β-Cell differentiation and regeneration in type 1 diabetes

Pancreatic insulin‐producing β‐cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β‐cell mass is dynamically regulated with ongoing β‐cell regeneration throughout life to replenish lost or damaged β‐cell...

Full description

Saved in:
Bibliographic Details
Published inDiabetes, obesity & metabolism Vol. 15; no. s3; pp. 98 - 104
Main Authors Ding, L., Gysemans, C., Mathieu, C.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pancreatic insulin‐producing β‐cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β‐cell mass is dynamically regulated with ongoing β‐cell regeneration throughout life to replenish lost or damaged β‐cells. In type 1 diabetes (T1D), this fine‐tuned balance between β‐cell death and β‐cell renewal in the endocrine pancreas is lost and the deficit in β‐cell mass is largely caused by autoimmune‐mediated apoptosis. Currently, the concept that a cure for T1D will require both re‐establishment of immunological tolerance along with replacement or regeneration of a functional β‐cell mass in T1D patients is generally accepted. In this study our current understanding of the events directing β‐cell replication, β‐cell reprogramming from different cell types and β‐cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β‐cells and at improving β‐cell mass and function in subjects with T1D.
AbstractList Pancreatic insulin‐producing β‐cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β‐cell mass is dynamically regulated with ongoing β‐cell regeneration throughout life to replenish lost or damaged β‐cells. In type 1 diabetes ( T1D ), this fine‐tuned balance between β‐cell death and β‐cell renewal in the endocrine pancreas is lost and the deficit in β‐cell mass is largely caused by autoimmune‐mediated apoptosis. Currently, the concept that a cure for T1D will require both re‐establishment of immunological tolerance along with replacement or regeneration of a functional β‐cell mass in T1D patients is generally accepted. In this study our current understanding of the events directing β‐cell replication, β‐cell reprogramming from different cell types and β‐cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β‐cells and at improving β‐cell mass and function in subjects with T1D .
Pancreatic insulin-producing β-cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β-cell mass is dynamically regulated with ongoing β-cell regeneration throughout life to replenish lost or damaged β-cells. In type 1 diabetes (T1D), this fine-tuned balance between β-cell death and β-cell renewal in the endocrine pancreas is lost and the deficit in β-cell mass is largely caused by autoimmune-mediated apoptosis. Currently, the concept that a cure for T1D will require both re-establishment of immunological tolerance along with replacement or regeneration of a functional β-cell mass in T1D patients is generally accepted. In this study our current understanding of the events directing β-cell replication, β-cell reprogramming from different cell types and β-cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β-cells and at improving β-cell mass and function in subjects with T1D.
Pancreatic insulin-producing β-cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β-cell mass is dynamically regulated with ongoing β-cell regeneration throughout life to replenish lost or damaged β-cells. In type 1 diabetes (T1D), this fine-tuned balance between β-cell death and β-cell renewal in the endocrine pancreas is lost and the deficit in β-cell mass is largely caused by autoimmune-mediated apoptosis. Currently, the concept that a cure for T1D will require both re-establishment of immunological tolerance along with replacement or regeneration of a functional β-cell mass in T1D patients is generally accepted. In this study our current understanding of the events directing β-cell replication, β-cell reprogramming from different cell types and β-cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β-cells and at improving β-cell mass and function in subjects with T1D.Pancreatic insulin-producing β-cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β-cell mass is dynamically regulated with ongoing β-cell regeneration throughout life to replenish lost or damaged β-cells. In type 1 diabetes (T1D), this fine-tuned balance between β-cell death and β-cell renewal in the endocrine pancreas is lost and the deficit in β-cell mass is largely caused by autoimmune-mediated apoptosis. Currently, the concept that a cure for T1D will require both re-establishment of immunological tolerance along with replacement or regeneration of a functional β-cell mass in T1D patients is generally accepted. In this study our current understanding of the events directing β-cell replication, β-cell reprogramming from different cell types and β-cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β-cells and at improving β-cell mass and function in subjects with T1D.
Author Gysemans, C.
Ding, L.
Mathieu, C.
Author_xml – sequence: 1
  givenname: L.
  surname: Ding
  fullname: Ding, L.
  organization: Laboratory of Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Faculty of Medicine, Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
– sequence: 2
  givenname: C.
  surname: Gysemans
  fullname: Gysemans, C.
  email: conny.gysemans@med.kuleuven.be
  organization: Laboratory of Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Faculty of Medicine, Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
– sequence: 3
  givenname: C.
  surname: Mathieu
  fullname: Mathieu, C.
  organization: Laboratory of Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Faculty of Medicine, Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24003926$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9OwkAQxjcGI4IefAHTox4K-6_bbjwZFDRBSYxGb5vSnTWrpcXdEuW1fBCfyUqBg4nOZSaT3zf55uugVlEWgNARwT1SV1-Xsx6hRPAdtE-4YCFhVLRWMw0TiWkbdbx_wRhzlsR7qE05xkxSsY_Ovj7DAeR5oK0x4KCobFrZsgjSQgcOnqEA1yxsEVTLOQSkRtMpVOAP0K5Jcw-H695FD8PL-8FVOJ6Mrgfn4zBjgvGQkmkWY86lJpFOap9RAlQIFhsdJdzE2HBOhU4wodJo4EkSY5ZpKaXIgEpgXXTS3J278m0BvlIz67PadFpAufCKcMYiEguKa_R4jS6mM9Bq7uwsdUu1ebgGThsgc6X3DswWIVj9hKnqMNUqzJrt_2IzW63CqFxq8_8U7zaH5d-n1cXkZqMIG4X1FXxsFal7VSJmcaQeb0cqGg2f8PBOKsK-AV7Skfs
CitedBy_id crossref_primary_10_1080_09205063_2019_1655217
crossref_primary_10_1371_journal_pone_0140148
crossref_primary_10_3389_fendo_2022_959011
crossref_primary_10_1177_2042018816652059
crossref_primary_10_1002_edm2_75
crossref_primary_10_3389_fendo_2014_00138
crossref_primary_10_1016_j_celrep_2021_108981
crossref_primary_10_1016_j_csbj_2025_01_003
crossref_primary_10_2337_db13_1781
crossref_primary_10_1111_dom_13144
crossref_primary_10_1021_acsomega_7b01988
crossref_primary_10_1007_s00592_019_01420_8
crossref_primary_10_1016_j_lfs_2020_117985
crossref_primary_10_1016_j_lfs_2021_119853
crossref_primary_10_3389_fphar_2023_1108730
crossref_primary_10_1007_s12020_015_0534_9
crossref_primary_10_3390_ijms18112234
crossref_primary_10_1113_EP088872
crossref_primary_10_1016_j_heliyon_2024_e35424
Cites_doi 10.1210/en.2010-0068
10.1530/EJE-11-0330
10.1371/journal.pone.0023894
10.2337/db06-0017
10.1073/pnas.0507567102
10.1146/annurev.cellbio.22.010305.104425
10.1371/journal.pone.0028808
10.1210/jc.2003-032001
10.1016/j.devcel.2009.11.003
10.1074/jbc.M110.147215
10.2337/diacare.24.9.1661
10.1677/joe.0.1630523
10.1038/nature02520
10.1172/JCI22098
10.1210/jc.2004-0761
10.1002/stem.482
10.1111/j.1463-1326.2011.01443.x
10.1210/en.130.3.1459
10.1042/BST0360353
10.2337/dc09-1959
10.1210/endo.137.9.8756573
10.1007/s00428-003-0930-z
10.1097/MED.0b013e32832e0693
10.3748/wjg.v13.i39.5232
10.1900/RDS.2010.7.124
10.2337/db07-1441
10.1677/joe.1.06160
10.2337/db05-1034
10.1038/nature07314
10.2337/diabetes.53.7.1700
10.1152/physrev.00003.2010
10.1007/s00125-003-1118-4
10.1172/JCI118591
10.1016/j.transproceed.2004.10.026
10.1016/j.diabres.2013.01.020
10.2337/db06-1513
10.1007/s00125-008-1105-x
10.2337/db07-1369
10.1530/eje.0.1410644
10.1055/s-2007-979040
10.1242/dev.129.10.2447
10.1038/nature08894
10.1007/s00125-004-1493-5
10.1126/scitranslmed.3003835
10.2337/db12-0848
10.2337/diabetes.52.7.1732
10.1677/jme.0.0290347
10.1152/ajpendo.00180.2006
10.1152/ajpendo.00030.2002
10.1254/jphs.09178FP
10.1016/j.cell.2009.05.035
10.1007/s00125-009-1562-x
10.1210/en.2007-0358
10.2337/diabetes.51.6.1834
10.1007/s00125-006-0308-2
10.1371/journal.pone.0004734
10.1007/s00125-005-1949-2
10.1677/jme.0.0280099
10.2337/diabetes.48.12.2270
10.1007/s00125-010-1919-1
10.2337/db07-0416
10.1084/jem.176.6.1719
10.1210/jc.2010-0932
10.1101/gad.16875711
10.1038/gt.2010.85
10.1080/15438600490455079
10.1002/hep.20063
10.1172/JCI29988
10.3727/096368908786092775
10.2337/diab.44.3.249
10.1016/j.cell.2007.12.015
10.2337/dc09-0773
10.1172/JCI32959
10.4093/dmj.2011.35.2.119
ContentType Journal Article
Copyright 2013 John Wiley & Sons Ltd
2013 John Wiley & Sons Ltd.
Copyright_xml – notice: 2013 John Wiley & Sons Ltd
– notice: 2013 John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/dom.12164
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1463-1326
EndPage 104
ExternalDocumentID 24003926
10_1111_dom_12164
DOM12164
ark_67375_WNG_5GFX0FR9_1
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Juvenile Diabetes Research Foundation
  funderid: 4‐2005‐1327
– fundername: European Community's Health Seventh Framework Programme
  funderid: FP7/2010‐2014
– fundername: European Community's Health Seventh Framework Programme
  funderid: FP7/2009‐2014
– fundername: University of Leuven (KU Leuven)
  funderid: GOA 2009/10
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
29F
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3634-21bc70449d15d812158e26637fd584f70f4426d80129fde488703cd9996ce29e3
IEDL.DBID DR2
ISSN 1462-8902
1463-1326
IngestDate Thu Jul 10 23:36:33 EDT 2025
Mon Jul 21 06:01:22 EDT 2025
Tue Jul 01 01:02:56 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Wed Jan 22 16:56:52 EST 2025
Wed Oct 30 09:48:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue s3
Keywords replication
reprogramming
type 1 diabetes
regeneration
β-cells
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3634-21bc70449d15d812158e26637fd584f70f4426d80129fde488703cd9996ce29e3
Notes Juvenile Diabetes Research Foundation - No. 4-2005-1327
University of Leuven (KU Leuven) - No. GOA 2009/10
European Community's Health Seventh Framework Programme - No. FP7/2010-2014
European Community's Health Seventh Framework Programme - No. FP7/2009-2014
ark:/67375/WNG-5GFX0FR9-1
ArticleID:DOM12164
istex:6858E1461B54378C5EFA1331E60DEA365D20FF40
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 24003926
PQID 1433517620
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1433517620
pubmed_primary_24003926
crossref_primary_10_1111_dom_12164
crossref_citationtrail_10_1111_dom_12164
wiley_primary_10_1111_dom_12164_DOM12164
istex_primary_ark_67375_WNG_5GFX0FR9_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2013
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: September 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Diabetes, obesity & metabolism
PublicationTitleAlternate Diabetes Obes Metab
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Xu X, D'Hoker J, Stange G et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132: 197-207.
Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 2005; 48: 2221-2228.
Martin-Pagola A, Sisino G, Allende G et al. Insulin protein and proliferation in ductal cells in the transplanted pancreas of patients with type 1 diabetes and recurrence of autoimmunity. Diabetologia 2008; 51: 1803-1813.
Fomina-Yadlin D, Kubicek S, Vetere A, He KH, Schreiber SL, Wagner BK. GW8510 increases insulin expression in pancreatic alpha cells through activation of p53 transcriptional activity. PLoS One 2012; 7: e28808.
Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995; 44: 249-256.
Bonner-Weir S, Inada A, Yatoh S et al. Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochem Soc Trans 2008; 36: 353-356.
Yang YP, Thorel F, Boyer DF, Herrera PL, Wright CV. Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression. Genes Dev 2011; 25: 1680-1685.
Lardon J, Huyens N, Rooman I, Bouwens L. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch 2004; 444: 61-65.
Cnop M, Igoillo-Esteve M, Hughes SJ, Walker JN, Cnop I, Clark A. Longevity of human islet alpha- and beta-cells. Diabetes Obes Metab 2011; 13(Suppl. 1): 39-46.
Liu T, Wang CY, Yu F et al. In vitro pancreas duodenal homeobox-1 enhances the differentiation of pancreatic ductal epithelial cells into insulin-producing cells. World J Gastroenterol 2007; 13: 5232-5237.
Bogdani M, Lefebvre V, Buelens N et al. Formation of insulin-positive cells in implants of human pancreatic duct cell preparations from young donors. Diabetologia 2003; 46: 830-838.
Raman VS, Mason KJ, Rodriguez LM et al. The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care 2010; 33: 1294-1296.
Basta G, Racanicchi L, Mancuso F et al. Transdifferentiation molecular pathways of neonatal pig pancreatic duct cells into endocrine cell phenotypes. Transplant Proc 2004; 36: 2857-2863.
Higuchi Y, Herrera P, Muniesa P et al. Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes. J Exp Med 1992; 176: 1719-1731.
Bonner-Weir S, Taneja M, Weir GC et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000; 97: 7999-8004.
Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002; 129: 2447-2457.
Perl S, Kushner JA, Buchholz BA et al. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 2010; 95: E234-239.
Desai BM, Oliver-Krasinski J, De Leon DD et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest 2007; 117: 971-977.
Minami K, Okuno M, Miyawaki K et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 2005; 102: 15116-15121.
Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008; 455: 627-632.
Collombat P, Xu X, Ravassard P et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009; 138: 449-462.
Paris M, Tourrel-Cuzin C, Plachot C, Ktorza A. Review: pancreatic beta-cell neogenesis revisited. Exp Diabesity Res 2004; 5: 111-121.
Georgia S, Bhushan A. Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest 2004; 114: 963-968.
Dupre J, Behme MT, McDonald TJ. Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J Clin Endocrinol Metab 2004; 89: 3469-3473.
Parsons JA, Brelje TC, Sorenson RL. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 1992; 130: 1459-1466.
Peshavaria M, Larmie BL, Lausier J et al. Regulation of pancreatic beta-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse. Diabetes 2006; 55: 3289-3298.
You YH, Ham DS, Park HS, Rhee M, Kim JW, Yoon KH. Adenoviruses expressing PDX-1, BETA2/NeuroD and MafA induces the transdifferentiation of porcine neonatal pancreas cell clusters and adult pig pancreatic cells into beta-cells. Diabetes Metab J 2011; 35: 119-129.
Thorel F, Nepote V, Avril I et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464: 1149-1154.
van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91: 79-118.
Bulotta A, Hui H, Anastasi E et al. Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1. J Mol Endocrinol 2002; 29: 347-360.
Friedrichsen BN, Neubauer N, Lee YC et al. Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol 2006; 188: 481-492.
Oh YS, Shin S, Lee YJ, Kim EH, Jun HS. Betacellulin-induced beta cell proliferation and regeneration is mediated by activation of ErbB-1 and ErbB-2 receptors. PLoS One 2011; 6: e23894.
Tian L, Gao J, Hao J et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 2010; 151: 3049-3060.
Anastasi E, Ponte E, Gradini R et al. Expression of Reg and cytokeratin 20 during ductal cell differentiation and proliferation in a mouse model of autoimmune diabetes. Eur J Endocrinol 1999; 141: 644-652.
Solar M, Cardalda C, Houbracken I et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 2009; 17: 849-860.
Sherry NA, Kushner JA, Glandt M, Kitamura T, Brillantes AM, Herold KC. Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 2006; 55: 3238-3245.
Levitt HE, Cyphert TJ, Pascoe JL et al. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice. Diabetologia 2011; 54: 572-582.
Gu D, Arnush M, Sawyer SP, Sarvetnick N. Transgenic mice expressing IFN-gamma in pancreatic beta-cells are resistant to streptozotocin-induced diabetes. Am J Physiol 1995; 269: E1089-1094.
Alonso LC, Yokoe T, Zhang P et al. Glucose infusion in mice: a new model to induce beta-cell replication. Diabetes 2007; 56: 1792-1801.
Rolin B, Larsen MO, Gotfredsen CF et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol Endocrinol Metab 2002; 283: E745-752.
Chung CH, Levine F. Adult pancreatic alpha-cells: a new source of cells for beta-cell regeneration. Rev Diabet Stud 2010; 7: 124-131.
Heit JJ, Karnik SK, Kim SK. Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol 2006; 22: 311-338.
Noguchi H, Kaneto H, Weir GC, Bonner-Weir S. PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes 2003; 52: 1732-1737.
Aly H, Gottlieb P. The honeymoon phase: intersection of metabolism and immunology. Curr Opin Endocrinol Diabetes Obes 2009; 16: 286-292.
Gosmain Y, Marthinet E, Cheyssac C et al. Pax6 controls the expression of critical genes involved in pancreatic α cell differentiation and function. J Biol Chem 2010; 285: 33381-33393.
Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 1997; 29: 301-307.
Kritzik MR, Jones E, Chen Z et al. PDX-1 and Msx-2 expression in the regenerating and developing pancreas. J Endocrinol 1999; 163: 523-530.
Tanaka S, Kobayashi T, Nakanishi K et al. Evidence of primary beta-cell destruction by T-cells and beta-cell differentiation from pancreatic ductal cells in diabetes associated with active autoimmune chronic pancreatitis. Diabetes Care 2001; 24: 1661-1667.
Lipsett M, Finegood DT. Beta-cell neogenesis during prolonged hyperglycemia in rats. Diabetes 2002; 51: 1834-1841.
Uzan B, Figeac F, Portha B, Movassat J. Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation. PLoS One 2009; 4: e4734.
Rankin MM, Wilbur CJ, Rak K, Shields EJ, Granger A, Kushner JA. Beta-cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes 2013; 62: 1634-1645.
Koya V, Lu S, Sun YP et al. Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1: a novel protein transduction domain-based therapy. Diabetes 2008; 57: 757-769.
Ogawa N, List JF, Habener JF, Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 2004; 53: 1700-1705.
Sherry NA, Chen W, Kushner JA et al. Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of beta-cells. Endocrinology 2007; 148: 5136-5144.
Topp BG, McArthur MD, Finegood DT. Metabolic adaptations to chronic glucose infusion in rats. Diabetologia 2004; 47: 1602-1610.
Varanasi A, Bellini N, Rawal D et al. Liraglutide as additional treatment for type 1 diabet
2007; 148
2004; 444
2002; 51
2010; 17
2013; 62
2010; 464
1999; 48
2008; 36
2009; 111
2004; 5
2011; 54
1999; 163
2011; 13
2003; 52
2009; 53
2006; 22
2007; 292
2005; 102
2010; 28
2004; 36
2000; 97
2003; 46
2010; 151
2011; 25
1996; 137
2009; 16
2010; 7
2011; 165
2009; 17
2010; 33
2006; 55
2005; 90
2004; 47
2004; 89
2008; 17
1997; 29
2013; 100
2008; 57
1999; 141
2010; 285
2011; 35
2005; 48
2008; 51
2001; 24
2011; 6
2007; 56
2007; 13
1996; 97
2009; 138
2004; 429
2002; 28
2004; 53
2004; 114
2002; 29
2009; 32
2007; 117
1992; 130
2011; 91
1992; 176
2002; 283
2006; 49
1995; 44
2002; 129
1995; 269
2008; 455
2009; 4
2012; 7
2008; 132
2012; 4
2010; 95
2006; 188
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Mashima H (e_1_2_8_72_1) 1996; 137
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
Gu D (e_1_2_8_30_1) 1995; 269
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – reference: Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48: 2270-2276.
– reference: Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 2007; 117: 2553-2561.
– reference: Kwon DY, Kim YS, Ahn IS et al. Exendin-4 potentiates insulinotropic action partly via increasing beta-cell proliferation and neogenesis and decreasing apoptosis in association with the attenuation of endoplasmic reticulum stress in islets of diabetic rats. J Pharmacol Sci 2009; 111: 361-371.
– reference: Mashima H, Ohnishi H, Wakabayashi K et al. Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J Clin Invest 1996; 97: 1647-1654.
– reference: Ogawa N, List JF, Habener JF, Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 2004; 53: 1700-1705.
– reference: Georgia S, Bhushan A. Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest 2004; 114: 963-968.
– reference: Anastasi E, Ponte E, Gradini R et al. Expression of Reg and cytokeratin 20 during ductal cell differentiation and proliferation in a mouse model of autoimmune diabetes. Eur J Endocrinol 1999; 141: 644-652.
– reference: Liu T, Wang CY, Yu F et al. In vitro pancreas duodenal homeobox-1 enhances the differentiation of pancreatic ductal epithelial cells into insulin-producing cells. World J Gastroenterol 2007; 13: 5232-5237.
– reference: Thorel F, Nepote V, Avril I et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464: 1149-1154.
– reference: Koya V, Lu S, Sun YP et al. Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1: a novel protein transduction domain-based therapy. Diabetes 2008; 57: 757-769.
– reference: Tanaka S, Kobayashi T, Nakanishi K et al. Evidence of primary beta-cell destruction by T-cells and beta-cell differentiation from pancreatic ductal cells in diabetes associated with active autoimmune chronic pancreatitis. Diabetes Care 2001; 24: 1661-1667.
– reference: Collombat P, Xu X, Ravassard P et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009; 138: 449-462.
– reference: Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004; 429: 41-46.
– reference: Bonner-Weir S, Inada A, Yatoh S et al. Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochem Soc Trans 2008; 36: 353-356.
– reference: Bulotta A, Hui H, Anastasi E et al. Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1. J Mol Endocrinol 2002; 29: 347-360.
– reference: Friedrichsen BN, Neubauer N, Lee YC et al. Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol 2006; 188: 481-492.
– reference: Rother KI, Spain LM, Wesley RA et al. Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes. Diabetes Care 2009; 32: 2251-2257.
– reference: You YH, Ham DS, Park HS, Rhee M, Kim JW, Yoon KH. Adenoviruses expressing PDX-1, BETA2/NeuroD and MafA induces the transdifferentiation of porcine neonatal pancreas cell clusters and adult pig pancreatic cells into beta-cells. Diabetes Metab J 2011; 35: 119-129.
– reference: Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008; 455: 627-632.
– reference: Aly H, Gottlieb P. The honeymoon phase: intersection of metabolism and immunology. Curr Opin Endocrinol Diabetes Obes 2009; 16: 286-292.
– reference: Gahr S, Merger M, Bollheimer LC, Hammerschmied CG, Scholmerich J, Hugl SR. Hepatocyte growth factor stimulates proliferation of pancreatic beta-cells particularly in the presence of subphysiological glucose concentrations. J Mol Endocrinol 2002; 28: 99-110.
– reference: Bogdani M, Lefebvre V, Buelens N et al. Formation of insulin-positive cells in implants of human pancreatic duct cell preparations from young donors. Diabetologia 2003; 46: 830-838.
– reference: Fomina-Yadlin D, Kubicek S, Vetere A, He KH, Schreiber SL, Wagner BK. GW8510 increases insulin expression in pancreatic alpha cells through activation of p53 transcriptional activity. PLoS One 2012; 7: e28808.
– reference: Chung CH, Levine F. Adult pancreatic alpha-cells: a new source of cells for beta-cell regeneration. Rev Diabet Stud 2010; 7: 124-131.
– reference: Dupre J, Behme MT, McDonald TJ. Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J Clin Endocrinol Metab 2004; 89: 3469-3473.
– reference: Chung CH, Hao E, Piran R, Keinan E, Levine F. Pancreatic beta-cell neogenesis by direct conversion from mature alpha-cells. Stem Cells 2010; 28: 1630-1638.
– reference: Wang M, Racine JJ, Song X et al. Mixed chimerism and growth factors augment beta cell regeneration and reverse late-stage type 1 diabetes. Sci Transl Med 2012; 4: 133ra59.
– reference: Higuchi Y, Herrera P, Muniesa P et al. Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes. J Exp Med 1992; 176: 1719-1731.
– reference: Heit JJ, Karnik SK, Kim SK. Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol 2006; 22: 311-338.
– reference: Basta G, Racanicchi L, Mancuso F et al. Transdifferentiation molecular pathways of neonatal pig pancreatic duct cells into endocrine cell phenotypes. Transplant Proc 2004; 36: 2857-2863.
– reference: Lipsett M, Finegood DT. Beta-cell neogenesis during prolonged hyperglycemia in rats. Diabetes 2002; 51: 1834-1841.
– reference: Raman VS, Mason KJ, Rodriguez LM et al. The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care 2010; 33: 1294-1296.
– reference: Gosmain Y, Marthinet E, Cheyssac C et al. Pax6 controls the expression of critical genes involved in pancreatic α cell differentiation and function. J Biol Chem 2010; 285: 33381-33393.
– reference: Xu X, D'Hoker J, Stange G et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132: 197-207.
– reference: Meier JJ, Lin JC, Butler AE, Galasso R, Martinez DS, Butler PC. Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia 2006; 49: 1838-1844.
– reference: Perl S, Kushner JA, Buchholz BA et al. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 2010; 95: E234-239.
– reference: In't Veld P, Lievens D, De Grijse J et al. Screening for insulitis in adult autoantibody-positive organ donors. Diabetes 2007; 56: 2400-2404.
– reference: Chen S, Shimoda M, Wang MY et al. Regeneration of pancreatic islets in vivo by ultrasound-targeted gene therapy. Gene Ther 2010; 17: 1411-1420.
– reference: Suarez-Pinzon WL, Lakey JR, Brand SJ, Rabinovitch A. Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β-cells from pancreatic duct cells and an increase in functional β-cell mass. J Clin Endocrinol Metab 2005; 90: 3401-3409.
– reference: Rankin MM, Wilbur CJ, Rak K, Shields EJ, Granger A, Kushner JA. Beta-cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes 2013; 62: 1634-1645.
– reference: Tian L, Gao J, Hao J et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 2010; 151: 3049-3060.
– reference: Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 1997; 29: 301-307.
– reference: Hari Kumar KV, Shaikh A, Prusty P. Addition of exenatide or sitagliptin to insulin in new onset type 1 diabetes: a randomized, open label study. Diabetes Res Clin Pract 2013; 100: e55-58.
– reference: Bonner-Weir S, Taneja M, Weir GC et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000; 97: 7999-8004.
– reference: Kritzik MR, Jones E, Chen Z et al. PDX-1 and Msx-2 expression in the regenerating and developing pancreas. J Endocrinol 1999; 163: 523-530.
– reference: Cnop M, Hughes SJ, Igoillo-Esteve M et al. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 2009; 53: 321-330.
– reference: Meier JJ, Butler AE, Saisho Y et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 2008; 57: 1584-1594.
– reference: Suarez-Pinzon WL, Lakey JR, Rabinovitch A. Combination therapy with glucagon-like peptide-1 and gastrin induces beta-cell neogenesis from pancreatic duct cells in human islets transplanted in immunodeficient diabetic mice. Cell Transplant 2008; 17: 631-640.
– reference: Sherry NA, Kushner JA, Glandt M, Kitamura T, Brillantes AM, Herold KC. Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 2006; 55: 3238-3245.
– reference: Peshavaria M, Larmie BL, Lausier J et al. Regulation of pancreatic beta-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse. Diabetes 2006; 55: 3289-3298.
– reference: Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 2005; 48: 2221-2228.
– reference: Paris M, Tourrel-Cuzin C, Plachot C, Ktorza A. Review: pancreatic beta-cell neogenesis revisited. Exp Diabesity Res 2004; 5: 111-121.
– reference: Okuno M, Minami K, Okumachi A et al. Generation of insulin-secreting cells from pancreatic acinar cells of animal models of type 1 diabetes. Am J Physiol Endocrinol Metab 2007; 292: E158-165.
– reference: Desai BM, Oliver-Krasinski J, De Leon DD et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest 2007; 117: 971-977.
– reference: Sherry NA, Chen W, Kushner JA et al. Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of beta-cells. Endocrinology 2007; 148: 5136-5144.
– reference: Alonso LC, Yokoe T, Zhang P et al. Glucose infusion in mice: a new model to induce beta-cell replication. Diabetes 2007; 56: 1792-1801.
– reference: Rolin B, Larsen MO, Gotfredsen CF et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol Endocrinol Metab 2002; 283: E745-752.
– reference: van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91: 79-118.
– reference: Martin-Pagola A, Sisino G, Allende G et al. Insulin protein and proliferation in ductal cells in the transplanted pancreas of patients with type 1 diabetes and recurrence of autoimmunity. Diabetologia 2008; 51: 1803-1813.
– reference: Minami K, Okuno M, Miyawaki K et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 2005; 102: 15116-15121.
– reference: Topp BG, McArthur MD, Finegood DT. Metabolic adaptations to chronic glucose infusion in rats. Diabetologia 2004; 47: 1602-1610.
– reference: Noguchi H, Kaneto H, Weir GC, Bonner-Weir S. PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes 2003; 52: 1732-1737.
– reference: Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995; 44: 249-256.
– reference: Oh YS, Shin S, Lee YJ, Kim EH, Jun HS. Betacellulin-induced beta cell proliferation and regeneration is mediated by activation of ErbB-1 and ErbB-2 receptors. PLoS One 2011; 6: e23894.
– reference: Varanasi A, Bellini N, Rawal D et al. Liraglutide as additional treatment for type 1 diabetes. Eur J Endocrinol 2011; 165: 77-84.
– reference: Uzan B, Figeac F, Portha B, Movassat J. Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation. PLoS One 2009; 4: e4734.
– reference: Solar M, Cardalda C, Houbracken I et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 2009; 17: 849-860.
– reference: Mashima H, Shibata H, Mine T, Kojima I. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology 1996; 137: 3969-3976.
– reference: Cnop M, Igoillo-Esteve M, Hughes SJ, Walker JN, Cnop I, Clark A. Longevity of human islet alpha- and beta-cells. Diabetes Obes Metab 2011; 13(Suppl. 1): 39-46.
– reference: Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002; 129: 2447-2457.
– reference: Lardon J, Huyens N, Rooman I, Bouwens L. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch 2004; 444: 61-65.
– reference: Parsons JA, Brelje TC, Sorenson RL. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 1992; 130: 1459-1466.
– reference: Gu D, Arnush M, Sawyer SP, Sarvetnick N. Transgenic mice expressing IFN-gamma in pancreatic beta-cells are resistant to streptozotocin-induced diabetes. Am J Physiol 1995; 269: E1089-1094.
– reference: Yang YP, Thorel F, Boyer DF, Herrera PL, Wright CV. Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression. Genes Dev 2011; 25: 1680-1685.
– reference: Levitt HE, Cyphert TJ, Pascoe JL et al. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice. Diabetologia 2011; 54: 572-582.
– volume: 54
  start-page: 572
  year: 2011
  end-page: 582
  article-title: Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD‐severe combined immunodeficiency (SCID) mice
  publication-title: Diabetologia
– volume: 28
  start-page: 1630
  year: 2010
  end-page: 1638
  article-title: Pancreatic beta‐cell neogenesis by direct conversion from mature alpha‐cells
  publication-title: Stem Cells
– volume: 100
  start-page: e55
  year: 2013
  end-page: 58
  article-title: Addition of exenatide or sitagliptin to insulin in new onset type 1 diabetes: a randomized, open label study
  publication-title: Diabetes Res Clin Pract
– volume: 17
  start-page: 631
  year: 2008
  end-page: 640
  article-title: Combination therapy with glucagon‐like peptide‐1 and gastrin induces beta‐cell neogenesis from pancreatic duct cells in human islets transplanted in immunodeficient diabetic mice
  publication-title: Cell Transplant
– volume: 5
  start-page: 111
  year: 2004
  end-page: 121
  article-title: Review: pancreatic beta‐cell neogenesis revisited
  publication-title: Exp Diabesity Res
– volume: 29
  start-page: 347
  year: 2002
  end-page: 360
  article-title: Cultured pancreatic ductal cells undergo cell cycle re‐distribution and beta‐cell‐like differentiation in response to glucagon‐like peptide‐1
  publication-title: J Mol Endocrinol
– volume: 4
  start-page: 133ra59
  year: 2012
  article-title: Mixed chimerism and growth factors augment beta cell regeneration and reverse late‐stage type 1 diabetes
  publication-title: Sci Transl Med
– volume: 464
  start-page: 1149
  year: 2010
  end-page: 1154
  article-title: Conversion of adult pancreatic alpha‐cells to beta‐cells after extreme beta‐cell loss
  publication-title: Nature
– volume: 35
  start-page: 119
  year: 2011
  end-page: 129
  article-title: Adenoviruses expressing PDX‐1, BETA2/NeuroD and MafA induces the transdifferentiation of porcine neonatal pancreas cell clusters and adult pig pancreatic cells into beta‐cells
  publication-title: Diabetes Metab J
– volume: 55
  start-page: 3238
  year: 2006
  end-page: 3245
  article-title: Effects of autoimmunity and immune therapy on beta‐cell turnover in type 1 diabetes
  publication-title: Diabetes
– volume: 455
  start-page: 627
  year: 2008
  end-page: 632
  article-title: In vivo reprogramming of adult pancreatic exocrine cells to beta‐cells
  publication-title: Nature
– volume: 29
  start-page: 301
  year: 1997
  end-page: 307
  article-title: Adaptation of islets of Langerhans to pregnancy: beta‐cell growth, enhanced insulin secretion and the role of lactogenic hormones
  publication-title: Horm Metab Res
– volume: 163
  start-page: 523
  year: 1999
  end-page: 530
  article-title: PDX‐1 and Msx‐2 expression in the regenerating and developing pancreas
  publication-title: J Endocrinol
– volume: 7
  start-page: 124
  year: 2010
  end-page: 131
  article-title: Adult pancreatic alpha‐cells: a new source of cells for beta‐cell regeneration
  publication-title: Rev Diabet Stud
– volume: 97
  start-page: 1647
  year: 1996
  end-page: 1654
  article-title: Betacellulin and activin A coordinately convert amylase‐secreting pancreatic AR42J cells into insulin‐secreting cells
  publication-title: J Clin Invest
– volume: 283
  start-page: E745
  year: 2002
  end-page: 752
  article-title: The long‐acting GLP‐1 derivative NN2211 ameliorates glycemia and increases beta‐cell mass in diabetic mice
  publication-title: Am J Physiol Endocrinol Metab
– volume: 89
  start-page: 3469
  year: 2004
  end-page: 3473
  article-title: Exendin‐4 normalized postcibal glycemic excursions in type 1 diabetes
  publication-title: J Clin Endocrinol Metab
– volume: 165
  start-page: 77
  year: 2011
  end-page: 84
  article-title: Liraglutide as additional treatment for type 1 diabetes
  publication-title: Eur J Endocrinol
– volume: 53
  start-page: 1700
  year: 2004
  end-page: 1705
  article-title: Cure of overt diabetes in NOD mice by transient treatment with anti‐lymphocyte serum and exendin‐4
  publication-title: Diabetes
– volume: 6
  start-page: e23894
  year: 2011
  article-title: Betacellulin‐induced beta cell proliferation and regeneration is mediated by activation of ErbB‐1 and ErbB‐2 receptors
  publication-title: PLoS One
– volume: 24
  start-page: 1661
  year: 2001
  end-page: 1667
  article-title: Evidence of primary beta‐cell destruction by T‐cells and beta‐cell differentiation from pancreatic ductal cells in diabetes associated with active autoimmune chronic pancreatitis
  publication-title: Diabetes Care
– volume: 91
  start-page: 79
  year: 2011
  end-page: 118
  article-title: Type 1 diabetes: etiology, immunology, and therapeutic strategies
  publication-title: Physiol Rev
– volume: 33
  start-page: 1294
  year: 2010
  end-page: 1296
  article-title: The role of adjunctive exenatide therapy in pediatric type 1 diabetes
  publication-title: Diabetes Care
– volume: 117
  start-page: 2553
  year: 2007
  end-page: 2561
  article-title: Recovery from diabetes in mice by beta cell regeneration
  publication-title: J Clin Invest
– volume: 32
  start-page: 2251
  year: 2009
  end-page: 2257
  article-title: Effects of exenatide alone and in combination with daclizumab on beta‐cell function in long‐standing type 1 diabetes
  publication-title: Diabetes Care
– volume: 90
  start-page: 3401
  year: 2005
  end-page: 3409
  article-title: Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β‐cells from pancreatic duct cells and an increase in functional β‐cell mass
  publication-title: J Clin Endocrinol Metab
– volume: 285
  start-page: 33381
  year: 2010
  end-page: 33393
  article-title: Pax6 controls the expression of critical genes involved in pancreatic α cell differentiation and function
  publication-title: J Biol Chem
– volume: 102
  start-page: 15116
  year: 2005
  end-page: 15121
  article-title: Lineage tracing and characterization of insulin‐secreting cells generated from adult pancreatic acinar cells
  publication-title: Proc Natl Acad Sci USA
– volume: 48
  start-page: 2221
  year: 2005
  end-page: 2228
  article-title: Sustained beta cell apoptosis in patients with long‐standing type 1 diabetes: indirect evidence for islet regeneration?
  publication-title: Diabetologia
– volume: 17
  start-page: 849
  year: 2009
  end-page: 860
  article-title: Pancreatic exocrine duct cells give rise to insulin‐producing beta cells during embryogenesis but not after birth
  publication-title: Dev Cell
– volume: 53
  start-page: 321
  year: 2009
  end-page: 330
  article-title: The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation
  publication-title: Diabetologia
– volume: 56
  start-page: 1792
  year: 2007
  end-page: 1801
  article-title: Glucose infusion in mice: a new model to induce beta‐cell replication
  publication-title: Diabetes
– volume: 429
  start-page: 41
  year: 2004
  end-page: 46
  article-title: Adult pancreatic beta‐cells are formed by self‐duplication rather than stem‐cell differentiation
  publication-title: Nature
– volume: 28
  start-page: 99
  year: 2002
  end-page: 110
  article-title: Hepatocyte growth factor stimulates proliferation of pancreatic beta‐cells particularly in the presence of subphysiological glucose concentrations
  publication-title: J Mol Endocrinol
– volume: 44
  start-page: 249
  year: 1995
  end-page: 256
  article-title: Dynamics of beta‐cell mass in the growing rat pancreas. Estimation with a simple mathematical model
  publication-title: Diabetes
– volume: 22
  start-page: 311
  year: 2006
  end-page: 338
  article-title: Intrinsic regulators of pancreatic beta‐cell proliferation
  publication-title: Annu Rev Cell Dev Biol
– volume: 97
  start-page: 7999
  year: 2000
  end-page: 8004
  article-title: In vitro cultivation of human islets from expanded ductal tissue
  publication-title: Proc Natl Acad Sci USA
– volume: 148
  start-page: 5136
  year: 2007
  end-page: 5144
  article-title: Exendin‐4 improves reversal of diabetes in NOD mice treated with anti‐CD3 monoclonal antibody by enhancing recovery of beta‐cells
  publication-title: Endocrinology
– volume: 269
  start-page: E1089
  year: 1995
  end-page: 1094
  article-title: Transgenic mice expressing IFN‐gamma in pancreatic beta‐cells are resistant to streptozotocin‐induced diabetes
  publication-title: Am J Physiol
– volume: 49
  start-page: 1838
  year: 2006
  end-page: 1844
  article-title: Direct evidence of attempted beta cell regeneration in an 89‐year‐old patient with recent‐onset type 1 diabetes
  publication-title: Diabetologia
– volume: 57
  start-page: 757
  year: 2008
  end-page: 769
  article-title: Reversal of streptozotocin‐induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox‐1: a novel protein transduction domain‐based therapy
  publication-title: Diabetes
– volume: 176
  start-page: 1719
  year: 1992
  end-page: 1731
  article-title: Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes
  publication-title: J Exp Med
– volume: 25
  start-page: 1680
  year: 2011
  end-page: 1685
  article-title: Context‐specific alpha‐ to‐beta‐cell reprogramming by forced Pdx1 expression
  publication-title: Genes Dev
– volume: 138
  start-page: 449
  year: 2009
  end-page: 462
  article-title: The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells
  publication-title: Cell
– volume: 117
  start-page: 971
  year: 2007
  end-page: 977
  article-title: Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration
  publication-title: J Clin Invest
– volume: 56
  start-page: 2400
  year: 2007
  end-page: 2404
  article-title: Screening for insulitis in adult autoantibody‐positive organ donors
  publication-title: Diabetes
– volume: 57
  start-page: 1584
  year: 2008
  end-page: 1594
  article-title: Beta‐cell replication is the primary mechanism subserving the postnatal expansion of beta‐cell mass in humans
  publication-title: Diabetes
– volume: 7
  start-page: e28808
  year: 2012
  article-title: GW8510 increases insulin expression in pancreatic alpha cells through activation of p53 transcriptional activity
  publication-title: PLoS One
– volume: 13
  start-page: 39
  issue: Suppl. 1
  year: 2011
  end-page: 46
  article-title: Longevity of human islet alpha‐ and beta‐cells
  publication-title: Diabetes Obes Metab
– volume: 36
  start-page: 2857
  year: 2004
  end-page: 2863
  article-title: Transdifferentiation molecular pathways of neonatal pig pancreatic duct cells into endocrine cell phenotypes
  publication-title: Transplant Proc
– volume: 95
  start-page: E234
  year: 2010
  end-page: 239
  article-title: Significant human beta‐cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating
  publication-title: J Clin Endocrinol Metab
– volume: 130
  start-page: 1459
  year: 1992
  end-page: 1466
  article-title: Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion
  publication-title: Endocrinology
– volume: 114
  start-page: 963
  year: 2004
  end-page: 968
  article-title: Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass
  publication-title: J Clin Invest
– volume: 151
  start-page: 3049
  year: 2010
  end-page: 3060
  article-title: Reversal of new‐onset diabetes through modulating inflammation and stimulating beta‐cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor
  publication-title: Endocrinology
– volume: 292
  start-page: E158
  year: 2007
  end-page: 165
  article-title: Generation of insulin‐secreting cells from pancreatic acinar cells of animal models of type 1 diabetes
  publication-title: Am J Physiol Endocrinol Metab
– volume: 188
  start-page: 481
  year: 2006
  end-page: 492
  article-title: Stimulation of pancreatic beta‐cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways
  publication-title: J Endocrinol
– volume: 46
  start-page: 830
  year: 2003
  end-page: 838
  article-title: Formation of insulin‐positive cells in implants of human pancreatic duct cell preparations from young donors
  publication-title: Diabetologia
– volume: 36
  start-page: 353
  year: 2008
  end-page: 356
  article-title: Transdifferentiation of pancreatic ductal cells to endocrine beta‐cells
  publication-title: Biochem Soc Trans
– volume: 48
  start-page: 2270
  year: 1999
  end-page: 2276
  article-title: Exendin‐4 stimulates both beta‐cell replication and neogenesis, resulting in increased beta‐cell mass and improved glucose tolerance in diabetic rats
  publication-title: Diabetes
– volume: 137
  start-page: 3969
  year: 1996
  end-page: 3976
  article-title: Formation of insulin‐producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor
  publication-title: Endocrinology
– volume: 129
  start-page: 2447
  year: 2002
  end-page: 2457
  article-title: Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors
  publication-title: Development
– volume: 444
  start-page: 61
  year: 2004
  end-page: 65
  article-title: Exocrine cell transdifferentiation in dexamethasone‐treated rat pancreas
  publication-title: Virchows Arch
– volume: 141
  start-page: 644
  year: 1999
  end-page: 652
  article-title: Expression of Reg and cytokeratin 20 during ductal cell differentiation and proliferation in a mouse model of autoimmune diabetes
  publication-title: Eur J Endocrinol
– volume: 111
  start-page: 361
  year: 2009
  end-page: 371
  article-title: Exendin‐4 potentiates insulinotropic action partly via increasing beta‐cell proliferation and neogenesis and decreasing apoptosis in association with the attenuation of endoplasmic reticulum stress in islets of diabetic rats
  publication-title: J Pharmacol Sci
– volume: 13
  start-page: 5232
  year: 2007
  end-page: 5237
  article-title: In vitro pancreas duodenal homeobox‐1 enhances the differentiation of pancreatic ductal epithelial cells into insulin‐producing cells
  publication-title: World J Gastroenterol
– volume: 51
  start-page: 1803
  year: 2008
  end-page: 1813
  article-title: Insulin protein and proliferation in ductal cells in the transplanted pancreas of patients with type 1 diabetes and recurrence of autoimmunity
  publication-title: Diabetologia
– volume: 17
  start-page: 1411
  year: 2010
  end-page: 1420
  article-title: Regeneration of pancreatic islets in vivo by ultrasound‐targeted gene therapy
  publication-title: Gene Ther
– volume: 16
  start-page: 286
  year: 2009
  end-page: 292
  article-title: The honeymoon phase: intersection of metabolism and immunology
  publication-title: Curr Opin Endocrinol Diabetes Obes
– volume: 4
  start-page: e4734
  year: 2009
  article-title: Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation
  publication-title: PLoS One
– volume: 51
  start-page: 1834
  year: 2002
  end-page: 1841
  article-title: Beta‐cell neogenesis during prolonged hyperglycemia in rats
  publication-title: Diabetes
– volume: 132
  start-page: 197
  year: 2008
  end-page: 207
  article-title: Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas
  publication-title: Cell
– volume: 62
  start-page: 1634
  year: 2013
  end-page: 1645
  article-title: Beta‐cells are not generated in pancreatic duct ligation‐induced injury in adult mice
  publication-title: Diabetes
– volume: 55
  start-page: 3289
  year: 2006
  end-page: 3298
  article-title: Regulation of pancreatic beta‐cell regeneration in the normoglycemic 60% partial‐pancreatectomy mouse
  publication-title: Diabetes
– volume: 47
  start-page: 1602
  year: 2004
  end-page: 1610
  article-title: Metabolic adaptations to chronic glucose infusion in rats
  publication-title: Diabetologia
– volume: 52
  start-page: 1732
  year: 2003
  end-page: 1737
  article-title: PDX‐1 protein containing its own antennapedia‐like protein transduction domain can transduce pancreatic duct and islet cells
  publication-title: Diabetes
– ident: e_1_2_8_58_1
  doi: 10.1210/en.2010-0068
– ident: e_1_2_8_65_1
  doi: 10.1530/EJE-11-0330
– ident: e_1_2_8_69_1
  doi: 10.1371/journal.pone.0023894
– ident: e_1_2_8_14_1
  doi: 10.2337/db06-0017
– ident: e_1_2_8_40_1
  doi: 10.1073/pnas.0507567102
– ident: e_1_2_8_15_1
  doi: 10.1146/annurev.cellbio.22.010305.104425
– ident: e_1_2_8_47_1
  doi: 10.1371/journal.pone.0028808
– ident: e_1_2_8_61_1
  doi: 10.1210/jc.2003-032001
– ident: e_1_2_8_35_1
  doi: 10.1016/j.devcel.2009.11.003
– ident: e_1_2_8_46_1
  doi: 10.1074/jbc.M110.147215
– ident: e_1_2_8_36_1
  doi: 10.2337/diacare.24.9.1661
– ident: e_1_2_8_31_1
  doi: 10.1677/joe.0.1630523
– ident: e_1_2_8_7_1
  doi: 10.1038/nature02520
– ident: e_1_2_8_17_1
  doi: 10.1172/JCI22098
– ident: e_1_2_8_67_1
  doi: 10.1210/jc.2004-0761
– ident: e_1_2_8_50_1
  doi: 10.1002/stem.482
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1463-1326.2011.01443.x
– ident: e_1_2_8_19_1
  doi: 10.1210/en.130.3.1459
– ident: e_1_2_8_34_1
  doi: 10.1042/BST0360353
– ident: e_1_2_8_62_1
  doi: 10.2337/dc09-1959
– volume: 137
  start-page: 3969
  year: 1996
  ident: e_1_2_8_72_1
  article-title: Formation of insulin‐producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor
  publication-title: Endocrinology
  doi: 10.1210/endo.137.9.8756573
– ident: e_1_2_8_41_1
  doi: 10.1007/s00428-003-0930-z
– ident: e_1_2_8_22_1
  doi: 10.1097/MED.0b013e32832e0693
– ident: e_1_2_8_27_1
  doi: 10.3748/wjg.v13.i39.5232
– ident: e_1_2_8_51_1
  doi: 10.1900/RDS.2010.7.124
– ident: e_1_2_8_75_1
  doi: 10.2337/db07-1441
– ident: e_1_2_8_52_1
  doi: 10.1677/joe.1.06160
– ident: e_1_2_8_3_1
  doi: 10.2337/db05-1034
– ident: e_1_2_8_45_1
  doi: 10.1038/nature07314
– ident: e_1_2_8_55_1
  doi: 10.2337/diabetes.53.7.1700
– ident: e_1_2_8_2_1
  doi: 10.1152/physrev.00003.2010
– ident: e_1_2_8_38_1
  doi: 10.1007/s00125-003-1118-4
– ident: e_1_2_8_70_1
  doi: 10.1172/JCI118591
– ident: e_1_2_8_25_1
  doi: 10.1016/j.transproceed.2004.10.026
– ident: e_1_2_8_64_1
  doi: 10.1016/j.diabres.2013.01.020
– ident: e_1_2_8_16_1
  doi: 10.2337/db06-1513
– ident: e_1_2_8_37_1
  doi: 10.1007/s00125-008-1105-x
– ident: e_1_2_8_8_1
  doi: 10.2337/db07-1369
– ident: e_1_2_8_28_1
  doi: 10.1530/eje.0.1410644
– ident: e_1_2_8_13_1
  doi: 10.1055/s-2007-979040
– ident: e_1_2_8_33_1
  doi: 10.1242/dev.129.10.2447
– ident: e_1_2_8_24_1
  doi: 10.1038/nature08894
– ident: e_1_2_8_42_1
  doi: 10.1007/s00125-004-1493-5
– ident: e_1_2_8_68_1
  doi: 10.1126/scitranslmed.3003835
– ident: e_1_2_8_32_1
  doi: 10.2337/db12-0848
– ident: e_1_2_8_74_1
  doi: 10.2337/diabetes.52.7.1732
– ident: e_1_2_8_54_1
  doi: 10.1677/jme.0.0290347
– ident: e_1_2_8_39_1
  doi: 10.1152/ajpendo.00180.2006
– ident: e_1_2_8_59_1
  doi: 10.1152/ajpendo.00030.2002
– ident: e_1_2_8_53_1
  doi: 10.1254/jphs.09178FP
– ident: e_1_2_8_48_1
  doi: 10.1016/j.cell.2009.05.035
– ident: e_1_2_8_11_1
  doi: 10.1007/s00125-009-1562-x
– ident: e_1_2_8_56_1
  doi: 10.1210/en.2007-0358
– ident: e_1_2_8_43_1
  doi: 10.2337/diabetes.51.6.1834
– ident: e_1_2_8_21_1
  doi: 10.1007/s00125-006-0308-2
– ident: e_1_2_8_66_1
  doi: 10.1371/journal.pone.0004734
– ident: e_1_2_8_5_1
  doi: 10.1007/s00125-005-1949-2
– ident: e_1_2_8_71_1
  doi: 10.1677/jme.0.0280099
– ident: e_1_2_8_57_1
  doi: 10.2337/diabetes.48.12.2270
– ident: e_1_2_8_18_1
  doi: 10.1007/s00125-010-1919-1
– ident: e_1_2_8_20_1
  doi: 10.2337/db07-0416
– volume: 269
  start-page: E1089
  year: 1995
  ident: e_1_2_8_30_1
  article-title: Transgenic mice expressing IFN‐gamma in pancreatic beta‐cells are resistant to streptozotocin‐induced diabetes
  publication-title: Am J Physiol
– ident: e_1_2_8_29_1
  doi: 10.1084/jem.176.6.1719
– ident: e_1_2_8_12_1
  doi: 10.1210/jc.2010-0932
– ident: e_1_2_8_49_1
  doi: 10.1101/gad.16875711
– ident: e_1_2_8_76_1
  doi: 10.1038/gt.2010.85
– ident: e_1_2_8_6_1
  doi: 10.1080/15438600490455079
– ident: e_1_2_8_26_1
  doi: 10.1002/hep.20063
– ident: e_1_2_8_44_1
  doi: 10.1172/JCI29988
– ident: e_1_2_8_60_1
  doi: 10.3727/096368908786092775
– ident: e_1_2_8_10_1
  doi: 10.2337/diab.44.3.249
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cell.2007.12.015
– ident: e_1_2_8_63_1
  doi: 10.2337/dc09-0773
– ident: e_1_2_8_4_1
  doi: 10.1172/JCI32959
– ident: e_1_2_8_73_1
  doi: 10.4093/dmj.2011.35.2.119
SSID ssj0004387
Score 2.1875424
SecondaryResourceType review_article
Snippet Pancreatic insulin‐producing β‐cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that...
Pancreatic insulin-producing β-cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 98
SubjectTerms Animals
Cell Differentiation
Cell Proliferation
Cell Transdifferentiation - physiology
Diabetes Mellitus, Type 1 - pathology
Diabetes Mellitus, Type 1 - physiopathology
Humans
Insulin-Secreting Cells - pathology
Insulin-Secreting Cells - physiology
Islets of Langerhans - pathology
Islets of Langerhans - physiology
regeneration
Regeneration - physiology
replication
reprogramming
type 1 diabetes
β-cells
Title β-Cell differentiation and regeneration in type 1 diabetes
URI https://api.istex.fr/ark:/67375/WNG-5GFX0FR9-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.12164
https://www.ncbi.nlm.nih.gov/pubmed/24003926
https://www.proquest.com/docview/1433517620
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF6Kgjet__WPKCJeUpLsbtogHqTaFqEVisUehJDNbkRaU-kPiCcfwWfxQXwIn8SZTROtVBBvIWzCZmZn55vZyTeEHELUEwAK52YZVzBjjjQFl5FpRSyiluBcSsx3NJpuvc0uO7yTIyfpvzAJP0SWcEPL0Ps1Gngght-MXPYfkBrBRS5QrNVCQNT6oo5iVDfHg40ALN7DKp58WsWTPTnli-ZRrE-zgOY0btWOp7pEbtMpJ_Um3eJ4JIrh8w82x39-U54sTgCpcZasoGWSU_EKWWhMjtxXyen728fLa0X1ekbaTGWUqNMIYmkM1J0mrtY37mMDU7qGbaQp3TXSrl5cV-rmpOeCGVKXMtOxRViyGPOkzWUZqSfKCnw4LUUSoEpUAh2CT5fo17xIKjB_2DJCiWFTqBxP0XUyF_djtUkMSwRlTRDPBWWRB9CABw6nilFhU-WKAjlOpe-HE0Jy7IvR89PABMTha3EUyEE29DFh4Zg16EirMBsRDLpYtlbi_k2z5vNatWNVW55vF8h-qmMfjAlPSIJY9cdDiIMo5Tb4B6tANhLlZ2_DYlsAky5MW6vw94n451cNfbH196HbmDCweVK9tkPmRoOx2gW4MxJ7el1_AksV94k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6lidT2QgMUGlrAVBXi4sr27jqxBAeUkAbapFLUilyqlde7rqoGB4VEQpx4BJ6FB-EheJLOrGP3R0GquFnW2FrP7Pzu-BuAPcx6YozChduiHcx5oF0ldOp6KU-Zp4TQmuod_UHYO-WfRmJUgbfFvzA5PkRZcCPNsPaaFJwK0je0XE--EDZCyFegRhO9CTm_M7wGj-LMjsdDU4A6H1EfT73o4ykfveWNasTY78tCzduRq3U93Q04Kxadd5xc7s9naj_5cQfP8X-_qg4PFjGp8z7fRA-hYrJHsNpfnLo_hnd_fv_9-attxmOnmKcyyyXqxJl2pubcYlfbGxeZQ1Vdx3eKqu4mnHY_nLR77mLsgpuwkHE38FXS9DiPtC90i9AnWgbdOGumGqOVtIliRLeuybVFqTZoAdBqJJoyp8QEkWFPoJpNMrMFjqfilsWIF4rxNMLoQMSBYIYz5TMTqga8KdgvkwUmOY3GGMsiN0F2SMuOBuyWpF9zII5lRK-tDEuKeHpJnWtNIT8PDqQ46I687jCSfgNeFUKWqE90SBJnZjL_hqkQY8JHF-E14Gku_fJt1G-L8WSIy7Yy_PdCZOe4by-e3Z_0Jaz1TvpH8ujj4HAb1gM7d4Oa2XagOpvOzXOMfmbqhd3kV8ms-6U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEB_8A9IX_1Srp9WmItKXSJLdzV2QPohntK13iii9B2HJZjcinjk576D0yY_Qz9IP4ofwkzizucRaLBTfQtiEzczOzm9mJ78B2MCoJ0EULtwGrWDOA-0qoTPXy3jGPCWE1pTvaLXDgzP-tSM6Y7Bd_gtT8ENUCTeyDLtfk4Hf6OwPI9e9a6JGCPk4TPLQi6hvQ_PkiTuKM9sdD3cCNPmIynhmyzKe6tFnzmiS5PrjJaT5HLhazxPPwHk556Lg5GprOFBb6c-_6Bxf-VGzMD1CpM5OsYTmYMzkb2GqNTpzn4fP978f7n7tmm7XKbupDAp9Okmunb65sMzV9sZl7lBO1_GdMqe7AGfx3unugTtquuCmLGTcDXyV1j3OI-0L3SDuiYZBJ87qmUasktVRiejUNTm2KNMG7R_3jFRT3JSaIDLsHUzkvdwsgeOppGEZ4oViPIsQG4gkEMxwpnxmQlWDT6X0ZTpiJKfGGF1ZRiYoDmnFUYP1auhNQcPx0qBNq8JqRNK_orq1upDf2_tS7McdLz6JpF-Dj6WOJVoTHZEkuekNbzEQYkz46CC8GiwWyq_eRtW2iCZDnLZV4b8nIptHLXux_P9DP8DUcTOWh1_a31bgTWCbblAl23uYGPSHZhWhz0Ct2SX-CNgk-lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B2%E2%80%90Cell+differentiation+and+regeneration+in+type+1+diabetes&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Ding%2C+L.&rft.au=Gysemans%2C+C.&rft.au=Mathieu%2C+C.&rft.date=2013-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=15&rft.issue=s3&rft.spage=98&rft.epage=104&rft_id=info:doi/10.1111%2Fdom.12164&rft.externalDBID=10.1111%252Fdom.12164&rft.externalDocID=DOM12164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon