Enhanced Heat Transfer of 1-Octadecanol Phase-Change Materials Using Carbon Nanotubes

Solid–liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures and high thermal storage density. The primary issues that need to be addressed in the wide application of traditional PCMs are easy leakage d...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 30; no. 15; p. 3075
Main Authors Wang, Xiuli, Wang, Qingmeng, Cheng, Xiaomin, Yang, Yi, Chen, Xiaolan, Cheng, Qianju
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.07.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solid–liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures and high thermal storage density. The primary issues that need to be addressed in the wide application of traditional PCMs are easy leakage during solid–liquid phase transitions, low thermal conductivity, and poor energy conversion function. The heat transfer properties of PCMs can be improved by compounding with carbon materials. Carbon nanotubes (CNTs) are widely used in PCMs for heat storage because of their high thermal conductivity, strong electrical conductivity, and high chemical stability. This study investigates the thermal properties of 1-octadecanol (OD) modified with different diameters and amounts of CNTs using the melt blending method and the ultrasonic dispersion method. The aim is to enhance thermal conductivity while minimizing latent heat loss. The physical phase, microstructure, phase-change temperature, phase-transition enthalpy, thermal stability, and thermal conductivity of the OD/CNTs CPCMs were systematically studied using XRD, FTIR, SEM, DSC, and Hot Disk. Moreover, the heat charging and releasing performance of the OD/CNTs CPCMs was investigated through heat charging and releasing experiments, and the relationship among the composition–structure–performance of the CPCMs was established.
AbstractList Solid–liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures and high thermal storage density. The primary issues that need to be addressed in the wide application of traditional PCMs are easy leakage during solid–liquid phase transitions, low thermal conductivity, and poor energy conversion function. The heat transfer properties of PCMs can be improved by compounding with carbon materials. Carbon nanotubes (CNTs) are widely used in PCMs for heat storage because of their high thermal conductivity, strong electrical conductivity, and high chemical stability. This study investigates the thermal properties of 1-octadecanol (OD) modified with different diameters and amounts of CNTs using the melt blending method and the ultrasonic dispersion method. The aim is to enhance thermal conductivity while minimizing latent heat loss. The physical phase, microstructure, phase-change temperature, phase-transition enthalpy, thermal stability, and thermal conductivity of the OD/CNTs CPCMs were systematically studied using XRD, FTIR, SEM, DSC, and Hot Disk. Moreover, the heat charging and releasing performance of the OD/CNTs CPCMs was investigated through heat charging and releasing experiments, and the relationship among the composition–structure–performance of the CPCMs was established.
Solid-liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures and high thermal storage density. The primary issues that need to be addressed in the wide application of traditional PCMs are easy leakage during solid-liquid phase transitions, low thermal conductivity, and poor energy conversion function. The heat transfer properties of PCMs can be improved by compounding with carbon materials. Carbon nanotubes (CNTs) are widely used in PCMs for heat storage because of their high thermal conductivity, strong electrical conductivity, and high chemical stability. This study investigates the thermal properties of 1-octadecanol (OD) modified with different diameters and amounts of CNTs using the melt blending method and the ultrasonic dispersion method. The aim is to enhance thermal conductivity while minimizing latent heat loss. The physical phase, microstructure, phase-change temperature, phase-transition enthalpy, thermal stability, and thermal conductivity of the OD/CNTs CPCMs were systematically studied using XRD, FTIR, SEM, DSC, and Hot Disk. Moreover, the heat charging and releasing performance of the OD/CNTs CPCMs was investigated through heat charging and releasing experiments, and the relationship among the composition-structure-performance of the CPCMs was established.Solid-liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures and high thermal storage density. The primary issues that need to be addressed in the wide application of traditional PCMs are easy leakage during solid-liquid phase transitions, low thermal conductivity, and poor energy conversion function. The heat transfer properties of PCMs can be improved by compounding with carbon materials. Carbon nanotubes (CNTs) are widely used in PCMs for heat storage because of their high thermal conductivity, strong electrical conductivity, and high chemical stability. This study investigates the thermal properties of 1-octadecanol (OD) modified with different diameters and amounts of CNTs using the melt blending method and the ultrasonic dispersion method. The aim is to enhance thermal conductivity while minimizing latent heat loss. The physical phase, microstructure, phase-change temperature, phase-transition enthalpy, thermal stability, and thermal conductivity of the OD/CNTs CPCMs were systematically studied using XRD, FTIR, SEM, DSC, and Hot Disk. Moreover, the heat charging and releasing performance of the OD/CNTs CPCMs was investigated through heat charging and releasing experiments, and the relationship among the composition-structure-performance of the CPCMs was established.
Author Chen, Xiaolan
Cheng, Xiaomin
Wang, Qingmeng
Cheng, Qianju
Wang, Xiuli
Yang, Yi
AuthorAffiliation 2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
1 School of Mechatronics and Intelligent Manufacturing, Huanggang Normal University, Huanggang 438000, China; wangxiuli@whut.edu.cn (X.W.); chengxm@whut.edu.cn (X.C.); yangyi@hgnu.edu.cn (Y.Y.); chenxiaolan@hgnu.edu.cn (X.C.); chengqianju@hgnu.edu.cn (Q.C.)
AuthorAffiliation_xml – name: 2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
– name: 1 School of Mechatronics and Intelligent Manufacturing, Huanggang Normal University, Huanggang 438000, China; wangxiuli@whut.edu.cn (X.W.); chengxm@whut.edu.cn (X.C.); yangyi@hgnu.edu.cn (Y.Y.); chenxiaolan@hgnu.edu.cn (X.C.); chengqianju@hgnu.edu.cn (Q.C.)
Author_xml – sequence: 1
  givenname: Xiuli
  surname: Wang
  fullname: Wang, Xiuli
– sequence: 2
  givenname: Qingmeng
  surname: Wang
  fullname: Wang, Qingmeng
– sequence: 3
  givenname: Xiaomin
  orcidid: 0000-0002-5057-9001
  surname: Cheng
  fullname: Cheng, Xiaomin
– sequence: 4
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
– sequence: 5
  givenname: Xiaolan
  orcidid: 0000-0003-3080-6753
  surname: Chen
  fullname: Chen, Xiaolan
– sequence: 6
  givenname: Qianju
  surname: Cheng
  fullname: Cheng, Qianju
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40807250$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v1DAQhi1URL_4AVxQJC5cQsexHccnhFaFVmppD92zNbEnu1ll7WInlfj3pLulauE01syjR6_Gc8wOQgzE2AcOX4QwcLaNA7lpoCyAKwFavWFHXFZQCpDm4MX7kB3nvAGouOTqHTuU0ICuFByx5XlYY3DkiwvCsbhLGHJHqYhdwcsbN6InhyEOxe0aM5WLGV5RcY0jpR6HXCxzH1bFAlMbQ_FzJseppXzK3nbzlN4_1RO2_H5-t7gor25-XC6-XZVO1EKVyGs0Djhpwq6uWq6JOl8Z8KqWpvXCayMarVG2skJy2hgE1ShVdbLR1IoTdrn3-ogbe5_6LabfNmJvd42YVhbT2LuBLCkUgA5bMeuaxmAjwaDivvbUNJ7Prq971_3Ubsk7CmPC4ZX09ST0a7uKD5ZXQjaqhtnw-cmQ4q-J8mi3fXY0DBgoTtmKShgJnO_QT_-gmzilMO9qR4HWXDxG-vgy0nOWv983A3wPuBRzTtQ9Ixzs44nY_05E_AF7Kq-R
Cites_doi 10.1016/j.ijheatmasstransfer.2021.122017
10.1016/j.tsep.2025.103712
10.1016/j.conbuildmat.2024.138550
10.1007/s11595-019-2110-2
10.1016/j.solener.2018.05.007
10.1016/j.csite.2025.106247
10.1016/j.applthermaleng.2024.125240
10.1016/j.est.2021.103415
10.1016/j.carbon.2025.120125
10.1016/j.mtcomm.2022.103618
10.1016/j.mattod.2024.04.005
10.1139/cjc-2022-0281
10.1016/j.est.2025.117465
10.1002/adem.201700753
10.1016/j.est.2024.111583
10.1016/j.powtec.2020.03.039
10.1016/j.tsep.2023.102081
10.1016/j.jobe.2024.111259
10.1016/j.ijheatmasstransfer.2019.06.008
10.1016/j.applthermaleng.2023.121073
10.1016/j.solmat.2025.113714
10.1016/j.est.2024.111369
10.1016/j.applthermaleng.2024.123954
10.1016/j.applthermaleng.2025.125995
10.1016/j.apsusc.2025.162616
10.1016/j.enconman.2021.114071
10.1007/s00231-022-03218-x
10.3390/polym17010071
10.1016/j.jmrt.2023.10.226
10.1016/j.solmat.2024.113228
10.1016/j.est.2025.117209
10.1016/j.carbon.2025.120476
10.1016/j.enconman.2016.12.053
10.1016/j.applthermaleng.2022.118623
10.1016/j.envres.2021.110853
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/molecules30153075
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_e5a30acab37a4889a8409a51d6de88d1
PMC12348560
40807250
10_3390_molecules30153075
Genre Journal Article
GrantInformation_xml – fundername: The Hubei Provincial Natural Science Foundation
  grantid: No. 2025AFD355
– fundername: the Natural Science Foundation of Hubei
  grantid: 2025AFB006
– fundername: the Natural Science Foundation of Hubei
  grantid: 2024AFB010
– fundername: Natural Science Foundation of Hubei
  grantid: 2024AFB010; 2025AFB006
– fundername: Hubei Provincial Natural Science Foundation
  grantid: 2025AFD355
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c3635-a16a9c01e7eaf62b17eefd290d5649bd3d793877a4b42aec799a058552f487eb3
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:29:42 EDT 2025
Thu Aug 21 18:26:31 EDT 2025
Thu Aug 14 17:32:47 EDT 2025
Wed Aug 13 13:12:07 EDT 2025
Mon Aug 18 01:32:36 EDT 2025
Thu Jul 31 00:54:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords 1-Octadecanol
carbon nanotubes
thermal management
phase-change materials
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3635-a16a9c01e7eaf62b17eefd290d5649bd3d793877a4b42aec799a058552f487eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3080-6753
0000-0002-5057-9001
OpenAccessLink https://doaj.org/article/e5a30acab37a4889a8409a51d6de88d1
PMID 40807250
PQID 3239077131
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_e5a30acab37a4889a8409a51d6de88d1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12348560
proquest_miscellaneous_3239401160
proquest_journals_3239077131
pubmed_primary_40807250
crossref_primary_10_3390_molecules30153075
PublicationCentury 2000
PublicationDate 20250723
PublicationDateYYYYMMDD 2025-07-23
PublicationDate_xml – month: 7
  year: 2025
  text: 20250723
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Xu (ref_29) 2019; 34
Yuan (ref_26) 2025; 690
Burcu (ref_6) 2025; 63
Tuan (ref_27) 2023; 101
Wu (ref_21) 2019; 140
Kadirgama (ref_10) 2022; 45
Du (ref_24) 2022; 182
Feng (ref_25) 2024; 75
ref_17
Abolfazl (ref_12) 2022; 212
Wang (ref_28) 2024; 98
Hamza (ref_31) 2023; 27
Gencel (ref_16) 2023; 44
Gong (ref_30) 2020; 367
Lin (ref_23) 2025; 262
Pin (ref_37) 2025; 279
Negi (ref_9) 2025; 26
Xu (ref_18) 2021; 236
Latibari (ref_14) 2018; 170
Gencel (ref_33) 2025; 130
Han (ref_1) 2025; 128
Bahrami (ref_13) 2025; 71
Abdelrazik (ref_19) 2022; 31
Hu (ref_36) 2025; 290
Zhang (ref_5) 2018; 20
Ali (ref_22) 2017; 134
Guo (ref_35) 2024; 255
Dimberu (ref_32) 2021; 195
Radhakrishnan (ref_7) 2022; 58
Kim (ref_15) 2024; 449
Bilal (ref_11) 2024; 24
Han (ref_20) 2025; 237
Luo (ref_34) 2024; 88
Zhou (ref_3) 2025; 243
Gao (ref_4) 2025; 269
Lu (ref_8) 2023; 232
Khan (ref_2) 2024; 87
Li (ref_38) 2024; 28
References_xml – volume: 182
  start-page: 122017
  year: 2022
  ident: ref_24
  article-title: Molecular dynamics simulation on thermal enhancement for carbon nano tubes (CNTs) based phase change materials (PCMs)
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.122017
– volume: 63
  start-page: 103712
  year: 2025
  ident: ref_6
  article-title: A numerical comparison of the thermal performances of nano-PCM heat sinks with Fe3O4, MgO, ZnO and xGNP nanoparticles: Key role of increased thermal conductivity
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2025.103712
– volume: 449
  start-page: 138550
  year: 2024
  ident: ref_15
  article-title: Thermal characteristics of cementitious building materials with carbon and PCM for improved heat storage performance
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2024.138550
– volume: 34
  start-page: 728
  year: 2019
  ident: ref_29
  article-title: Preparation and properties of l-octadecanol/l,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol/expanded graphite form-stable composite phase change material
  publication-title: J. Wuhan Univ. Technol. Mater. Sci. Ed.
  doi: 10.1007/s11595-019-2110-2
– volume: 170
  start-page: 1130
  year: 2018
  ident: ref_14
  article-title: Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.05.007
– volume: 71
  start-page: 106247
  year: 2025
  ident: ref_13
  article-title: Strategies for passive thermal management of lithium-ion batteries in microgravity: Combining PCMs, metal foams, fins, and nanoparticles
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2025.106247
– volume: 262
  start-page: 125240
  year: 2025
  ident: ref_23
  article-title: CNT@MXene porous composite PCM based thermal management for lithium-ion battery system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.125240
– volume: 45
  start-page: 103415
  year: 2022
  ident: ref_10
  article-title: A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103415
– volume: 237
  start-page: 120125
  year: 2025
  ident: ref_20
  article-title: CNTs composite aerogel incorporating phase-change microcapsules for solar-thermal conversion and energy storage
  publication-title: Carbon
  doi: 10.1016/j.carbon.2025.120125
– volume: 31
  start-page: 103618
  year: 2022
  ident: ref_19
  article-title: Multiwalled CNT and graphene nanoplatelets based nano-enhanced PCMs: Evaluation for the thermal performance and its implications on the performance of hybrid PV/thermal systems
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.103618
– volume: 75
  start-page: 285
  year: 2024
  ident: ref_25
  article-title: Multifunctional performance of carbon nanotubes in thermal energy storage materials
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2024.04.005
– volume: 101
  start-page: 235
  year: 2023
  ident: ref_27
  article-title: Methylated mesoporous silica loaded with 1-octadecanol as a new shape-stabilized phase change material for enhanced thermal energy storage efficiency
  publication-title: Can. J. Chem.
  doi: 10.1139/cjc-2022-0281
– volume: 26
  start-page: 100984
  year: 2025
  ident: ref_9
  article-title: Enhancing solar still productivity with organic phase change materials: A literature review
  publication-title: Energy Convers. Manag. X
– volume: 130
  start-page: 117465
  year: 2025
  ident: ref_33
  article-title: High-performance CNT-integrated PolyHIPE networks enabling efficient PCM encapsulation via emulsion templating for advanced thermal energy storage
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2025.117465
– volume: 20
  start-page: 1700753
  year: 2018
  ident: ref_5
  article-title: Latent heat thermal energy storage systems with solid–liquid phase change materials: A review
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201700753
– volume: 88
  start-page: 111583
  year: 2024
  ident: ref_34
  article-title: Highly thermal conductive phase change materials enabled by CNTs-modified PVA aerogel for solar energy storage and thermal management of electronic components
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.111583
– volume: 367
  start-page: 32
  year: 2020
  ident: ref_30
  article-title: Effect of nano-SiC on thermal properties of expanded graphite/1-octadecanol composite materials for thermal energy storage
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.03.039
– volume: 44
  start-page: 102081
  year: 2023
  ident: ref_16
  article-title: Activated carbon/expanded graphite hybrid structure for development of nonadecane based composite PCM with excellent shape stability, enhanced thermal conductivity and heat charging-discharging performance
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2023.102081
– volume: 98
  start-page: 111259
  year: 2024
  ident: ref_28
  article-title: Enhanced thermal performance of phase change mortar using multi-scale carbon-based materials
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2024.111259
– volume: 140
  start-page: 671
  year: 2019
  ident: ref_21
  article-title: Experimental study of thermo-physical properties and application of paraffin-carbon nanotubes composite phase change materials
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.06.008
– volume: 28
  start-page: 100986
  year: 2024
  ident: ref_38
  article-title: Carbon nanotube/carbon foam thermal-bridge enhancing solar energy conversion and storage of phase change materials
  publication-title: Mater. Today Sustain.
– volume: 232
  start-page: 121073
  year: 2023
  ident: ref_8
  article-title: Optimal design and thermal performance study of a two-stage latent heat thermal energy storage technology for heating systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121073
– volume: 290
  start-page: 113714
  year: 2025
  ident: ref_36
  article-title: Synergistically enhanced NF/CNTs@ PDA/PEG composite phase change materials for high-efficiency solar-thermal energy storage and conversion
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2025.113714
– volume: 87
  start-page: 111369
  year: 2024
  ident: ref_2
  article-title: Review on phase change materials for spacecraft avionics thermal management
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2024.111369
– volume: 255
  start-page: 123954
  year: 2024
  ident: ref_35
  article-title: Form-Stable phase change composites with high thermal conductivity and enthalpy enabled by Graphene/Carbon nanotubes aerogel skeleton for thermal energy storage
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.123954
– volume: 269
  start-page: 125995
  year: 2025
  ident: ref_4
  article-title: Development of cost-effective latent heat thermal energy storage based on growing fins
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2025.125995
– volume: 24
  start-page: 100708
  year: 2024
  ident: ref_11
  article-title: Comprehensive analysis of waste heat recovery and thermal energy storage integration in air conditioning systems
  publication-title: Energy Convers. Manag. X
– volume: 690
  start-page: 162616
  year: 2025
  ident: ref_26
  article-title: Nano copper-modified GO and CNTs for enhanced the epoxy resin composite thermal properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2025.162616
– volume: 236
  start-page: 114071
  year: 2021
  ident: ref_18
  article-title: Experimental investigation of thermal performance for pulsating flow in a microchannel heat sink filled with PCM (paraffin/CNT composite)
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114071
– volume: 58
  start-page: 1811
  year: 2022
  ident: ref_7
  article-title: Thermophysical characterization and melting heat transfer analysis of an organic phase change material dispersed with GNP- Ag hybrid nanoparticles
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-022-03218-x
– ident: ref_17
  doi: 10.3390/polym17010071
– volume: 27
  start-page: 4005
  year: 2023
  ident: ref_31
  article-title: Investigation of 1-tetradecanol with functionalized multi-walled carbon nanotubes as PCM for high-density thermal energy storage
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.10.226
– volume: 279
  start-page: 113228
  year: 2025
  ident: ref_37
  article-title: Recent advances in enhanced thermal property in phase change materials using carbon nanotubes: A review
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2024.113228
– volume: 128
  start-page: 117209
  year: 2025
  ident: ref_1
  article-title: Research on thermal management and waste heat utilization of building distributed energy storage battery
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2025.117209
– volume: 243
  start-page: 120476
  year: 2025
  ident: ref_3
  article-title: Flexible HMF/HTC/PEG composite foam with photothermal conversion, energy storage, and shape memory for adaptive thermal management
  publication-title: Carbon
  doi: 10.1016/j.carbon.2025.120476
– volume: 134
  start-page: 373
  year: 2017
  ident: ref_22
  article-title: Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.12.053
– volume: 212
  start-page: 118623
  year: 2022
  ident: ref_12
  article-title: Enhancing PCMs thermal conductivity: A comparison among porous metal foams, nanoparticles and finned surfaces in triplex tube heat exchangers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118623
– volume: 195
  start-page: 110853
  year: 2021
  ident: ref_32
  article-title: A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.110853
SSID ssj0021415
Score 2.4467056
Snippet Solid–liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures...
Solid-liquid phase-change materials (PCMs) have attracted considerable attention in heat energy storage due to their appropriate phase-transition temperatures...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3075
SubjectTerms 1-Octadecanol
Carbon
carbon nanotubes
Composite materials
Efficiency
Electrons
Energy consumption
Energy storage
Graphene
Graphite
Heat conductivity
Heat transfer
Morphology
Phase transitions
phase-change materials
Solids
Temperature
Thermal energy
thermal management
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOcAFUV4NFGQkTkhRE8eJnROCVasVUoEDK-0tGtsTFgmSdjf7_xk72S0LqNfYkUbz_jz2DMDbtrSVdDY83bIqVWQztjnlUwyxOafCyggULz9X84X6tCyX04HbZrpWufOJ0VH73oUz8rNCMjrXDKny91fXaZgaFaqr0wiNu3AvtC4LWq2XN4Ar5-g0VjIL_vns1zhwljas1CXrdnkQi2LL_v_lmX9fl_wj_lw8godT4ig-jJI-hjvUPYb7s928tiewOO9WsZwv5uxfRQxCLa1F34o8_eIG9MRs7H-KryuOXOn4rEBc4jDqoIiXB8QM17bvBDvdftha2jyFxcX5t9k8nYYmpK7g5IGZXGHtspw0YVtJm2ui1ss682WlausLzxZptEZllURyuq4xY8xQypaxC0PrZ3DU9R2dgJAakdFQoZV1ykhlqtCbvdZUe68c6gTe7djXXI29MRrGFIHXzT-8TuBjYPB-Y2hrHT_06-_NZCUNlVhk6NAWTJ8xNQb4iWXuK0_G-DyB0514msnWNs2NZiTwZr_MzA-lD-yo3457VKg5ZQk8H6W5p0Rx0qw5E0zAHMj5gNTDle7HKnbi5rCvDOeML26n6yU8kGFscKZTWZzC0bDe0ivOZQb7Oirsb2M-9QY
  priority: 102
  providerName: ProQuest
Title Enhanced Heat Transfer of 1-Octadecanol Phase-Change Materials Using Carbon Nanotubes
URI https://www.ncbi.nlm.nih.gov/pubmed/40807250
https://www.proquest.com/docview/3239077131
https://www.proquest.com/docview/3239401160
https://pubmed.ncbi.nlm.nih.gov/PMC12348560
https://doaj.org/article/e5a30acab37a4889a8409a51d6de88d1
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BcoALYvnawFIZiRNStIntxMmRrdqtkHZZISr1Fo3jiYoEyapN_z_jOK22gMSFSw6xpThvxn7zZHsG4EOT2VzW1l_dsjrWZBOec9rF6Lk5JWXlIBSvb_LFUn9eZat7pb78mbCQHjgAd0EZqgRrtMogO1uJXpFglrrcUVG4Qfgw5-3F1Ci1UualsIepWNRf_AylZmnL7pyxV2dHLDQk6_9bhPn7Qcl7zDN_Bk_HkFF8CkM9hQfUPofH032lthewnLXrYSNfLHhlFQP9NLQRXSPS-EvdoyMGsPshbtfMWXG4UCCusQ_eJ4ZjA2KKG9u1gpfbrt9Z2r6E5Xz2bbqIx3IJca04bGB4cyzrJCVD2OTSpoaocbJMXJbr0jrleC4WhmG0WiLVpiwxYbWQyYZVC4vqV3DSdi2dgZAGkXWQMtrWupC6yH1W9tJQ6Zyu0UTwcQ9fdReyYlSsJjzW1R9YR3DpAT509Amthxds5mo0c_UvM0dwvjdPNc6ybaUkf9CwzObm94dmBt9vemBL3S700X63KYngdbDmYSSaw2XDMWAExZGdj4Z63NJ-Xw85uJnwdcHR4pv_8XNv4Yn0ZYUTE0t1Dif9ZkfvONbp7QQempXhZzG_msCjy9nN7dfJ4Oq_AEcjAXw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VciiXijcuBRYJLkhW7fXaax8QgtCQ0qZwaKTezD7GpFJrt4kjxJ_iNzK7jgMBxK1Xr2WN5vl9nt0dgBdVqjNutDu6pUUoUEcUc8KGytXmGBPNPVEcH2ejifh4mp5uwI_-LIzbVtnnRJ-obWPcP_K9hBM7l0Sp4jeXV6GbGuW6q_0Ijc4tDvH7N6Js89cH78m-Lzkf7p8MRuFyqkBoEqquJEWmChPFKFFVGdexRKwsLyKbZqLQNrHksrmUSmjBFRpZFCoiUJ3yisA9cU_67g24KRKq5O5k-vDDiuDFVA27ziktRnsX3YBbnFMQpRRL6Vrt8yMC_oVr_9ye-Vu9G96G7SVQZW87z7oDG1jfha1BPx_uHkz266nfPsBGlM-ZL3oVzlhTsTj8ZFplkczWnLPPU6qUYXeMgY1V2_k885sV2EDNdFMzSvJNu9A4vw-Ta1HnA9ismxofAeNSKWJfiRTaiJyLPHN3wRcSC2uFUTKAV736ysvuLo6SOIzTdfmXrgN45xS8etFdo-0fNLOv5TIqS0xVEimjdELy5XmhHN1VaWwzi3lu4wB2e_OUy9iel788MYDnq2VSvmu1qBqbRfeOcD2uKICHnTVXkggC6ZKQZwD5mp3XRF1fqc-m_uZvghkiJ4y683-5nsHW6GR8VB4dHB8-hlvcjSyOZMiTXdhsZwt8Qjiq1U-98zL4ct3R8hNJxjHJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tXQm4IN4EFjASXJCiJo4TJweE2G6rLsuWClFpb8GOJxQJkqVNhfhr_DrGcVIoIG57jaNoNA_P98XjGYCnZawTXmh7dUsLX6AOKOaE8ZXNzSFGmrdE8XSWTBfi9Vl8tgc_-rswtqyy3xPbjdrUhf1HPow4sXNJlCocll1ZxPxo8vL8q28nSNmT1n6chnORE_z-jejb-sXxEdn6GeeT8fvR1O8mDPhFRJmWJEpUVgQhSlRlwnUoEUvDs8DEici0iQy5byqlElpwhYXMMhUQwI55SUCfeCh99xLsS8uKBrB_OJ7N323pXki50Z2jRiT68Isbd4trCqmYIiveyYTtwIB_odw_izV_y36T63Ctg63slfOzG7CH1U24Muqnxd2CxbhatsUEbEq7O2tTYIkrVpcs9N8WjTJIRqw_s_mS8qbvLjWwU9W4CGBt6QIbqZWuK0Zbft1sNK5vw-JCFHoHBlVd4T1gXCpFXCySQhci5SJNbGf4TGJmjCiU9OB5r7783HXmyInRWF3nf-nag0Or4O2Ltql2-6Befcy7GM0xVlGgCqUjki9NM2XJr4pDkxhMUxN6cNCbJ-8ifZ3_8ksPnmyXSfn24EVVWG_cO8KeeAUe3HXW3EoiCLJLwqEepDt23hF1d6X6tGz7gBPoECkh1vv_l-sxXKZIyd8cz04ewFVu5xcH0ufRAQya1QYfEqhq9KPOexl8uOiA-Qlr2Tdb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Heat+Transfer+of+1-Octadecanol+Phase-Change+Materials+Using+Carbon+Nanotubes&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Xiuli+Wang&rft.au=Qingmeng+Wang&rft.au=Xiaomin+Cheng&rft.au=Yi+Yang&rft.date=2025-07-23&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=30&rft.issue=15&rft.spage=3075&rft_id=info:doi/10.3390%2Fmolecules30153075&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e5a30acab37a4889a8409a51d6de88d1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon