Reactivity of Ammonia in 1,2-Addition to Group 13 Imine Analogues with G13–P–Ga Linkages: The Electronic Role of Group 13 Elements

Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding natur...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 30; no. 15; p. 3222
Main Authors Zhang, Zheng-Feng, Su, Ming-Der
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.07.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor–acceptor (singlet–singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet–triplet) interaction. According to our theoretical studies, all G13=P-Rea species—except the Tl=P analogue—undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA–NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N–H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13–P bond length also increase, requiring a greater distortion of the H2N–H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia.
AbstractList Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH 3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor–acceptor (singlet–singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet–triplet) interaction. According to our theoretical studies, all G13=P-Rea species—except the Tl=P analogue—undergo 1,2-addition with NH 3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA–NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH 3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N–H bond in NH 3 . The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13–P bond length also increase, requiring a greater distortion of the H 2 N–H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH 3 , thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia.
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor–acceptor (singlet–singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet–triplet) interaction. According to our theoretical studies, all G13=P-Rea species—except the Tl=P analogue—undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA–NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N–H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13–P bond length also increase, requiring a greater distortion of the H2N–H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia.
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13-P-Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor-acceptor (singlet-singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet-triplet) interaction. According to our theoretical studies, all G13=P-Rea species-except the Tl=P analogue-undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA-NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N-H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13-P bond length also increase, requiring a greater distortion of the H2N-H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia.Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13-P-Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor-acceptor (singlet-singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet-triplet) interaction. According to our theoretical studies, all G13=P-Rea species-except the Tl=P analogue-undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA-NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N-H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13-P bond length also increase, requiring a greater distortion of the H2N-H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia.
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH with a series of heavy imine analogues, (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13-P-Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor-acceptor (singlet-singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet-triplet) interaction. According to our theoretical studies, all species-except the Tl=P analogue-undergo 1,2-addition with NH under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA-NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the species into the empty σ* orbital of the N-H bond in NH . The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13-P bond length also increase, requiring a greater distortion of the H N-H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH , thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like molecules and ammonia.
Author Su, Ming-Der
Zhang, Zheng-Feng
AuthorAffiliation 1 Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan; ftg17669@gmail.com
2 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
AuthorAffiliation_xml – name: 2 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
– name: 1 Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan; ftg17669@gmail.com
Author_xml – sequence: 1
  givenname: Zheng-Feng
  surname: Zhang
  fullname: Zhang, Zheng-Feng
– sequence: 2
  givenname: Ming-Der
  orcidid: 0000-0002-5847-4271
  surname: Su
  fullname: Su, Ming-Der
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40807397$$D View this record in MEDLINE/PubMed
BookMark eNplkstuEzEUhkeoiF7gAdggS2xYMGD72HNhg6KqhEiRQFX2lm-TOMzYwZ4p6o4VL8Ab8iQ4pEQtLCxb9qfP__HxeXHig7dF8ZzgNwAtfjuE3uqptwkw4UApfVScEUZxCZi1J_fWp8V5SluMKWGEPylOGW5wDW19Vvy4tlKP7saNtyh0aDYMwTuJnEfkNS1nxrjRBY_GgOYxTDtEAC0G5y2aedmH9WQT-ubGDZoT-PX95-c85hItnf8i1za9Q6uNRVc55BizVqPrHHh_zdGVzwbrx_S0eNzJPtlnd_NFsfpwtbr8WC4_zReXs2WpoQJaGgot0VaqSnNudMcwbxXvKk24MZK1RlWUUKgbYjizTHHSSmqqRjWcy66Bi2Jx0Jogt2IX3SDjrQjSiT8bIa6FjKPTvRWKKwwSmlopyoDhbKZUK0maCriykF3vD67dpAZrdC4jyv6B9OGJdxuxDjciB2RNQ9tseHVniOFrfslRDC5p2_fS2zAlAblatu_ZHn35D7oNU8wtOFC4rjOUqRf3Ix2z_G13BsgB0DGkFG13RAgW-y8l_vtS8BsDhMA0
Cites_doi 10.1039/B609748K
10.1021/jacs.8b02447
10.1002/anie.201408371
10.1002/jcc.21759
10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L
10.1002/anie.201409699
10.1021/cr940396v
10.1038/s41467-017-02581-2
10.1021/ct800246v
10.1007/s00894-006-0149-4
10.1021/ct800503d
10.1002/wcms.1345
10.1016/j.ccr.2016.06.015
10.1016/j.comptc.2015.11.019
10.1021/jp075460u
10.1021/acs.inorgchem.4c05097
10.1002/anie.198402721
10.1002/chem.202002939
10.1039/D1CC06518A
10.1039/b801115j
10.1002/chem.201801813
10.1063/1.3382344
10.1021/acs.inorgchem.9b01519
10.1021/ar2000875
10.1016/j.ccr.2004.04.007
10.1021/acs.chemrev.7b00572
10.1002/anie.202013618
10.1021/om00005a030
10.1126/science.aau5105
10.1021/ja0691324
10.1021/acs.inorgchem.5b00512
10.1039/D4TA04897K
10.1021/ar700111a
10.1021/ar50140a002
10.1039/D5SC00295H
10.1088/0022-3700/19/18/011
10.1021/cr00085a006
10.1021/jacs.1c00204
10.1021/jp801799f
10.1021/ic0303340
10.1021/ar50038a003
10.1039/b515269k
10.1002/wcms.1221
10.1021/cr900406f
10.1002/cctc.201800963
10.1039/D0SC03192E
10.1002/anie.202008207
10.1021/cr9408989
10.1002/anie.202012595
10.1016/S0009-2614(02)01084-9
10.1002/cctc.201501015
10.1021/ja0204168
10.1002/9780470125939
10.1039/b515623h
10.1002/wcms.71
10.1038/nature08634
10.1002/chem.201405887
10.1021/jp031021t
10.1021/cr900202j
10.1002/anie.202014381
10.1021/cr9003133
10.1021/acs.jpclett.6b00780
10.1002/asia.201801329
10.1021/ar700134q
10.1039/b926828f
10.1002/anie.199006821
10.1002/jcc.10255
10.1039/D3TA05155B
10.1021/ja01607a027
10.1002/anie.201611509
10.1016/S0065-3055(03)49006-0
10.1002/chem.201600836
10.1021/cr0103726
10.1002/anie.201705050
10.1039/C9DT03998H
10.1039/D2SC06292E
10.1039/D1DT04299H
10.1021/cr100133q
10.1007/s00214-007-0310-x
10.1021/ct700214v
10.1002/anie.202203345
10.1002/anie.201916362
10.1021/cr900034e
10.1088/0031-8949/34/5/007
10.1021/om700754n
10.1002/anie.202215838
10.1021/jo991145v
10.1016/j.comptc.2021.113192
10.1021/ic062076n
10.1002/9780470125922.ch1
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/molecules30153222
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_b5b03a387bb24340b6222cba18635be3
PMC12348829
40807397
10_3390_molecules30153222
Genre Journal Article
GrantInformation_xml – fundername: National Science and Technology Council of Taiwan
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c3632-d2391ceab6c55dcf4059b5f6c15dda49db62123781d54e4b519a2d68b855af83
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:10:02 EDT 2025
Thu Aug 21 18:26:00 EDT 2025
Thu Aug 14 17:50:19 EDT 2025
Wed Aug 13 13:12:40 EDT 2025
Mon Aug 18 01:32:36 EDT 2025
Wed Aug 06 19:07:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords ammonia
imine analogues
Group 13 elements
1,2-addition reactions
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3632-d2391ceab6c55dcf4059b5f6c15dda49db62123781d54e4b519a2d68b855af83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5847-4271
OpenAccessLink https://doaj.org/article/b5b03a387bb24340b6222cba18635be3
PMID 40807397
PQID 3239077493
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_b5b03a387bb24340b6222cba18635be3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12348829
proquest_miscellaneous_3239402149
proquest_journals_3239077493
pubmed_primary_40807397
crossref_primary_10_3390_molecules30153222
PublicationCentury 2000
PublicationDate 20250731
PublicationDateYYYYMMDD 2025-07-31
PublicationDate_xml – month: 7
  year: 2025
  text: 20250731
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kropp (ref_58) 2007; 129
Samec (ref_47) 2006; 35
ref_92
Yadav (ref_37) 2016; 8
Dahcheh (ref_8) 2015; 21
Bickelhaupt (ref_87) 2000; 15
Fischer (ref_3) 2010; 110
Wilson (ref_20) 2020; 59
Dobereiner (ref_48) 2010; 110
Weetman (ref_34) 2018; 10
Bui (ref_55) 2024; 12
Hanusch (ref_40) 2021; 12
ref_59
Li (ref_18) 2021; 60
Fischer (ref_21) 2021; 143
Sharma (ref_30) 2022; 51
Szych (ref_32) 2025; 16
Linti (ref_43) 1990; 29
Power (ref_1) 1999; 99
Clapham (ref_49) 2004; 248
Schrock (ref_57) 2002; 102
Ganesamoorthy (ref_14) 2018; 24
ref_24
Bui (ref_54) 2024; 12
ref_22
Kutzelnigg (ref_61) 1984; 23
Baerends (ref_81) 2003; 24
Ganesamoorthy (ref_12) 2018; 9
Mitoraj (ref_89) 2007; 26
Weetman (ref_29) 2021; 27
Bickelhaupt (ref_85) 1995; 14
Su (ref_39) 2004; 43
Baceiredo (ref_44) 2017; 56
Braunschweig (ref_9) 2015; 54
Helling (ref_13) 2018; 140
Desclaux (ref_60) 1979; 12
Chu (ref_36) 2018; 118
Bickelhaupt (ref_86) 1999; 20
Cheng (ref_52) 2000; 65
Deglmann (ref_76) 2002; 362
Koers (ref_82) 2008; 4
Wolters (ref_84) 2015; 5
Price (ref_11) 2017; 56
Power (ref_33) 2010; 463
Bickelhaupt (ref_83) 2010; 8
Su (ref_38) 2004; 108
Dankert (ref_31) 2022; 58
Baerends (ref_80) 1993; 99
Chang (ref_78) 1986; 34
Conley (ref_50) 2010; 110
Sharma (ref_17) 2021; 60
(ref_62) 1988; 88
ref_77
Frenking (ref_93) 2012; 2
ref_73
Malik (ref_4) 2010; 110
Smith (ref_72) 2016; 7
Grimme (ref_71) 2011; 32
Fukui (ref_64) 1971; 2
Price (ref_10) 2016; 22
Wang (ref_25) 2025; 64
Guo (ref_41) 2018; 13
Zhao (ref_68) 2008; 4
Grimme (ref_70) 2010; 132
Melen (ref_35) 2019; 363
Michalak (ref_90) 2008; 112
Stendel (ref_56) 2009; 109
Cordero (ref_66) 2008; 37
Timoshkin (ref_26) 2008; 112
Taeufer (ref_23) 2023; 14
Ikariya (ref_51) 2007; 40
Weigend (ref_69) 2006; 8
Rivard (ref_5) 2006; 28
Pandey (ref_28) 2016; 1076
Heullyt (ref_79) 1986; 19
Schulz (ref_45) 2021; 60
Schulz (ref_2) 2003; 49
Power (ref_42) 2011; 44
Allonas (ref_46) 2002; 124
Burford (ref_53) 2017; 334
Mitoraj (ref_88) 2007; 13
Yang (ref_19) 2020; 59
Hammond (ref_67) 1955; 77
Schoening (ref_16) 2019; 48
Helling (ref_15) 2019; 58
Mitoraj (ref_91) 2009; 5
Rivard (ref_6) 2007; 46
(ref_63) 1997; 97
Shih (ref_27) 2015; 54
Dahcheh (ref_7) 2014; 53
Zhao (ref_75) 2008; 120
Bulat (ref_65) 2021; 1199
Zhao (ref_94) 2018; 8
Zhao (ref_74) 2008; 41
References_xml – volume: 28
  start-page: 3800
  year: 2006
  ident: ref_5
  article-title: A donor-stabilization strategy for the preparation of compounds featuring P = B and As = B double bonds
  publication-title: Chem. Commun.
  doi: 10.1039/B609748K
– volume: 140
  start-page: 5053
  year: 2018
  ident: ref_13
  article-title: Synthesis of a Gallaarsene {HC[C(Me)N-2,6-i-Pr2-C6H3]2}GaAsCp* Containing a Ga = As Double Bond
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02447
– volume: 53
  start-page: 13159
  year: 2014
  ident: ref_7
  article-title: Synthesis and Reactivity of a CAAC–Aminoborylene Adduct: A Hetero-Allene or an Organoboron Isoelectronic with Singlet Carbenes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408371
– volume: 32
  start-page: 1456
  year: 2011
  ident: ref_71
  article-title: Effect of the Damping Function in Dispersion Corrected Density Functional Theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 20
  start-page: 114
  year: 1999
  ident: ref_86
  article-title: Understanding reactivity with Kohn-Sham molecular orbital theory: E2-SN2 mechanistic spectrum and other concepts
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L
– volume: 54
  start-page: 1662
  year: 2015
  ident: ref_9
  article-title: The Reactivities of Iminoboranes with Carbenes: BN Isosteres of Carbene–Alkyne Adducts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201409699
– volume: 97
  start-page: 597
  year: 1997
  ident: ref_63
  article-title: Strong Closed-Shell Interactions in Inorganic Chemistry
  publication-title: Chem. Rev.
  doi: 10.1021/cr940396v
– volume: 9
  start-page: 87
  year: 2018
  ident: ref_12
  article-title: From Stable Sb- and Bi-Centered Radicals to a Compound with a Ga = Sb Double Bond
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02581-2
– volume: 4
  start-page: 1849
  year: 2008
  ident: ref_68
  article-title: Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800246v
– volume: 13
  start-page: 347
  year: 2007
  ident: ref_88
  article-title: Natural Orbitals for Chemical Valence as Descriptors of Chemical Bonding in Transition Metal Complexes
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-006-0149-4
– volume: 5
  start-page: 962
  year: 2009
  ident: ref_91
  article-title: A Combined Charge and Energy Decomposition Scheme for Bond Analysis
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800503d
– volume: 8
  start-page: e1345
  year: 2018
  ident: ref_94
  article-title: Energy decomposition analysis
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1345
– volume: 334
  start-page: 84
  year: 2017
  ident: ref_53
  article-title: Dinitrogen activation by group 4 and group 5 metal complexes supported by phosphine-amido containing ligand manifolds
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2016.06.015
– volume: 1076
  start-page: 23
  year: 2016
  ident: ref_28
  article-title: Theoretical Insights into the Nature of Nonding in Group 13—Group 15 Compounds [REE’R] (E = B-Tl; E’ = N-Bi; R = Me, Ph, Ar): Bonding Energy Analysis
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2015.11.019
– volume: 99
  start-page: 4597
  year: 1993
  ident: ref_80
  article-title: Relativistic regular two- component Hamiltonians
  publication-title: Chem. Phys.
– volume: 112
  start-page: 1933
  year: 2008
  ident: ref_90
  article-title: Bond orbitals from chemical valence theory
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp075460u
– volume: 64
  start-page: 3485
  year: 2025
  ident: ref_25
  article-title: Synthesis and Reactivity of Germyl-Substituted Gallapnictenes
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.4c05097
– volume: 23
  start-page: 272
  year: 1984
  ident: ref_61
  article-title: Chemical Bonding in Higher Main Group Elements
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.198402721
– volume: 27
  start-page: 1941
  year: 2021
  ident: ref_29
  article-title: Main Group Multiple Bonds for Bond Activations and Catalysis
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202002939
– volume: 58
  start-page: 1242
  year: 2022
  ident: ref_31
  article-title: Heavier Group 13/15 Multiple Bond Systems: Synthesis, Structure and Chemical Bond Activation
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC06518A
– volume: 37
  start-page: 2832
  year: 2008
  ident: ref_66
  article-title: Covalent radii revisited
  publication-title: Dalton Trans.
  doi: 10.1039/b801115j
– volume: 24
  start-page: 9157
  year: 2018
  ident: ref_14
  article-title: A General Pathway for the Synthesis of Gallastibenes Containing Ga = Sb Double Bonds
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201801813
– volume: 132
  start-page: 154104
  year: 2010
  ident: ref_70
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 58
  start-page: 10323
  year: 2019
  ident: ref_15
  article-title: Synthesis of a Ga-Stabilized As-Centered Radical and a Gallastibene by Tailoring Group 15 Element-Carbon Bond Strengths
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b01519
– volume: 44
  start-page: 627
  year: 2011
  ident: ref_42
  article-title: Interaction of multiple bonded and unsaturated heavier main group compounds with hydrogen, ammonia, olefins, and related molecules
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar2000875
– ident: ref_77
– volume: 248
  start-page: 2201
  year: 2004
  ident: ref_49
  article-title: Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2004.04.007
– volume: 118
  start-page: 3608
  year: 2018
  ident: ref_36
  article-title: Oxidative Addition and Reductive Elimination at Main-Group Element Centers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00572
– volume: 60
  start-page: 3572
  year: 2021
  ident: ref_45
  article-title: From π-Bonded Gallapnictenes to Nucleophilic, Redox-Active Metal-Coordinated Pnictanides
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202013618
– volume: 14
  start-page: 2288
  year: 1995
  ident: ref_85
  article-title: Oxidative insertion as front-side SN2 substitution: A theoretical study of the model reaction system Pd + CH3Cl
  publication-title: Organometallics
  doi: 10.1021/om00005a030
– volume: 363
  start-page: 479
  year: 2019
  ident: ref_35
  article-title: Frontiers in molecular p-block chemistry: From structure to reactivity
  publication-title: Science
  doi: 10.1126/science.aau5105
– volume: 129
  start-page: 7596
  year: 2007
  ident: ref_58
  article-title: Transition Metal−Carbon Complexes. A Theoretical Study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0691324
– volume: 54
  start-page: 5154
  year: 2015
  ident: ref_27
  article-title: Doubly Bonded E13 = P and B = E15 Molecules and Their Reactions with H2, Acetonitrile, Benzophenone, and 2,3-Dimethylbutadiene
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00512
– volume: 12
  start-page: 32191
  year: 2024
  ident: ref_55
  article-title: Novel multi-functional sites in boron-based bi-atom catalysts synergistically boost C–C coupling for efficient CO electroreduction towards ethanol
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D4TA04897K
– volume: 41
  start-page: 157
  year: 2008
  ident: ref_74
  article-title: Density Functionals with Broad Applicability in Chemistry
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700111a
– volume: 12
  start-page: 276
  year: 1979
  ident: ref_60
  article-title: Relativity and the periodic system of elements
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar50140a002
– ident: ref_59
– volume: 16
  start-page: 7397
  year: 2025
  ident: ref_32
  article-title: Reactivity of an arsanyl-phosphagallene: Decarbonylation of CO2 and COS to form phosphaketenes
  publication-title: Chem. Sci.
  doi: 10.1039/D5SC00295H
– volume: 19
  start-page: 2799
  year: 1986
  ident: ref_79
  article-title: Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure
  publication-title: J. Phys. B
  doi: 10.1088/0022-3700/19/18/011
– volume: 88
  start-page: 563
  year: 1988
  ident: ref_62
  article-title: Relativistic effects in structural chemistry
  publication-title: Chem. Rev.
  doi: 10.1021/cr00085a006
– volume: 143
  start-page: 4106
  year: 2021
  ident: ref_21
  article-title: Isolable Phospha-and Arsaalumenes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00204
– volume: 112
  start-page: 13180
  year: 2008
  ident: ref_26
  article-title: Theoretical Studies of [MYR2]n Isomers(M = B, Al, Ga; Y = N, P, As; R = H, CH3): Structures and Energetics of Monomeric and Dimeric Compounds (n = 1, 2)
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp801799f
– volume: 43
  start-page: 4846
  year: 2004
  ident: ref_39
  article-title: Mechanism of Abstraction Reactions of Dimetallenes (R2X=XR2, X = C, Si, Ge, Sn, and Pb) with Halocarbons: A Theoretical Study
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0303340
– volume: 2
  start-page: 57
  year: 1971
  ident: ref_64
  article-title: Recognition of Stereochemical Paths by Orbital Interaction
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar50038a003
– volume: 35
  start-page: 237
  year: 2006
  ident: ref_47
  article-title: Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b515269k
– volume: 5
  start-page: 324
  year: 2015
  ident: ref_84
  article-title: The activation strain model and molecular orbital theory
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1221
– volume: 110
  start-page: 4417
  year: 2010
  ident: ref_4
  article-title: Precursor Chemistry for Main Group Elements in Semiconducting Materials
  publication-title: Chem. Rev.
  doi: 10.1021/cr900406f
– volume: 10
  start-page: 4213
  year: 2018
  ident: ref_34
  article-title: The road travelled: After main-group elements as transition metals
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201800963
– volume: 12
  start-page: 2001
  year: 2021
  ident: ref_40
  article-title: Recent advances of group 14 dimetallenes and dimetallynes in bond activation and catalysis
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03192E
– volume: 59
  start-page: 20914
  year: 2020
  ident: ref_20
  article-title: A Phosphanyl- Phosphagallene that Functions as a Frustrated Lewis Pair
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202008207
– volume: 99
  start-page: 3463
  year: 1999
  ident: ref_1
  article-title: π-bonding and the Lone Pair Effect in Multiple Bonds between Heavier Main Group Elements
  publication-title: Chem. Rev.
  doi: 10.1021/cr9408989
– volume: 60
  start-page: 1986
  year: 2021
  ident: ref_18
  article-title: Synthesis and Reactivity of Heteroleptic Ga-P-C Allyl Cation Analogues
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202012595
– volume: 362
  start-page: 511
  year: 2002
  ident: ref_76
  article-title: An efficient implementation of second analytical derivatives for density functional methods
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01084-9
– volume: 8
  start-page: 486
  year: 2016
  ident: ref_37
  article-title: Compounds with Low-Valent p-Block Elements for Small Molecule Activation and Catalysis
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201501015
– volume: 124
  start-page: 9613
  year: 2002
  ident: ref_46
  article-title: N-H and α(C-H) Bond Dissociation Enthalpies of Aliphatic Amines
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0204168
– ident: ref_92
  doi: 10.1002/9780470125939
– volume: 8
  start-page: 1057
  year: 2006
  ident: ref_69
  article-title: Accurate Coulomb-fitting basis sets for H to Rn
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b515623h
– volume: 2
  start-page: 43
  year: 2012
  ident: ref_93
  article-title: Energy decomposition analysis
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.71
– volume: 463
  start-page: 171
  year: 2010
  ident: ref_33
  article-title: Main-group elements as transition metals
  publication-title: Nature
  doi: 10.1038/nature08634
– ident: ref_73
– volume: 21
  start-page: 199
  year: 2015
  ident: ref_8
  article-title: Oxidative Addition at a Carbene Center: Synthesis of an Iminoboryl–CAAC Adduct
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201405887
– volume: 108
  start-page: 823
  year: 2004
  ident: ref_38
  article-title: Theoretical Study on the Reaction Mechanism of Abstraction Reactions of Disilenes and Digermenes with Haloalkanes
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp031021t
– volume: 110
  start-page: 681
  year: 2010
  ident: ref_48
  article-title: Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr900202j
– volume: 60
  start-page: 6784
  year: 2021
  ident: ref_17
  article-title: Multi-Talented Gallaphosphene for Ga-P-Ga Heteroallyl Cation Gener-ation, CO2 Storage, and C(sp3)-H Bond Activation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014381
– volume: 110
  start-page: 2294
  year: 2010
  ident: ref_50
  article-title: Discovery, Applications, and Catalytic Mechanisms of Shvo’s Catalyst
  publication-title: Chem. Rev.
  doi: 10.1021/cr9003133
– volume: 7
  start-page: 2197
  year: 2016
  ident: ref_72
  article-title: Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00780
– volume: 13
  start-page: 3800
  year: 2018
  ident: ref_41
  article-title: Activation of Small Molecules by Compounds that Contain Triple Bonds Between Heavier Group-14 Elements
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201801329
– volume: 40
  start-page: 1300
  year: 2007
  ident: ref_51
  article-title: Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar700134q
– volume: 8
  start-page: 3118
  year: 2010
  ident: ref_83
  article-title: The activation strain model of chemical reactivity
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b926828f
– volume: 29
  start-page: 682
  year: 1990
  ident: ref_43
  article-title: An Allene-analogous Boranylidenephosphane with B=P Double Bond: 1,1-Diethylpropyl(2,2,6,6-tetramethylpiperidino)-boranylidenephosphane-P-pentacarbonylchromium
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.199006821
– volume: 24
  start-page: 1142
  year: 2003
  ident: ref_81
  article-title: Optimized Slater-type basis sets for the elements 1–118
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10255
– volume: 12
  start-page: 2110
  year: 2024
  ident: ref_54
  article-title: P-block doped semi-metallic xenes as highly selective and efficient transition-metal free single atom catalysts for electrochemical CO reduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA05155B
– volume: 77
  start-page: 334
  year: 1955
  ident: ref_67
  article-title: A Correlation of Reaction Rates
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01607a027
– volume: 56
  start-page: 4814
  year: 2017
  ident: ref_44
  article-title: The Lightest Element Phosphoranylidene: NHC-Supported Cyclic Borylidene-Phosphorane with Significant B = P Character
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201611509
– volume: 49
  start-page: 225
  year: 2003
  ident: ref_2
  article-title: Group 13/15 Organometallic Compounds—Synthesis, Structure, Reactivity and Potential Applications
  publication-title: Adv. Organomet. Chem.
  doi: 10.1016/S0065-3055(03)49006-0
– volume: 22
  start-page: 6248
  year: 2016
  ident: ref_10
  article-title: Base-Stabilized Phosphinidene Boranes by Silylium-Ion Abstraction
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201600836
– volume: 102
  start-page: 145
  year: 2002
  ident: ref_57
  article-title: High Oxidation State Multiple Metal−Carbon Bonds
  publication-title: Chem. Rev.
  doi: 10.1021/cr0103726
– volume: 56
  start-page: 9953
  year: 2017
  ident: ref_11
  article-title: Phosphaborenes: Accessible reagents for C-C/P-B isosteres
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201705050
– volume: 48
  start-page: 17729
  year: 2019
  ident: ref_16
  article-title: Synthesis and Structures of Gallaarsenes LGaAsGa(X)L Featuring a Ga-As Double Bond
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT03998H
– volume: 14
  start-page: 3018
  year: 2023
  ident: ref_23
  article-title: Photochemical Formation and Reversible Base- Induced Cleavage of a Phosphagallene
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC06292E
– volume: 51
  start-page: 1612
  year: 2022
  ident: ref_30
  article-title: Selective 1,2 Addition of Polar X−H Bonds to the Ga−P Double Bond of Gallaphosphene L(Cl)GaPGaL
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT04299H
– volume: 110
  start-page: 3877
  year: 2010
  ident: ref_3
  article-title: π-Bonding and the Lone Pair Effect in Multiple Bonds Involving Heavier Main Group Elements: Developments in the New Millennium
  publication-title: Chem. Rev.
  doi: 10.1021/cr100133q
– volume: 120
  start-page: 215
  year: 2008
  ident: ref_75
  article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 4
  start-page: 920
  year: 2008
  ident: ref_82
  article-title: Reaction Coordinates and the Transition-Vector Approximation to the IRC
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700214v
– ident: ref_24
  doi: 10.1002/anie.202203345
– volume: 59
  start-page: 3971
  year: 2020
  ident: ref_19
  article-title: Crystalline BP-Doped Phenanthryne via Photolysis of The Elusive Boraphosphaketene
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916362
– volume: 109
  start-page: 3227
  year: 2009
  ident: ref_56
  article-title: Fischer Carbene Complexes in Organic Synthesis: Metal-Assisted and Metal-Templated Reactions
  publication-title: Chem. Rev.
  doi: 10.1021/cr900034e
– volume: 34
  start-page: 394
  year: 1986
  ident: ref_78
  article-title: Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/34/5/007
– volume: 26
  start-page: 6576
  year: 2007
  ident: ref_89
  article-title: Donor-acceptor properties of ligands from the natural orbitals for chemical valence
  publication-title: Organometallics
  doi: 10.1021/om700754n
– ident: ref_22
  doi: 10.1002/anie.202215838
– volume: 65
  start-page: 3853
  year: 2000
  ident: ref_52
  article-title: Heterolytic and Homolytic N-H Bond Dissociation Energies of 4-Substituted Hantzsch 2,6-Dimethyl-1,4-dihydropyridines and the Effect of One-Electron Transfer on the N-H Bond Activation
  publication-title: J. Org. Chem.
  doi: 10.1021/jo991145v
– volume: 1199
  start-page: 113192
  year: 2021
  ident: ref_65
  article-title: Identifying the most energetic electrons in a molecule: The highest occupied molecular orbital and the average local ionization energy
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2021.113192
– volume: 46
  start-page: 2971
  year: 2007
  ident: ref_6
  article-title: Boron–Pnictogen Multiple Bonds: Donor-Stabilized P = B and As = B Bonds and a Hindered Iminoborane with a B−N Triple Bond
  publication-title: Inorg. Chem.
  doi: 10.1021/ic062076n
– volume: 15
  start-page: 1
  year: 2000
  ident: ref_87
  article-title: Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry
  publication-title: Rev. Comput. Chem.
  doi: 10.1002/9780470125922.ch1
SSID ssj0021415
Score 2.4475672
Snippet Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea...
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH with a series of heavy imine analogues, (where G13...
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH 3 with a series of heavy imine analogues, G13=P-Rea...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 3222
SubjectTerms 1,2-addition reactions
Ammonia
Chemistry
Group 13 elements
imine analogues
Ligands
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOcAFlXegICNxQlhN_EicXqql2rZwQKgq0t4iv1L20KQ02zsn_gD_kF_SmSSbsoA45JI4ycQztr8ZT-YDeFPW3kjyVIVVKVd1dBxHUc29yxGPqCJPfZ8g-yk__qI-LvRiDLh1Y1rlek7sJ-rQeoqR70qB3jlilVLuX3zjxBpFu6sjhcZtuEOly8iqi8WNw5Xh6jTsZEq8efd8IJyNHRq1ph2GjbWoL9n_L5z5Z7rkb-vP4TbcH4Ejmw2afgC3YvMQ7h6s-doewY-TSD8pEBcEa2s2I4mXli0blr0TfBZCn5zFVi3r400sk-zDOWJMRnVJKIDTMQrKsqNM_vr-8zMeR5aRq4ozTrfH0J7YfOLMYSf4lfSa6VnzIQ-9ewynh_PTg2M-sixwL3MpeMCOzXy0LvdaB18jgiudrnOf6RCsKoPLaXkrENhqFZVDyGdFyI0zWtvayCew1bRNfAYsSnQnReZMYaNCv8UE4sDJVVn4gDjNJPB23d3VxVBLo0IfhHRT_aWbBN6TQqaGVAa7P9FenlXjqKqcdqm00hTOCSVViqIK4Z3NDOIoF2UCO2t1VuPY7KobS0rg9XQZlUVbJbaJ7dXQRpEBlQk8HbQ_SaIQZBcI4xIwG3axIermlWb5ta_cjf2IE6Yon_9frhdwTxDNcFpwIXZga3V5FV8i9lm5V72BXwPtfwXT
  priority: 102
  providerName: ProQuest
Title Reactivity of Ammonia in 1,2-Addition to Group 13 Imine Analogues with G13–P–Ga Linkages: The Electronic Role of Group 13 Elements
URI https://www.ncbi.nlm.nih.gov/pubmed/40807397
https://www.proquest.com/docview/3239077493
https://www.proquest.com/docview/3239402149
https://pubmed.ncbi.nlm.nih.gov/PMC12348829
https://doaj.org/article/b5b03a387bb24340b6222cba18635be3
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCeBMoKyNxQkRN_IrDbVvtbuFQVasi7S3yK2IPzSKyvffUP8A_5JcwY2ejLiBx4ZAcYiuxZ8aeb8aTGULe1a3THC1VZkSRizbYHFZRmzurAI-IShUuBsieqdMv4vNKrm6V-sKYsJQeOBHuyEpbcMN1ZS0TXBRWgUZz1pQaVKUNMc8n6LydMTWYWiXopXSGycGoP7pMpWZDD-Is8WxhTwvFZP1_Q5i_B0re0jzzR-ThABnpNA31MbkTuifk_smuUttTcrMM-HsCVoGgm5ZOUbTWhq47Wn5g-dT7GJZFtxsaPU205PTTJaBLihlJ0HXTU3TH0kXJf17_OIdrYSgaqbDX9B8pSBKdjdVy6BJmiZ8Z3zVLEej9M3Ixn12cnOZDfYXcccVZ7hmvSxeMVU5K71rAbrWVrXKl9N6I2gOtQbFVAGmlCMIC2DPMK221lKbV_Dk56DZdeElo4GBIstLqygQBFov2WP1GibpyHhCazsj7HbmbbymLRgPWB_Km-YM3GTlGhowdMQF2fABi0Qxi0fxLLDJyuGNnM6zKvuEw4QLwbg3Nb8dmYBYekpgubK5SH4ECVGfkReL-OBIB8LoCAJcRvScXe0Pdb-nWX2PObqAjbJWsfvU_JveaPGBYhji6mA_Jwfb7VXgD2GhrJ-RutargrueLCbl3PDs7X07i0vgF6jIRKg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJtAASPBBRF140ceSAgtZV-0VKhapN4ivwJ7aFKarRA3TvwBfgd_il_CTLIJLCBuPeQSW47jGY-_GY_9ATzKCpsK8lS5loNQFt6EOIuK0JoY8YhM4oFtEmQP4uk7-fpIHW3A9-4sDKVVdjaxMdSushQj3xEcvXPEKpl4cfIxJNYo2l3tKDRatdjznz-hy1Y_n71C-T7mfDya707DFatAaEUseOiwoch6bWKrlLMFIpbMqCK2kXJOy8yZmMx5gkBOSS8NQhzNXZyaVCldpAKbvQAXpcCFnA6mjye9fxfhYthunGLhYOe45bf1Nc4hRRsaa0tfwxDwL1j7Z3bmb8vd-ApcXuFUNmwV6yps-PIabO129HDX4euhpzMRRD3BqoINaYAWmi1KFj3l4dC5JheMLSvWhLdYJNjsGCEto2tQKF5UM4oBs0kkfnz59hafiWbkGaOBq58xVF826il62CH-JX2mb2vUpr3XN2B-HsN_EzbLqvS3gXmB3iuPTJpoL9FNSh1R7sQyS6xDWJgG8KQb7vykvbojR5eHZJP_JZsAXpJA-op063bzojp9n68mcW6UGQgt0sQYLoUcYFc5t0ZHKcI240UA250485UpqPNfihvAw74YhUU7M7r01VlbR5ICZQHcaqXf90Qipk9Q2QJI1_RiravrJeXiQ3NROI4j2mee3fl_vx7A1nT-Zj_fnx3s3YVLnBiOm-j1NmwuT8_8PYRdS3O_UXYG-TlPrp_QIEH1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeGAosEF4SVeHf9QkIobZM2FEVRVaTerH0Zcqhd6lSIGyf-AL-Gv8MvYcYvCCBuPfgSW-vJzmO_mR3vB_A0zU0iKFPlSo58mTvtoxflvtER4hEZRyNTN8jOo_138s1xeLwB37tvYaitsouJdaC2paEa-VBwzM4Rq6RimLdtEYvd6evTjz4xSNFOa0en0ZjIgfv8CdO36tVsF3X9jPPp5Ghn328ZBnwjIsF9i4MGxikdmTC0Jkf0kuowj0wQWqtkanVEoT1GUBdKJzXCHcVtlOgkDFWeCBz2EmzGlBQNYHN7Ml8c9tlegEtjs40qUPLhScN26yr0qJC2N9YWwpov4F8g989ezd8Wv-l1uNaiVjZuzOwGbLjiJlzZ6cjibsHXQ0dfSBARBStzNqYpWiq2LFjwgvtja-vOMLYqWV3sYoFgsxMEuIwORaHqUcWoIsz2AvHjy7cFXnuKUZ6M4a56ydCY2aQn7GGH-C_pNf1Yk6YJvroNRxehgDswKMrC3QPmBOayPNBJrJzEpCmxRMATyTQ2FkFi4sHzbrqz0-YgjwwTINJN9pduPNgmhfQP0hnc9Q_l2fusdelMh3oklEhirbkUcoSicm60ChIEcdoJD7Y6dWZtYKiyX2bswZP-NiqL9mlU4crz5hlJBpR6cLfRfi-JRIQfI4b0IFmzizVR1-8Uyw_1seE4jxiteXr__3I9hsvoWNnb2fzgAVzlRHdcl7K3YLA6O3cPEYOt9KPW2hlkF-xfPwH6A0eH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactivity+of+Ammonia+in+1%2C2-Addition+to+Group+13+Imine+Analogues+with+G13%E2%80%93P%E2%80%93Ga+Linkages%3A+The+Electronic+Role+of+Group+13+Elements&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Zheng-Feng+Zhang&rft.au=Ming-Der+Su&rft.date=2025-07-31&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=30&rft.issue=15&rft.spage=3222&rft_id=info:doi/10.3390%2Fmolecules30153222&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b5b03a387bb24340b6222cba18635be3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon