3D near-surface P-wave velocity structure imaging with Distributed Acoustic Sensing and electric hammer source

Distributed Acoustic Sensing (DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In...

Full description

Saved in:
Bibliographic Details
Published inEarthquake research advances Vol. 4; no. 3; p. 100274
Main Authors Hong, Heting, Yin, Fu, Lei, Yuhang, Li, Yulan, Wang, Baoshan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2024
KeAi Communications Co. Ltd
Subjects
Online AccessGet full text
ISSN2772-4670
2772-4670
DOI10.1016/j.eqrea.2023.100274

Cover

Abstract Distributed Acoustic Sensing (DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional (3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 ​km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 ​m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a Short-Term Average/Long-Term Average (STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances. This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then, we used the TomoDD software to invert the 3D P-wave velocity structure for the uppermost 50 ​m with a resolution of 10 ​m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.
AbstractList Distributed Acoustic Sensing (DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface seismic imaging. Recently a large number of linear DAS arrays have been used for two-dimensional S-wave near-surface imaging in urban areas. In order to explore the feasibility of three-dimensional (3D) structure imaging using a DAS array, we carried out an active source experiment at the Beijing National Earth Observatory. We deployed a 1 ​km optical cable in a rectangular shape, and the optical cable was recast into 250 sensors with a channel spacing of 4 ​m. The DAS array clearly recorded the P, S and surface waves generated by a hammer source. The first-arrival P wave travel times were first picked with a Short-Term Average/Long-Term Average (STA/LTA) method and further manually checked. The P-wave signals recorded by the DAS are consistent with those recorded by the horizontal components of short-period seismometers. At shorter source-receiver distances, the picked P-wave arrivals from the DAS recording are consistent with vertical component recordings of seismometers, but they clearly lag behind the latter at greater distances. This is likely due to a combination of the signal-to-noise ratio and the polarization of the incoming wave. Then, we used the TomoDD software to invert the 3D P-wave velocity structure for the uppermost 50 ​m with a resolution of 10 ​m. The inverted P-wave velocity structures agree well with the S-wave velocity structure previously obtained through ambient noise tomography. Our study indicates the feasibility of 3D near-surface imaging with the active source and DAS array. However, the inverted absolute velocity values at large depths may be biased due to potential time shifts between the DAS recording and seismometer at large source-receiver distances.
ArticleNumber 100274
Author Li, Yulan
Hong, Heting
Yin, Fu
Lei, Yuhang
Wang, Baoshan
Author_xml – sequence: 1
  givenname: Heting
  orcidid: 0000-0001-9722-1149
  surname: Hong
  fullname: Hong, Heting
  organization: Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
– sequence: 2
  givenname: Fu
  surname: Yin
  fullname: Yin, Fu
  organization: Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
– sequence: 3
  givenname: Yuhang
  surname: Lei
  fullname: Lei, Yuhang
  organization: Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
– sequence: 4
  givenname: Yulan
  surname: Li
  fullname: Li, Yulan
  organization: Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
– sequence: 5
  givenname: Baoshan
  orcidid: 0000-0001-7203-9703
  surname: Wang
  fullname: Wang, Baoshan
  email: bwgeo@ustc.edu.cn
  organization: Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, 230026, China
BookMark eNqFkc1OHDEQhK2ISAHCE-TiF5jFf4zXhxwQf0FCIlKSs9XT07N4NWsn9swi3h4vG6GIAznZatdXalcdsYOYIjH2RYqFFLI9XS_oTyZYKKF0nQhlzQd2qKxVjWmtOPjn_omdlLIWO4021rWHLOpLHglyU-Y8ABL_3jzClviWxoRheuJlyjNOcyYeNrAKccUfw_TAL0N9CN08Uc_PMc1lCsh_UCw7BcSe00hYFcgfYLOhzEuaM9Jn9nGAsdDJ3_OY_bq--nnxrbm7v7m9OL9rULfaNIODMwWWlHS9RqNaEk5rtCik1IZERwrVWdcurVl2wyCXaMAAodPO6c6BPma3e98-wdr_znX3_OQTBP8ySHnlIdeVR_Kd7a0TNUmxVAZbAaIDp6U1HbVKDEP10nsvzKmUTMOrnxR-14Bf-5cG_K4Bv2-gUu4NVeOEKaQ4ZQjjf9ive5ZqRNtA2RcMFJH6kGuq9Q_hXf4ZLOSlEA
CitedBy_id crossref_primary_10_12720_jait_16_2_251_263
Cites_doi 10.1785/BSSA0770030972
10.1016/j.ijdrr.2017.06.022
10.1016/j.tecto.2009.10.004
10.1360/TB-2020-1427
10.1785/BSSA0680051521
10.1007/s00024-005-0021-y
10.1785/BSSA07206B0225
10.1038/s41467-018-04860-y
10.1038/s41598-017-11986-4
10.1785/0120020190
10.1029/2018GL081195
10.1785/0220180085
ContentType Journal Article
Copyright 2024 China Earthquake Networks Center.
Copyright_xml – notice: 2024 China Earthquake Networks Center.
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.eqrea.2023.100274
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2772-4670
ExternalDocumentID oai_doaj_org_article_b7d7901010824c60a0ba93174be620ff
10_1016_j_eqrea_2023_100274
S2772467023000714
GroupedDBID -SA
-S~
0R~
0SF
6I.
AAFTH
AAXDM
AAXUO
ADVLN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CAJEA
EBS
FDB
GROUPED_DOAJ
M41
M~E
ROL
TCJ
TGP
U1G
U5K
AAFWJ
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPKN
AFPUW
AIGII
AKBMS
AKYEP
CITATION
Q--
ID FETCH-LOGICAL-c3634-f9a52a7e219d3c426e0933c7c01134e0be2c25b68748bff18c4a4aec93993b9a3
IEDL.DBID DOA
ISSN 2772-4670
IngestDate Wed Aug 27 01:27:53 EDT 2025
Tue Jul 01 04:09:35 EDT 2025
Thu Apr 24 22:54:15 EDT 2025
Sat Aug 03 15:32:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Near-surface structure
Active source
Distributed Acoustic Sensing (DAS)
Body wave
First-arrival travel time tomography
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3634-f9a52a7e219d3c426e0933c7c01134e0be2c25b68748bff18c4a4aec93993b9a3
ORCID 0000-0001-9722-1149
0000-0001-7203-9703
OpenAccessLink https://doaj.org/article/b7d7901010824c60a0ba93174be620ff
ParticipantIDs doaj_primary_oai_doaj_org_article_b7d7901010824c60a0ba93174be620ff
crossref_primary_10_1016_j_eqrea_2023_100274
crossref_citationtrail_10_1016_j_eqrea_2023_100274
elsevier_sciencedirect_doi_10_1016_j_eqrea_2023_100274
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Earthquake research advances
PublicationYear 2024
Publisher Elsevier B.V
KeAi Communications Co. Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co. Ltd
References Um, Thurber (bib12) 1987; 77
Li, Huang, Yao, Miao, Wang, Bao, Yang (bib6) 2020; 63
Liu, Zhao, Wang, Peng (bib9) 2017; 38
Li, Kim, Lapusta, Biondi, Zhan (bib7) 2023
Yu, Zhan, Lindsey, Ajo-Franklin, Robertson (bib16) 2019; 46
Song, Zeng, Xu, Hu, Sun, Wang (bib11) 2020; 63
Lei, Yin, Hong, Li, Wang (bib5) 2021; 64
Parker, Thurber, Zeng, Li, Lord, Fratta, Feigl (bib10) 2018; 89
Jousset, Reinsch, Ryberg, Blanck, Clarke, Aghayev, Krawczyk (bib4) 2018; 9
Allen (bib2) 1982; 72
Lin, Zeng, Song, Xu, Hu, Sun, Wang (bib8) 2020; 63
Zhang, Xu, Chen (bib15) 2017; S221242091630303X, 24
Allen (bib1) 1978; 68
Wang (bib13) 2009
Zhang, Thurber (bib17) 2003; 93
Dou, Lindsey, Wagner, Daley, Freifeld, Robertson, Ajo-Franklin (bib3) 2017; 7
Zhang, Thurber (bib18) 2006; 163
Wang, Zeng, Song, Li, Yang (bib14) 2021; 66
Zhang, Yang, Yang, Wang, Ma (bib19) 2023
Zhao, Qiu, Xia, Xu, Wang, Wang, Xia (bib20) 2010; 480
Dou (10.1016/j.eqrea.2023.100274_bib3) 2017; 7
Lei (10.1016/j.eqrea.2023.100274_bib5) 2021; 64
Lin (10.1016/j.eqrea.2023.100274_bib8) 2020; 63
Liu (10.1016/j.eqrea.2023.100274_bib9) 2017; 38
Wang (10.1016/j.eqrea.2023.100274_bib13) 2009
Um (10.1016/j.eqrea.2023.100274_bib12) 1987; 77
Allen (10.1016/j.eqrea.2023.100274_bib1) 1978; 68
Zhang (10.1016/j.eqrea.2023.100274_bib18) 2006; 163
Zhang (10.1016/j.eqrea.2023.100274_bib19) 2023
Parker (10.1016/j.eqrea.2023.100274_bib10) 2018; 89
Yu (10.1016/j.eqrea.2023.100274_bib16) 2019; 46
Allen (10.1016/j.eqrea.2023.100274_bib2) 1982; 72
Li (10.1016/j.eqrea.2023.100274_bib7) 2023
Zhao (10.1016/j.eqrea.2023.100274_bib20) 2010; 480
Song (10.1016/j.eqrea.2023.100274_bib11) 2020; 63
Jousset (10.1016/j.eqrea.2023.100274_bib4) 2018; 9
Li (10.1016/j.eqrea.2023.100274_bib6) 2020; 63
Wang (10.1016/j.eqrea.2023.100274_bib14) 2021; 66
Zhang (10.1016/j.eqrea.2023.100274_bib17) 2003; 93
Zhang (10.1016/j.eqrea.2023.100274_bib15) 2017; S221242091630303X, 24
References_xml – volume: 68
  start-page: 1521
  year: 1978
  end-page: 1532
  ident: bib1
  article-title: Automatic earthquake recognition and timing from single traces
  publication-title: Bull. Seismol. Soc. Am.
– volume: 63
  start-page: 1622
  year: 2020
  end-page: 1629
  ident: bib8
  article-title: Distributed acoustic sensing for imaging shallow structure II: ambient noise tomography
  publication-title: Chin. J. Geophys.
– volume: 38
  start-page: 740
  year: 2017
  ident: bib9
  article-title: Automatic picking of microseismic events p-wave arrivals based on improved method of STA/LTA
  publication-title: J. Northeast. Univ. (Nat. Sci.)
– volume: 77
  start-page: 972
  year: 1987
  end-page: 986
  ident: bib12
  article-title: A fast algorithm for two-point seismic ray tracing
  publication-title: Bull. Seismol. Soc. Am.
– start-page: 1
  year: 2023
  end-page: 7
  ident: bib7
  article-title: The break of earthquake asperities imaged by distributed acoustic sensing
  publication-title: Nature
– volume: 9
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib4
  article-title: Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features
  publication-title: Nat. Commun.
– volume: 64
  start-page: 4280
  year: 2021
  end-page: 4291
  ident: bib5
  article-title: Shallow structure imaging using higher-mode Rayleigh waves based on FJ transform in DAS observation
  publication-title: Chin. J. Geophys.
– volume: 46
  start-page: 1320
  year: 2019
  end-page: 1328
  ident: bib16
  article-title: The potential of DAS in teleseismic studies: insights from the Goldstone experiment
  publication-title: Geophys. Res. Lett.
– volume: 72
  start-page: S225
  year: 1982
  end-page: S242
  ident: bib2
  article-title: Automatic phase pickers: their present use and future prospects
  publication-title: Bull. Seismol. Soc. Am.
– volume: 63
  start-page: 3307
  year: 2020
  end-page: 3323
  ident: bib6
  article-title: Shallow shear wave velocity structure from ambient noise tomography in Hefei city and its implication for urban sedimentary environment
  publication-title: Chin. J. Geophys.
– volume: 66
  start-page: 2590
  year: 2021
  end-page: 2595
  ident: bib14
  article-title: Seismic observation and subsurface imaging using an urban telecommunication optic-fiber cable
  publication-title: China Science Bulletin
– volume: 63
  start-page: 532
  year: 2020
  end-page: 540
  ident: bib11
  article-title: Distributed acoustic sensing for imaging shallow structure I: active source survey
  publication-title: Chin. J. Geophys.
– volume: 93
  start-page: 1875
  year: 2003
  end-page: 1889
  ident: bib17
  article-title: Double-difference tomography: the method and its application to the Hayward fault, California
  publication-title: Bull. Seismol. Soc. Am.
– volume: 163
  start-page: 373
  year: 2006
  end-page: 403
  ident: bib18
  article-title: Development and applications of double-difference seismic tomography
  publication-title: Pure Appl. Geophys.
– volume: S221242091630303X, 24,
  start-page: 361
  year: 2017
  end-page: 372
  ident: bib15
  article-title: Social vulnerability assessment of earthquake disaster based on the catastrophe progression method: a sichuan province case study
  publication-title: Int. J. Disaster Risk Reduc.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib3
  article-title: Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study
  publication-title: Sci. Rep.
– start-page: 1
  year: 2023
  end-page: 18
  ident: bib19
  article-title: Along-strike variation in the shallow velocity structure beneath the chenghai fault zone, Yunnan, China, constrained from methane sources and dense arrays
  publication-title: Seismology Research Letter
– volume: 480
  start-page: 183
  year: 2010
  end-page: 197
  ident: bib20
  article-title: Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data
  publication-title: Tectonophysics
– year: 2009
  ident: bib13
  article-title: Research on Regional-Scale Medium Wave Speed Detection Based on Artificial Seismic Sources
– volume: 89
  start-page: 1629
  year: 2018
  end-page: 1640
  ident: bib10
  article-title: Active-source seismic tomography at the Brady geothermal field, Nevada, with dense nodal and fiber-optic seismic arrays
  publication-title: Seismol Res. Lett.
– volume: 77
  start-page: 972
  issue: 3
  year: 1987
  ident: 10.1016/j.eqrea.2023.100274_bib12
  article-title: A fast algorithm for two-point seismic ray tracing
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0770030972
– volume: 38
  start-page: 740
  issue: 5
  year: 2017
  ident: 10.1016/j.eqrea.2023.100274_bib9
  article-title: Automatic picking of microseismic events p-wave arrivals based on improved method of STA/LTA
  publication-title: J. Northeast. Univ. (Nat. Sci.)
– start-page: 1
  year: 2023
  ident: 10.1016/j.eqrea.2023.100274_bib19
  article-title: Along-strike variation in the shallow velocity structure beneath the chenghai fault zone, Yunnan, China, constrained from methane sources and dense arrays
  publication-title: Seismology Research Letter
– volume: S221242091630303X, 24,
  start-page: 361
  year: 2017
  ident: 10.1016/j.eqrea.2023.100274_bib15
  article-title: Social vulnerability assessment of earthquake disaster based on the catastrophe progression method: a sichuan province case study
  publication-title: Int. J. Disaster Risk Reduc.
  doi: 10.1016/j.ijdrr.2017.06.022
– volume: 63
  start-page: 3307
  issue: 9
  year: 2020
  ident: 10.1016/j.eqrea.2023.100274_bib6
  article-title: Shallow shear wave velocity structure from ambient noise tomography in Hefei city and its implication for urban sedimentary environment
  publication-title: Chin. J. Geophys.
– volume: 63
  start-page: 1622
  issue: 4
  year: 2020
  ident: 10.1016/j.eqrea.2023.100274_bib8
  article-title: Distributed acoustic sensing for imaging shallow structure II: ambient noise tomography
  publication-title: Chin. J. Geophys.
– volume: 480
  start-page: 183
  issue: 1–4
  year: 2010
  ident: 10.1016/j.eqrea.2023.100274_bib20
  article-title: Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2009.10.004
– volume: 63
  start-page: 532
  issue: 2
  year: 2020
  ident: 10.1016/j.eqrea.2023.100274_bib11
  article-title: Distributed acoustic sensing for imaging shallow structure I: active source survey
  publication-title: Chin. J. Geophys.
– volume: 64
  start-page: 4280
  issue: 12
  year: 2021
  ident: 10.1016/j.eqrea.2023.100274_bib5
  article-title: Shallow structure imaging using higher-mode Rayleigh waves based on FJ transform in DAS observation
  publication-title: Chin. J. Geophys.
– volume: 66
  start-page: 2590
  issue: 20
  year: 2021
  ident: 10.1016/j.eqrea.2023.100274_bib14
  article-title: Seismic observation and subsurface imaging using an urban telecommunication optic-fiber cable
  publication-title: China Science Bulletin
  doi: 10.1360/TB-2020-1427
– volume: 68
  start-page: 1521
  issue: 5
  year: 1978
  ident: 10.1016/j.eqrea.2023.100274_bib1
  article-title: Automatic earthquake recognition and timing from single traces
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0680051521
– volume: 163
  start-page: 373
  issue: 2
  year: 2006
  ident: 10.1016/j.eqrea.2023.100274_bib18
  article-title: Development and applications of double-difference seismic tomography
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-005-0021-y
– volume: 72
  start-page: S225
  issue: 6B
  year: 1982
  ident: 10.1016/j.eqrea.2023.100274_bib2
  article-title: Automatic phase pickers: their present use and future prospects
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA07206B0225
– start-page: 1
  year: 2023
  ident: 10.1016/j.eqrea.2023.100274_bib7
  article-title: The break of earthquake asperities imaged by distributed acoustic sensing
  publication-title: Nature
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.eqrea.2023.100274_bib4
  article-title: Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04860-y
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.eqrea.2023.100274_bib3
  article-title: Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11986-4
– year: 2009
  ident: 10.1016/j.eqrea.2023.100274_bib13
– volume: 93
  start-page: 1875
  issue: 5
  year: 2003
  ident: 10.1016/j.eqrea.2023.100274_bib17
  article-title: Double-difference tomography: the method and its application to the Hayward fault, California
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/0120020190
– volume: 46
  start-page: 1320
  year: 2019
  ident: 10.1016/j.eqrea.2023.100274_bib16
  article-title: The potential of DAS in teleseismic studies: insights from the Goldstone experiment
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL081195
– volume: 89
  start-page: 1629
  issue: 5
  year: 2018
  ident: 10.1016/j.eqrea.2023.100274_bib10
  article-title: Active-source seismic tomography at the Brady geothermal field, Nevada, with dense nodal and fiber-optic seismic arrays
  publication-title: Seismol Res. Lett.
  doi: 10.1785/0220180085
SSID ssj0002734796
Score 2.2606957
Snippet Distributed Acoustic Sensing (DAS) is an emerging technique for ultra-dense seismic observation, which provides a new method for high-resolution sub-surface...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100274
SubjectTerms Active source
Body wave
Distributed Acoustic Sensing (DAS)
First-arrival travel time tomography
Near-surface structure
Title 3D near-surface P-wave velocity structure imaging with Distributed Acoustic Sensing and electric hammer source
URI https://dx.doi.org/10.1016/j.eqrea.2023.100274
https://doaj.org/article/b7d7901010824c60a0ba93174be620ff
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUQEhIXRClV05bKB451u1k7690jlEBUiQoJIuW2smfHaqJ2Q2kBceG3M2NvonAJFy57sPyxGo89z6PRe0IclgGBA53KwOXKFE1fVRpQla6M_Oo6AOc7zn8Wo7H5MRlMVqS-uCYs0QMnw33ztrFcQtCnoQaKzGXeVRT0jMciz0Lg2zerspXH1KwjbbFVsaAZigVd-Jdg2FeWC4-8o9Y8C0WRsX8lIq1EmdNdsdPBQ3mUfuuN2MB2T2ydRfndh7ei1SeyJd9U_25vggOUF-re3aHkwh8gPC0THeztDcrpn6g_JDnRKk-YHpeVrbCRRzCPCl7ykmvXqYdrG5nUcKjxV8xky5TT3xfj0-HV95HqFBMU6EIbFSo3yJ1FuoYaDRR8kRMWYIFOsTaYecwhH_iitKb0IfRLMM44hIphiq-cfic223mL74WEAWqbgW2YLSf3xlMDgqlCWdLbtQk9kS-MV0NHJ86qFr_rRd3YrI4Wr9nidbJ4T3xZDrpObBrrux_zriy7MhV2bCAHqTsHqV9ykJ4oFntad6gioQWaarpu9Q-vsfpHsU1TmlTg-0lskhfgAcGY__5z9Fj6nj8OnwCOivBF
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+near-surface+P-wave+velocity+structure+imaging+with+Distributed+Acoustic+Sensing+and+electric+hammer+source&rft.jtitle=Earthquake+research+advances&rft.au=Hong%2C+Heting&rft.au=Yin%2C+Fu&rft.au=Lei%2C+Yuhang&rft.au=Li%2C+Yulan&rft.date=2024-07-01&rft.issn=2772-4670&rft.eissn=2772-4670&rft.volume=4&rft.issue=3&rft.spage=100274&rft_id=info:doi/10.1016%2Fj.eqrea.2023.100274&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eqrea_2023_100274
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-4670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-4670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-4670&client=summon