β-Cell differentiation and regeneration in type 1 diabetes
Pancreatic insulin‐producing β‐cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β‐cell mass is dynamically regulated with ongoing β‐cell regeneration throughout life to replenish lost or damaged β‐cell...
Saved in:
Published in | Diabetes, obesity & metabolism Vol. 15; no. s3; pp. 98 - 104 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pancreatic insulin‐producing β‐cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β‐cell mass is dynamically regulated with ongoing β‐cell regeneration throughout life to replenish lost or damaged β‐cells. In type 1 diabetes (T1D), this fine‐tuned balance between β‐cell death and β‐cell renewal in the endocrine pancreas is lost and the deficit in β‐cell mass is largely caused by autoimmune‐mediated apoptosis. Currently, the concept that a cure for T1D will require both re‐establishment of immunological tolerance along with replacement or regeneration of a functional β‐cell mass in T1D patients is generally accepted. In this study our current understanding of the events directing β‐cell replication, β‐cell reprogramming from different cell types and β‐cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β‐cells and at improving β‐cell mass and function in subjects with T1D. |
---|---|
AbstractList | Pancreatic insulin‐producing β‐cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β‐cell mass is dynamically regulated with ongoing β‐cell regeneration throughout life to replenish lost or damaged β‐cells. In type 1 diabetes (
T1D
), this fine‐tuned balance between β‐cell death and β‐cell renewal in the endocrine pancreas is lost and the deficit in β‐cell mass is largely caused by autoimmune‐mediated apoptosis. Currently, the concept that a cure for
T1D
will require both re‐establishment of immunological tolerance along with replacement or regeneration of a functional β‐cell mass in
T1D
patients is generally accepted. In this study our current understanding of the events directing β‐cell replication, β‐cell reprogramming from different cell types and β‐cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β‐cells and at improving β‐cell mass and function in subjects with
T1D
. Pancreatic insulin-producing β-cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β-cell mass is dynamically regulated with ongoing β-cell regeneration throughout life to replenish lost or damaged β-cells. In type 1 diabetes (T1D), this fine-tuned balance between β-cell death and β-cell renewal in the endocrine pancreas is lost and the deficit in β-cell mass is largely caused by autoimmune-mediated apoptosis. Currently, the concept that a cure for T1D will require both re-establishment of immunological tolerance along with replacement or regeneration of a functional β-cell mass in T1D patients is generally accepted. In this study our current understanding of the events directing β-cell replication, β-cell reprogramming from different cell types and β-cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β-cells and at improving β-cell mass and function in subjects with T1D. Pancreatic insulin-producing β-cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β-cell mass is dynamically regulated with ongoing β-cell regeneration throughout life to replenish lost or damaged β-cells. In type 1 diabetes (T1D), this fine-tuned balance between β-cell death and β-cell renewal in the endocrine pancreas is lost and the deficit in β-cell mass is largely caused by autoimmune-mediated apoptosis. Currently, the concept that a cure for T1D will require both re-establishment of immunological tolerance along with replacement or regeneration of a functional β-cell mass in T1D patients is generally accepted. In this study our current understanding of the events directing β-cell replication, β-cell reprogramming from different cell types and β-cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β-cells and at improving β-cell mass and function in subjects with T1D.Pancreatic insulin-producing β-cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β-cell mass is dynamically regulated with ongoing β-cell regeneration throughout life to replenish lost or damaged β-cells. In type 1 diabetes (T1D), this fine-tuned balance between β-cell death and β-cell renewal in the endocrine pancreas is lost and the deficit in β-cell mass is largely caused by autoimmune-mediated apoptosis. Currently, the concept that a cure for T1D will require both re-establishment of immunological tolerance along with replacement or regeneration of a functional β-cell mass in T1D patients is generally accepted. In this study our current understanding of the events directing β-cell replication, β-cell reprogramming from different cell types and β-cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β-cells and at improving β-cell mass and function in subjects with T1D. |
Author | Gysemans, C. Ding, L. Mathieu, C. |
Author_xml | – sequence: 1 givenname: L. surname: Ding fullname: Ding, L. organization: Laboratory of Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Faculty of Medicine, Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium – sequence: 2 givenname: C. surname: Gysemans fullname: Gysemans, C. email: conny.gysemans@med.kuleuven.be organization: Laboratory of Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Faculty of Medicine, Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium – sequence: 3 givenname: C. surname: Mathieu fullname: Mathieu, C. organization: Laboratory of Clinical and Experimental Endocrinology (CEE), Campus Gasthuisberg O&N1, Faculty of Medicine, Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24003926$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM9OwkAQxjcGI4IefAHTox4K-6_bbjwZFDRBSYxGb5vSnTWrpcXdEuW1fBCfyUqBg4nOZSaT3zf55uugVlEWgNARwT1SV1-Xsx6hRPAdtE-4YCFhVLRWMw0TiWkbdbx_wRhzlsR7qE05xkxSsY_Ovj7DAeR5oK0x4KCobFrZsgjSQgcOnqEA1yxsEVTLOQSkRtMpVOAP0K5Jcw-H695FD8PL-8FVOJ6Mrgfn4zBjgvGQkmkWY86lJpFOap9RAlQIFhsdJdzE2HBOhU4wodJo4EkSY5ZpKaXIgEpgXXTS3J278m0BvlIz67PadFpAufCKcMYiEguKa_R4jS6mM9Bq7uwsdUu1ebgGThsgc6X3DswWIVj9hKnqMNUqzJrt_2IzW63CqFxq8_8U7zaH5d-n1cXkZqMIG4X1FXxsFal7VSJmcaQeb0cqGg2f8PBOKsK-AV7Skfs |
CitedBy_id | crossref_primary_10_1080_09205063_2019_1655217 crossref_primary_10_1371_journal_pone_0140148 crossref_primary_10_3389_fendo_2022_959011 crossref_primary_10_1177_2042018816652059 crossref_primary_10_1002_edm2_75 crossref_primary_10_3389_fendo_2014_00138 crossref_primary_10_1016_j_celrep_2021_108981 crossref_primary_10_1016_j_csbj_2025_01_003 crossref_primary_10_2337_db13_1781 crossref_primary_10_1111_dom_13144 crossref_primary_10_1021_acsomega_7b01988 crossref_primary_10_1007_s00592_019_01420_8 crossref_primary_10_1016_j_lfs_2020_117985 crossref_primary_10_1016_j_lfs_2021_119853 crossref_primary_10_3389_fphar_2023_1108730 crossref_primary_10_1007_s12020_015_0534_9 crossref_primary_10_3390_ijms18112234 crossref_primary_10_1113_EP088872 crossref_primary_10_1016_j_heliyon_2024_e35424 |
Cites_doi | 10.1210/en.2010-0068 10.1530/EJE-11-0330 10.1371/journal.pone.0023894 10.2337/db06-0017 10.1073/pnas.0507567102 10.1146/annurev.cellbio.22.010305.104425 10.1371/journal.pone.0028808 10.1210/jc.2003-032001 10.1016/j.devcel.2009.11.003 10.1074/jbc.M110.147215 10.2337/diacare.24.9.1661 10.1677/joe.0.1630523 10.1038/nature02520 10.1172/JCI22098 10.1210/jc.2004-0761 10.1002/stem.482 10.1111/j.1463-1326.2011.01443.x 10.1210/en.130.3.1459 10.1042/BST0360353 10.2337/dc09-1959 10.1210/endo.137.9.8756573 10.1007/s00428-003-0930-z 10.1097/MED.0b013e32832e0693 10.3748/wjg.v13.i39.5232 10.1900/RDS.2010.7.124 10.2337/db07-1441 10.1677/joe.1.06160 10.2337/db05-1034 10.1038/nature07314 10.2337/diabetes.53.7.1700 10.1152/physrev.00003.2010 10.1007/s00125-003-1118-4 10.1172/JCI118591 10.1016/j.transproceed.2004.10.026 10.1016/j.diabres.2013.01.020 10.2337/db06-1513 10.1007/s00125-008-1105-x 10.2337/db07-1369 10.1530/eje.0.1410644 10.1055/s-2007-979040 10.1242/dev.129.10.2447 10.1038/nature08894 10.1007/s00125-004-1493-5 10.1126/scitranslmed.3003835 10.2337/db12-0848 10.2337/diabetes.52.7.1732 10.1677/jme.0.0290347 10.1152/ajpendo.00180.2006 10.1152/ajpendo.00030.2002 10.1254/jphs.09178FP 10.1016/j.cell.2009.05.035 10.1007/s00125-009-1562-x 10.1210/en.2007-0358 10.2337/diabetes.51.6.1834 10.1007/s00125-006-0308-2 10.1371/journal.pone.0004734 10.1007/s00125-005-1949-2 10.1677/jme.0.0280099 10.2337/diabetes.48.12.2270 10.1007/s00125-010-1919-1 10.2337/db07-0416 10.1084/jem.176.6.1719 10.1210/jc.2010-0932 10.1101/gad.16875711 10.1038/gt.2010.85 10.1080/15438600490455079 10.1002/hep.20063 10.1172/JCI29988 10.3727/096368908786092775 10.2337/diab.44.3.249 10.1016/j.cell.2007.12.015 10.2337/dc09-0773 10.1172/JCI32959 10.4093/dmj.2011.35.2.119 |
ContentType | Journal Article |
Copyright | 2013 John Wiley & Sons Ltd 2013 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2013 John Wiley & Sons Ltd – notice: 2013 John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1111/dom.12164 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1463-1326 |
EndPage | 104 |
ExternalDocumentID | 24003926 10_1111_dom_12164 DOM12164 ark_67375_WNG_5GFX0FR9_1 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Juvenile Diabetes Research Foundation funderid: 4‐2005‐1327 – fundername: European Community's Health Seventh Framework Programme funderid: FP7/2010‐2014 – fundername: European Community's Health Seventh Framework Programme funderid: FP7/2009‐2014 – fundername: University of Leuven (KU Leuven) funderid: GOA 2009/10 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29F 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~KM ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c3634-21bc70449d15d812158e26637fd584f70f4426d80129fde488703cd9996ce29e3 |
IEDL.DBID | DR2 |
ISSN | 1462-8902 1463-1326 |
IngestDate | Thu Jul 10 23:36:33 EDT 2025 Mon Jul 21 06:01:22 EDT 2025 Tue Jul 01 01:02:56 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Wed Jan 22 16:56:52 EST 2025 Wed Oct 30 09:48:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | s3 |
Keywords | replication reprogramming type 1 diabetes regeneration β-cells |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3634-21bc70449d15d812158e26637fd584f70f4426d80129fde488703cd9996ce29e3 |
Notes | Juvenile Diabetes Research Foundation - No. 4-2005-1327 University of Leuven (KU Leuven) - No. GOA 2009/10 European Community's Health Seventh Framework Programme - No. FP7/2010-2014 European Community's Health Seventh Framework Programme - No. FP7/2009-2014 ark:/67375/WNG-5GFX0FR9-1 ArticleID:DOM12164 istex:6858E1461B54378C5EFA1331E60DEA365D20FF40 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 24003926 |
PQID | 1433517620 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1433517620 pubmed_primary_24003926 crossref_primary_10_1111_dom_12164 crossref_citationtrail_10_1111_dom_12164 wiley_primary_10_1111_dom_12164_DOM12164 istex_primary_ark_67375_WNG_5GFX0FR9_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2013 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: September 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Diabetes, obesity & metabolism |
PublicationTitleAlternate | Diabetes Obes Metab |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Xu X, D'Hoker J, Stange G et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132: 197-207. Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 2005; 48: 2221-2228. Martin-Pagola A, Sisino G, Allende G et al. Insulin protein and proliferation in ductal cells in the transplanted pancreas of patients with type 1 diabetes and recurrence of autoimmunity. Diabetologia 2008; 51: 1803-1813. Fomina-Yadlin D, Kubicek S, Vetere A, He KH, Schreiber SL, Wagner BK. GW8510 increases insulin expression in pancreatic alpha cells through activation of p53 transcriptional activity. PLoS One 2012; 7: e28808. Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995; 44: 249-256. Bonner-Weir S, Inada A, Yatoh S et al. Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochem Soc Trans 2008; 36: 353-356. Yang YP, Thorel F, Boyer DF, Herrera PL, Wright CV. Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression. Genes Dev 2011; 25: 1680-1685. Lardon J, Huyens N, Rooman I, Bouwens L. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch 2004; 444: 61-65. Cnop M, Igoillo-Esteve M, Hughes SJ, Walker JN, Cnop I, Clark A. Longevity of human islet alpha- and beta-cells. Diabetes Obes Metab 2011; 13(Suppl. 1): 39-46. Liu T, Wang CY, Yu F et al. In vitro pancreas duodenal homeobox-1 enhances the differentiation of pancreatic ductal epithelial cells into insulin-producing cells. World J Gastroenterol 2007; 13: 5232-5237. Bogdani M, Lefebvre V, Buelens N et al. Formation of insulin-positive cells in implants of human pancreatic duct cell preparations from young donors. Diabetologia 2003; 46: 830-838. Raman VS, Mason KJ, Rodriguez LM et al. The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care 2010; 33: 1294-1296. Basta G, Racanicchi L, Mancuso F et al. Transdifferentiation molecular pathways of neonatal pig pancreatic duct cells into endocrine cell phenotypes. Transplant Proc 2004; 36: 2857-2863. Higuchi Y, Herrera P, Muniesa P et al. Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes. J Exp Med 1992; 176: 1719-1731. Bonner-Weir S, Taneja M, Weir GC et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000; 97: 7999-8004. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002; 129: 2447-2457. Perl S, Kushner JA, Buchholz BA et al. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 2010; 95: E234-239. Desai BM, Oliver-Krasinski J, De Leon DD et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest 2007; 117: 971-977. Minami K, Okuno M, Miyawaki K et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 2005; 102: 15116-15121. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008; 455: 627-632. Collombat P, Xu X, Ravassard P et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009; 138: 449-462. Paris M, Tourrel-Cuzin C, Plachot C, Ktorza A. Review: pancreatic beta-cell neogenesis revisited. Exp Diabesity Res 2004; 5: 111-121. Georgia S, Bhushan A. Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest 2004; 114: 963-968. Dupre J, Behme MT, McDonald TJ. Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J Clin Endocrinol Metab 2004; 89: 3469-3473. Parsons JA, Brelje TC, Sorenson RL. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 1992; 130: 1459-1466. Peshavaria M, Larmie BL, Lausier J et al. Regulation of pancreatic beta-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse. Diabetes 2006; 55: 3289-3298. You YH, Ham DS, Park HS, Rhee M, Kim JW, Yoon KH. Adenoviruses expressing PDX-1, BETA2/NeuroD and MafA induces the transdifferentiation of porcine neonatal pancreas cell clusters and adult pig pancreatic cells into beta-cells. Diabetes Metab J 2011; 35: 119-129. Thorel F, Nepote V, Avril I et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464: 1149-1154. van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91: 79-118. Bulotta A, Hui H, Anastasi E et al. Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1. J Mol Endocrinol 2002; 29: 347-360. Friedrichsen BN, Neubauer N, Lee YC et al. Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol 2006; 188: 481-492. Oh YS, Shin S, Lee YJ, Kim EH, Jun HS. Betacellulin-induced beta cell proliferation and regeneration is mediated by activation of ErbB-1 and ErbB-2 receptors. PLoS One 2011; 6: e23894. Tian L, Gao J, Hao J et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 2010; 151: 3049-3060. Anastasi E, Ponte E, Gradini R et al. Expression of Reg and cytokeratin 20 during ductal cell differentiation and proliferation in a mouse model of autoimmune diabetes. Eur J Endocrinol 1999; 141: 644-652. Solar M, Cardalda C, Houbracken I et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 2009; 17: 849-860. Sherry NA, Kushner JA, Glandt M, Kitamura T, Brillantes AM, Herold KC. Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 2006; 55: 3238-3245. Levitt HE, Cyphert TJ, Pascoe JL et al. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice. Diabetologia 2011; 54: 572-582. Gu D, Arnush M, Sawyer SP, Sarvetnick N. Transgenic mice expressing IFN-gamma in pancreatic beta-cells are resistant to streptozotocin-induced diabetes. Am J Physiol 1995; 269: E1089-1094. Alonso LC, Yokoe T, Zhang P et al. Glucose infusion in mice: a new model to induce beta-cell replication. Diabetes 2007; 56: 1792-1801. Rolin B, Larsen MO, Gotfredsen CF et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol Endocrinol Metab 2002; 283: E745-752. Chung CH, Levine F. Adult pancreatic alpha-cells: a new source of cells for beta-cell regeneration. Rev Diabet Stud 2010; 7: 124-131. Heit JJ, Karnik SK, Kim SK. Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol 2006; 22: 311-338. Noguchi H, Kaneto H, Weir GC, Bonner-Weir S. PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes 2003; 52: 1732-1737. Aly H, Gottlieb P. The honeymoon phase: intersection of metabolism and immunology. Curr Opin Endocrinol Diabetes Obes 2009; 16: 286-292. Gosmain Y, Marthinet E, Cheyssac C et al. Pax6 controls the expression of critical genes involved in pancreatic α cell differentiation and function. J Biol Chem 2010; 285: 33381-33393. Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 1997; 29: 301-307. Kritzik MR, Jones E, Chen Z et al. PDX-1 and Msx-2 expression in the regenerating and developing pancreas. J Endocrinol 1999; 163: 523-530. Tanaka S, Kobayashi T, Nakanishi K et al. Evidence of primary beta-cell destruction by T-cells and beta-cell differentiation from pancreatic ductal cells in diabetes associated with active autoimmune chronic pancreatitis. Diabetes Care 2001; 24: 1661-1667. Lipsett M, Finegood DT. Beta-cell neogenesis during prolonged hyperglycemia in rats. Diabetes 2002; 51: 1834-1841. Uzan B, Figeac F, Portha B, Movassat J. Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation. PLoS One 2009; 4: e4734. Rankin MM, Wilbur CJ, Rak K, Shields EJ, Granger A, Kushner JA. Beta-cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes 2013; 62: 1634-1645. Koya V, Lu S, Sun YP et al. Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1: a novel protein transduction domain-based therapy. Diabetes 2008; 57: 757-769. Ogawa N, List JF, Habener JF, Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 2004; 53: 1700-1705. Sherry NA, Chen W, Kushner JA et al. Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of beta-cells. Endocrinology 2007; 148: 5136-5144. Topp BG, McArthur MD, Finegood DT. Metabolic adaptations to chronic glucose infusion in rats. Diabetologia 2004; 47: 1602-1610. Varanasi A, Bellini N, Rawal D et al. Liraglutide as additional treatment for type 1 diabet 2007; 148 2004; 444 2002; 51 2010; 17 2013; 62 2010; 464 1999; 48 2008; 36 2009; 111 2004; 5 2011; 54 1999; 163 2011; 13 2003; 52 2009; 53 2006; 22 2007; 292 2005; 102 2010; 28 2004; 36 2000; 97 2003; 46 2010; 151 2011; 25 1996; 137 2009; 16 2010; 7 2011; 165 2009; 17 2010; 33 2006; 55 2005; 90 2004; 47 2004; 89 2008; 17 1997; 29 2013; 100 2008; 57 1999; 141 2010; 285 2011; 35 2005; 48 2008; 51 2001; 24 2011; 6 2007; 56 2007; 13 1996; 97 2009; 138 2004; 429 2002; 28 2004; 53 2004; 114 2002; 29 2009; 32 2007; 117 1992; 130 2011; 91 1992; 176 2002; 283 2006; 49 1995; 44 2002; 129 1995; 269 2008; 455 2009; 4 2012; 7 2008; 132 2012; 4 2010; 95 2006; 188 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Mashima H (e_1_2_8_72_1) 1996; 137 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 Gu D (e_1_2_8_30_1) 1995; 269 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – reference: Xu G, Stoffers DA, Habener JF, Bonner-Weir S. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48: 2270-2276. – reference: Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 2007; 117: 2553-2561. – reference: Kwon DY, Kim YS, Ahn IS et al. Exendin-4 potentiates insulinotropic action partly via increasing beta-cell proliferation and neogenesis and decreasing apoptosis in association with the attenuation of endoplasmic reticulum stress in islets of diabetic rats. J Pharmacol Sci 2009; 111: 361-371. – reference: Mashima H, Ohnishi H, Wakabayashi K et al. Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J Clin Invest 1996; 97: 1647-1654. – reference: Ogawa N, List JF, Habener JF, Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 2004; 53: 1700-1705. – reference: Georgia S, Bhushan A. Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest 2004; 114: 963-968. – reference: Anastasi E, Ponte E, Gradini R et al. Expression of Reg and cytokeratin 20 during ductal cell differentiation and proliferation in a mouse model of autoimmune diabetes. Eur J Endocrinol 1999; 141: 644-652. – reference: Liu T, Wang CY, Yu F et al. In vitro pancreas duodenal homeobox-1 enhances the differentiation of pancreatic ductal epithelial cells into insulin-producing cells. World J Gastroenterol 2007; 13: 5232-5237. – reference: Thorel F, Nepote V, Avril I et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464: 1149-1154. – reference: Koya V, Lu S, Sun YP et al. Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1: a novel protein transduction domain-based therapy. Diabetes 2008; 57: 757-769. – reference: Tanaka S, Kobayashi T, Nakanishi K et al. Evidence of primary beta-cell destruction by T-cells and beta-cell differentiation from pancreatic ductal cells in diabetes associated with active autoimmune chronic pancreatitis. Diabetes Care 2001; 24: 1661-1667. – reference: Collombat P, Xu X, Ravassard P et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009; 138: 449-462. – reference: Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004; 429: 41-46. – reference: Bonner-Weir S, Inada A, Yatoh S et al. Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochem Soc Trans 2008; 36: 353-356. – reference: Bulotta A, Hui H, Anastasi E et al. Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1. J Mol Endocrinol 2002; 29: 347-360. – reference: Friedrichsen BN, Neubauer N, Lee YC et al. Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J Endocrinol 2006; 188: 481-492. – reference: Rother KI, Spain LM, Wesley RA et al. Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes. Diabetes Care 2009; 32: 2251-2257. – reference: You YH, Ham DS, Park HS, Rhee M, Kim JW, Yoon KH. Adenoviruses expressing PDX-1, BETA2/NeuroD and MafA induces the transdifferentiation of porcine neonatal pancreas cell clusters and adult pig pancreatic cells into beta-cells. Diabetes Metab J 2011; 35: 119-129. – reference: Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008; 455: 627-632. – reference: Aly H, Gottlieb P. The honeymoon phase: intersection of metabolism and immunology. Curr Opin Endocrinol Diabetes Obes 2009; 16: 286-292. – reference: Gahr S, Merger M, Bollheimer LC, Hammerschmied CG, Scholmerich J, Hugl SR. Hepatocyte growth factor stimulates proliferation of pancreatic beta-cells particularly in the presence of subphysiological glucose concentrations. J Mol Endocrinol 2002; 28: 99-110. – reference: Bogdani M, Lefebvre V, Buelens N et al. Formation of insulin-positive cells in implants of human pancreatic duct cell preparations from young donors. Diabetologia 2003; 46: 830-838. – reference: Fomina-Yadlin D, Kubicek S, Vetere A, He KH, Schreiber SL, Wagner BK. GW8510 increases insulin expression in pancreatic alpha cells through activation of p53 transcriptional activity. PLoS One 2012; 7: e28808. – reference: Chung CH, Levine F. Adult pancreatic alpha-cells: a new source of cells for beta-cell regeneration. Rev Diabet Stud 2010; 7: 124-131. – reference: Dupre J, Behme MT, McDonald TJ. Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J Clin Endocrinol Metab 2004; 89: 3469-3473. – reference: Chung CH, Hao E, Piran R, Keinan E, Levine F. Pancreatic beta-cell neogenesis by direct conversion from mature alpha-cells. Stem Cells 2010; 28: 1630-1638. – reference: Wang M, Racine JJ, Song X et al. Mixed chimerism and growth factors augment beta cell regeneration and reverse late-stage type 1 diabetes. Sci Transl Med 2012; 4: 133ra59. – reference: Higuchi Y, Herrera P, Muniesa P et al. Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes. J Exp Med 1992; 176: 1719-1731. – reference: Heit JJ, Karnik SK, Kim SK. Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol 2006; 22: 311-338. – reference: Basta G, Racanicchi L, Mancuso F et al. Transdifferentiation molecular pathways of neonatal pig pancreatic duct cells into endocrine cell phenotypes. Transplant Proc 2004; 36: 2857-2863. – reference: Lipsett M, Finegood DT. Beta-cell neogenesis during prolonged hyperglycemia in rats. Diabetes 2002; 51: 1834-1841. – reference: Raman VS, Mason KJ, Rodriguez LM et al. The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care 2010; 33: 1294-1296. – reference: Gosmain Y, Marthinet E, Cheyssac C et al. Pax6 controls the expression of critical genes involved in pancreatic α cell differentiation and function. J Biol Chem 2010; 285: 33381-33393. – reference: Xu X, D'Hoker J, Stange G et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008; 132: 197-207. – reference: Meier JJ, Lin JC, Butler AE, Galasso R, Martinez DS, Butler PC. Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia 2006; 49: 1838-1844. – reference: Perl S, Kushner JA, Buchholz BA et al. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J Clin Endocrinol Metab 2010; 95: E234-239. – reference: In't Veld P, Lievens D, De Grijse J et al. Screening for insulitis in adult autoantibody-positive organ donors. Diabetes 2007; 56: 2400-2404. – reference: Chen S, Shimoda M, Wang MY et al. Regeneration of pancreatic islets in vivo by ultrasound-targeted gene therapy. Gene Ther 2010; 17: 1411-1420. – reference: Suarez-Pinzon WL, Lakey JR, Brand SJ, Rabinovitch A. Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β-cells from pancreatic duct cells and an increase in functional β-cell mass. J Clin Endocrinol Metab 2005; 90: 3401-3409. – reference: Rankin MM, Wilbur CJ, Rak K, Shields EJ, Granger A, Kushner JA. Beta-cells are not generated in pancreatic duct ligation-induced injury in adult mice. Diabetes 2013; 62: 1634-1645. – reference: Tian L, Gao J, Hao J et al. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 2010; 151: 3049-3060. – reference: Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res 1997; 29: 301-307. – reference: Hari Kumar KV, Shaikh A, Prusty P. Addition of exenatide or sitagliptin to insulin in new onset type 1 diabetes: a randomized, open label study. Diabetes Res Clin Pract 2013; 100: e55-58. – reference: Bonner-Weir S, Taneja M, Weir GC et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA 2000; 97: 7999-8004. – reference: Kritzik MR, Jones E, Chen Z et al. PDX-1 and Msx-2 expression in the regenerating and developing pancreas. J Endocrinol 1999; 163: 523-530. – reference: Cnop M, Hughes SJ, Igoillo-Esteve M et al. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 2009; 53: 321-330. – reference: Meier JJ, Butler AE, Saisho Y et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 2008; 57: 1584-1594. – reference: Suarez-Pinzon WL, Lakey JR, Rabinovitch A. Combination therapy with glucagon-like peptide-1 and gastrin induces beta-cell neogenesis from pancreatic duct cells in human islets transplanted in immunodeficient diabetic mice. Cell Transplant 2008; 17: 631-640. – reference: Sherry NA, Kushner JA, Glandt M, Kitamura T, Brillantes AM, Herold KC. Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 2006; 55: 3238-3245. – reference: Peshavaria M, Larmie BL, Lausier J et al. Regulation of pancreatic beta-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse. Diabetes 2006; 55: 3289-3298. – reference: Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 2005; 48: 2221-2228. – reference: Paris M, Tourrel-Cuzin C, Plachot C, Ktorza A. Review: pancreatic beta-cell neogenesis revisited. Exp Diabesity Res 2004; 5: 111-121. – reference: Okuno M, Minami K, Okumachi A et al. Generation of insulin-secreting cells from pancreatic acinar cells of animal models of type 1 diabetes. Am J Physiol Endocrinol Metab 2007; 292: E158-165. – reference: Desai BM, Oliver-Krasinski J, De Leon DD et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J Clin Invest 2007; 117: 971-977. – reference: Sherry NA, Chen W, Kushner JA et al. Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of beta-cells. Endocrinology 2007; 148: 5136-5144. – reference: Alonso LC, Yokoe T, Zhang P et al. Glucose infusion in mice: a new model to induce beta-cell replication. Diabetes 2007; 56: 1792-1801. – reference: Rolin B, Larsen MO, Gotfredsen CF et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol Endocrinol Metab 2002; 283: E745-752. – reference: van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91: 79-118. – reference: Martin-Pagola A, Sisino G, Allende G et al. Insulin protein and proliferation in ductal cells in the transplanted pancreas of patients with type 1 diabetes and recurrence of autoimmunity. Diabetologia 2008; 51: 1803-1813. – reference: Minami K, Okuno M, Miyawaki K et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 2005; 102: 15116-15121. – reference: Topp BG, McArthur MD, Finegood DT. Metabolic adaptations to chronic glucose infusion in rats. Diabetologia 2004; 47: 1602-1610. – reference: Noguchi H, Kaneto H, Weir GC, Bonner-Weir S. PDX-1 protein containing its own antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes 2003; 52: 1732-1737. – reference: Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 1995; 44: 249-256. – reference: Oh YS, Shin S, Lee YJ, Kim EH, Jun HS. Betacellulin-induced beta cell proliferation and regeneration is mediated by activation of ErbB-1 and ErbB-2 receptors. PLoS One 2011; 6: e23894. – reference: Varanasi A, Bellini N, Rawal D et al. Liraglutide as additional treatment for type 1 diabetes. Eur J Endocrinol 2011; 165: 77-84. – reference: Uzan B, Figeac F, Portha B, Movassat J. Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation. PLoS One 2009; 4: e4734. – reference: Solar M, Cardalda C, Houbracken I et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 2009; 17: 849-860. – reference: Mashima H, Shibata H, Mine T, Kojima I. Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology 1996; 137: 3969-3976. – reference: Cnop M, Igoillo-Esteve M, Hughes SJ, Walker JN, Cnop I, Clark A. Longevity of human islet alpha- and beta-cells. Diabetes Obes Metab 2011; 13(Suppl. 1): 39-46. – reference: Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002; 129: 2447-2457. – reference: Lardon J, Huyens N, Rooman I, Bouwens L. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch 2004; 444: 61-65. – reference: Parsons JA, Brelje TC, Sorenson RL. Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 1992; 130: 1459-1466. – reference: Gu D, Arnush M, Sawyer SP, Sarvetnick N. Transgenic mice expressing IFN-gamma in pancreatic beta-cells are resistant to streptozotocin-induced diabetes. Am J Physiol 1995; 269: E1089-1094. – reference: Yang YP, Thorel F, Boyer DF, Herrera PL, Wright CV. Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression. Genes Dev 2011; 25: 1680-1685. – reference: Levitt HE, Cyphert TJ, Pascoe JL et al. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD-severe combined immunodeficiency (SCID) mice. Diabetologia 2011; 54: 572-582. – volume: 54 start-page: 572 year: 2011 end-page: 582 article-title: Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD‐severe combined immunodeficiency (SCID) mice publication-title: Diabetologia – volume: 28 start-page: 1630 year: 2010 end-page: 1638 article-title: Pancreatic beta‐cell neogenesis by direct conversion from mature alpha‐cells publication-title: Stem Cells – volume: 100 start-page: e55 year: 2013 end-page: 58 article-title: Addition of exenatide or sitagliptin to insulin in new onset type 1 diabetes: a randomized, open label study publication-title: Diabetes Res Clin Pract – volume: 17 start-page: 631 year: 2008 end-page: 640 article-title: Combination therapy with glucagon‐like peptide‐1 and gastrin induces beta‐cell neogenesis from pancreatic duct cells in human islets transplanted in immunodeficient diabetic mice publication-title: Cell Transplant – volume: 5 start-page: 111 year: 2004 end-page: 121 article-title: Review: pancreatic beta‐cell neogenesis revisited publication-title: Exp Diabesity Res – volume: 29 start-page: 347 year: 2002 end-page: 360 article-title: Cultured pancreatic ductal cells undergo cell cycle re‐distribution and beta‐cell‐like differentiation in response to glucagon‐like peptide‐1 publication-title: J Mol Endocrinol – volume: 4 start-page: 133ra59 year: 2012 article-title: Mixed chimerism and growth factors augment beta cell regeneration and reverse late‐stage type 1 diabetes publication-title: Sci Transl Med – volume: 464 start-page: 1149 year: 2010 end-page: 1154 article-title: Conversion of adult pancreatic alpha‐cells to beta‐cells after extreme beta‐cell loss publication-title: Nature – volume: 35 start-page: 119 year: 2011 end-page: 129 article-title: Adenoviruses expressing PDX‐1, BETA2/NeuroD and MafA induces the transdifferentiation of porcine neonatal pancreas cell clusters and adult pig pancreatic cells into beta‐cells publication-title: Diabetes Metab J – volume: 55 start-page: 3238 year: 2006 end-page: 3245 article-title: Effects of autoimmunity and immune therapy on beta‐cell turnover in type 1 diabetes publication-title: Diabetes – volume: 455 start-page: 627 year: 2008 end-page: 632 article-title: In vivo reprogramming of adult pancreatic exocrine cells to beta‐cells publication-title: Nature – volume: 29 start-page: 301 year: 1997 end-page: 307 article-title: Adaptation of islets of Langerhans to pregnancy: beta‐cell growth, enhanced insulin secretion and the role of lactogenic hormones publication-title: Horm Metab Res – volume: 163 start-page: 523 year: 1999 end-page: 530 article-title: PDX‐1 and Msx‐2 expression in the regenerating and developing pancreas publication-title: J Endocrinol – volume: 7 start-page: 124 year: 2010 end-page: 131 article-title: Adult pancreatic alpha‐cells: a new source of cells for beta‐cell regeneration publication-title: Rev Diabet Stud – volume: 97 start-page: 1647 year: 1996 end-page: 1654 article-title: Betacellulin and activin A coordinately convert amylase‐secreting pancreatic AR42J cells into insulin‐secreting cells publication-title: J Clin Invest – volume: 283 start-page: E745 year: 2002 end-page: 752 article-title: The long‐acting GLP‐1 derivative NN2211 ameliorates glycemia and increases beta‐cell mass in diabetic mice publication-title: Am J Physiol Endocrinol Metab – volume: 89 start-page: 3469 year: 2004 end-page: 3473 article-title: Exendin‐4 normalized postcibal glycemic excursions in type 1 diabetes publication-title: J Clin Endocrinol Metab – volume: 165 start-page: 77 year: 2011 end-page: 84 article-title: Liraglutide as additional treatment for type 1 diabetes publication-title: Eur J Endocrinol – volume: 53 start-page: 1700 year: 2004 end-page: 1705 article-title: Cure of overt diabetes in NOD mice by transient treatment with anti‐lymphocyte serum and exendin‐4 publication-title: Diabetes – volume: 6 start-page: e23894 year: 2011 article-title: Betacellulin‐induced beta cell proliferation and regeneration is mediated by activation of ErbB‐1 and ErbB‐2 receptors publication-title: PLoS One – volume: 24 start-page: 1661 year: 2001 end-page: 1667 article-title: Evidence of primary beta‐cell destruction by T‐cells and beta‐cell differentiation from pancreatic ductal cells in diabetes associated with active autoimmune chronic pancreatitis publication-title: Diabetes Care – volume: 91 start-page: 79 year: 2011 end-page: 118 article-title: Type 1 diabetes: etiology, immunology, and therapeutic strategies publication-title: Physiol Rev – volume: 33 start-page: 1294 year: 2010 end-page: 1296 article-title: The role of adjunctive exenatide therapy in pediatric type 1 diabetes publication-title: Diabetes Care – volume: 117 start-page: 2553 year: 2007 end-page: 2561 article-title: Recovery from diabetes in mice by beta cell regeneration publication-title: J Clin Invest – volume: 32 start-page: 2251 year: 2009 end-page: 2257 article-title: Effects of exenatide alone and in combination with daclizumab on beta‐cell function in long‐standing type 1 diabetes publication-title: Diabetes Care – volume: 90 start-page: 3401 year: 2005 end-page: 3409 article-title: Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β‐cells from pancreatic duct cells and an increase in functional β‐cell mass publication-title: J Clin Endocrinol Metab – volume: 285 start-page: 33381 year: 2010 end-page: 33393 article-title: Pax6 controls the expression of critical genes involved in pancreatic α cell differentiation and function publication-title: J Biol Chem – volume: 102 start-page: 15116 year: 2005 end-page: 15121 article-title: Lineage tracing and characterization of insulin‐secreting cells generated from adult pancreatic acinar cells publication-title: Proc Natl Acad Sci USA – volume: 48 start-page: 2221 year: 2005 end-page: 2228 article-title: Sustained beta cell apoptosis in patients with long‐standing type 1 diabetes: indirect evidence for islet regeneration? publication-title: Diabetologia – volume: 17 start-page: 849 year: 2009 end-page: 860 article-title: Pancreatic exocrine duct cells give rise to insulin‐producing beta cells during embryogenesis but not after birth publication-title: Dev Cell – volume: 53 start-page: 321 year: 2009 end-page: 330 article-title: The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation publication-title: Diabetologia – volume: 56 start-page: 1792 year: 2007 end-page: 1801 article-title: Glucose infusion in mice: a new model to induce beta‐cell replication publication-title: Diabetes – volume: 429 start-page: 41 year: 2004 end-page: 46 article-title: Adult pancreatic beta‐cells are formed by self‐duplication rather than stem‐cell differentiation publication-title: Nature – volume: 28 start-page: 99 year: 2002 end-page: 110 article-title: Hepatocyte growth factor stimulates proliferation of pancreatic beta‐cells particularly in the presence of subphysiological glucose concentrations publication-title: J Mol Endocrinol – volume: 44 start-page: 249 year: 1995 end-page: 256 article-title: Dynamics of beta‐cell mass in the growing rat pancreas. Estimation with a simple mathematical model publication-title: Diabetes – volume: 22 start-page: 311 year: 2006 end-page: 338 article-title: Intrinsic regulators of pancreatic beta‐cell proliferation publication-title: Annu Rev Cell Dev Biol – volume: 97 start-page: 7999 year: 2000 end-page: 8004 article-title: In vitro cultivation of human islets from expanded ductal tissue publication-title: Proc Natl Acad Sci USA – volume: 148 start-page: 5136 year: 2007 end-page: 5144 article-title: Exendin‐4 improves reversal of diabetes in NOD mice treated with anti‐CD3 monoclonal antibody by enhancing recovery of beta‐cells publication-title: Endocrinology – volume: 269 start-page: E1089 year: 1995 end-page: 1094 article-title: Transgenic mice expressing IFN‐gamma in pancreatic beta‐cells are resistant to streptozotocin‐induced diabetes publication-title: Am J Physiol – volume: 49 start-page: 1838 year: 2006 end-page: 1844 article-title: Direct evidence of attempted beta cell regeneration in an 89‐year‐old patient with recent‐onset type 1 diabetes publication-title: Diabetologia – volume: 57 start-page: 757 year: 2008 end-page: 769 article-title: Reversal of streptozotocin‐induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox‐1: a novel protein transduction domain‐based therapy publication-title: Diabetes – volume: 176 start-page: 1719 year: 1992 end-page: 1731 article-title: Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes publication-title: J Exp Med – volume: 25 start-page: 1680 year: 2011 end-page: 1685 article-title: Context‐specific alpha‐ to‐beta‐cell reprogramming by forced Pdx1 expression publication-title: Genes Dev – volume: 138 start-page: 449 year: 2009 end-page: 462 article-title: The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells publication-title: Cell – volume: 117 start-page: 971 year: 2007 end-page: 977 article-title: Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration publication-title: J Clin Invest – volume: 56 start-page: 2400 year: 2007 end-page: 2404 article-title: Screening for insulitis in adult autoantibody‐positive organ donors publication-title: Diabetes – volume: 57 start-page: 1584 year: 2008 end-page: 1594 article-title: Beta‐cell replication is the primary mechanism subserving the postnatal expansion of beta‐cell mass in humans publication-title: Diabetes – volume: 7 start-page: e28808 year: 2012 article-title: GW8510 increases insulin expression in pancreatic alpha cells through activation of p53 transcriptional activity publication-title: PLoS One – volume: 13 start-page: 39 issue: Suppl. 1 year: 2011 end-page: 46 article-title: Longevity of human islet alpha‐ and beta‐cells publication-title: Diabetes Obes Metab – volume: 36 start-page: 2857 year: 2004 end-page: 2863 article-title: Transdifferentiation molecular pathways of neonatal pig pancreatic duct cells into endocrine cell phenotypes publication-title: Transplant Proc – volume: 95 start-page: E234 year: 2010 end-page: 239 article-title: Significant human beta‐cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating publication-title: J Clin Endocrinol Metab – volume: 130 start-page: 1459 year: 1992 end-page: 1466 article-title: Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion publication-title: Endocrinology – volume: 114 start-page: 963 year: 2004 end-page: 968 article-title: Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass publication-title: J Clin Invest – volume: 151 start-page: 3049 year: 2010 end-page: 3060 article-title: Reversal of new‐onset diabetes through modulating inflammation and stimulating beta‐cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor publication-title: Endocrinology – volume: 292 start-page: E158 year: 2007 end-page: 165 article-title: Generation of insulin‐secreting cells from pancreatic acinar cells of animal models of type 1 diabetes publication-title: Am J Physiol Endocrinol Metab – volume: 188 start-page: 481 year: 2006 end-page: 492 article-title: Stimulation of pancreatic beta‐cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways publication-title: J Endocrinol – volume: 46 start-page: 830 year: 2003 end-page: 838 article-title: Formation of insulin‐positive cells in implants of human pancreatic duct cell preparations from young donors publication-title: Diabetologia – volume: 36 start-page: 353 year: 2008 end-page: 356 article-title: Transdifferentiation of pancreatic ductal cells to endocrine beta‐cells publication-title: Biochem Soc Trans – volume: 48 start-page: 2270 year: 1999 end-page: 2276 article-title: Exendin‐4 stimulates both beta‐cell replication and neogenesis, resulting in increased beta‐cell mass and improved glucose tolerance in diabetic rats publication-title: Diabetes – volume: 137 start-page: 3969 year: 1996 end-page: 3976 article-title: Formation of insulin‐producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor publication-title: Endocrinology – volume: 129 start-page: 2447 year: 2002 end-page: 2457 article-title: Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors publication-title: Development – volume: 444 start-page: 61 year: 2004 end-page: 65 article-title: Exocrine cell transdifferentiation in dexamethasone‐treated rat pancreas publication-title: Virchows Arch – volume: 141 start-page: 644 year: 1999 end-page: 652 article-title: Expression of Reg and cytokeratin 20 during ductal cell differentiation and proliferation in a mouse model of autoimmune diabetes publication-title: Eur J Endocrinol – volume: 111 start-page: 361 year: 2009 end-page: 371 article-title: Exendin‐4 potentiates insulinotropic action partly via increasing beta‐cell proliferation and neogenesis and decreasing apoptosis in association with the attenuation of endoplasmic reticulum stress in islets of diabetic rats publication-title: J Pharmacol Sci – volume: 13 start-page: 5232 year: 2007 end-page: 5237 article-title: In vitro pancreas duodenal homeobox‐1 enhances the differentiation of pancreatic ductal epithelial cells into insulin‐producing cells publication-title: World J Gastroenterol – volume: 51 start-page: 1803 year: 2008 end-page: 1813 article-title: Insulin protein and proliferation in ductal cells in the transplanted pancreas of patients with type 1 diabetes and recurrence of autoimmunity publication-title: Diabetologia – volume: 17 start-page: 1411 year: 2010 end-page: 1420 article-title: Regeneration of pancreatic islets in vivo by ultrasound‐targeted gene therapy publication-title: Gene Ther – volume: 16 start-page: 286 year: 2009 end-page: 292 article-title: The honeymoon phase: intersection of metabolism and immunology publication-title: Curr Opin Endocrinol Diabetes Obes – volume: 4 start-page: e4734 year: 2009 article-title: Mechanisms of KGF mediated signaling in pancreatic duct cell proliferation and differentiation publication-title: PLoS One – volume: 51 start-page: 1834 year: 2002 end-page: 1841 article-title: Beta‐cell neogenesis during prolonged hyperglycemia in rats publication-title: Diabetes – volume: 132 start-page: 197 year: 2008 end-page: 207 article-title: Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas publication-title: Cell – volume: 62 start-page: 1634 year: 2013 end-page: 1645 article-title: Beta‐cells are not generated in pancreatic duct ligation‐induced injury in adult mice publication-title: Diabetes – volume: 55 start-page: 3289 year: 2006 end-page: 3298 article-title: Regulation of pancreatic beta‐cell regeneration in the normoglycemic 60% partial‐pancreatectomy mouse publication-title: Diabetes – volume: 47 start-page: 1602 year: 2004 end-page: 1610 article-title: Metabolic adaptations to chronic glucose infusion in rats publication-title: Diabetologia – volume: 52 start-page: 1732 year: 2003 end-page: 1737 article-title: PDX‐1 protein containing its own antennapedia‐like protein transduction domain can transduce pancreatic duct and islet cells publication-title: Diabetes – ident: e_1_2_8_58_1 doi: 10.1210/en.2010-0068 – ident: e_1_2_8_65_1 doi: 10.1530/EJE-11-0330 – ident: e_1_2_8_69_1 doi: 10.1371/journal.pone.0023894 – ident: e_1_2_8_14_1 doi: 10.2337/db06-0017 – ident: e_1_2_8_40_1 doi: 10.1073/pnas.0507567102 – ident: e_1_2_8_15_1 doi: 10.1146/annurev.cellbio.22.010305.104425 – ident: e_1_2_8_47_1 doi: 10.1371/journal.pone.0028808 – ident: e_1_2_8_61_1 doi: 10.1210/jc.2003-032001 – ident: e_1_2_8_35_1 doi: 10.1016/j.devcel.2009.11.003 – ident: e_1_2_8_46_1 doi: 10.1074/jbc.M110.147215 – ident: e_1_2_8_36_1 doi: 10.2337/diacare.24.9.1661 – ident: e_1_2_8_31_1 doi: 10.1677/joe.0.1630523 – ident: e_1_2_8_7_1 doi: 10.1038/nature02520 – ident: e_1_2_8_17_1 doi: 10.1172/JCI22098 – ident: e_1_2_8_67_1 doi: 10.1210/jc.2004-0761 – ident: e_1_2_8_50_1 doi: 10.1002/stem.482 – ident: e_1_2_8_9_1 doi: 10.1111/j.1463-1326.2011.01443.x – ident: e_1_2_8_19_1 doi: 10.1210/en.130.3.1459 – ident: e_1_2_8_34_1 doi: 10.1042/BST0360353 – ident: e_1_2_8_62_1 doi: 10.2337/dc09-1959 – volume: 137 start-page: 3969 year: 1996 ident: e_1_2_8_72_1 article-title: Formation of insulin‐producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor publication-title: Endocrinology doi: 10.1210/endo.137.9.8756573 – ident: e_1_2_8_41_1 doi: 10.1007/s00428-003-0930-z – ident: e_1_2_8_22_1 doi: 10.1097/MED.0b013e32832e0693 – ident: e_1_2_8_27_1 doi: 10.3748/wjg.v13.i39.5232 – ident: e_1_2_8_51_1 doi: 10.1900/RDS.2010.7.124 – ident: e_1_2_8_75_1 doi: 10.2337/db07-1441 – ident: e_1_2_8_52_1 doi: 10.1677/joe.1.06160 – ident: e_1_2_8_3_1 doi: 10.2337/db05-1034 – ident: e_1_2_8_45_1 doi: 10.1038/nature07314 – ident: e_1_2_8_55_1 doi: 10.2337/diabetes.53.7.1700 – ident: e_1_2_8_2_1 doi: 10.1152/physrev.00003.2010 – ident: e_1_2_8_38_1 doi: 10.1007/s00125-003-1118-4 – ident: e_1_2_8_70_1 doi: 10.1172/JCI118591 – ident: e_1_2_8_25_1 doi: 10.1016/j.transproceed.2004.10.026 – ident: e_1_2_8_64_1 doi: 10.1016/j.diabres.2013.01.020 – ident: e_1_2_8_16_1 doi: 10.2337/db06-1513 – ident: e_1_2_8_37_1 doi: 10.1007/s00125-008-1105-x – ident: e_1_2_8_8_1 doi: 10.2337/db07-1369 – ident: e_1_2_8_28_1 doi: 10.1530/eje.0.1410644 – ident: e_1_2_8_13_1 doi: 10.1055/s-2007-979040 – ident: e_1_2_8_33_1 doi: 10.1242/dev.129.10.2447 – ident: e_1_2_8_24_1 doi: 10.1038/nature08894 – ident: e_1_2_8_42_1 doi: 10.1007/s00125-004-1493-5 – ident: e_1_2_8_68_1 doi: 10.1126/scitranslmed.3003835 – ident: e_1_2_8_32_1 doi: 10.2337/db12-0848 – ident: e_1_2_8_74_1 doi: 10.2337/diabetes.52.7.1732 – ident: e_1_2_8_54_1 doi: 10.1677/jme.0.0290347 – ident: e_1_2_8_39_1 doi: 10.1152/ajpendo.00180.2006 – ident: e_1_2_8_59_1 doi: 10.1152/ajpendo.00030.2002 – ident: e_1_2_8_53_1 doi: 10.1254/jphs.09178FP – ident: e_1_2_8_48_1 doi: 10.1016/j.cell.2009.05.035 – ident: e_1_2_8_11_1 doi: 10.1007/s00125-009-1562-x – ident: e_1_2_8_56_1 doi: 10.1210/en.2007-0358 – ident: e_1_2_8_43_1 doi: 10.2337/diabetes.51.6.1834 – ident: e_1_2_8_21_1 doi: 10.1007/s00125-006-0308-2 – ident: e_1_2_8_66_1 doi: 10.1371/journal.pone.0004734 – ident: e_1_2_8_5_1 doi: 10.1007/s00125-005-1949-2 – ident: e_1_2_8_71_1 doi: 10.1677/jme.0.0280099 – ident: e_1_2_8_57_1 doi: 10.2337/diabetes.48.12.2270 – ident: e_1_2_8_18_1 doi: 10.1007/s00125-010-1919-1 – ident: e_1_2_8_20_1 doi: 10.2337/db07-0416 – volume: 269 start-page: E1089 year: 1995 ident: e_1_2_8_30_1 article-title: Transgenic mice expressing IFN‐gamma in pancreatic beta‐cells are resistant to streptozotocin‐induced diabetes publication-title: Am J Physiol – ident: e_1_2_8_29_1 doi: 10.1084/jem.176.6.1719 – ident: e_1_2_8_12_1 doi: 10.1210/jc.2010-0932 – ident: e_1_2_8_49_1 doi: 10.1101/gad.16875711 – ident: e_1_2_8_76_1 doi: 10.1038/gt.2010.85 – ident: e_1_2_8_6_1 doi: 10.1080/15438600490455079 – ident: e_1_2_8_26_1 doi: 10.1002/hep.20063 – ident: e_1_2_8_44_1 doi: 10.1172/JCI29988 – ident: e_1_2_8_60_1 doi: 10.3727/096368908786092775 – ident: e_1_2_8_10_1 doi: 10.2337/diab.44.3.249 – ident: e_1_2_8_23_1 doi: 10.1016/j.cell.2007.12.015 – ident: e_1_2_8_63_1 doi: 10.2337/dc09-0773 – ident: e_1_2_8_4_1 doi: 10.1172/JCI32959 – ident: e_1_2_8_73_1 doi: 10.4093/dmj.2011.35.2.119 |
SSID | ssj0004387 |
Score | 2.1875424 |
SecondaryResourceType | review_article |
Snippet | Pancreatic insulin‐producing β‐cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that... Pancreatic insulin-producing β-cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 98 |
SubjectTerms | Animals Cell Differentiation Cell Proliferation Cell Transdifferentiation - physiology Diabetes Mellitus, Type 1 - pathology Diabetes Mellitus, Type 1 - physiopathology Humans Insulin-Secreting Cells - pathology Insulin-Secreting Cells - physiology Islets of Langerhans - pathology Islets of Langerhans - physiology regeneration Regeneration - physiology replication reprogramming type 1 diabetes β-cells |
Title | β-Cell differentiation and regeneration in type 1 diabetes |
URI | https://api.istex.fr/ark:/67375/WNG-5GFX0FR9-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.12164 https://www.ncbi.nlm.nih.gov/pubmed/24003926 https://www.proquest.com/docview/1433517620 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF6Kgjet__WPKCJeUpLsbtogHqTaFqEVisUehJDNbkRaU-kPiCcfwWfxQXwIn8SZTROtVBBvIWzCZmZn55vZyTeEHELUEwAK52YZVzBjjjQFl5FpRSyiluBcSsx3NJpuvc0uO7yTIyfpvzAJP0SWcEPL0Ps1Gngght-MXPYfkBrBRS5QrNVCQNT6oo5iVDfHg40ALN7DKp58WsWTPTnli-ZRrE-zgOY0btWOp7pEbtMpJ_Um3eJ4JIrh8w82x39-U54sTgCpcZasoGWSU_EKWWhMjtxXyen728fLa0X1ekbaTGWUqNMIYmkM1J0mrtY37mMDU7qGbaQp3TXSrl5cV-rmpOeCGVKXMtOxRViyGPOkzWUZqSfKCnw4LUUSoEpUAh2CT5fo17xIKjB_2DJCiWFTqBxP0XUyF_djtUkMSwRlTRDPBWWRB9CABw6nilFhU-WKAjlOpe-HE0Jy7IvR89PABMTha3EUyEE29DFh4Zg16EirMBsRDLpYtlbi_k2z5vNatWNVW55vF8h-qmMfjAlPSIJY9cdDiIMo5Tb4B6tANhLlZ2_DYlsAky5MW6vw94n451cNfbH196HbmDCweVK9tkPmRoOx2gW4MxJ7el1_AksV94k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6lidT2QgMUGlrAVBXi4sr27jqxBAeUkAbapFLUilyqlde7rqoGB4VEQpx4BJ6FB-EheJLOrGP3R0GquFnW2FrP7Pzu-BuAPcx6YozChduiHcx5oF0ldOp6KU-Zp4TQmuod_UHYO-WfRmJUgbfFvzA5PkRZcCPNsPaaFJwK0je0XE--EDZCyFegRhO9CTm_M7wGj-LMjsdDU4A6H1EfT73o4ykfveWNasTY78tCzduRq3U93Q04Kxadd5xc7s9naj_5cQfP8X-_qg4PFjGp8z7fRA-hYrJHsNpfnLo_hnd_fv_9-attxmOnmKcyyyXqxJl2pubcYlfbGxeZQ1Vdx3eKqu4mnHY_nLR77mLsgpuwkHE38FXS9DiPtC90i9AnWgbdOGumGqOVtIliRLeuybVFqTZoAdBqJJoyp8QEkWFPoJpNMrMFjqfilsWIF4rxNMLoQMSBYIYz5TMTqga8KdgvkwUmOY3GGMsiN0F2SMuOBuyWpF9zII5lRK-tDEuKeHpJnWtNIT8PDqQ46I687jCSfgNeFUKWqE90SBJnZjL_hqkQY8JHF-E14Gku_fJt1G-L8WSIy7Yy_PdCZOe4by-e3Z_0Jaz1TvpH8ujj4HAb1gM7d4Oa2XagOpvOzXOMfmbqhd3kV8ms-6U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS9xAEB_8A9IX_1Srp9WmItKXSJLdzV2QPohntK13iii9B2HJZjcinjk576D0yY_Qz9IP4ofwkzizucRaLBTfQtiEzczOzm9mJ78B2MCoJ0EULtwGrWDOA-0qoTPXy3jGPCWE1pTvaLXDgzP-tSM6Y7Bd_gtT8ENUCTeyDLtfk4Hf6OwPI9e9a6JGCPk4TPLQi6hvQ_PkiTuKM9sdD3cCNPmIynhmyzKe6tFnzmiS5PrjJaT5HLhazxPPwHk556Lg5GprOFBb6c-_6Bxf-VGzMD1CpM5OsYTmYMzkb2GqNTpzn4fP978f7n7tmm7XKbupDAp9Okmunb65sMzV9sZl7lBO1_GdMqe7AGfx3unugTtquuCmLGTcDXyV1j3OI-0L3SDuiYZBJ87qmUasktVRiejUNTm2KNMG7R_3jFRT3JSaIDLsHUzkvdwsgeOppGEZ4oViPIsQG4gkEMxwpnxmQlWDT6X0ZTpiJKfGGF1ZRiYoDmnFUYP1auhNQcPx0qBNq8JqRNK_orq1upDf2_tS7McdLz6JpF-Dj6WOJVoTHZEkuekNbzEQYkz46CC8GiwWyq_eRtW2iCZDnLZV4b8nIptHLXux_P9DP8DUcTOWh1_a31bgTWCbblAl23uYGPSHZhWhz0Ct2SX-CNgk-lQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B2%E2%80%90Cell+differentiation+and+regeneration+in+type+1+diabetes&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Ding%2C+L.&rft.au=Gysemans%2C+C.&rft.au=Mathieu%2C+C.&rft.date=2013-09-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-8902&rft.eissn=1463-1326&rft.volume=15&rft.issue=s3&rft.spage=98&rft.epage=104&rft_id=info:doi/10.1111%2Fdom.12164&rft.externalDBID=10.1111%252Fdom.12164&rft.externalDocID=DOM12164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon |