Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed

The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose, records of 867 lambs including lamb sex, dam age, birth weight, weaning weight, age at 3-month (3 months old), age at 6-month (6 months old) an...

Full description

Saved in:
Bibliographic Details
Published inActa scientiarum. Animal sciences Vol. 41; no. 1; pp. 45282 - e45282
Main Authors Ghotbaldini, Hamidreza, Mohammadabadi, Mohammadreza, Nezamabadi-pour, Hossein, Babenko, Olena Ivanivna, Bushtruk, Maryna Vitaliivna, Tkachenko, Serhii Vasyliovych
Format Journal Article
LanguageEnglish
Portuguese
Published Maringa Editora da Universidade Estadual de Maringá - EDUEM 2019
Editora da Universidade Estadual de Maringá (Eduem)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose, records of 867 lambs including lamb sex, dam age, birth weight, weaning weight, age at 3-month (3 months old), age at 6-month (6 months old) and body weight at 3 months of age were used. Firstly, genetic parameters of the animals were estimated using ASReml software. The data was then pre-processed for using in MATLAB software. After initial experiments on the appropriate neural network architecture for body weight at 6-month age, two networks were examined. A feed-forward backpropagation multilayer perceptron (MLP) algorithm was used and 70% of all data used as training data, 15% as testing data and 15% as validating data, to prevent over-fitting of the artificial neural network. Results showed that the both networks capable to predict breeding values for body weight at 6 month-age in Kermani sheep. It can be concluded that artificial neural network has a good ability to predict growth traits in Kermani sheep with an acceptable speed and accuracy. Therefore, this network, instead of commonly-used procedures can be used to estimate the breeding values for productive and reproductive traits in domestic animals.
AbstractList The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose, records of 867 lambs including lamb sex, dam age, birth weight, weaning weight, age at 3-month (3 months old), age at 6-month (6 months old) and body weight at 3 months of age were used. Firstly, genetic parameters of the animals were estimated using ASReml software. The data was then pre-processed for using in MATLAB software. After initial experiments on the appropriate neural network architecture for body weight at 6-month age, two networks were examined. A feed-forward backpropagation multilayer perceptron (MLP) algorithm was used and 70% of all data used as training data, 15% as testing data and 15% as validating data, to prevent over-fitting of the artificial neural network. Results showed that the both networks capable to predict breeding values for body weight at 6 month-age in Kermani sheep. It can be concluded that artificial neural network has a good ability to predict growth traits in Kermani sheep with an acceptable speed and accuracy. Therefore, this network, instead of commonly-used procedures can be used to estimate the breeding values for productive and reproductive traits in domestic animals.
The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose, records of 867 lambs including lamb sex, dam age, birth weight, weaning weight, age at 3-month (3 months old), age at 6-month (6 months old) and body weight at 3 months of age were used. Firstly, genetic parameters of the animals were estimated using ASReml software. The data was then pre-processed for using in MATLAB software. After initial experiments on the appropriate neural network architecture for body weight at 6-month age, two networks were examined. A feed-forward back propagation multilayer perceptron (MLP) algorithm was used and 70% of all data used as training data, 15% as testing data and 15% as validating data, to prevent over-fitting of the artificial neural network. Results showed that the both networks capable to predict breeding values for body weight at 6 month-age in Kermani sheep. It can be concluded that artificial neural network has a good ability to predict growth traits in Kermani sheep with an acceptable speed and accuracy. Therefore, this network, instead of commonly-used procedures can be used to estimate the breeding values for productive and reproductive traits in domestic animals.
Author Babenko, Olena Ivanivna
Tkachenko, Serhii Vasyliovych
Bushtruk, Maryna Vitaliivna
Nezamabadi-pour, Hossein
Ghotbaldini, Hamidreza
Mohammadabadi, Mohammadreza
AuthorAffiliation Bila Tserkva National Agrarian University
Shahid Bahonar University of Kerman
AuthorAffiliation_xml – name: Shahid Bahonar University of Kerman
– name: Bila Tserkva National Agrarian University
Author_xml – sequence: 1
  givenname: Hamidreza
  surname: Ghotbaldini
  fullname: Ghotbaldini, Hamidreza
– sequence: 2
  givenname: Mohammadreza
  orcidid: 0000-0002-1268-3043
  surname: Mohammadabadi
  fullname: Mohammadabadi, Mohammadreza
– sequence: 3
  givenname: Hossein
  surname: Nezamabadi-pour
  fullname: Nezamabadi-pour, Hossein
– sequence: 4
  givenname: Olena Ivanivna
  surname: Babenko
  fullname: Babenko, Olena Ivanivna
– sequence: 5
  givenname: Maryna Vitaliivna
  surname: Bushtruk
  fullname: Bushtruk, Maryna Vitaliivna
– sequence: 6
  givenname: Serhii Vasyliovych
  surname: Tkachenko
  fullname: Tkachenko, Serhii Vasyliovych
BookMark eNpVUc1u1DAYjFCRaAvvYME5y-f_mFtVQamoAAk4W7Zj73rJxoudtOrb400qKk4zsmbGo28umrMxjb5p3mLYMCD8vXGTKS6aMR4qbO4ZjnjDOOnIi-YcdyDbTkhytnDREkHFq-ailD0A40Lx8yZ9z76PborjFtnsK6_k3gyzRykgm_pH9ODjdjchMyHRHtI47ZDZejSXk_IqTzHEWmBAX_2cF5geUv5dUBzRF58PtRoqO--Pa_zr5mUwQ_FvnvCy-fXp48_rz-3dt5vb66u71lFBSSu9tEaCChiTQLhjlCneScux4wSC64XhlHNGTA-9Utx2NBACmEsL1BGgl83tmtsns9fHHA8mP-pkol4eUt5qU7u7wWtgOLCOGQDimFJESZDMUuIst-C4rFmbNaue2A9J79Ocx1pe_zhdWJ8uXL9WAIABOO6q4d1qOOb0Z_ZlerYQRpXArHavqg-ryuVUSvbhX00M-rSu_n9dvayrl3XpX8qsm0g
CitedBy_id crossref_primary_10_1016_j_scienta_2022_111014
crossref_primary_10_1016_j_heliyon_2023_e14194
crossref_primary_10_1080_10495398_2022_2152349
crossref_primary_10_1080_10495398_2021_1998093
crossref_primary_10_1080_10495398_2021_2000997
crossref_primary_10_1080_10495398_2021_1954529
crossref_primary_10_1080_10495398_2022_2047993
crossref_primary_10_1080_10495398_2021_2002882
crossref_primary_10_3390_ani12202865
crossref_primary_10_1016_j_heliyon_2022_e09749
crossref_primary_10_3389_fgene_2022_993192
crossref_primary_10_1016_j_gene_2022_146934
crossref_primary_10_1139_cjas_2023_0102
crossref_primary_10_1007_s11250_021_02763_7
crossref_primary_10_61186_rap_14_41_33
crossref_primary_10_1093_jas_skab022
crossref_primary_10_3390_ani13050798
crossref_primary_10_1080_10495398_2022_2152557
crossref_primary_10_1080_10495398_2023_2196313
crossref_primary_10_1080_10495398_2021_2000428
crossref_primary_10_1080_10495398_2022_2131561
crossref_primary_10_3390_agriculture13020362
crossref_primary_10_1007_s11250_022_03294_5
crossref_primary_10_1186_s12917_021_03077_4
crossref_primary_10_1080_10495398_2021_2007937
crossref_primary_10_1080_10495398_2021_1998088
crossref_primary_10_1038_s41598_022_24091_y
crossref_primary_10_1038_s41598_022_23499_w
crossref_primary_10_56093_ijans_v92i10_124645
crossref_primary_10_1016_j_smallrumres_2022_106904
crossref_primary_10_1080_10495398_2021_2013859
crossref_primary_10_1016_j_compag_2023_108456
crossref_primary_10_14202_vetworld_2021_104_112
crossref_primary_10_1016_j_heliyon_2022_e11576
crossref_primary_10_1080_10495398_2021_1996387
crossref_primary_10_1080_10495398_2022_2149551
crossref_primary_10_1080_10495398_2022_2111309
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: This work is licensed under a Creative Commons Attribution 4.0 International License.
DBID AAYXX
CITATION
3V.
7X2
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M0K
M2O
MBDVC
PADUT
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
GPN
DOA
DOI 10.4025/actascianimsci.v41i1.45282
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Agriculture Science Database
Research Library (ProQuest)
Research Library (Corporate)
Research Library China
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SciELO
Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Research Library China
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1807-8672
EndPage e45282
ExternalDocumentID oai_doaj_org_article_041f484a002c499297074b32cb5b0c57
S1807_86722019000100518
10_4025_actascianimsci_v41i1_45282
GroupedDBID 23M
2WC
3V.
5GY
5VS
7X2
8FE
8FH
8G5
91A
AAYXX
ABDHV
ABUWG
ABXHO
ADBBV
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
APOWU
ATCPS
AZFZN
AZQEC
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
DYU
E3Z
EBD
ECGQY
EYRJQ
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
IAO
INF
ITC
KQ8
M0K
M2O
M~E
N.T
OK1
PADUT
PIMPY
PQQKQ
PROAC
PV9
RNS
RSC
RZL
SCD
7XB
8FK
MBDVC
PQEST
PQUKI
PRINS
Q9U
C1A
GPN
IPNFZ
RIG
ID FETCH-LOGICAL-c3632-7e7ba709f112f25c4349587b51c520fcd6a535542ad0d995b83f220157b03c203
IEDL.DBID DOA
ISSN 1806-2636
1807-8672
IngestDate Tue Oct 22 14:56:20 EDT 2024
Fri Oct 18 21:07:26 EDT 2024
Thu Oct 10 22:02:29 EDT 2024
Thu Sep 26 15:53:58 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords estimate
lamb
genetic parameters
growth traits
Language English
Portuguese
License This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3632-7e7ba709f112f25c4349587b51c520fcd6a535542ad0d995b83f220157b03c203
ORCID 0000-0002-1268-3043
OpenAccessLink https://doaj.org/article/041f484a002c499297074b32cb5b0c57
PQID 2439614355
PQPubID 2037652
ParticipantIDs doaj_primary_oai_doaj_org_article_041f484a002c499297074b32cb5b0c57
scielo_journals_S1807_86722019000100518
proquest_journals_2439614355
crossref_primary_10_4025_actascianimsci_v41i1_45282
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Maringa
PublicationPlace_xml – name: Maringa
PublicationTitle Acta scientiarum. Animal sciences
PublicationTitleAlternate Acta Sci., Anim. Sci
PublicationYear 2019
Publisher Editora da Universidade Estadual de Maringá - EDUEM
Editora da Universidade Estadual de Maringá (Eduem)
Publisher_xml – name: Editora da Universidade Estadual de Maringá - EDUEM
– name: Editora da Universidade Estadual de Maringá (Eduem)
References Khodabakhshzadeh, R.; Mohammadabadi, M. R.; Esmailizadeh, A. K.; Shahrebabak, H. M.; Bordbar, F.; Namin, S. A. 2016; 19
Grzesiak, W.; Lacroix, R.; Wójcik, J.; Blaszczyk, P. 2003; 83
Verardi, C. K.; Oliveira, A. L. B.; Silva, G. A. P.; Gouvêa, L. R. L.; Gonçalves, P. S. 2014; 52
Sharma, A. K.; Sharma, R. K.; Kasana, H. S. 2007; 7
Wilkinson, R. F.; Ming, R.; Anderson, B.; Bunch, T. D.; White, K. L. 1996; 45
Saatci, M.; Dewi, I. A.; Ulutas, Z. 1999; 69
Beale, M. H.; Hagan, M. T.; H.B., D. 2004
Roush, W. B.; Dozier, W. A.; Branton, S. L. 2006; 85
2005
Brethour, J. R. 1994; 72
Kominakis, A. P.; Abas, Z.; Maltaris, I.; Rogdakis, E. 2002; 35
Ribeiro, N. D.; Mambrin, R. B.; Storck, L.; Prigol, M.; Nogueira, C. W. 2013; 44
Bhattacharya, B.; Ghosh, T. K.; Duttagupta, R.; Maitra, D. N. 1984; 61
Moradi, H.; Joka, I.; Forouzantabar, A. 2015; 5
Reed, R. D.; Marks, R. J. 1998
Zamani, P.; Akhondi, M.; Mohammadabadi, M. 2015; 132
Mohammadabadi, M. R.; Sattayimokhtari, R. 2013; 46
Craninx, M.; Fievez, V.; Vlaeminck, B.; De Baets, B. 2008; 60
Kargar, N.; Moradishahrbabak, M.; Moravej, H.; Rokuei, M. 2006; 73
Bote, S.; Basu, S. B. 1984; 61
Pour Hamidi, S.; Mohammadabadi, M. R.; Asadi Foozi, M.; Nezamabadi-pour, H. 2017; 5
Ehret, A.; Hochstuhl, D.; Gianola, D.; Thaller, G. 2015; 47
Salehi, F.; Lacroix, R.; Wade, K. M. 1998; 20
Njubi, D. M.; Wakhungu, J. W.; Badamana, M. S. 2010; 42
Ruhil, A. P.; Raja, T. V.; Gandhi, R. S. 2013; 67
Vaez, T. R.; Nicolas, F. W.; Raadsma, H. W. 1996; 47
Behzadi, M. R. B.; Aslaminejad, A. A. 2010; 9
Gorgulu, O. 2012; 42
Vassileva, S. T.; Radev, D. 2001; 1
Ferreira, R. T.; Viana, A. P.; Barroso, D. G.; Resende, M. D. V.; Amaral Júnior, A. T. 2012; 69
Sharma, A. K.; Sharma, R. K.; Kasana, H. S. 2006; 15
References_xml – volume: 52
  start-page: 255
  year: 2014
  end-page: 263
  article-title: Comparison between different selection methods of rubber trees
  publication-title: Industrial Crops and Products
  contributor:
    fullname: Verardi, C. K.; Oliveira, A. L. B.; Silva, G. A. P.; Gouvêa, L. R. L.; Gonçalves, P. S.
– year: 2004
  publication-title: Neural Network Toolbox User’s Guide
  contributor:
    fullname: Beale, M. H.; Hagan, M. T.; H.B., D.
– volume: 1
  start-page: 287
  year: 2001
  end-page: 294
  article-title: Application of neural networks in dairy husbandry
  publication-title: Biotechnology in Animal Husbandry
  contributor:
    fullname: Vassileva, S. T.; Radev, D.
– volume: 67
  start-page: 51
  issue: 1
  year: 2013
  end-page: 58
  article-title: Preliminary study on prediction of body weight from morphometric measurements of goats through ANN models
  publication-title: Journal of the Indian Society of Agricultural Statistics
  contributor:
    fullname: Ruhil, A. P.; Raja, T. V.; Gandhi, R. S.
– volume: 45
  start-page: 41
  issue: 1
  year: 1996
  end-page: 49
  article-title: The use of neural networks in developing novel embryo culture media-formulations
  publication-title: Theriogenology
  contributor:
    fullname: Wilkinson, R. F.; Ming, R.; Anderson, B.; Bunch, T. D.; White, K. L.
– volume: 73
  start-page: 88
  year: 2006
  end-page: 95
  article-title: Genetic estimate of growth and wool traits in kermani sheep
  publication-title: Animal Science Journal
  contributor:
    fullname: Kargar, N.; Moradishahrbabak, M.; Moravej, H.; Rokuei, M.
– volume: 47
  start-page: 1235
  issue: 8
  year: 1996
  end-page: 1249
  article-title: REML estimates of variance and covariance components for production traits in Australian Merino sheep, using an animal model. 1. Body weight from birth to 22 months
  publication-title: Australian Journal of Agricultural Research
  contributor:
    fullname: Vaez, T. R.; Nicolas, F. W.; Raadsma, H. W.
– volume: 5
  start-page: 30
  issue: 1
  year: 2015
  end-page: 41
  article-title: Modelling and forecasting gold price using GMDH neural network
  publication-title: Indian Journal of Fundamental and Applied Life Sciences
  contributor:
    fullname: Moradi, H.; Joka, I.; Forouzantabar, A.
– volume: 69
  start-page: 345
  issue: 2
  year: 1999
  end-page: 352
  article-title: Variance components due to direct and maternal effects and estimation of breeding values for 12-week weight of Welsh Mountain lambs
  publication-title: Animal Science
  contributor:
    fullname: Saatci, M.; Dewi, I. A.; Ulutas, Z.
– volume: 44
  start-page: 869
  issue: 4
  year: 2013
  end-page: 877
  article-title: Combined selection for grain yield, cooking quality and minerals in the common bean
  publication-title: Revista Ciência Agronômica
  contributor:
    fullname: Ribeiro, N. D.; Mambrin, R. B.; Storck, L.; Prigol, M.; Nogueira, C. W.
– volume: 61
  start-page: 406
  year: 1984
  end-page: 408
  article-title: Estimation of body weight in Black Bengal goats from body measurements
  publication-title: Indian Veterinary Journal
  contributor:
    fullname: Bhattacharya, B.; Ghosh, T. K.; Duttagupta, R.; Maitra, D. N.
– volume: 47
  start-page: 22
  year: 2015
  end-page: 25
  article-title: Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle
  publication-title: Genetics Selection Evolution
  contributor:
    fullname: Ehret, A.; Hochstuhl, D.; Gianola, D.; Thaller, G.
– volume: 61
  start-page: 670
  year: 1984
  end-page: 673
  article-title: Relationship between body measurements and meat production in Beetal goats
  publication-title: Indian Veterinary Journal
  contributor:
    fullname: Bote, S.; Basu, S. B.
– year: 1998
  publication-title: Neural smithing: Supervised learning in feed forward artificial neural networks
  contributor:
    fullname: Reed, R. D.; Marks, R. J.
– volume: 42
  start-page: 639
  issue: 4
  year: 2010
  end-page: 644
  article-title: Use of test-day records to predict first lactation 305-day milk yield using artificial neural network in Kenyan Holstein-Friesian dairy cows
  publication-title: Tropical Animal Health and Production
  contributor:
    fullname: Njubi, D. M.; Wakhungu, J. W.; Badamana, M. S.
– volume: 42
  start-page: 280
  issue: 3
  year: 2012
  end-page: 287
  article-title: Prediction of 305-day milk yield in Brown Swiss cattle using artificial neural networks
  publication-title: South African Journal of Animal Science
  contributor:
    fullname: Gorgulu, O.
– volume: 5
  start-page: 53
  issue: 2
  year: 2017
  end-page: 61
  article-title: Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks
  publication-title: Journal of Livestock Science and Technologies
  contributor:
    fullname: Pour Hamidi, S.; Mohammadabadi, M. R.; Asadi Foozi, M.; Nezamabadi-pour, H.
– volume: 7
  start-page: 1112
  issue: 3
  year: 2007
  end-page: 1120
  article-title: Prediction of first lactation 305-day milk yield in Karan Fries dairy cattle using ANN modeling
  publication-title: Applied Soft Computing
  contributor:
    fullname: Sharma, A. K.; Sharma, R. K.; Kasana, H. S.
– volume: 69
  start-page: 210
  issue: 3
  year: 2012
  end-page: 216
  article-title: Toona ciliata genotype selection with the use of individual BLUP with repeated measures
  publication-title: Scientia Agricola
  contributor:
    fullname: Ferreira, R. T.; Viana, A. P.; Barroso, D. G.; Resende, M. D. V.; Amaral Júnior, A. T.
– volume: 83
  start-page: 307
  issue: 2
  year: 2003
  end-page: 310
  article-title: A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records
  publication-title: Canadian Journal of Animal Science
  contributor:
    fullname: Grzesiak, W.; Lacroix, R.; Wójcik, J.; Blaszczyk, P.
– volume: 19
  start-page: 281
  issue: 2
  year: 2016
  end-page: 289
  article-title: Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep
  publication-title: Polish Journal ofVveterinary sciences
  contributor:
    fullname: Khodabakhshzadeh, R.; Mohammadabadi, M. R.; Esmailizadeh, A. K.; Shahrebabak, H. M.; Bordbar, F.; Namin, S. A.
– volume: 20
  start-page: 199
  issue: 3
  year: 1998
  end-page: 213
  article-title: Improving dairy yield predictions through combined record classifiers and specialized artificial neural networks
  publication-title: Computers and Electronics in Agriculture
  contributor:
    fullname: Salehi, F.; Lacroix, R.; Wade, K. M.
– volume: 85
  start-page: 794
  issue: 4
  year: 2006
  end-page: 797
  article-title: Comparison of Gompertz and neural network models of broiler growth
  publication-title: Poultry Science
  contributor:
    fullname: Roush, W. B.; Dozier, W. A.; Branton, S. L.
– volume: 15
  start-page: 359
  issue: 3-4
  year: 2006
  end-page: 365
  article-title: Empirical comparisons of feed-forward connectionist and conventional regression models for prediction of first lactation 305-day milk yield in Karan Fries dairy cows
  publication-title: Neural Computing & Applications
  contributor:
    fullname: Sharma, A. K.; Sharma, R. K.; Kasana, H. S.
– volume: 35
  start-page: 35
  issue: 1
  year: 2002
  end-page: 48
  article-title: A preliminary study of the application of artificial neural networks to prediction of milk yield in dairy sheep
  publication-title: Computers and Electronics in Agriculture
  contributor:
    fullname: Kominakis, A. P.; Abas, Z.; Maltaris, I.; Rogdakis, E.
– volume: 132
  start-page: 123
  year: 2015
  end-page: 127
  article-title: Associations of inter-simple sequence repeat loci with predicted breeding values of body weight in sheep
  publication-title: Small Ruminant Research
  contributor:
    fullname: Zamani, P.; Akhondi, M.; Mohammadabadi, M.
– volume: 46
  start-page: 45
  issue: 2
  year: 2013
  end-page: 51
  article-title: Estimation of (co) variance components of ewe productivity traits in Kermani sheep
  publication-title: Slovak Journal of Animal Science
  contributor:
    fullname: Mohammadabadi, M. R.; Sattayimokhtari, R.
– volume: 9
  start-page: 2128
  issue: 16
  year: 2010
  end-page: 2131
  article-title: A comparison of neural network and nonlinear regression predictions of sheep growth
  publication-title: Journal of Animal and Veterinary Advances
  contributor:
    fullname: Behzadi, M. R. B.; Aslaminejad, A. A.
– volume: 72
  start-page: 1425
  issue: 6
  year: 1994
  end-page: 1432
  article-title: Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures
  publication-title: Journal of Animal Science
  contributor:
    fullname: Brethour, J. R.
– year: 2005
  publication-title: User guide - v7.0 [software].
– volume: 60
  start-page: 226
  issue: 2
  year: 2008
  end-page: 238
  article-title: Artificial neural network models of the rumen fermentation pattern in dairy cattle
  publication-title: Computers and Electronics in Agriculture
  contributor:
    fullname: Craninx, M.; Fievez, V.; Vlaeminck, B.; De Baets, B.
SSID ssj0045695
Score 2.3800728
Snippet The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose,...
SourceID doaj
scielo
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 45282
SubjectTerms Age
Algorithms
Animals
Artificial neural networks
Back propagation
Back propagation networks
Birth weight
Body weight
Breeding
Computer architecture
Computer programs
Domestic animals
estimate
genetic parameters
growth traits
lamb
Multilayer perceptrons
Neural networks
Parameter estimation
Sheep
Software
VETERINARY SCIENCES
Weaning
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA96RfBF_MSzVfIg-LRtNpuvfRIrLUWxFLVQfAn5bA_q7Xm7VfzvncnuWe_Fp8B-BDJJ5vebyWSGkNdcYGEr5ivvoqqEYrpqjU-Vj7rcvQaMQX_Hp1N1ci4-XMiLyeHWT2GVG51YFHXsAvrIDzggp0Jwl29XPyqsGoWnq1MJjbtkh4OlwGZk5_Do9OzzRhcDOyh1V2oDdjNXeFCJaUfBZpIHLgyuR8_B4js0-z9Fvaj3heSGb0FUyeS_TT8Rm67_haHjh-TBxB_pu3HCH5E7q-ExufetK97xJ6Q7W-PJC8YyUzB2CzJRTOidaJep7-Jv-qs4Q6kbqKpgUMMVBZVCMf79snQ7ppSgmLWjNCVMvKeLJf2IWny5oP1VSqux-6fk_Pjo6_uTaqqpUIVGNUCmk_ZOszYDz8pcBtGAhWS0l3WQnOUQlZNIQbiLLLat9KbJHEiC1J41gbPmGZktu2V6Tmg22rQyZV-3TgjNTEoAdlxEJkOOXM5JsxGjXY2pMyyYHCh8uy18W4Rvi_Dn5BAl_vcPTH9dHnTrSzvtJstEnYURDtR5AJONtxqYkG948NKzIPWc7G3my057sre3K2hO3oxzePvyCywRbY3SOFgspFqjujIv_t_RLrmPn48umT0yG9Y36SWQlMG_mlbiHzK14qo
  priority: 102
  providerName: ProQuest
Title Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed
URI https://www.proquest.com/docview/2439614355
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-86722019000100518&lng=en&tlng=en
https://doaj.org/article/041f484a002c499297074b32cb5b0c57
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlIdBLaR6lmxc6FHpyIsuSJR2bkhASGtJHIOQiJFlqFlo7ZN2E_vvOSLtN9tRLLxbYWMijkeab8egbQt5xgYWtmK-869pKtExVRvtY-U7ls9dgYzDe8emiPb0SZ9fy-lmpL8wJK_TARXCHTNRJaOFg5QZA59woMHq-4cFLz4Is58iZWThTZQ8GVGBkoRgF_0geujC6GUYJpj-hOXgQ9bQ-EJJrvmSOMmv_MtREO_Tjuck5eU1ezbEi_VDGuE5exH6DrN0MORK-SYbLe_zLgnnLFBzbbIUokndHOiTqh-43fcyBT-pG2lagb-Mthe2DYq7799xtoY-gyNCRm5wSPqPTnp7jjt1P6ew2xrvS_Ra5Ojn-9vG0mtdPqELTNgCco_JOMZMAUyUug2jAG9LKyzpIzlLoWicRbnDXsc4Y6XWTOAACqTxrAmfNG7LSD318S2jSShsZk6-NE0IxHSMYNi46JkPquJyQZiFGe1doMiy4Fyh8uyx8m4Vvs_An5Agl_vcNpLrON0AB7FwB7L8UYEJ2F_Nl5-tvZjngrBahIIzsfZnDp4dfa82U1a3Cj8WiqTVuTXr7f4xmh7zETkuQZpesjPe_4h7AltHvk9Wj44vLL_tZU-F6_ln_AVDW6PQ
link.rule.ids 230,315,783,787,867,888,2109,4031,21400,27935,27936,27937,33756,43817
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYIL4qkuFPABiVNax_ErJ0RRq4W2qwpaqeJixa92JdgsmwDi3zPjZCl74RQpkS15bM_3zdj5hpDXXGBhK-YK1wRVCMV0URsXCxd0_vcaMAbzHaczNb0QHy_l5Zhw68ZrlWufmB11aD3myPc5IKdCcJdvl98LrBqFp6tjCY3bZBulqiD42j44nJ19WvtiYAe57kppIG7mCg8qUXYUYia53_i-6TBzMP8Gj72fopyXe0JywzcgKiv5b9JPxKav_8LQ0QNyf-SP9N0w4Q_JrWX_iNz50ubs-GPSnq3w5AXvMlMIdjMyURT0jrRN1LXhN_2Vk6G06akqYFD9NQWXQvH--1XudpCUoKjakR_5mnhH5wt6jF58MafddYzLofsn5OLo8Pz9tBhrKhS-UhWQ6ahdo1mdgGclLr2oIEIy2snSS86SD6qRSEF4E1ioa-lMlTiQBKkdqzxn1VOytWgXcYfQZLSpZUyurBshNDMxAthxEZj0KXA5IdXajHY5SGdYCDnQ-HbT-DYb32bjT8gBWvxvC5S_zi_a1ZUdd5NlokzCiAbcuYeQjdcamJCruHfSMS_1hOyu58uOe7KzNytoQt4Mc3jz8TMsEW2N0jhYLKRaorsyz_7f0Styd3p-emJPPsyOn5N72HRIz-ySrX71I74AwtK7l-Oq_AMcu-Wk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+breeding+value+of+body+weight+at+6-month+age+using+Artificial+Neural+Networks+in+Kermani+sheep+breed&rft.jtitle=Acta+scientiarum.+Animal+sciences&rft.au=Ghotbaldini%2C+Hamidreza&rft.au=Mohammadabadi%2C+Mohammadreza&rft.au=Nezamabadi-pour%2C+Hossein&rft.au=Babenko%2C+Olena+Ivanivna&rft.date=2019&rft.pub=Editora+da+Universidade+Estadual+de+Maring%C3%A1+-+EDUEM&rft.issn=1807-8672&rft.volume=41&rft_id=info:doi/10.4025%2Factascianimsci.v41i1.45282&rft.externalDocID=S1807_86722019000100518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1806-2636&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1806-2636&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1806-2636&client=summon