primary_10_3390_fishes8010057
crossref_primary_10_3390_vaccines12121347
crossref_primary_10_1007_s10499_022_00884_w
crossref_primary_10_1016_j_aquaculture_2025_742265
crossref_primary_10_3390_fishes9050179
crossref_primary_10_3390_ani15010096
crossref_primary_10_1016_j_aquaculture_2022_739167
crossref_primary_10_1016_j_aquaculture_2024_741273
crossref_primary_10_3390_fishes8110547
Cites_doi 10.1111/cmi.12387
10.1016/0092-8674(94)90332-8
10.24272/j.issn.2095-8137.2020.037
10.1016/j.fsi.2020.03.025
10.1016/j.fsi.2019.03.040
10.3390/microorganisms7120627
10.1016/j.fsi.2020.02.055
10.1099/0022-1317-27-3-369
10.1006/smim.1998.0136
10.1016/j.dci.2013.01.014
10.3389/fimmu.2021.654758
10.1159/000082306
10.1006/meth.2001.1262
10.1016/0092-8674(89)90590-4
10.1016/j.fsi.2014.11.026
10.1099/jgv.0.000436
10.1136/annrheumdis-2011-200800
10.1016/S0264-410X(03)00497-3
10.1016/j.fsi.2020.07.052
10.1016/j.fsi.2012.05.031
10.1016/j.fsi.2018.03.028
10.1038/nnano.2006.209
10.1016/j.immuni.2019.03.020
10.1016/j.fsi.2020.07.062
10.1016/j.vetimm.2015.07.002
10.1016/j.aquaculture.2007.04.066
10.1016/j.aquaculture.2019.734550
10.1016/j.fsi.2011.01.006
10.1016/j.vaccine.2018.08.003
10.1016/j.aquaculture.2018.05.034
10.3109/17435390.2014.957253
10.1016/j.micpath.2016.12.011
10.1016/j.aquaculture.2020.736152
10.1016/j.fsi.2020.07.063
10.1016/j.fsi.2018.04.031
10.1038/s41586-019-0955-3
10.1021/acsami.8b02019
10.1007/s11427-015-4802-y
10.1016/j.fsi.2013.04.022
10.1016/j.fsi.2016.05.042
10.1016/S0264-410X(01)00046-9
10.1016/j.aquaculture.2020.736197
10.1016/0044-8486(87)90164-5
10.1016/j.aquaculture.2019.02.021
10.1038/s41586-021-03308-6
10.1016/j.fsi.2018.05.029
10.1158/0008-5472.CAN-12-3058
10.1021/acs.jproteome.9b00874
10.1186/s12951-020-0584-x
10.3389/fimmu.2017.01340
10.1007/3-540-27485-5_5
10.1016/j.aquaculture.2008.11.023
10.1111/are.13097
10.1016/j.dci.2017.07.024
10.1016/j.fsi.2016.07.004
10.3390/vaccines8020163
10.1016/j.fsi.2019.11.035
10.1016/j.vaccine.2018.01.030
10.1016/j.fsi.2018.07.005
10.1007/s00705-007-0971-8
10.1038/sj.cdd.4401189
10.1371/journal.pone.0004398
10.1016/j.fsi.2018.05.014
10.3109/03014460.2014.1001436
10.1021/acsnano.7b09041
10.1016/j.fsi.2017.10.029
10.1016/j.dci.2011.03.007
10.1016/j.fsi.2014.09.014
10.1186/s13567-017-0448-z
10.24272/j.issn.2095-8137.2021.056
10.1016/j.molimm.2016.08.011
10.1371/journal.ppat.1005699
10.1016/j.dci.2016.06.021
10.1016/j.fsi.2019.04.066
10.3390/vaccines8010087
10.1371/journal.pone.0018832
10.17221/8676-VETMED
10.1016/j.jconrel.2011.01.006
10.4103/0019-509X.176720
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd
Copyright © 2021 John Wiley & Sons Ltd
2021 John Wiley & Sons Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd
– notice: Copyright © 2021 John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7QL
7TN
7U9
8FD
C1K
F1W
FR3
H94
H95
H98
H99
L.F
L.G
M7N
P64
7X8
7S9
L.6
DOI 10.1111/jfd.13506
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Oceanic Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ASFA: Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2761
EndPage 1936
ExternalDocumentID 10_1111_jfd_13506
JFD13506
Genre article
GrantInformation_xml – fundername: the Excellent Young Talents Program of Northwest A&F University
  funderid: 2452018029
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BGJEQ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
UPT
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
YQT
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QL
7TN
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H94
H95
H98
H99
L.F
L.G
M7N
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c3636-7439dafe3b36ada4d127b65ca80785b019a3954a261b6022589c1dbaad3d685a3
IEDL.DBID DR2
ISSN 0140-7775
1365-2761
IngestDate Fri Jul 11 18:37:03 EDT 2025
Fri Jul 11 09:57:26 EDT 2025
Sun Jul 13 03:10:15 EDT 2025
Thu Apr 24 23:03:56 EDT 2025
Tue Jul 01 00:58:05 EDT 2025
Wed Jan 22 16:26:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3636-7439dafe3b36ada4d127b65ca80785b019a3954a261b6022589c1dbaad3d685a3
Notes Yu‐Ming Gong and Chen Zhang authors are joint first authors and contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5702-524X
PQID 2595130564
PQPubID 37796
PageCount 0
ParticipantIDs proquest_miscellaneous_2636383892
proquest_miscellaneous_2561487877
proquest_journals_2595130564
crossref_citationtrail_10_1111_jfd_13506
crossref_primary_10_1111_jfd_13506
wiley_primary_10_1111_jfd_13506_JFD13506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of fish diseases
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 268
2019; 90
2017; 8
2005; 292
2019; 50
2017; 48
2018; 81
2019; 567
1981; 49
2020; 99
2020; 98
2011; 152
2003; 10
2020; 19
2016; 78
2020; 18
2020; 8
2012; 71
2018; 495
2018; 3
2017; 71
2015; 42
2017; 77
2001; 19
2016; 43
2021; 591
2009; 288
2007; 2
2021; 40
1994; 76
2018; 36
2018; 79
2019; 7
2015; 58
2015; 17
2020; 41
2013; 40
2015; 52
2015; 167
2016; 10
2016; 97
2020; 105
2011; 30
2020; 106
2020; 100
2011; 35
2019; 504
2014; 41
2015; 9
2011; 6
2012; 33
2001; 25
2016; 12
2016; 56
2016; 55
1989; 56
2021; 12
1987; 62
2019; 85
2021; 533
2013; 35
2013; 73
1975; 27
2019; 89
2021; 534
2007; 152
2016; 65
2019
2005; 10
2016; 61
2009; 4
2018; 12
2018; 10
2017; 103
2003; 21
2020; 515
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
Rhodes S. J. (e_1_2_9_54_1) 2018; 3
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
Amend D. F. (e_1_2_9_5_1) 1981; 49
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
OIE (World Organization for Animal Health) (e_1_2_9_42_1) 2019
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 152
  start-page: 330
  issue: 3
  year: 2011
  end-page: 348
  article-title: Ultrasound‐mediated transdermal drug delivery: Mechanisms, scope, and emerging trend
  publication-title: Journal of Controlled Release
– volume: 65
  start-page: 64
  year: 2016
  end-page: 72
  article-title: An oral chitosan DNA vaccine against nodavirus improves transcription of cell‐mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection
  publication-title: Developmental and Comparative Immunology
– volume: 81
  start-page: 438
  year: 2018
  end-page: 444
  article-title: 14‐3‐3β/α‐A interacts with glycoprotein of spring viremia of carp virus and positively affects viral entry
  publication-title: Fish & Shellfish Immunology
– volume: 78
  start-page: 1
  year: 2016
  end-page: 8
  article-title: OmpN, outer membrane proteins of Edwardsiella ictaluri are potential vaccine candidates for channel catfish (Ictalurus punctatus)
  publication-title: Molecular Immunology
– volume: 49
  start-page: 447
  year: 1981
  end-page: 454
  article-title: Potency testing of fish vaccine
  publication-title: Developments in Biological Standardization
– volume: 89
  start-page: 52
  year: 2019
  end-page: 60
  article-title: Chitosan and anisodamine improve the immune efficacy of inactivated infectious spleen and kidney necrosis virus vaccine in
  publication-title: Fish & Shellfish Immunology
– volume: 533
  year: 2021
  article-title: Optimizing the immunization procedure of single‐walled carbon nanotubes based vaccine against grass carp reovirus for grass carp
  publication-title: Aquaculture
– volume: 33
  start-page: 482
  year: 2012
  end-page: 493
  article-title: Interferon type I responses to virus infectious in carp cells: In vitro studies on cyprinid herpesvirus 3 and Rhabdovirus Carpio infections
  publication-title: Fish & Shellfish Immunology
– volume: 36
  start-page: 6334
  issue: 42
  year: 2018
  end-page: 6344
  article-title: Enhanced protective immunity against spring viremia of carp virus infection can be induced by recombinant subunit vaccine conjugated to single‐walled carbon nanotubes
  publication-title: Vaccine
– volume: 268
  start-page: 265
  issue: 1–4
  year: 2007
  end-page: 273
  article-title: An oral nervous necrosis virus vaccine that induces protective immunity in larvae of grouper ( )
  publication-title: Aquaculture
– volume: 98
  start-page: 810
  year: 2020
  end-page: 818
  article-title: Carbon nanotube‐based DNA vaccine against koi herpesvirus given by intramuscular injection
  publication-title: Fish & Shellfish Immunology
– volume: 8
  start-page: 87
  issue: 1
  year: 2020
  article-title: Targeted delivery of mannosylated nanoparticles improve prophylactic efficacy of immersion vaccine against fish viral disease
  publication-title: Vaccines
– volume: 56
  start-page: 683
  issue: 4
  year: 1989
  end-page: 689
  article-title: A role of la‐associated invariant chains in antigen processing and presentation
  publication-title: Cell
– volume: 7
  start-page: 627
  year: 2019
  article-title: Review on immersion vaccines for fish: An update 2019
  publication-title: Microorganisms
– volume: 73
  start-page: 4629
  issue: 15
  year: 2013
  end-page: 4640
  article-title: Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment
  publication-title: Cancer Research
– volume: 2
  start-page: 108
  issue: 2
  year: 2007
  end-page: 113
  article-title: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type
  publication-title: Nature Nanotechnology
– volume: 79
  start-page: 256
  year: 2018
  end-page: 264
  article-title: Immune response and protective effect against spring viremia of carp virus induced by intramuscular vaccination with a SWCNTs‐DNA vaccine encoding matrix protein
  publication-title: Fish & Shellfish Immunology
– volume: 4
  year: 2009
  article-title: Phosphatidylserine targets single‐walled carbon nanotubes to professional phagocytes in vitro and in vivo
  publication-title: PLoS One
– volume: 8
  start-page: 1340
  year: 2017
  article-title: Intramuscular DNA vaccination of juvenile carp against spring viremia of carp virus induces full protection and establishes a virus‐specific B and T cell response
  publication-title: Frontiers in Immunology
– volume: 35
  start-page: 1256
  issue: 12
  year: 2011
  end-page: 1262
  article-title: Advances in fish vaccine delivery
  publication-title: Developmental and Comparative Immunology
– volume: 90
  start-page: 210
  year: 2019
  end-page: 214
  article-title: Progress, challenges and opportunities in fish vaccine development
  publication-title: Fish & Shellfish Immunology
– volume: 52
  start-page: 262
  issue: 3
  year: 2015
  end-page: 264
  article-title: Single‐walled and multi‐walled carbon nanotubes based drug delivery system: Cancer therapy: A review
  publication-title: Indian Journal of Cancer
– volume: 99
  start-page: 548
  year: 2020
  end-page: 554
  article-title: Carbon nanotubes‐loaded subunit vaccine can increase protective immunity against rhabdovirus infections of largemouth bass (Micropterus Salmoides)
  publication-title: Fish & Shellfish Immunology
– volume: 152
  start-page: 1457
  year: 2007
  end-page: 1465
  article-title: Characterization of complete genome sequence of the spring viremia of carp virus isolated from common carp (Cyprinus carpio) in China
  publication-title: Archives of Virology
– volume: 106
  start-page: 1031
  year: 2020
  end-page: 1041
  article-title: Dose effects of a DNA vaccine encoding immobilization antigen on immune response of channel catfish against
  publication-title: Fish & Shellfish Immunology
– volume: 56
  start-page: 169
  year: 2016
  end-page: 180
  article-title: Optimization of efficacy of a live attenuated immersion vaccine
  publication-title: Fish & Shellfish Immunology
– volume: 81
  start-page: 57
  year: 2018
  end-page: 66
  article-title: Synthesis and antiviral activity of a new coumarin derivative against spring viraemia of carp virus
  publication-title: Fish & Shellfish Immunology
– volume: 3
  start-page: 36
  year: 2018
  article-title: Using vaccine immunostimulation/immunodynamic modelling methods to inform vaccine dose decision‐making
  publication-title: Nature Partner Journals Vaccines
– volume: 19
  start-page: 3067
  issue: 23/24
  year: 2001
  end-page: 3075
  article-title: DNA vaccination by immersion and ultrasound to trout viral haemorrhagic septicaemia virus
  publication-title: Vaccine
– volume: 167
  start-page: 44
  issue: 1–2
  year: 2015
  end-page: 50
  article-title: Immune response of flounder (Paralichthys olivaceus) was associated with the concentration of inactivated Edwardsiella tarda and immersion time
  publication-title: Veterinary Immunology Immunopathogy
– volume: 105
  start-page: 327
  year: 2020
  end-page: 329
  article-title: Oral immunization of carps with chitosan–alginate microcapsule containing probiotic expressing spring viremia of carp virus (SVCV) G protein provides effective protection against SVCV infection
  publication-title: Fish & Shellfish Immunology
– volume: 36
  start-page: 1484
  year: 2018
  end-page: 1490
  article-title: Strangvac: A recombinant fusion protein vaccine that protects against strangles, caused by streptococcus equi
  publication-title: Vaccine
– volume: 71
  start-page: 353
  year: 2017
  end-page: 358
  article-title: Viral infections in common carp lead to a disturbance of mucin expression in mucosal tissues
  publication-title: Fish & Shellfish Immunology
– volume: 495
  start-page: 130
  year: 2018
  end-page: 135
  article-title: Effectiveness of a divalent Streptococcus dysgalactiae inactivated vaccine in cobia (Rachycentron canadum L.)
  publication-title: Aquaculture
– volume: 25
  start-page: 402
  issue: 4
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2 −ΔΔCT method
  publication-title: Methods
– volume: 567
  start-page: 109
  year: 2019
  end-page: 112
  article-title: MHC class II proteins mediate cross‐species entry of bat influenza viruses
  publication-title: Nature
– volume: 10
  start-page: 45
  year: 2003
  end-page: 65
  article-title: Tumor necrosis factor signaling
  publication-title: Cell Death and Differentiation
– year: 2019
– volume: 18
  start-page: 24
  issue: 1
  year: 2020
  article-title: Application of antigen presenting cell‐targeted nanovaccine delivery system in rhabdovirus disease prophylactics using fish as a model organism
  publication-title: Journal of Nanobiotechnology
– volume: 97
  start-page: 1037
  issue: 5
  year: 2016
  end-page: 1051
  article-title: Spring viraemia of carp virus: Recent advances
  publication-title: Journal of General Virology
– volume: 41
  start-page: 395
  issue: 4
  year: 2020
  end-page: 409
  article-title: Hydroxycoumarin efficiently inhibits spring viraemia of carp virus infection in vitro and in vivo
  publication-title: Zoological Research
– volume: 8
  start-page: 163
  year: 2020
  article-title: Immune responses and protective efficacy of a formalin‐killed . vaccine evaluated through intraperitoneal and immersion challenge methods in
  publication-title: Vaccines
– volume: 106
  start-page: 190
  year: 2020
  end-page: 196
  article-title: Optimization of the efficacy of a SWCNTs‐based subunit vaccine against infectious spleen and kidney necrosis virus in mandarin fish
  publication-title: Fish & Shellfish Immunology
– volume: 61
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Polymorphism and expression of the tumour necrosis factor‐alpha (TNF‐alpha) gene in non‐infected cows and in cows naturally infected with the bovine leukaemia virus (BLV)
  publication-title: Veterinární Medicína
– volume: 55
  start-page: 274
  year: 2016
  end-page: 280
  article-title: Antigen uptake and expression of antigen presentation‐related immune genes in flounder ( ) after vaccination with an inactivated immersion vaccine, following hyperosmotic treatment
  publication-title: Fish & Shellfish Immunology
– volume: 30
  start-page: 830
  year: 2011
  end-page: 835
  article-title: Evaluation of internal control genes for qRT‐PCR normalization in tissues and cell culture for antiviral studies of grass carp (Ctenopharyngodon idella)
  publication-title: Fish & Shellfish Immunology
– volume: 58
  start-page: 156
  year: 2015
  end-page: 169
  article-title: Virus genomes and virus–host interactions in aquaculture animals
  publication-title: Science China Life Sciences
– volume: 41
  start-page: 279
  year: 2014
  end-page: 293
  article-title: Single‐walled carbon nanotubes as candidate recombinant subunit vaccine carrier for immunization of grass carp against grass carp reovirus
  publication-title: Fish & Shellfish Immunology
– volume: 42
  start-page: 325
  year: 2015
  end-page: 334
  article-title: Protective immunity of grass carp immunized with DNA vaccine encoding the vp7 gene of grass carp reovirus using carbon nanotubes as a carrier molecule
  publication-title: Fish & Shellfish Immunology
– volume: 10
  start-page: 351
  issue: 5
  year: 2016
  end-page: 353
  article-title: Innate immune recognition and control of adaptive immune responses
  publication-title: Seminars in Immunology
– volume: 27
  start-page: 369
  issue: 3
  year: 1975
  end-page: 378
  article-title: Physicochemical and serological characterization of five Rhabdoviruses infecting fish
  publication-title: Journal of General Virology
– volume: 515
  year: 2020
  article-title: Antigen epitope screening of grass carp reovirus and its protectively immunity assessment for grass carp
  publication-title: Aquaculture
– volume: 79
  start-page: 65
  year: 2018
  end-page: 72
  article-title: Heme oxygenase‐1inhibits spring viremia of carp virus replication through carbon monoxide mediated cyclic GMP/Protein kinase G signaling pathway
  publication-title: Fish & Shellfish Immunology
– volume: 50
  start-page: 871
  issue: 4
  year: 2019
  end-page: 891
  article-title: IL‐10 family Cytokines IL‐10 and IL‐22: From basic science to clinical translation
  publication-title: Immunity
– volume: 76
  start-page: 241
  year: 1994
  end-page: 251
  article-title: Lymphocyte responses and cytokines
  publication-title: Cell
– volume: 504
  start-page: 361
  issue: 3
  year: 2019
  end-page: 368
  article-title: Bacterial ghost as delivery vehicles loaded with DNA vaccine induce significant and specific immune responses in common carp against spring viremia of carp virus
  publication-title: Aquaculture
– volume: 10
  start-page: 27589
  year: 2018
  end-page: 27602
  article-title: Dendritic cell‐targeted nanovaccine delivery system prepared with an immune‐active polymer
  publication-title: ACS Applied Materials & Interfaces
– volume: 48
  start-page: 43
  year: 2017
  article-title: Efficacy of a polyvalent immersion vaccine against and evaluation of immune response to vaccination in rainbow trout fry ( .)
  publication-title: Veterinary Research
– volume: 43
  start-page: 261
  year: 2016
  end-page: 268
  article-title: Tumor necrosis factor (TNF) alpha and interleukin (IL) 18 genes polymorphisms are correlated with susceptibility to HPV infection in patients with and without cervical intraepithelial lesion
  publication-title: Annals of Human Biology
– volume: 292
  start-page: 81
  year: 2005
  end-page: 117
  article-title: Fish rhabdoviruses: Molecular epidemiology and evolution
  publication-title: Current Topics in Microbiology and Immunology
– volume: 534
  year: 2021
  article-title: Evaluation of SWCNTs‐loaded DNA vaccine encoding predominant antigen epitope VP4‐3 against type II GCRV
  publication-title: Aquaculture
– volume: 19
  start-page: 2304
  issue: 6
  year: 2020
  end-page: 2315
  article-title: Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand Data
  publication-title: Journal of Proteome Research
– volume: 12
  start-page: 5121
  issue: 6
  year: 2018
  end-page: 5129
  article-title: Cancer cell membrane‐coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination
  publication-title: American Chemical Society Nano
– volume: 17
  start-page: 595
  issue: 4
  year: 2015
  end-page: 605
  article-title: Spring viraemia of carp virus induces autophagy for necessary viral replication
  publication-title: Cellular Microbiology
– volume: 591
  start-page: 551
  year: 2021
  end-page: 563
  article-title: A 20‐year retrospective review of global aquaculture
  publication-title: Nature
– volume: 48
  start-page: 2655
  issue: 6
  year: 2017
  end-page: 2662
  article-title: Efficacy of koi herpesvirus DNA vaccine administration by immersion method on field scale culture
  publication-title: Aquaculture Research
– volume: 103
  start-page: 19
  year: 2017
  end-page: 28
  article-title: The influence of concentration of inactivated Edwardsiella tarda bacterin and immersion time on antigen uptake and expression of immune‐related genes in Japanese flounder ( )
  publication-title: Microbial Pathogenesis
– volume: 10
  start-page: 35
  issue: 1
  year: 2005
  end-page: 43
  article-title: Innate immunity contributes to cochlear adaptive immune responses
  publication-title: Audiology and Neurotology
– volume: 6
  year: 2011
  article-title: Association between plasma antibody response and protection in rainbow trout Oncorhynchus mykiss immersion vaccinated against
  publication-title: PLoS One
– volume: 100
  start-page: 317
  year: 2020
  end-page: 323
  article-title: Immune efficacy of carbon nanotubes recombinant subunit vaccine against largemouth bass ulcerative syndrome virus
  publication-title: Fish & Shellfish Immunology
– volume: 40
  start-page: 339
  issue: 3
  year: 2021
  end-page: 349
  article-title: Potential aquatic environmental risks of trifloxystrobin: Enhancement of virus susceptibility in zebrafish through initiation of autophagy
  publication-title: Zoological Research
– volume: 35
  start-page: 351
  year: 2013
  end-page: 356
  article-title: Development of a novel candidate subunit vaccine against grass carp reovirus Guangdong strain (GCRV‐GD108)
  publication-title: Fish & Shellfish Immunology
– volume: 12
  year: 2021
  article-title: Interactions between commensal microbiota and mucosal immunity in teleost fish during viral infection with SVCV
  publication-title: Frontiers in Immunology
– volume: 71
  start-page: i55
  issue: Suppl 2
  year: 2012
  end-page: 59
  article-title: TNF and ePO: Major players in the innate immune response: Their discovery
  publication-title: Annals of the Rheumatic Diseases
– volume: 288
  start-page: 14
  year: 2009
  end-page: 21
  article-title: Distribution of IgM, IgD and IgZ in mandarin fish, Siniperca chuatsi lymphoid tissues and their transcriptional changes after Flavobacterium columnare stimulation
  publication-title: Aquaculture
– volume: 62
  start-page: 173
  year: 1987
  end-page: 185
  article-title: The quantitative relationship between vaccine dilution, length of immersion time and antigen uptake, using a radiolabelled bath in direct immersion experiments with rainbow trout,
  publication-title: Aquaculture
– volume: 85
  start-page: 66
  year: 2019
  end-page: 77
  article-title: Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells‐based subunit vaccine
  publication-title: Fish & Shellfish Immunology
– volume: 77
  start-page: 77
  year: 2017
  end-page: 87
  article-title: Effectivity of oral recombinant DNA vaccine against in Nile tilapia
  publication-title: Developmental and Comparative Immunology
– volume: 40
  start-page: 132
  issue: 2
  year: 2013
  end-page: 141
  article-title: Gene expression profiling in live attenuated Edwardsiella tarda vaccine immunized and challenged zebrafish: Insights into the basic mechanisms of protection seen in immunized fish
  publication-title: Developmental and Comparative Immunology
– volume: 12
  issue: 6
  year: 2016
  article-title: TNFα impairs rhabdoviral clearance by inhibiting the host autophagic antiviral response
  publication-title: PLoS Path
– volume: 9
  start-page: 579
  issue: 5
  year: 2015
  end-page: 590
  article-title: Development toxicity of functionalized carbon nanotubes on rare minnow embryos and larvae
  publication-title: Nanotoxicology
– volume: 21
  start-page: 4178
  issue: 27–30
  year: 2003
  end-page: 4193
  article-title: Increased efficacy of immersion vaccination in fish with hyperosmotic pretreatment
  publication-title: Vaccine
– ident: e_1_2_9_36_1
  doi: 10.1111/cmi.12387
– ident: e_1_2_9_44_1
  doi: 10.1016/0092-8674(94)90332-8
– ident: e_1_2_9_35_1
  doi: 10.24272/j.issn.2095-8137.2020.037
– ident: e_1_2_9_28_1
  doi: 10.1016/j.fsi.2020.03.025
– ident: e_1_2_9_75_1
  doi: 10.1016/j.fsi.2019.03.040
– ident: e_1_2_9_8_1
  doi: 10.3390/microorganisms7120627
– ident: e_1_2_9_20_1
  doi: 10.1016/j.fsi.2020.02.055
– ident: e_1_2_9_22_1
  doi: 10.1099/0022-1317-27-3-369
– ident: e_1_2_9_38_1
  doi: 10.1006/smim.1998.0136
– ident: e_1_2_9_68_1
  doi: 10.1016/j.dci.2013.01.014
– ident: e_1_2_9_39_1
  doi: 10.3389/fimmu.2021.654758
– ident: e_1_2_9_21_1
  doi: 10.1159/000082306
– ident: e_1_2_9_37_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_9_57_1
  doi: 10.1016/0092-8674(89)90590-4
– ident: e_1_2_9_80_1
  doi: 10.1016/j.fsi.2014.11.026
– ident: e_1_2_9_7_1
  doi: 10.1099/jgv.0.000436
– ident: e_1_2_9_10_1
  doi: 10.1136/annrheumdis-2011-200800
– ident: e_1_2_9_26_1
  doi: 10.1016/S0264-410X(03)00497-3
– ident: e_1_2_9_27_1
  doi: 10.1016/j.fsi.2020.07.052
– ident: e_1_2_9_3_1
  doi: 10.1016/j.fsi.2012.05.031
– ident: e_1_2_9_15_1
  doi: 10.1016/j.fsi.2018.03.028
– ident: e_1_2_9_31_1
  doi: 10.1038/nnano.2006.209
– ident: e_1_2_9_43_1
  doi: 10.1016/j.immuni.2019.03.020
– ident: e_1_2_9_77_1
  doi: 10.1016/j.fsi.2020.07.062
– ident: e_1_2_9_13_1
  doi: 10.1016/j.vetimm.2015.07.002
– ident: e_1_2_9_34_1
  doi: 10.1016/j.aquaculture.2007.04.066
– ident: e_1_2_9_50_1
  doi: 10.1016/j.aquaculture.2019.734550
– ident: e_1_2_9_58_1
  doi: 10.1016/j.fsi.2011.01.006
– ident: e_1_2_9_71_1
  doi: 10.1016/j.vaccine.2018.08.003
– ident: e_1_2_9_41_1
  doi: 10.1016/j.aquaculture.2018.05.034
– ident: e_1_2_9_81_1
  doi: 10.3109/17435390.2014.957253
– ident: e_1_2_9_14_1
  doi: 10.1016/j.micpath.2016.12.011
– ident: e_1_2_9_49_1
  doi: 10.1016/j.aquaculture.2020.736152
– volume: 3
  start-page: 36
  year: 2018
  ident: e_1_2_9_54_1
  article-title: Using vaccine immunostimulation/immunodynamic modelling methods to inform vaccine dose decision‐making
  publication-title: Nature Partner Journals Vaccines
– ident: e_1_2_9_67_1
  doi: 10.1016/j.fsi.2020.07.063
– ident: e_1_2_9_11_1
  doi: 10.1016/j.fsi.2018.04.031
– ident: e_1_2_9_29_1
  doi: 10.1038/s41586-019-0955-3
– ident: e_1_2_9_52_1
  doi: 10.1021/acsami.8b02019
– volume: 49
  start-page: 447
  year: 1981
  ident: e_1_2_9_5_1
  article-title: Potency testing of fish vaccine
  publication-title: Developments in Biological Standardization
– ident: e_1_2_9_76_1
  doi: 10.1007/s11427-015-4802-y
– ident: e_1_2_9_63_1
  doi: 10.1016/j.fsi.2013.04.022
– ident: e_1_2_9_19_1
  doi: 10.1016/j.fsi.2016.05.042
– ident: e_1_2_9_18_1
  doi: 10.1016/S0264-410X(01)00046-9
– ident: e_1_2_9_78_1
  doi: 10.1016/j.aquaculture.2020.736197
– ident: e_1_2_9_59_1
  doi: 10.1016/0044-8486(87)90164-5
– ident: e_1_2_9_73_1
  doi: 10.1016/j.aquaculture.2019.02.021
– ident: e_1_2_9_40_1
  doi: 10.1038/s41586-021-03308-6
– ident: e_1_2_9_74_1
  doi: 10.1016/j.fsi.2018.05.029
– ident: e_1_2_9_32_1
  doi: 10.1158/0008-5472.CAN-12-3058
– ident: e_1_2_9_53_1
  doi: 10.1021/acs.jproteome.9b00874
– ident: e_1_2_9_72_1
  doi: 10.1186/s12951-020-0584-x
– ident: e_1_2_9_16_1
  doi: 10.3389/fimmu.2017.01340
– ident: e_1_2_9_24_1
  doi: 10.1007/3-540-27485-5_5
– ident: e_1_2_9_62_1
  doi: 10.1016/j.aquaculture.2008.11.023
– ident: e_1_2_9_6_1
  doi: 10.1111/are.13097
– ident: e_1_2_9_83_1
  doi: 10.1016/j.dci.2017.07.024
– ident: e_1_2_9_47_1
  doi: 10.1016/j.fsi.2016.07.004
– ident: e_1_2_9_48_1
  doi: 10.3390/vaccines8020163
– ident: e_1_2_9_25_1
  doi: 10.1016/j.fsi.2019.11.035
– ident: e_1_2_9_55_1
  doi: 10.1016/j.vaccine.2018.01.030
– ident: e_1_2_9_56_1
  doi: 10.1016/j.fsi.2018.07.005
– ident: e_1_2_9_61_1
  doi: 10.1007/s00705-007-0971-8
– ident: e_1_2_9_65_1
  doi: 10.1038/sj.cdd.4401189
– ident: e_1_2_9_30_1
  doi: 10.1371/journal.pone.0004398
– ident: e_1_2_9_33_1
  doi: 10.1016/j.fsi.2018.05.014
– ident: e_1_2_9_60_1
  doi: 10.3109/03014460.2014.1001436
– ident: e_1_2_9_70_1
  doi: 10.1021/acsnano.7b09041
– ident: e_1_2_9_2_1
  doi: 10.1016/j.fsi.2017.10.029
– ident: e_1_2_9_45_1
  doi: 10.1016/j.dci.2011.03.007
– volume-title: Aquatic Animal Health Code 2019
  year: 2019
  ident: e_1_2_9_42_1
– ident: e_1_2_9_79_1
  doi: 10.1016/j.fsi.2014.09.014
– ident: e_1_2_9_23_1
  doi: 10.1186/s13567-017-0448-z
– ident: e_1_2_9_66_1
  doi: 10.24272/j.issn.2095-8137.2021.056
– ident: e_1_2_9_69_1
  doi: 10.1016/j.molimm.2016.08.011
– ident: e_1_2_9_17_1
  doi: 10.1371/journal.ppat.1005699
– ident: e_1_2_9_64_1
  doi: 10.1016/j.dci.2016.06.021
– ident: e_1_2_9_4_1
  doi: 10.1016/j.fsi.2019.04.066
– ident: e_1_2_9_82_1
  doi: 10.3390/vaccines8010087
– ident: e_1_2_9_51_1
  doi: 10.1371/journal.pone.0018832
– ident: e_1_2_9_9_1
  doi: 10.17221/8676-VETMED
– ident: e_1_2_9_46_1
  doi: 10.1016/j.jconrel.2011.01.006
– ident: e_1_2_9_12_1
  doi: 10.4103/0019-509X.176720
SSID ssj0017516
Score 2.3600824
Snippet Immersion vaccination of single‐walled carbon nanotubes loaded with mannose‐modified glycoprotein (SWCNTs‐MG) vaccine has been proved to be effective in...
Immersion vaccination of single-walled carbon nanotubes loaded with mannose-modified glycoprotein (SWCNTs-MG) vaccine has been proved to be effective in...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1925
SubjectTerms carbon nanotubes
Carp
Carp sprivivirus
CD4 antigen
common carp
Cyprinus carpio
Density
Disease control
Fish
Flow charts
Freshwater fishes
Gene expression
Genes
Glycoproteins
Immersion
immersion vaccination
Immunization
immunization procedure
interleukin-10
Juveniles
Major histocompatibility complex
Mannans
Mannose
Nanotechnology
Nanotubes
Optimization
Procedures
Single wall carbon nanotubes
spring viraemia of carp virus
Submerging
subunit vaccines
Survival
Vaccination
Vaccines
Viremia
Viruses
Title Optimization of immunization procedure for SWCNTs‐based subunit vaccine with mannose modification against spring viraemia of carp virus in common carp
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfd.13506
https://www.proquest.com/docview/2595130564
https://www.proquest.com/docview/2561487877
https://www.proquest.com/docview/2636383892
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEO4QTnhQUYmLaBrDwcuQ7PRjZuOJgBtCAiYKkYPJpPpFNrAzZGfHgyd_gkd_n7-Eqp6HYJQYb_OonulXdX3VXf01YzshqMyYoJMcjEqkS2UCuRwnauKFG6duYiXtRj4-0Ydn8uhcna-wt_1emJYfYphwI82I4zUpOJj6tpIHR4c2RLptitUiQPRhoI5CqxiPPY3hi1mWqY5VKEbx9Cnv2qJfAPM2TI12ZvqIfe5z2IaXXO42S7Nrv_5G3vifRXjMHnb4k--1HWadrfjyCXuwd7HoODj8U_bjPQ4j825_Jq8Cn8U9JN19tHgOBTnCXf7x0_7Jaf3z23eyho7XjUHJJf8ClhbsOc3y8jmUZVV7Pq8cxSW1n4ELmCEy5e26MKdQYz-fAf2OloToQVPzWcmxTKgp8eEzdjZ9d7p_mHQHOCRWaKETcnYcBC-M0OBAYuNnRisLRHKvDKJLEBMlAb04oxFMqHxix84AOOF0rkBssNWyKv1zxnPhszRYRDMmlU7aHHD0kTpgKosejx-xN31TFrZjN6dDNq6KwcsJroiVPWKvB9HrltLjT0JbfX8oOq2uC3QV1Zh8Ljli28Nr1EdaZIHSVw3JELUqDoPZPTJYOSJHqJhitmMH-XtGiqPpQbzY_HfRF2wtpdCbGHWzxVaXi8a_ROy0NK-iktwA8PoY8w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOvFEXChjEgUsqbfxIVuJStayW0i4SbEUvKBq_qhVsgpoNB078BI78Pn4JM86DggAhbnlMEtvxeL6xx98w9jgElRkTdJKDUYl0qUwgl-NETbxw49RNrKTdyEdzPTuWByfqZIM97ffCtPwQw4QbaUYcr0nBaUL6vJYHR1kbiG_7AmX0Jub8_VcDeRTaxZj4NAYwZlmmOl6hGMfTP_qzNfoBMc8D1WhpplfZ276MbYDJu51mbXbsp1_oG_-3EtfYlQ6C8t22z1xnG768wS7vnp51NBz-Jvv6EkeSVbdFk1eBL-M2ku48Gj2HghwRL3_9Zm--qL99_kIG0fG6MSi55h_B0po9p4levoKyrGrPV5Wj0KT2NXAKSwSnvF0a5hRt7FdLoM_RqhBdaGq-LDlWCpUlXrzFjqfPFnuzpMvhkFihhU7I33EQvDBCgwOJ_z8zWlkgnntlEGCCmCgJ6MgZjXhC5RM7dgbACadzBeI22yyr0m8xngufpcEioDGpdNLmgAOQ1AGfsuj0-BF70v_LwnYE55Rn430xODrBFbGxR-zRIPqhZfX4ndB23yGKTrHrAr1FNSa3S47Yw-E2qiSts0Dpq4ZkiF0VR8LsLzLYOCJHtJhisWMP-XNBioPpfjy48--iD9jF2eLosDh8Pn9xl11KKRInBuFss831WePvIZRam_tRY74DYf0dDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiE48EZsW8AgDlxSsfEjiThVXValwIKgFT0gReNXtYJNqmbDgRM_gSO_j1_CjJMsBQFC3PIYJ07s8Xxjj79h7EEIKjMm6CQHoxLpUplALseJKrxw49QVVtJu5BczvXco94_U0Rp7POyF6fghVhNupBlxvCYFP3HhrJIHR0kbiG77nNSPCsrbMHm94o5Csxjznsb4xSzLVE8rFMN4hqI_G6MfCPMsTo2GZnqZvRuq2MWXvN9ul2bbfvqFvfE_v-EKu9QDUL7T9ZirbM1X19jFnePTnoTDX2dfX-I4sug3aPI68HncRNKfR5PnUJAj3uVv3u7ODppvn7-QOXS8aQ1KLvlHsLRiz2maly-gqurG80XtKDCpewwcwxyhKe8WhjnFGvvFHOh1tCZEF9qGzyuO34SqEi_eYIfTJwe7e0mfwSGxQgudkLfjIHhhhAYHEls_M1pZIJZ7ZRBegiiUBHTjjEY0ofLCjp0BcMLpXIG4ydaruvK3GM-Fz9JgEc6YVDppc8DhR-qApSy6PH7EHg5NWdqe3pyybHwoV25OcGX82SN2fyV60nF6_E5oa-gPZa_WTYm-ohqT0yVH7N7qNiokrbJA5euWZIhbFcfB7C8y-HNEjlgxxWrHDvLnipT700k82Ph30bvs_KvJtHz-dPZsk11IKQwnRuBssfXlaetvI45amjtRX74DALQbvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+immunization+procedure+for+SWCNTs-based+subunit+vaccine+with+mannose+modification+against+spring+viraemia+of+carp+virus+in+common+carp&rft.jtitle=Journal+of+fish+diseases&rft.au=Gong%2C+Yu-Ming&rft.au=Zhang%2C+Chen&rft.au=Li%2C+Yang&rft.au=Chen%2C+Guo&rft.date=2021-12-01&rft.issn=1365-2761&rft.eissn=1365-2761&rft.volume=44&rft.issue=12&rft.spage=1925&rft_id=info:doi/10.1111%2Fjfd.13506&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7775&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7775&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7775&client=summon