Reactivity of Ammonia in 1,2-Addition to Group 13 Imine Analogues with G13–P–Ga Linkages: The Electronic Role of Group 13 Elements
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding natur...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 30; no. 15; p. 3222 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
31.07.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor–acceptor (singlet–singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet–triplet) interaction. According to our theoretical studies, all G13=P-Rea species—except the Tl=P analogue—undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA–NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N–H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13–P bond length also increase, requiring a greater distortion of the H2N–H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia. |
---|---|
AbstractList | Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH
3
with a series of heavy imine analogues,
G13=P-Rea
(where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in
G13=P-Rea
molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor–acceptor (singlet–singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet–triplet) interaction. According to our theoretical studies, all
G13=P-Rea
species—except the Tl=P analogue—undergo 1,2-addition with NH
3
under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA–NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH
3
into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the
G13=P-Rea
species into the empty σ* orbital of the N–H bond in NH
3
. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13–P bond length also increase, requiring a greater distortion of the H
2
N–H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH
3
, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like
G13=P-Rea
molecules and ammonia. Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor–acceptor (singlet–singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet–triplet) interaction. According to our theoretical studies, all G13=P-Rea species—except the Tl=P analogue—undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA–NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N–H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13–P bond length also increase, requiring a greater distortion of the H2N–H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia. Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13-P-Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor-acceptor (singlet-singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet-triplet) interaction. According to our theoretical studies, all G13=P-Rea species-except the Tl=P analogue-undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA-NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N-H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13-P bond length also increase, requiring a greater distortion of the H2N-H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia.Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13-P-Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor-acceptor (singlet-singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet-triplet) interaction. According to our theoretical studies, all G13=P-Rea species-except the Tl=P analogue-undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA-NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N-H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13-P bond length also increase, requiring a greater distortion of the H2N-H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia. Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH with a series of heavy imine analogues, (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13-P-Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor-acceptor (singlet-singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet-triplet) interaction. According to our theoretical studies, all species-except the Tl=P analogue-undergo 1,2-addition with NH under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA-NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the species into the empty σ* orbital of the N-H bond in NH . The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13-P bond length also increase, requiring a greater distortion of the H N-H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH , thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like molecules and ammonia. |
Author | Su, Ming-Der Zhang, Zheng-Feng |
AuthorAffiliation | 1 Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan; ftg17669@gmail.com 2 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan |
AuthorAffiliation_xml | – name: 2 Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan – name: 1 Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan; ftg17669@gmail.com |
Author_xml | – sequence: 1 givenname: Zheng-Feng surname: Zhang fullname: Zhang, Zheng-Feng – sequence: 2 givenname: Ming-Der orcidid: 0000-0002-5847-4271 surname: Su fullname: Su, Ming-Der |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40807397$$D View this record in MEDLINE/PubMed |
BookMark | eNplkstuEzEUhkeoiF7gAdggS2xYMGD72HNhg6KqhEiRQFX2lm-TOMzYwZ4p6o4VL8Ab8iQ4pEQtLCxb9qfP__HxeXHig7dF8ZzgNwAtfjuE3uqptwkw4UApfVScEUZxCZi1J_fWp8V5SluMKWGEPylOGW5wDW19Vvy4tlKP7saNtyh0aDYMwTuJnEfkNS1nxrjRBY_GgOYxTDtEAC0G5y2aedmH9WQT-ubGDZoT-PX95-c85hItnf8i1za9Q6uNRVc55BizVqPrHHh_zdGVzwbrx_S0eNzJPtlnd_NFsfpwtbr8WC4_zReXs2WpoQJaGgot0VaqSnNudMcwbxXvKk24MZK1RlWUUKgbYjizTHHSSmqqRjWcy66Bi2Jx0Jogt2IX3SDjrQjSiT8bIa6FjKPTvRWKKwwSmlopyoDhbKZUK0maCriykF3vD67dpAZrdC4jyv6B9OGJdxuxDjciB2RNQ9tseHVniOFrfslRDC5p2_fS2zAlAblatu_ZHn35D7oNU8wtOFC4rjOUqRf3Ix2z_G13BsgB0DGkFG13RAgW-y8l_vtS8BsDhMA0 |
Cites_doi | 10.1039/B609748K 10.1021/jacs.8b02447 10.1002/anie.201408371 10.1002/jcc.21759 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L 10.1002/anie.201409699 10.1021/cr940396v 10.1038/s41467-017-02581-2 10.1021/ct800246v 10.1007/s00894-006-0149-4 10.1021/ct800503d 10.1002/wcms.1345 10.1016/j.ccr.2016.06.015 10.1016/j.comptc.2015.11.019 10.1021/jp075460u 10.1021/acs.inorgchem.4c05097 10.1002/anie.198402721 10.1002/chem.202002939 10.1039/D1CC06518A 10.1039/b801115j 10.1002/chem.201801813 10.1063/1.3382344 10.1021/acs.inorgchem.9b01519 10.1021/ar2000875 10.1016/j.ccr.2004.04.007 10.1021/acs.chemrev.7b00572 10.1002/anie.202013618 10.1021/om00005a030 10.1126/science.aau5105 10.1021/ja0691324 10.1021/acs.inorgchem.5b00512 10.1039/D4TA04897K 10.1021/ar700111a 10.1021/ar50140a002 10.1039/D5SC00295H 10.1088/0022-3700/19/18/011 10.1021/cr00085a006 10.1021/jacs.1c00204 10.1021/jp801799f 10.1021/ic0303340 10.1021/ar50038a003 10.1039/b515269k 10.1002/wcms.1221 10.1021/cr900406f 10.1002/cctc.201800963 10.1039/D0SC03192E 10.1002/anie.202008207 10.1021/cr9408989 10.1002/anie.202012595 10.1016/S0009-2614(02)01084-9 10.1002/cctc.201501015 10.1021/ja0204168 10.1002/9780470125939 10.1039/b515623h 10.1002/wcms.71 10.1038/nature08634 10.1002/chem.201405887 10.1021/jp031021t 10.1021/cr900202j 10.1002/anie.202014381 10.1021/cr9003133 10.1021/acs.jpclett.6b00780 10.1002/asia.201801329 10.1021/ar700134q 10.1039/b926828f 10.1002/anie.199006821 10.1002/jcc.10255 10.1039/D3TA05155B 10.1021/ja01607a027 10.1002/anie.201611509 10.1016/S0065-3055(03)49006-0 10.1002/chem.201600836 10.1021/cr0103726 10.1002/anie.201705050 10.1039/C9DT03998H 10.1039/D2SC06292E 10.1039/D1DT04299H 10.1021/cr100133q 10.1007/s00214-007-0310-x 10.1021/ct700214v 10.1002/anie.202203345 10.1002/anie.201916362 10.1021/cr900034e 10.1088/0031-8949/34/5/007 10.1021/om700754n 10.1002/anie.202215838 10.1021/jo991145v 10.1016/j.comptc.2021.113192 10.1021/ic062076n 10.1002/9780470125922.ch1 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/molecules30153222 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_b5b03a387bb24340b6222cba18635be3 PMC12348829 40807397 10_3390_molecules30153222 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Council of Taiwan |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c3632-d2391ceab6c55dcf4059b5f6c15dda49db62123781d54e4b519a2d68b855af83 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:10:02 EDT 2025 Thu Aug 21 18:26:00 EDT 2025 Thu Aug 14 17:50:19 EDT 2025 Wed Aug 13 13:12:40 EDT 2025 Mon Aug 18 01:32:36 EDT 2025 Wed Aug 06 19:07:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | ammonia imine analogues Group 13 elements 1,2-addition reactions |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3632-d2391ceab6c55dcf4059b5f6c15dda49db62123781d54e4b519a2d68b855af83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5847-4271 |
OpenAccessLink | https://doaj.org/article/b5b03a387bb24340b6222cba18635be3 |
PMID | 40807397 |
PQID | 3239077493 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b5b03a387bb24340b6222cba18635be3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12348829 proquest_miscellaneous_3239402149 proquest_journals_3239077493 pubmed_primary_40807397 crossref_primary_10_3390_molecules30153222 |
PublicationCentury | 2000 |
PublicationDate | 20250731 |
PublicationDateYYYYMMDD | 2025-07-31 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250731 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kropp (ref_58) 2007; 129 Samec (ref_47) 2006; 35 ref_92 Yadav (ref_37) 2016; 8 Dahcheh (ref_8) 2015; 21 Bickelhaupt (ref_87) 2000; 15 Fischer (ref_3) 2010; 110 Wilson (ref_20) 2020; 59 Dobereiner (ref_48) 2010; 110 Weetman (ref_34) 2018; 10 Bui (ref_55) 2024; 12 Hanusch (ref_40) 2021; 12 ref_59 Li (ref_18) 2021; 60 Fischer (ref_21) 2021; 143 Sharma (ref_30) 2022; 51 Szych (ref_32) 2025; 16 Linti (ref_43) 1990; 29 Power (ref_1) 1999; 99 Clapham (ref_49) 2004; 248 Schrock (ref_57) 2002; 102 Ganesamoorthy (ref_14) 2018; 24 ref_24 Bui (ref_54) 2024; 12 ref_22 Kutzelnigg (ref_61) 1984; 23 Baerends (ref_81) 2003; 24 Ganesamoorthy (ref_12) 2018; 9 Mitoraj (ref_89) 2007; 26 Weetman (ref_29) 2021; 27 Bickelhaupt (ref_85) 1995; 14 Su (ref_39) 2004; 43 Baceiredo (ref_44) 2017; 56 Braunschweig (ref_9) 2015; 54 Helling (ref_13) 2018; 140 Desclaux (ref_60) 1979; 12 Chu (ref_36) 2018; 118 Bickelhaupt (ref_86) 1999; 20 Cheng (ref_52) 2000; 65 Deglmann (ref_76) 2002; 362 Koers (ref_82) 2008; 4 Wolters (ref_84) 2015; 5 Price (ref_11) 2017; 56 Power (ref_33) 2010; 463 Bickelhaupt (ref_83) 2010; 8 Su (ref_38) 2004; 108 Dankert (ref_31) 2022; 58 Baerends (ref_80) 1993; 99 Chang (ref_78) 1986; 34 Conley (ref_50) 2010; 110 Sharma (ref_17) 2021; 60 (ref_62) 1988; 88 ref_77 Frenking (ref_93) 2012; 2 ref_73 Malik (ref_4) 2010; 110 Smith (ref_72) 2016; 7 Grimme (ref_71) 2011; 32 Fukui (ref_64) 1971; 2 Price (ref_10) 2016; 22 Wang (ref_25) 2025; 64 Guo (ref_41) 2018; 13 Zhao (ref_68) 2008; 4 Grimme (ref_70) 2010; 132 Melen (ref_35) 2019; 363 Michalak (ref_90) 2008; 112 Stendel (ref_56) 2009; 109 Cordero (ref_66) 2008; 37 Timoshkin (ref_26) 2008; 112 Taeufer (ref_23) 2023; 14 Ikariya (ref_51) 2007; 40 Weigend (ref_69) 2006; 8 Rivard (ref_5) 2006; 28 Pandey (ref_28) 2016; 1076 Heullyt (ref_79) 1986; 19 Schulz (ref_45) 2021; 60 Schulz (ref_2) 2003; 49 Power (ref_42) 2011; 44 Allonas (ref_46) 2002; 124 Burford (ref_53) 2017; 334 Mitoraj (ref_88) 2007; 13 Yang (ref_19) 2020; 59 Hammond (ref_67) 1955; 77 Schoening (ref_16) 2019; 48 Helling (ref_15) 2019; 58 Mitoraj (ref_91) 2009; 5 Rivard (ref_6) 2007; 46 (ref_63) 1997; 97 Shih (ref_27) 2015; 54 Dahcheh (ref_7) 2014; 53 Zhao (ref_75) 2008; 120 Bulat (ref_65) 2021; 1199 Zhao (ref_94) 2018; 8 Zhao (ref_74) 2008; 41 |
References_xml | – volume: 28 start-page: 3800 year: 2006 ident: ref_5 article-title: A donor-stabilization strategy for the preparation of compounds featuring P = B and As = B double bonds publication-title: Chem. Commun. doi: 10.1039/B609748K – volume: 140 start-page: 5053 year: 2018 ident: ref_13 article-title: Synthesis of a Gallaarsene {HC[C(Me)N-2,6-i-Pr2-C6H3]2}GaAsCp* Containing a Ga = As Double Bond publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02447 – volume: 53 start-page: 13159 year: 2014 ident: ref_7 article-title: Synthesis and Reactivity of a CAAC–Aminoborylene Adduct: A Hetero-Allene or an Organoboron Isoelectronic with Singlet Carbenes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408371 – volume: 32 start-page: 1456 year: 2011 ident: ref_71 article-title: Effect of the Damping Function in Dispersion Corrected Density Functional Theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 20 start-page: 114 year: 1999 ident: ref_86 article-title: Understanding reactivity with Kohn-Sham molecular orbital theory: E2-SN2 mechanistic spectrum and other concepts publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L – volume: 54 start-page: 1662 year: 2015 ident: ref_9 article-title: The Reactivities of Iminoboranes with Carbenes: BN Isosteres of Carbene–Alkyne Adducts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201409699 – volume: 97 start-page: 597 year: 1997 ident: ref_63 article-title: Strong Closed-Shell Interactions in Inorganic Chemistry publication-title: Chem. Rev. doi: 10.1021/cr940396v – volume: 9 start-page: 87 year: 2018 ident: ref_12 article-title: From Stable Sb- and Bi-Centered Radicals to a Compound with a Ga = Sb Double Bond publication-title: Nat. Commun. doi: 10.1038/s41467-017-02581-2 – volume: 4 start-page: 1849 year: 2008 ident: ref_68 article-title: Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800246v – volume: 13 start-page: 347 year: 2007 ident: ref_88 article-title: Natural Orbitals for Chemical Valence as Descriptors of Chemical Bonding in Transition Metal Complexes publication-title: J. Mol. Model. doi: 10.1007/s00894-006-0149-4 – volume: 5 start-page: 962 year: 2009 ident: ref_91 article-title: A Combined Charge and Energy Decomposition Scheme for Bond Analysis publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800503d – volume: 8 start-page: e1345 year: 2018 ident: ref_94 article-title: Energy decomposition analysis publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1345 – volume: 334 start-page: 84 year: 2017 ident: ref_53 article-title: Dinitrogen activation by group 4 and group 5 metal complexes supported by phosphine-amido containing ligand manifolds publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.06.015 – volume: 1076 start-page: 23 year: 2016 ident: ref_28 article-title: Theoretical Insights into the Nature of Nonding in Group 13—Group 15 Compounds [REE’R] (E = B-Tl; E’ = N-Bi; R = Me, Ph, Ar): Bonding Energy Analysis publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2015.11.019 – volume: 99 start-page: 4597 year: 1993 ident: ref_80 article-title: Relativistic regular two- component Hamiltonians publication-title: Chem. Phys. – volume: 112 start-page: 1933 year: 2008 ident: ref_90 article-title: Bond orbitals from chemical valence theory publication-title: J. Phys. Chem. A doi: 10.1021/jp075460u – volume: 64 start-page: 3485 year: 2025 ident: ref_25 article-title: Synthesis and Reactivity of Germyl-Substituted Gallapnictenes publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.4c05097 – volume: 23 start-page: 272 year: 1984 ident: ref_61 article-title: Chemical Bonding in Higher Main Group Elements publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.198402721 – volume: 27 start-page: 1941 year: 2021 ident: ref_29 article-title: Main Group Multiple Bonds for Bond Activations and Catalysis publication-title: Chem. Eur. J. doi: 10.1002/chem.202002939 – volume: 58 start-page: 1242 year: 2022 ident: ref_31 article-title: Heavier Group 13/15 Multiple Bond Systems: Synthesis, Structure and Chemical Bond Activation publication-title: Chem. Commun. doi: 10.1039/D1CC06518A – volume: 37 start-page: 2832 year: 2008 ident: ref_66 article-title: Covalent radii revisited publication-title: Dalton Trans. doi: 10.1039/b801115j – volume: 24 start-page: 9157 year: 2018 ident: ref_14 article-title: A General Pathway for the Synthesis of Gallastibenes Containing Ga = Sb Double Bonds publication-title: Chem. Eur. J. doi: 10.1002/chem.201801813 – volume: 132 start-page: 154104 year: 2010 ident: ref_70 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 58 start-page: 10323 year: 2019 ident: ref_15 article-title: Synthesis of a Ga-Stabilized As-Centered Radical and a Gallastibene by Tailoring Group 15 Element-Carbon Bond Strengths publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b01519 – volume: 44 start-page: 627 year: 2011 ident: ref_42 article-title: Interaction of multiple bonded and unsaturated heavier main group compounds with hydrogen, ammonia, olefins, and related molecules publication-title: Acc. Chem. Res. doi: 10.1021/ar2000875 – ident: ref_77 – volume: 248 start-page: 2201 year: 2004 ident: ref_49 article-title: Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2004.04.007 – volume: 118 start-page: 3608 year: 2018 ident: ref_36 article-title: Oxidative Addition and Reductive Elimination at Main-Group Element Centers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00572 – volume: 60 start-page: 3572 year: 2021 ident: ref_45 article-title: From π-Bonded Gallapnictenes to Nucleophilic, Redox-Active Metal-Coordinated Pnictanides publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202013618 – volume: 14 start-page: 2288 year: 1995 ident: ref_85 article-title: Oxidative insertion as front-side SN2 substitution: A theoretical study of the model reaction system Pd + CH3Cl publication-title: Organometallics doi: 10.1021/om00005a030 – volume: 363 start-page: 479 year: 2019 ident: ref_35 article-title: Frontiers in molecular p-block chemistry: From structure to reactivity publication-title: Science doi: 10.1126/science.aau5105 – volume: 129 start-page: 7596 year: 2007 ident: ref_58 article-title: Transition Metal−Carbon Complexes. A Theoretical Study publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0691324 – volume: 54 start-page: 5154 year: 2015 ident: ref_27 article-title: Doubly Bonded E13 = P and B = E15 Molecules and Their Reactions with H2, Acetonitrile, Benzophenone, and 2,3-Dimethylbutadiene publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00512 – volume: 12 start-page: 32191 year: 2024 ident: ref_55 article-title: Novel multi-functional sites in boron-based bi-atom catalysts synergistically boost C–C coupling for efficient CO electroreduction towards ethanol publication-title: J. Mater. Chem. A doi: 10.1039/D4TA04897K – volume: 41 start-page: 157 year: 2008 ident: ref_74 article-title: Density Functionals with Broad Applicability in Chemistry publication-title: Acc. Chem. Res. doi: 10.1021/ar700111a – volume: 12 start-page: 276 year: 1979 ident: ref_60 article-title: Relativity and the periodic system of elements publication-title: Acc. Chem. Res. doi: 10.1021/ar50140a002 – ident: ref_59 – volume: 16 start-page: 7397 year: 2025 ident: ref_32 article-title: Reactivity of an arsanyl-phosphagallene: Decarbonylation of CO2 and COS to form phosphaketenes publication-title: Chem. Sci. doi: 10.1039/D5SC00295H – volume: 19 start-page: 2799 year: 1986 ident: ref_79 article-title: Diagonalisation of the Dirac Hamiltonian as a basis for a relativistic many-body procedure publication-title: J. Phys. B doi: 10.1088/0022-3700/19/18/011 – volume: 88 start-page: 563 year: 1988 ident: ref_62 article-title: Relativistic effects in structural chemistry publication-title: Chem. Rev. doi: 10.1021/cr00085a006 – volume: 143 start-page: 4106 year: 2021 ident: ref_21 article-title: Isolable Phospha-and Arsaalumenes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00204 – volume: 112 start-page: 13180 year: 2008 ident: ref_26 article-title: Theoretical Studies of [MYR2]n Isomers(M = B, Al, Ga; Y = N, P, As; R = H, CH3): Structures and Energetics of Monomeric and Dimeric Compounds (n = 1, 2) publication-title: J. Phys. Chem. A doi: 10.1021/jp801799f – volume: 43 start-page: 4846 year: 2004 ident: ref_39 article-title: Mechanism of Abstraction Reactions of Dimetallenes (R2X=XR2, X = C, Si, Ge, Sn, and Pb) with Halocarbons: A Theoretical Study publication-title: Inorg. Chem. doi: 10.1021/ic0303340 – volume: 2 start-page: 57 year: 1971 ident: ref_64 article-title: Recognition of Stereochemical Paths by Orbital Interaction publication-title: Acc. Chem. Res. doi: 10.1021/ar50038a003 – volume: 35 start-page: 237 year: 2006 ident: ref_47 article-title: Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions publication-title: Chem. Soc. Rev. doi: 10.1039/b515269k – volume: 5 start-page: 324 year: 2015 ident: ref_84 article-title: The activation strain model and molecular orbital theory publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1221 – volume: 110 start-page: 4417 year: 2010 ident: ref_4 article-title: Precursor Chemistry for Main Group Elements in Semiconducting Materials publication-title: Chem. Rev. doi: 10.1021/cr900406f – volume: 10 start-page: 4213 year: 2018 ident: ref_34 article-title: The road travelled: After main-group elements as transition metals publication-title: ChemCatChem doi: 10.1002/cctc.201800963 – volume: 12 start-page: 2001 year: 2021 ident: ref_40 article-title: Recent advances of group 14 dimetallenes and dimetallynes in bond activation and catalysis publication-title: Chem. Sci. doi: 10.1039/D0SC03192E – volume: 59 start-page: 20914 year: 2020 ident: ref_20 article-title: A Phosphanyl- Phosphagallene that Functions as a Frustrated Lewis Pair publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008207 – volume: 99 start-page: 3463 year: 1999 ident: ref_1 article-title: π-bonding and the Lone Pair Effect in Multiple Bonds between Heavier Main Group Elements publication-title: Chem. Rev. doi: 10.1021/cr9408989 – volume: 60 start-page: 1986 year: 2021 ident: ref_18 article-title: Synthesis and Reactivity of Heteroleptic Ga-P-C Allyl Cation Analogues publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012595 – volume: 362 start-page: 511 year: 2002 ident: ref_76 article-title: An efficient implementation of second analytical derivatives for density functional methods publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01084-9 – volume: 8 start-page: 486 year: 2016 ident: ref_37 article-title: Compounds with Low-Valent p-Block Elements for Small Molecule Activation and Catalysis publication-title: ChemCatChem doi: 10.1002/cctc.201501015 – volume: 124 start-page: 9613 year: 2002 ident: ref_46 article-title: N-H and α(C-H) Bond Dissociation Enthalpies of Aliphatic Amines publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0204168 – ident: ref_92 doi: 10.1002/9780470125939 – volume: 8 start-page: 1057 year: 2006 ident: ref_69 article-title: Accurate Coulomb-fitting basis sets for H to Rn publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b515623h – volume: 2 start-page: 43 year: 2012 ident: ref_93 article-title: Energy decomposition analysis publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.71 – volume: 463 start-page: 171 year: 2010 ident: ref_33 article-title: Main-group elements as transition metals publication-title: Nature doi: 10.1038/nature08634 – ident: ref_73 – volume: 21 start-page: 199 year: 2015 ident: ref_8 article-title: Oxidative Addition at a Carbene Center: Synthesis of an Iminoboryl–CAAC Adduct publication-title: Chem. Eur. J. doi: 10.1002/chem.201405887 – volume: 108 start-page: 823 year: 2004 ident: ref_38 article-title: Theoretical Study on the Reaction Mechanism of Abstraction Reactions of Disilenes and Digermenes with Haloalkanes publication-title: J. Phys. Chem. A doi: 10.1021/jp031021t – volume: 110 start-page: 681 year: 2010 ident: ref_48 article-title: Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis publication-title: Chem. Rev. doi: 10.1021/cr900202j – volume: 60 start-page: 6784 year: 2021 ident: ref_17 article-title: Multi-Talented Gallaphosphene for Ga-P-Ga Heteroallyl Cation Gener-ation, CO2 Storage, and C(sp3)-H Bond Activation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202014381 – volume: 110 start-page: 2294 year: 2010 ident: ref_50 article-title: Discovery, Applications, and Catalytic Mechanisms of Shvo’s Catalyst publication-title: Chem. Rev. doi: 10.1021/cr9003133 – volume: 7 start-page: 2197 year: 2016 ident: ref_72 article-title: Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00780 – volume: 13 start-page: 3800 year: 2018 ident: ref_41 article-title: Activation of Small Molecules by Compounds that Contain Triple Bonds Between Heavier Group-14 Elements publication-title: Chem. Asian J. doi: 10.1002/asia.201801329 – volume: 40 start-page: 1300 year: 2007 ident: ref_51 article-title: Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts publication-title: Acc. Chem. Res. doi: 10.1021/ar700134q – volume: 8 start-page: 3118 year: 2010 ident: ref_83 article-title: The activation strain model of chemical reactivity publication-title: Org. Biomol. Chem. doi: 10.1039/b926828f – volume: 29 start-page: 682 year: 1990 ident: ref_43 article-title: An Allene-analogous Boranylidenephosphane with B=P Double Bond: 1,1-Diethylpropyl(2,2,6,6-tetramethylpiperidino)-boranylidenephosphane-P-pentacarbonylchromium publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.199006821 – volume: 24 start-page: 1142 year: 2003 ident: ref_81 article-title: Optimized Slater-type basis sets for the elements 1–118 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10255 – volume: 12 start-page: 2110 year: 2024 ident: ref_54 article-title: P-block doped semi-metallic xenes as highly selective and efficient transition-metal free single atom catalysts for electrochemical CO reduction publication-title: J. Mater. Chem. A doi: 10.1039/D3TA05155B – volume: 77 start-page: 334 year: 1955 ident: ref_67 article-title: A Correlation of Reaction Rates publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01607a027 – volume: 56 start-page: 4814 year: 2017 ident: ref_44 article-title: The Lightest Element Phosphoranylidene: NHC-Supported Cyclic Borylidene-Phosphorane with Significant B = P Character publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201611509 – volume: 49 start-page: 225 year: 2003 ident: ref_2 article-title: Group 13/15 Organometallic Compounds—Synthesis, Structure, Reactivity and Potential Applications publication-title: Adv. Organomet. Chem. doi: 10.1016/S0065-3055(03)49006-0 – volume: 22 start-page: 6248 year: 2016 ident: ref_10 article-title: Base-Stabilized Phosphinidene Boranes by Silylium-Ion Abstraction publication-title: Chem. Eur. J. doi: 10.1002/chem.201600836 – volume: 102 start-page: 145 year: 2002 ident: ref_57 article-title: High Oxidation State Multiple Metal−Carbon Bonds publication-title: Chem. Rev. doi: 10.1021/cr0103726 – volume: 56 start-page: 9953 year: 2017 ident: ref_11 article-title: Phosphaborenes: Accessible reagents for C-C/P-B isosteres publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201705050 – volume: 48 start-page: 17729 year: 2019 ident: ref_16 article-title: Synthesis and Structures of Gallaarsenes LGaAsGa(X)L Featuring a Ga-As Double Bond publication-title: Dalton Trans. doi: 10.1039/C9DT03998H – volume: 14 start-page: 3018 year: 2023 ident: ref_23 article-title: Photochemical Formation and Reversible Base- Induced Cleavage of a Phosphagallene publication-title: Chem. Sci. doi: 10.1039/D2SC06292E – volume: 51 start-page: 1612 year: 2022 ident: ref_30 article-title: Selective 1,2 Addition of Polar X−H Bonds to the Ga−P Double Bond of Gallaphosphene L(Cl)GaPGaL publication-title: Dalton Trans. doi: 10.1039/D1DT04299H – volume: 110 start-page: 3877 year: 2010 ident: ref_3 article-title: π-Bonding and the Lone Pair Effect in Multiple Bonds Involving Heavier Main Group Elements: Developments in the New Millennium publication-title: Chem. Rev. doi: 10.1021/cr100133q – volume: 120 start-page: 215 year: 2008 ident: ref_75 article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 4 start-page: 920 year: 2008 ident: ref_82 article-title: Reaction Coordinates and the Transition-Vector Approximation to the IRC publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700214v – ident: ref_24 doi: 10.1002/anie.202203345 – volume: 59 start-page: 3971 year: 2020 ident: ref_19 article-title: Crystalline BP-Doped Phenanthryne via Photolysis of The Elusive Boraphosphaketene publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916362 – volume: 109 start-page: 3227 year: 2009 ident: ref_56 article-title: Fischer Carbene Complexes in Organic Synthesis: Metal-Assisted and Metal-Templated Reactions publication-title: Chem. Rev. doi: 10.1021/cr900034e – volume: 34 start-page: 394 year: 1986 ident: ref_78 article-title: Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory publication-title: Phys. Scr. doi: 10.1088/0031-8949/34/5/007 – volume: 26 start-page: 6576 year: 2007 ident: ref_89 article-title: Donor-acceptor properties of ligands from the natural orbitals for chemical valence publication-title: Organometallics doi: 10.1021/om700754n – ident: ref_22 doi: 10.1002/anie.202215838 – volume: 65 start-page: 3853 year: 2000 ident: ref_52 article-title: Heterolytic and Homolytic N-H Bond Dissociation Energies of 4-Substituted Hantzsch 2,6-Dimethyl-1,4-dihydropyridines and the Effect of One-Electron Transfer on the N-H Bond Activation publication-title: J. Org. Chem. doi: 10.1021/jo991145v – volume: 1199 start-page: 113192 year: 2021 ident: ref_65 article-title: Identifying the most energetic electrons in a molecule: The highest occupied molecular orbital and the average local ionization energy publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2021.113192 – volume: 46 start-page: 2971 year: 2007 ident: ref_6 article-title: Boron–Pnictogen Multiple Bonds: Donor-Stabilized P = B and As = B Bonds and a Hindered Iminoborane with a B−N Triple Bond publication-title: Inorg. Chem. doi: 10.1021/ic062076n – volume: 15 start-page: 1 year: 2000 ident: ref_87 article-title: Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry publication-title: Rev. Comput. Chem. doi: 10.1002/9780470125922.ch1 |
SSID | ssj0021415 |
Score | 2.4475672 |
Snippet | Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea... Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH with a series of heavy imine analogues, (where G13... Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH 3 with a series of heavy imine analogues, G13=P-Rea... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 3222 |
SubjectTerms | 1,2-addition reactions Ammonia Chemistry Group 13 elements imine analogues Ligands |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOcAFlXegICNxQlhN_EicXqql2rZwQKgq0t4iv1L20KQ02zsn_gD_kF_SmSSbsoA45JI4ycQztr8ZT-YDeFPW3kjyVIVVKVd1dBxHUc29yxGPqCJPfZ8g-yk__qI-LvRiDLh1Y1rlek7sJ-rQeoqR70qB3jlilVLuX3zjxBpFu6sjhcZtuEOly8iqi8WNw5Xh6jTsZEq8efd8IJyNHRq1ph2GjbWoL9n_L5z5Z7rkb-vP4TbcH4Ejmw2afgC3YvMQ7h6s-doewY-TSD8pEBcEa2s2I4mXli0blr0TfBZCn5zFVi3r400sk-zDOWJMRnVJKIDTMQrKsqNM_vr-8zMeR5aRq4ozTrfH0J7YfOLMYSf4lfSa6VnzIQ-9ewynh_PTg2M-sixwL3MpeMCOzXy0LvdaB18jgiudrnOf6RCsKoPLaXkrENhqFZVDyGdFyI0zWtvayCew1bRNfAYsSnQnReZMYaNCv8UE4sDJVVn4gDjNJPB23d3VxVBLo0IfhHRT_aWbBN6TQqaGVAa7P9FenlXjqKqcdqm00hTOCSVViqIK4Z3NDOIoF2UCO2t1VuPY7KobS0rg9XQZlUVbJbaJ7dXQRpEBlQk8HbQ_SaIQZBcI4xIwG3axIermlWb5ta_cjf2IE6Yon_9frhdwTxDNcFpwIXZga3V5FV8i9lm5V72BXwPtfwXT priority: 102 providerName: ProQuest |
Title | Reactivity of Ammonia in 1,2-Addition to Group 13 Imine Analogues with G13–P–Ga Linkages: The Electronic Role of Group 13 Elements |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40807397 https://www.proquest.com/docview/3239077493 https://www.proquest.com/docview/3239402149 https://pubmed.ncbi.nlm.nih.gov/PMC12348829 https://doaj.org/article/b5b03a387bb24340b6222cba18635be3 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOCCeBMoKyNxQkRN_IrDbVvtbuFQVasi7S3yK2IPzSKyvffUP8A_5JcwY2ejLiBx4ZAcYiuxZ8aeb8aTGULe1a3THC1VZkSRizbYHFZRmzurAI-IShUuBsieqdMv4vNKrm6V-sKYsJQeOBHuyEpbcMN1ZS0TXBRWgUZz1pQaVKUNMc8n6LydMTWYWiXopXSGycGoP7pMpWZDD-Is8WxhTwvFZP1_Q5i_B0re0jzzR-ThABnpNA31MbkTuifk_smuUttTcrMM-HsCVoGgm5ZOUbTWhq47Wn5g-dT7GJZFtxsaPU205PTTJaBLihlJ0HXTU3TH0kXJf17_OIdrYSgaqbDX9B8pSBKdjdVy6BJmiZ8Z3zVLEej9M3Ixn12cnOZDfYXcccVZ7hmvSxeMVU5K71rAbrWVrXKl9N6I2gOtQbFVAGmlCMIC2DPMK221lKbV_Dk56DZdeElo4GBIstLqygQBFov2WP1GibpyHhCazsj7HbmbbymLRgPWB_Km-YM3GTlGhowdMQF2fABi0Qxi0fxLLDJyuGNnM6zKvuEw4QLwbg3Nb8dmYBYekpgubK5SH4ECVGfkReL-OBIB8LoCAJcRvScXe0Pdb-nWX2PObqAjbJWsfvU_JveaPGBYhji6mA_Jwfb7VXgD2GhrJ-RutargrueLCbl3PDs7X07i0vgF6jIRKg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJtAASPBBRF140ceSAgtZV-0VKhapN4ivwJ7aFKarRA3TvwBfgd_il_CTLIJLCBuPeQSW47jGY-_GY_9ATzKCpsK8lS5loNQFt6EOIuK0JoY8YhM4oFtEmQP4uk7-fpIHW3A9-4sDKVVdjaxMdSushQj3xEcvXPEKpl4cfIxJNYo2l3tKDRatdjznz-hy1Y_n71C-T7mfDya707DFatAaEUseOiwoch6bWKrlLMFIpbMqCK2kXJOy8yZmMx5gkBOSS8NQhzNXZyaVCldpAKbvQAXpcCFnA6mjye9fxfhYthunGLhYOe45bf1Nc4hRRsaa0tfwxDwL1j7Z3bmb8vd-ApcXuFUNmwV6yps-PIabO129HDX4euhpzMRRD3BqoINaYAWmi1KFj3l4dC5JheMLSvWhLdYJNjsGCEto2tQKF5UM4oBs0kkfnz59hafiWbkGaOBq58xVF826il62CH-JX2mb2vUpr3XN2B-HsN_EzbLqvS3gXmB3iuPTJpoL9FNSh1R7sQyS6xDWJgG8KQb7vykvbojR5eHZJP_JZsAXpJA-op063bzojp9n68mcW6UGQgt0sQYLoUcYFc5t0ZHKcI240UA250485UpqPNfihvAw74YhUU7M7r01VlbR5ICZQHcaqXf90Qipk9Q2QJI1_RiravrJeXiQ3NROI4j2mee3fl_vx7A1nT-Zj_fnx3s3YVLnBiOm-j1NmwuT8_8PYRdS3O_UXYG-TlPrp_QIEH1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeGAosEF4SVeHf9QkIobZM2FEVRVaTerH0Zcqhd6lSIGyf-AL-Gv8MvYcYvCCBuPfgSW-vJzmO_mR3vB_A0zU0iKFPlSo58mTvtoxflvtER4hEZRyNTN8jOo_138s1xeLwB37tvYaitsouJdaC2paEa-VBwzM4Rq6RimLdtEYvd6evTjz4xSNFOa0en0ZjIgfv8CdO36tVsF3X9jPPp5Ghn328ZBnwjIsF9i4MGxikdmTC0Jkf0kuowj0wQWqtkanVEoT1GUBdKJzXCHcVtlOgkDFWeCBz2EmzGlBQNYHN7Ml8c9tlegEtjs40qUPLhScN26yr0qJC2N9YWwpov4F8g989ezd8Wv-l1uNaiVjZuzOwGbLjiJlzZ6cjibsHXQ0dfSBARBStzNqYpWiq2LFjwgvtja-vOMLYqWV3sYoFgsxMEuIwORaHqUcWoIsz2AvHjy7cFXnuKUZ6M4a56ydCY2aQn7GGH-C_pNf1Yk6YJvroNRxehgDswKMrC3QPmBOayPNBJrJzEpCmxRMATyTQ2FkFi4sHzbrqz0-YgjwwTINJN9pduPNgmhfQP0hnc9Q_l2fusdelMh3oklEhirbkUcoSicm60ChIEcdoJD7Y6dWZtYKiyX2bswZP-NiqL9mlU4crz5hlJBpR6cLfRfi-JRIQfI4b0IFmzizVR1-8Uyw_1seE4jxiteXr__3I9hsvoWNnb2fzgAVzlRHdcl7K3YLA6O3cPEYOt9KPW2hlkF-xfPwH6A0eH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactivity+of+Ammonia+in+1%2C2-Addition+to+Group+13+Imine+Analogues+with+G13%E2%80%93P%E2%80%93Ga+Linkages%3A+The+Electronic+Role+of+Group+13+Elements&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Zheng-Feng+Zhang&rft.au=Ming-Der+Su&rft.date=2025-07-31&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=30&rft.issue=15&rft.spage=3222&rft_id=info:doi/10.3390%2Fmolecules30153222&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b5b03a387bb24340b6222cba18635be3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |