Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed
The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose, records of 867 lambs including lamb sex, dam age, birth weight, weaning weight, age at 3-month (3 months old), age at 6-month (6 months old) an...
Saved in:
Published in | Acta scientiarum. Animal sciences Vol. 41; no. 1; pp. 45282 - e45282 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English Portuguese |
Published |
Maringa
Editora da Universidade Estadual de Maringá - EDUEM
2019
Editora da Universidade Estadual de Maringá (Eduem) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose, records of 867 lambs including lamb sex, dam age, birth weight, weaning weight, age at 3-month (3 months old), age at 6-month (6 months old) and body weight at 3 months of age were used. Firstly, genetic parameters of the animals were estimated using ASReml software. The data was then pre-processed for using in MATLAB software. After initial experiments on the appropriate neural network architecture for body weight at 6-month age, two networks were examined. A feed-forward backpropagation multilayer perceptron (MLP) algorithm was used and 70% of all data used as training data, 15% as testing data and 15% as validating data, to prevent over-fitting of the artificial neural network. Results showed that the both networks capable to predict breeding values for body weight at 6 month-age in Kermani sheep. It can be concluded that artificial neural network has a good ability to predict growth traits in Kermani sheep with an acceptable speed and accuracy. Therefore, this network, instead of commonly-used procedures can be used to estimate the breeding values for productive and reproductive traits in domestic animals. |
---|---|
AbstractList | The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose, records of 867 lambs including lamb sex, dam age, birth weight, weaning weight, age at 3-month (3 months old), age at 6-month (6 months old) and body weight at 3 months of age were used. Firstly, genetic parameters of the animals were estimated using ASReml software. The data was then pre-processed for using in MATLAB software. After initial experiments on the appropriate neural network architecture for body weight at 6-month age, two networks were examined. A feed-forward backpropagation multilayer perceptron (MLP) algorithm was used and 70% of all data used as training data, 15% as testing data and 15% as validating data, to prevent over-fitting of the artificial neural network. Results showed that the both networks capable to predict breeding values for body weight at 6 month-age in Kermani sheep. It can be concluded that artificial neural network has a good ability to predict growth traits in Kermani sheep with an acceptable speed and accuracy. Therefore, this network, instead of commonly-used procedures can be used to estimate the breeding values for productive and reproductive traits in domestic animals. The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose, records of 867 lambs including lamb sex, dam age, birth weight, weaning weight, age at 3-month (3 months old), age at 6-month (6 months old) and body weight at 3 months of age were used. Firstly, genetic parameters of the animals were estimated using ASReml software. The data was then pre-processed for using in MATLAB software. After initial experiments on the appropriate neural network architecture for body weight at 6-month age, two networks were examined. A feed-forward back propagation multilayer perceptron (MLP) algorithm was used and 70% of all data used as training data, 15% as testing data and 15% as validating data, to prevent over-fitting of the artificial neural network. Results showed that the both networks capable to predict breeding values for body weight at 6 month-age in Kermani sheep. It can be concluded that artificial neural network has a good ability to predict growth traits in Kermani sheep with an acceptable speed and accuracy. Therefore, this network, instead of commonly-used procedures can be used to estimate the breeding values for productive and reproductive traits in domestic animals. |
Author | Babenko, Olena Ivanivna Tkachenko, Serhii Vasyliovych Bushtruk, Maryna Vitaliivna Nezamabadi-pour, Hossein Ghotbaldini, Hamidreza Mohammadabadi, Mohammadreza |
AuthorAffiliation | Bila Tserkva National Agrarian University Shahid Bahonar University of Kerman |
AuthorAffiliation_xml | – name: Shahid Bahonar University of Kerman – name: Bila Tserkva National Agrarian University |
Author_xml | – sequence: 1 givenname: Hamidreza surname: Ghotbaldini fullname: Ghotbaldini, Hamidreza – sequence: 2 givenname: Mohammadreza orcidid: 0000-0002-1268-3043 surname: Mohammadabadi fullname: Mohammadabadi, Mohammadreza – sequence: 3 givenname: Hossein surname: Nezamabadi-pour fullname: Nezamabadi-pour, Hossein – sequence: 4 givenname: Olena Ivanivna surname: Babenko fullname: Babenko, Olena Ivanivna – sequence: 5 givenname: Maryna Vitaliivna surname: Bushtruk fullname: Bushtruk, Maryna Vitaliivna – sequence: 6 givenname: Serhii Vasyliovych surname: Tkachenko fullname: Tkachenko, Serhii Vasyliovych |
BookMark | eNpVUc1u1DAYjFCRaAvvYME5y-f_mFtVQamoAAk4W7Zj73rJxoudtOrb400qKk4zsmbGo28umrMxjb5p3mLYMCD8vXGTKS6aMR4qbO4ZjnjDOOnIi-YcdyDbTkhytnDREkHFq-ailD0A40Lx8yZ9z76PborjFtnsK6_k3gyzRykgm_pH9ODjdjchMyHRHtI47ZDZejSXk_IqTzHEWmBAX_2cF5geUv5dUBzRF58PtRoqO--Pa_zr5mUwQ_FvnvCy-fXp48_rz-3dt5vb66u71lFBSSu9tEaCChiTQLhjlCneScux4wSC64XhlHNGTA-9Utx2NBACmEsL1BGgl83tmtsns9fHHA8mP-pkol4eUt5qU7u7wWtgOLCOGQDimFJESZDMUuIst-C4rFmbNaue2A9J79Ocx1pe_zhdWJ8uXL9WAIABOO6q4d1qOOb0Z_ZlerYQRpXArHavqg-ryuVUSvbhX00M-rSu_n9dvayrl3XpX8qsm0g |
CitedBy_id | crossref_primary_10_1016_j_scienta_2022_111014 crossref_primary_10_1016_j_heliyon_2023_e14194 crossref_primary_10_1080_10495398_2022_2152349 crossref_primary_10_1080_10495398_2021_1998093 crossref_primary_10_1080_10495398_2021_2000997 crossref_primary_10_1080_10495398_2021_1954529 crossref_primary_10_1080_10495398_2022_2047993 crossref_primary_10_1080_10495398_2021_2002882 crossref_primary_10_3390_ani12202865 crossref_primary_10_1016_j_heliyon_2022_e09749 crossref_primary_10_3389_fgene_2022_993192 crossref_primary_10_1016_j_gene_2022_146934 crossref_primary_10_1139_cjas_2023_0102 crossref_primary_10_1007_s11250_021_02763_7 crossref_primary_10_61186_rap_14_41_33 crossref_primary_10_1093_jas_skab022 crossref_primary_10_3390_ani13050798 crossref_primary_10_1080_10495398_2022_2152557 crossref_primary_10_1080_10495398_2023_2196313 crossref_primary_10_1080_10495398_2021_2000428 crossref_primary_10_1080_10495398_2022_2131561 crossref_primary_10_3390_agriculture13020362 crossref_primary_10_1007_s11250_022_03294_5 crossref_primary_10_1186_s12917_021_03077_4 crossref_primary_10_1080_10495398_2021_2007937 crossref_primary_10_1080_10495398_2021_1998088 crossref_primary_10_1038_s41598_022_24091_y crossref_primary_10_1038_s41598_022_23499_w crossref_primary_10_56093_ijans_v92i10_124645 crossref_primary_10_1016_j_smallrumres_2022_106904 crossref_primary_10_1080_10495398_2021_2013859 crossref_primary_10_1016_j_compag_2023_108456 crossref_primary_10_14202_vetworld_2021_104_112 crossref_primary_10_1016_j_heliyon_2022_e11576 crossref_primary_10_1080_10495398_2021_1996387 crossref_primary_10_1080_10495398_2022_2149551 crossref_primary_10_1080_10495398_2022_2111309 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. This work is licensed under a Creative Commons Attribution 4.0 International License. |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: This work is licensed under a Creative Commons Attribution 4.0 International License. |
DBID | AAYXX CITATION 3V. 7X2 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ M0K M2O MBDVC PADUT PIMPY PQEST PQQKQ PQUKI PRINS Q9U GPN DOA |
DOI | 10.4025/actascianimsci.v41i1.45282 |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection Agriculture Science Database Research Library (ProQuest) Research Library (Corporate) Research Library China Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SciELO Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Research Library China ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1807-8672 |
EndPage | e45282 |
ExternalDocumentID | oai_doaj_org_article_041f484a002c499297074b32cb5b0c57 S1807_86722019000100518 10_4025_actascianimsci_v41i1_45282 |
GroupedDBID | 23M 2WC 3V. 5GY 5VS 7X2 8FE 8FH 8G5 91A AAYXX ABDHV ABUWG ABXHO ADBBV AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS APOWU ATCPS AZFZN AZQEC BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO DYU E3Z EBD ECGQY EYRJQ GNUQQ GROUPED_DOAJ GUQSH HCIFZ IAO INF ITC KQ8 M0K M2O M~E N.T OK1 PADUT PIMPY PQQKQ PROAC PV9 RNS RSC RZL SCD 7XB 8FK MBDVC PQEST PQUKI PRINS Q9U C1A GPN IPNFZ RIG |
ID | FETCH-LOGICAL-c3632-7e7ba709f112f25c4349587b51c520fcd6a535542ad0d995b83f220157b03c203 |
IEDL.DBID | DOA |
ISSN | 1806-2636 1807-8672 |
IngestDate | Tue Oct 22 14:56:20 EDT 2024 Fri Oct 18 21:07:26 EDT 2024 Thu Oct 10 22:02:29 EDT 2024 Thu Sep 26 15:53:58 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | estimate lamb genetic parameters growth traits |
Language | English Portuguese |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3632-7e7ba709f112f25c4349587b51c520fcd6a535542ad0d995b83f220157b03c203 |
ORCID | 0000-0002-1268-3043 |
OpenAccessLink | https://doaj.org/article/041f484a002c499297074b32cb5b0c57 |
PQID | 2439614355 |
PQPubID | 2037652 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_041f484a002c499297074b32cb5b0c57 scielo_journals_S1807_86722019000100518 proquest_journals_2439614355 crossref_primary_10_4025_actascianimsci_v41i1_45282 |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Maringa |
PublicationPlace_xml | – name: Maringa |
PublicationTitle | Acta scientiarum. Animal sciences |
PublicationTitleAlternate | Acta Sci., Anim. Sci |
PublicationYear | 2019 |
Publisher | Editora da Universidade Estadual de Maringá - EDUEM Editora da Universidade Estadual de Maringá (Eduem) |
Publisher_xml | – name: Editora da Universidade Estadual de Maringá - EDUEM – name: Editora da Universidade Estadual de Maringá (Eduem) |
References | Khodabakhshzadeh, R.; Mohammadabadi, M. R.; Esmailizadeh, A. K.; Shahrebabak, H. M.; Bordbar, F.; Namin, S. A. 2016; 19 Grzesiak, W.; Lacroix, R.; Wójcik, J.; Blaszczyk, P. 2003; 83 Verardi, C. K.; Oliveira, A. L. B.; Silva, G. A. P.; Gouvêa, L. R. L.; Gonçalves, P. S. 2014; 52 Sharma, A. K.; Sharma, R. K.; Kasana, H. S. 2007; 7 Wilkinson, R. F.; Ming, R.; Anderson, B.; Bunch, T. D.; White, K. L. 1996; 45 Saatci, M.; Dewi, I. A.; Ulutas, Z. 1999; 69 Beale, M. H.; Hagan, M. T.; H.B., D. 2004 Roush, W. B.; Dozier, W. A.; Branton, S. L. 2006; 85 2005 Brethour, J. R. 1994; 72 Kominakis, A. P.; Abas, Z.; Maltaris, I.; Rogdakis, E. 2002; 35 Ribeiro, N. D.; Mambrin, R. B.; Storck, L.; Prigol, M.; Nogueira, C. W. 2013; 44 Bhattacharya, B.; Ghosh, T. K.; Duttagupta, R.; Maitra, D. N. 1984; 61 Moradi, H.; Joka, I.; Forouzantabar, A. 2015; 5 Reed, R. D.; Marks, R. J. 1998 Zamani, P.; Akhondi, M.; Mohammadabadi, M. 2015; 132 Mohammadabadi, M. R.; Sattayimokhtari, R. 2013; 46 Craninx, M.; Fievez, V.; Vlaeminck, B.; De Baets, B. 2008; 60 Kargar, N.; Moradishahrbabak, M.; Moravej, H.; Rokuei, M. 2006; 73 Bote, S.; Basu, S. B. 1984; 61 Pour Hamidi, S.; Mohammadabadi, M. R.; Asadi Foozi, M.; Nezamabadi-pour, H. 2017; 5 Ehret, A.; Hochstuhl, D.; Gianola, D.; Thaller, G. 2015; 47 Salehi, F.; Lacroix, R.; Wade, K. M. 1998; 20 Njubi, D. M.; Wakhungu, J. W.; Badamana, M. S. 2010; 42 Ruhil, A. P.; Raja, T. V.; Gandhi, R. S. 2013; 67 Vaez, T. R.; Nicolas, F. W.; Raadsma, H. W. 1996; 47 Behzadi, M. R. B.; Aslaminejad, A. A. 2010; 9 Gorgulu, O. 2012; 42 Vassileva, S. T.; Radev, D. 2001; 1 Ferreira, R. T.; Viana, A. P.; Barroso, D. G.; Resende, M. D. V.; Amaral Júnior, A. T. 2012; 69 Sharma, A. K.; Sharma, R. K.; Kasana, H. S. 2006; 15 |
References_xml | – volume: 52 start-page: 255 year: 2014 end-page: 263 article-title: Comparison between different selection methods of rubber trees publication-title: Industrial Crops and Products contributor: fullname: Verardi, C. K.; Oliveira, A. L. B.; Silva, G. A. P.; Gouvêa, L. R. L.; Gonçalves, P. S. – year: 2004 publication-title: Neural Network Toolbox User’s Guide contributor: fullname: Beale, M. H.; Hagan, M. T.; H.B., D. – volume: 1 start-page: 287 year: 2001 end-page: 294 article-title: Application of neural networks in dairy husbandry publication-title: Biotechnology in Animal Husbandry contributor: fullname: Vassileva, S. T.; Radev, D. – volume: 67 start-page: 51 issue: 1 year: 2013 end-page: 58 article-title: Preliminary study on prediction of body weight from morphometric measurements of goats through ANN models publication-title: Journal of the Indian Society of Agricultural Statistics contributor: fullname: Ruhil, A. P.; Raja, T. V.; Gandhi, R. S. – volume: 45 start-page: 41 issue: 1 year: 1996 end-page: 49 article-title: The use of neural networks in developing novel embryo culture media-formulations publication-title: Theriogenology contributor: fullname: Wilkinson, R. F.; Ming, R.; Anderson, B.; Bunch, T. D.; White, K. L. – volume: 73 start-page: 88 year: 2006 end-page: 95 article-title: Genetic estimate of growth and wool traits in kermani sheep publication-title: Animal Science Journal contributor: fullname: Kargar, N.; Moradishahrbabak, M.; Moravej, H.; Rokuei, M. – volume: 47 start-page: 1235 issue: 8 year: 1996 end-page: 1249 article-title: REML estimates of variance and covariance components for production traits in Australian Merino sheep, using an animal model. 1. Body weight from birth to 22 months publication-title: Australian Journal of Agricultural Research contributor: fullname: Vaez, T. R.; Nicolas, F. W.; Raadsma, H. W. – volume: 5 start-page: 30 issue: 1 year: 2015 end-page: 41 article-title: Modelling and forecasting gold price using GMDH neural network publication-title: Indian Journal of Fundamental and Applied Life Sciences contributor: fullname: Moradi, H.; Joka, I.; Forouzantabar, A. – volume: 69 start-page: 345 issue: 2 year: 1999 end-page: 352 article-title: Variance components due to direct and maternal effects and estimation of breeding values for 12-week weight of Welsh Mountain lambs publication-title: Animal Science contributor: fullname: Saatci, M.; Dewi, I. A.; Ulutas, Z. – volume: 44 start-page: 869 issue: 4 year: 2013 end-page: 877 article-title: Combined selection for grain yield, cooking quality and minerals in the common bean publication-title: Revista Ciência Agronômica contributor: fullname: Ribeiro, N. D.; Mambrin, R. B.; Storck, L.; Prigol, M.; Nogueira, C. W. – volume: 61 start-page: 406 year: 1984 end-page: 408 article-title: Estimation of body weight in Black Bengal goats from body measurements publication-title: Indian Veterinary Journal contributor: fullname: Bhattacharya, B.; Ghosh, T. K.; Duttagupta, R.; Maitra, D. N. – volume: 47 start-page: 22 year: 2015 end-page: 25 article-title: Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle publication-title: Genetics Selection Evolution contributor: fullname: Ehret, A.; Hochstuhl, D.; Gianola, D.; Thaller, G. – volume: 61 start-page: 670 year: 1984 end-page: 673 article-title: Relationship between body measurements and meat production in Beetal goats publication-title: Indian Veterinary Journal contributor: fullname: Bote, S.; Basu, S. B. – year: 1998 publication-title: Neural smithing: Supervised learning in feed forward artificial neural networks contributor: fullname: Reed, R. D.; Marks, R. J. – volume: 42 start-page: 639 issue: 4 year: 2010 end-page: 644 article-title: Use of test-day records to predict first lactation 305-day milk yield using artificial neural network in Kenyan Holstein-Friesian dairy cows publication-title: Tropical Animal Health and Production contributor: fullname: Njubi, D. M.; Wakhungu, J. W.; Badamana, M. S. – volume: 42 start-page: 280 issue: 3 year: 2012 end-page: 287 article-title: Prediction of 305-day milk yield in Brown Swiss cattle using artificial neural networks publication-title: South African Journal of Animal Science contributor: fullname: Gorgulu, O. – volume: 5 start-page: 53 issue: 2 year: 2017 end-page: 61 article-title: Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks publication-title: Journal of Livestock Science and Technologies contributor: fullname: Pour Hamidi, S.; Mohammadabadi, M. R.; Asadi Foozi, M.; Nezamabadi-pour, H. – volume: 7 start-page: 1112 issue: 3 year: 2007 end-page: 1120 article-title: Prediction of first lactation 305-day milk yield in Karan Fries dairy cattle using ANN modeling publication-title: Applied Soft Computing contributor: fullname: Sharma, A. K.; Sharma, R. K.; Kasana, H. S. – volume: 69 start-page: 210 issue: 3 year: 2012 end-page: 216 article-title: Toona ciliata genotype selection with the use of individual BLUP with repeated measures publication-title: Scientia Agricola contributor: fullname: Ferreira, R. T.; Viana, A. P.; Barroso, D. G.; Resende, M. D. V.; Amaral Júnior, A. T. – volume: 83 start-page: 307 issue: 2 year: 2003 end-page: 310 article-title: A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records publication-title: Canadian Journal of Animal Science contributor: fullname: Grzesiak, W.; Lacroix, R.; Wójcik, J.; Blaszczyk, P. – volume: 19 start-page: 281 issue: 2 year: 2016 end-page: 289 article-title: Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep publication-title: Polish Journal ofVveterinary sciences contributor: fullname: Khodabakhshzadeh, R.; Mohammadabadi, M. R.; Esmailizadeh, A. K.; Shahrebabak, H. M.; Bordbar, F.; Namin, S. A. – volume: 20 start-page: 199 issue: 3 year: 1998 end-page: 213 article-title: Improving dairy yield predictions through combined record classifiers and specialized artificial neural networks publication-title: Computers and Electronics in Agriculture contributor: fullname: Salehi, F.; Lacroix, R.; Wade, K. M. – volume: 85 start-page: 794 issue: 4 year: 2006 end-page: 797 article-title: Comparison of Gompertz and neural network models of broiler growth publication-title: Poultry Science contributor: fullname: Roush, W. B.; Dozier, W. A.; Branton, S. L. – volume: 15 start-page: 359 issue: 3-4 year: 2006 end-page: 365 article-title: Empirical comparisons of feed-forward connectionist and conventional regression models for prediction of first lactation 305-day milk yield in Karan Fries dairy cows publication-title: Neural Computing & Applications contributor: fullname: Sharma, A. K.; Sharma, R. K.; Kasana, H. S. – volume: 35 start-page: 35 issue: 1 year: 2002 end-page: 48 article-title: A preliminary study of the application of artificial neural networks to prediction of milk yield in dairy sheep publication-title: Computers and Electronics in Agriculture contributor: fullname: Kominakis, A. P.; Abas, Z.; Maltaris, I.; Rogdakis, E. – volume: 132 start-page: 123 year: 2015 end-page: 127 article-title: Associations of inter-simple sequence repeat loci with predicted breeding values of body weight in sheep publication-title: Small Ruminant Research contributor: fullname: Zamani, P.; Akhondi, M.; Mohammadabadi, M. – volume: 46 start-page: 45 issue: 2 year: 2013 end-page: 51 article-title: Estimation of (co) variance components of ewe productivity traits in Kermani sheep publication-title: Slovak Journal of Animal Science contributor: fullname: Mohammadabadi, M. R.; Sattayimokhtari, R. – volume: 9 start-page: 2128 issue: 16 year: 2010 end-page: 2131 article-title: A comparison of neural network and nonlinear regression predictions of sheep growth publication-title: Journal of Animal and Veterinary Advances contributor: fullname: Behzadi, M. R. B.; Aslaminejad, A. A. – volume: 72 start-page: 1425 issue: 6 year: 1994 end-page: 1432 article-title: Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures publication-title: Journal of Animal Science contributor: fullname: Brethour, J. R. – year: 2005 publication-title: User guide - v7.0 [software]. – volume: 60 start-page: 226 issue: 2 year: 2008 end-page: 238 article-title: Artificial neural network models of the rumen fermentation pattern in dairy cattle publication-title: Computers and Electronics in Agriculture contributor: fullname: Craninx, M.; Fievez, V.; Vlaeminck, B.; De Baets, B. |
SSID | ssj0045695 |
Score | 2.3800728 |
Snippet | The present study aimed to apply artificial neural networks to predict the breeding values of body weight in 6-month age of Kermani sheep. For this purpose,... |
SourceID | doaj scielo proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 45282 |
SubjectTerms | Age Algorithms Animals Artificial neural networks Back propagation Back propagation networks Birth weight Body weight Breeding Computer architecture Computer programs Domestic animals estimate genetic parameters growth traits lamb Multilayer perceptrons Neural networks Parameter estimation Sheep Software VETERINARY SCIENCES Weaning |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA96RfBF_MSzVfIg-LRtNpuvfRIrLUWxFLVQfAn5bA_q7Xm7VfzvncnuWe_Fp8B-BDJJ5vebyWSGkNdcYGEr5ivvoqqEYrpqjU-Vj7rcvQaMQX_Hp1N1ci4-XMiLyeHWT2GVG51YFHXsAvrIDzggp0Jwl29XPyqsGoWnq1MJjbtkh4OlwGZk5_Do9OzzRhcDOyh1V2oDdjNXeFCJaUfBZpIHLgyuR8_B4js0-z9Fvaj3heSGb0FUyeS_TT8Rm67_haHjh-TBxB_pu3HCH5E7q-ExufetK97xJ6Q7W-PJC8YyUzB2CzJRTOidaJep7-Jv-qs4Q6kbqKpgUMMVBZVCMf79snQ7ppSgmLWjNCVMvKeLJf2IWny5oP1VSqux-6fk_Pjo6_uTaqqpUIVGNUCmk_ZOszYDz8pcBtGAhWS0l3WQnOUQlZNIQbiLLLat9KbJHEiC1J41gbPmGZktu2V6Tmg22rQyZV-3TgjNTEoAdlxEJkOOXM5JsxGjXY2pMyyYHCh8uy18W4Rvi_Dn5BAl_vcPTH9dHnTrSzvtJstEnYURDtR5AJONtxqYkG948NKzIPWc7G3my057sre3K2hO3oxzePvyCywRbY3SOFgspFqjujIv_t_RLrmPn48umT0yG9Y36SWQlMG_mlbiHzK14qo priority: 102 providerName: ProQuest |
Title | Predicting breeding value of body weight at 6-month age using Artificial Neural Networks in Kermani sheep breed |
URI | https://www.proquest.com/docview/2439614355 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-86722019000100518&lng=en&tlng=en https://doaj.org/article/041f484a002c499297074b32cb5b0c57 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlIdBLaR6lmxc6FHpyIsuSJR2bkhASGtJHIOQiJFlqFlo7ZN2E_vvOSLtN9tRLLxbYWMijkeab8egbQt5xgYWtmK-869pKtExVRvtY-U7ls9dgYzDe8emiPb0SZ9fy-lmpL8wJK_TARXCHTNRJaOFg5QZA59woMHq-4cFLz4Is58iZWThTZQ8GVGBkoRgF_0geujC6GUYJpj-hOXgQ9bQ-EJJrvmSOMmv_MtREO_Tjuck5eU1ezbEi_VDGuE5exH6DrN0MORK-SYbLe_zLgnnLFBzbbIUokndHOiTqh-43fcyBT-pG2lagb-Mthe2DYq7799xtoY-gyNCRm5wSPqPTnp7jjt1P6ew2xrvS_Ra5Ojn-9vG0mtdPqELTNgCco_JOMZMAUyUug2jAG9LKyzpIzlLoWicRbnDXsc4Y6XWTOAACqTxrAmfNG7LSD318S2jSShsZk6-NE0IxHSMYNi46JkPquJyQZiFGe1doMiy4Fyh8uyx8m4Vvs_An5Agl_vcNpLrON0AB7FwB7L8UYEJ2F_Nl5-tvZjngrBahIIzsfZnDp4dfa82U1a3Cj8WiqTVuTXr7f4xmh7zETkuQZpesjPe_4h7AltHvk9Wj44vLL_tZU-F6_ln_AVDW6PQ |
link.rule.ids | 230,315,783,787,867,888,2109,4031,21400,27935,27936,27937,33756,43817 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYIL4qkuFPABiVNax_ErJ0RRq4W2qwpaqeJixa92JdgsmwDi3zPjZCl74RQpkS15bM_3zdj5hpDXXGBhK-YK1wRVCMV0URsXCxd0_vcaMAbzHaczNb0QHy_l5Zhw68ZrlWufmB11aD3myPc5IKdCcJdvl98LrBqFp6tjCY3bZBulqiD42j44nJ19WvtiYAe57kppIG7mCg8qUXYUYia53_i-6TBzMP8Gj72fopyXe0JywzcgKiv5b9JPxKav_8LQ0QNyf-SP9N0w4Q_JrWX_iNz50ubs-GPSnq3w5AXvMlMIdjMyURT0jrRN1LXhN_2Vk6G06akqYFD9NQWXQvH--1XudpCUoKjakR_5mnhH5wt6jF58MafddYzLofsn5OLo8Pz9tBhrKhS-UhWQ6ahdo1mdgGclLr2oIEIy2snSS86SD6qRSEF4E1ioa-lMlTiQBKkdqzxn1VOytWgXcYfQZLSpZUyurBshNDMxAthxEZj0KXA5IdXajHY5SGdYCDnQ-HbT-DYb32bjT8gBWvxvC5S_zi_a1ZUdd5NlokzCiAbcuYeQjdcamJCruHfSMS_1hOyu58uOe7KzNytoQt4Mc3jz8TMsEW2N0jhYLKRaorsyz_7f0Styd3p-emJPPsyOn5N72HRIz-ySrX71I74AwtK7l-Oq_AMcu-Wk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+breeding+value+of+body+weight+at+6-month+age+using+Artificial+Neural+Networks+in+Kermani+sheep+breed&rft.jtitle=Acta+scientiarum.+Animal+sciences&rft.au=Ghotbaldini%2C+Hamidreza&rft.au=Mohammadabadi%2C+Mohammadreza&rft.au=Nezamabadi-pour%2C+Hossein&rft.au=Babenko%2C+Olena+Ivanivna&rft.date=2019&rft.pub=Editora+da+Universidade+Estadual+de+Maring%C3%A1+-+EDUEM&rft.issn=1807-8672&rft.volume=41&rft_id=info:doi/10.4025%2Factascianimsci.v41i1.45282&rft.externalDocID=S1807_86722019000100518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1806-2636&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1806-2636&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1806-2636&client=summon |