A comparative study of fruit detection and counting methods for yield mapping in apple orchards

We present a modular end‐to‐end system for yield estimation in apple orchards. Our goal is to identify fruit detection and counting methods with the best performance for this task. We propose a novel semantic segmentation‐based approach for fruit detection and counting and perform extensive comparat...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 37; no. 2; pp. 263 - 282
Main Authors Häni, Nicolai, Roy, Pravakar, Isler, Volkan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a modular end‐to‐end system for yield estimation in apple orchards. Our goal is to identify fruit detection and counting methods with the best performance for this task. We propose a novel semantic segmentation‐based approach for fruit detection and counting and perform extensive comparative analysis against other state‐of‐the‐art techniques. This is the first work comparing multiple fruit detection and counting methods head‐to‐head on the same data sets. Fruit detection results indicate that the semisupervised method, based on Gaussian Mixture Models, outperforms the deep learning‐based methods in the majority of the data sets. For fruit counting though, the deep learning‐based approach performs better for all of the data sets. Combining these two methods, we achieve yield estimation accuracies ranging from 95.56% to 97.83%.
AbstractList We present a modular end‐to‐end system for yield estimation in apple orchards. Our goal is to identify fruit detection and counting methods with the best performance for this task. We propose a novel semantic segmentation‐based approach for fruit detection and counting and perform extensive comparative analysis against other state‐of‐the‐art techniques. This is the first work comparing multiple fruit detection and counting methods head‐to‐head on the same data sets. Fruit detection results indicate that the semisupervised method, based on Gaussian Mixture Models, outperforms the deep learning‐based methods in the majority of the data sets. For fruit counting though, the deep learning‐based approach performs better for all of the data sets. Combining these two methods, we achieve yield estimation accuracies ranging from 95.56% to 97.83%.
Author Roy, Pravakar
Häni, Nicolai
Isler, Volkan
Author_xml – sequence: 1
  givenname: Nicolai
  orcidid: 0000-0003-4042-3318
  surname: Häni
  fullname: Häni, Nicolai
  email: haeni001@umn.edu
  organization: University of Minnesota
– sequence: 2
  givenname: Pravakar
  orcidid: 0000-0002-5410-1486
  surname: Roy
  fullname: Roy, Pravakar
  organization: University of Minnesota
– sequence: 3
  givenname: Volkan
  orcidid: 0000-0002-0868-5441
  surname: Isler
  fullname: Isler, Volkan
  organization: University of Minnesota
BookMark eNp1kEtLAzEUhYMo2FYX_oOAKxfT5jGZx7IWX1AoiK5DJg-bMp2MSUaZf--MLS5EV_fC_c65nDMFp41rNABXGM0xQmThXTUnuETkBEwwY1mSlll--rOz8hxMQ9ghlNKiZBPAl1C6fSu8iPZDwxA71UNnoPGdjVDpqGW0roGiUQPYNdE2b3Cv49apAI3zsLe6VnAv2na82IFs21pD5-VWeBUuwJkRddCXxzkDr_d3L6vHZL15eFot14mkGSVJhqqUEqGNMirPs5QoaSQyjBEhFclIJatKUma0MEzllcAFKbQsyrwQBpMC0Rm4Pvi23r13OkS-c51vhpecUJbRwRKP1OJASe9C8NpwaaMYA0YvbM0x4mOLfGiRf7c4KG5-KVpv98L3f7JH909b6_5_kD9vbg-KL7pchUY
CitedBy_id crossref_primary_10_1016_j_compag_2022_107513
crossref_primary_10_1016_j_postharvbio_2023_112691
crossref_primary_10_1016_j_atech_2024_100614
crossref_primary_10_3897_BDJ_8_e57090
crossref_primary_10_1109_LRA_2020_2965061
crossref_primary_10_3389_fpls_2020_541960
crossref_primary_10_1016_j_compag_2024_109534
crossref_primary_10_3389_fpls_2021_684328
crossref_primary_10_1109_ACCESS_2024_3390581
crossref_primary_10_1109_LRA_2020_2966398
crossref_primary_10_1016_j_compag_2020_105856
crossref_primary_10_1038_s41598_022_12732_1
crossref_primary_10_1016_j_compag_2023_107635
crossref_primary_10_1080_08839514_2022_2031823
crossref_primary_10_1007_s11694_024_03062_z
crossref_primary_10_3390_s22072456
crossref_primary_10_3389_fpls_2022_1030962
crossref_primary_10_1109_TASE_2023_3318008
crossref_primary_10_3389_fpls_2022_864458
crossref_primary_10_1016_j_compag_2020_105606
crossref_primary_10_1109_ACCESS_2022_3155652
crossref_primary_10_31202_ecjse_962269
crossref_primary_10_3390_agronomy13092279
crossref_primary_10_1016_j_compag_2020_105687
crossref_primary_10_1016_j_compag_2022_106812
crossref_primary_10_1016_j_agsy_2024_103867
crossref_primary_10_1186_s13007_020_00698_y
crossref_primary_10_17660_ActaHortic_2023_1360_6
crossref_primary_10_22144_ctu_jen_2022_006
crossref_primary_10_3389_fpls_2022_765523
crossref_primary_10_1007_s11042_023_15630_4
crossref_primary_10_34133_plantphenomics_0030
crossref_primary_10_3390_agronomy12020440
crossref_primary_10_1016_j_compag_2020_105634
crossref_primary_10_3390_drones8100541
crossref_primary_10_34133_2020_4152816
crossref_primary_10_3390_agriculture12122089
crossref_primary_10_1016_j_compag_2022_107339
crossref_primary_10_1016_j_atech_2022_100129
crossref_primary_10_1016_j_compag_2021_106178
crossref_primary_10_1016_j_cosrev_2024_100694
crossref_primary_10_1016_j_compind_2022_103635
crossref_primary_10_1016_j_heliyon_2024_e40836
crossref_primary_10_1016_j_atech_2024_100688
crossref_primary_10_1016_j_biosystemseng_2021_03_012
crossref_primary_10_1155_2023_6675523
crossref_primary_10_1007_s11119_023_10034_8
crossref_primary_10_1007_s00542_020_05123_x
crossref_primary_10_1016_j_compag_2023_108156
crossref_primary_10_1016_j_compag_2024_108972
crossref_primary_10_1007_s12065_021_00595_w
crossref_primary_10_1016_j_compag_2023_108036
crossref_primary_10_3389_frobt_2021_627280
crossref_primary_10_1016_j_postharvbio_2023_112587
crossref_primary_10_1002_rob_22178
crossref_primary_10_1016_j_compag_2024_108926
crossref_primary_10_3390_s22176473
crossref_primary_10_1002_ppp3_10275
crossref_primary_10_1007_s10846_022_01793_z
crossref_primary_10_1007_s11042_022_13390_1
crossref_primary_10_3390_app122211420
crossref_primary_10_3390_app13148306
crossref_primary_10_1007_s12393_023_09353_3
crossref_primary_10_1016_j_atech_2025_100784
crossref_primary_10_1016_j_biosystemseng_2021_06_015
crossref_primary_10_1109_ACCESS_2019_2962513
crossref_primary_10_1016_j_compag_2020_105760
crossref_primary_10_1002_rob_21876
crossref_primary_10_3390_agriculture13061117
crossref_primary_10_3390_agriculture15050483
crossref_primary_10_1007_s00217_023_04436_1
crossref_primary_10_3233_JIFS_232104
crossref_primary_10_1016_j_compag_2024_109564
crossref_primary_10_1002_rob_22398
crossref_primary_10_3390_jimaging11020034
crossref_primary_10_3390_cli10020011
crossref_primary_10_1002_rob_21987
crossref_primary_10_3390_informatics11040087
crossref_primary_10_1080_01140671_2022_2032213
crossref_primary_10_2139_ssrn_4770722
crossref_primary_10_1109_TIP_2021_3050673
crossref_primary_10_3390_rs13010054
crossref_primary_10_1109_LRA_2022_3199026
crossref_primary_10_1016_j_biosystemseng_2023_09_005
crossref_primary_10_1016_j_compag_2024_109199
crossref_primary_10_1590_s1982_21702021000200014
crossref_primary_10_1002_rob_22147
crossref_primary_10_3390_horticulturae9040498
crossref_primary_10_3390_su15032707
crossref_primary_10_1016_j_biosystemseng_2022_08_013
crossref_primary_10_1016_j_biosystemseng_2024_07_019
crossref_primary_10_1016_j_compag_2022_107081
crossref_primary_10_1186_s13007_019_0528_3
crossref_primary_10_1007_s11042_023_16570_9
crossref_primary_10_1016_j_atech_2024_100491
crossref_primary_10_1016_j_compag_2023_108196
crossref_primary_10_1051_e3sconf_202341201083
crossref_primary_10_3390_su13148054
crossref_primary_10_1007_s11042_021_10704_7
crossref_primary_10_1016_j_compag_2022_106715
crossref_primary_10_1002_rob_22260
crossref_primary_10_1007_s11119_020_09709_3
crossref_primary_10_3390_rs13091619
Cites_doi 10.1109/CoASE.2015.7294123
10.1109/CVPR.2015.7298965
10.1145/3065386
10.1109/TSMC.1979.4310076
10.1109/LRA.2017.2651944
10.1109/IROS.2018.8594239
10.3390/agronomy8100211
10.1007/978-3-642-35740-4_21
10.1007/978-3-540-75404-6_51
10.1109/CVPR.2016.90
10.1109/ICCV.2017.324
10.1109/ICCV.2003.1238387
10.1109/IROS.2018.8594167
10.1109/CVPR.2017.106
10.1109/COASE.2016.7743500
10.1007/978-3-319-46448-0_2
10.1109/TPAMI.2016.2644615
10.3390/s16081222
10.1007/978-0-8176-8154-8_6
10.1109/IROS.2017.8206500
10.1023/B:VISI.0000011205.11775.fd
10.1109/ICRA.2017.7989417
10.1007/978-3-319-24574-4_28
10.1016/j.compag.2015.05.021
10.1007/s11263-015-0816-y
10.1007/978-3-319-00065-7_50
10.1109/CVPR.2017.351
10.1016/j.compag.2015.10.022
10.1002/nav.3800020109
10.1007/978-3-319-50115-4_42
10.1002/rob.21699
10.1007/978-3-319-07488-7_33
10.1109/79.543975
10.3390/s17040905
10.3390/s16111915
10.1109/TPAMI.2012.120
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
2020 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1002/rob.21902
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1556-4967
EndPage 282
ExternalDocumentID 10_1002_rob_21902
ROB21902
Genre article
GrantInformation_xml – fundername: National Institute of Food and Agriculture
  funderid: MIN‐98‐G02
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
1OB
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3632-60b432aefdfd77642dcfc0f552acd262bcbbc35feaf5d7ba1828ec8978af12803
IEDL.DBID DR2
ISSN 1556-4959
IngestDate Wed Aug 13 03:09:40 EDT 2025
Tue Jul 01 04:33:51 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Sun Jul 06 04:45:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3632-60b432aefdfd77642dcfc0f552acd262bcbbc35feaf5d7ba1828ec8978af12803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5410-1486
0000-0003-4042-3318
0000-0002-0868-5441
PQID 2356364210
PQPubID 1006410
PageCount 20
ParticipantIDs proquest_journals_2356364210
crossref_citationtrail_10_1002_rob_21902
crossref_primary_10_1002_rob_21902
wiley_primary_10_1002_rob_21902_ROB21902
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_10_1_27_1
Roy P. (e_1_2_10_1_44_1) 2018; 164
e_1_2_10_1_29_1
e_1_2_10_1_23_1
e_1_2_10_1_46_1
e_1_2_10_1_25_1
e_1_2_10_1_48_1
e_1_2_10_1_42_1
e_1_2_10_1_40_1
e_1_2_10_1_9_1
e_1_2_10_1_7_1
e_1_2_10_1_16_1
e_1_2_10_1_39_1
Ren S. (e_1_2_10_1_38_1) 2015
e_1_2_10_1_18_1
Szegedy C. (e_1_2_10_1_50_1) 2016
e_1_2_10_1_12_1
e_1_2_10_1_35_1
e_1_2_10_1_14_1
e_1_2_10_1_37_1
e_1_2_10_1_31_1
e_1_2_10_1_5_1
e_1_2_10_1_52_1
e_1_2_10_1_3_1
Häni N. (e_1_2_10_1_21_1) 2018
Beucher S. (e_1_2_10_1_10_1) 1992
e_1_2_10_1_28_1
e_1_2_10_1_49_1
Pedersen S. J. K. (e_1_2_10_1_36_1) 2007; 123
e_1_2_10_1_24_1
e_1_2_10_1_45_1
e_1_2_10_1_26_1
e_1_2_10_1_47_1
e_1_2_10_1_20_1
e_1_2_10_1_41_1
e_1_2_10_1_22_1
e_1_2_10_1_43_1
e_1_2_10_1_8_1
e_1_2_10_1_17_1
e_1_2_10_1_19_1
e_1_2_10_1_2_1
Lucas B. D. (e_1_2_10_1_33_1) 1981; 2
e_1_2_10_1_13_1
e_1_2_10_1_34_1
e_1_2_10_1_15_1
e_1_2_10_1_6_1
e_1_2_10_1_30_1
e_1_2_10_1_4_1
e_1_2_10_1_11_1
e_1_2_10_1_32_1
e_1_2_10_1_51_1
References_xml – ident: e_1_2_10_1_14_1
  doi: 10.1109/CoASE.2015.7294123
– ident: e_1_2_10_1_32_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_10_1_26_1
  doi: 10.1145/3065386
– ident: e_1_2_10_1_47_1
– start-page: 299
  year: 1992
  ident: e_1_2_10_1_10_1
  article-title: The Watershed Transformation Applied To Image Segmentation
  publication-title: Scanning Microscopy International
– ident: e_1_2_10_1_35_1
  doi: 10.1109/TSMC.1979.4310076
– ident: e_1_2_10_1_11_1
  doi: 10.1109/LRA.2017.2651944
– ident: e_1_2_10_1_31_1
  doi: 10.1109/IROS.2018.8594239
– start-page: 91
  volume-title: Advances in neural information processing systems
  year: 2015
  ident: e_1_2_10_1_38_1
– start-page: 3626
  year: 2018
  ident: e_1_2_10_1_21_1
  article-title: Apple Counting using Convolutional Neural Networks
  publication-title: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– ident: e_1_2_10_1_23_1
  doi: 10.3390/agronomy8100211
– ident: e_1_2_10_1_48_1
  doi: 10.1007/978-3-642-35740-4_21
– ident: e_1_2_10_1_6_1
  doi: 10.1007/978-3-540-75404-6_51
– ident: e_1_2_10_1_22_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_10_1_29_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_10_1_18_1
  doi: 10.1109/ICCV.2003.1238387
– ident: e_1_2_10_1_17_1
– ident: e_1_2_10_1_2_1
– ident: e_1_2_10_1_51_1
– ident: e_1_2_10_1_40_1
  doi: 10.1109/IROS.2018.8594167
– ident: e_1_2_10_1_28_1
  doi: 10.1109/CVPR.2017.106
– ident: e_1_2_10_1_41_1
  doi: 10.1109/COASE.2016.7743500
– ident: e_1_2_10_1_13_1
– ident: e_1_2_10_1_30_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_10_1_5_1
  doi: 10.1109/TPAMI.2016.2644615
– volume: 164
  start-page: 478
  year: 2018
  ident: e_1_2_10_1_44_1
  article-title: Vision‐based preharvest yield mapping for apple orchards
  publication-title: Computers and Electronics in Agriculture
– ident: e_1_2_10_1_16_1
– ident: e_1_2_10_1_46_1
  doi: 10.3390/s16081222
– ident: e_1_2_10_1_4_1
  doi: 10.1007/978-0-8176-8154-8_6
– ident: e_1_2_10_1_42_1
  doi: 10.1109/IROS.2017.8206500
– ident: e_1_2_10_1_7_1
  doi: 10.1023/B:VISI.0000011205.11775.fd
– ident: e_1_2_10_1_8_1
  doi: 10.1109/ICRA.2017.7989417
– start-page: 4278
  year: 2016
  ident: e_1_2_10_1_50_1
  article-title: Inception‐v4, Inception‐ResNet and the Impact of Residual Connections on Learning
  publication-title: AAAI 2017
– ident: e_1_2_10_1_39_1
  doi: 10.1007/978-3-319-24574-4_28
– volume: 2
  start-page: 674
  year: 1981
  ident: e_1_2_10_1_33_1
  article-title: An iterative image registration technique with an application to stereo vision
  publication-title: Proceedings of the 7th International Joint Conference on Artificial Intelligence
– ident: e_1_2_10_1_19_1
  doi: 10.1016/j.compag.2015.05.021
– ident: e_1_2_10_1_45_1
  doi: 10.1007/s11263-015-0816-y
– ident: e_1_2_10_1_52_1
  doi: 10.1007/978-3-319-00065-7_50
– ident: e_1_2_10_1_12_1
– ident: e_1_2_10_1_24_1
  doi: 10.1109/CVPR.2017.351
– ident: e_1_2_10_1_20_1
  doi: 10.1016/j.compag.2015.10.022
– ident: e_1_2_10_1_27_1
  doi: 10.1002/nav.3800020109
– ident: e_1_2_10_1_43_1
  doi: 10.1007/978-3-319-50115-4_42
– ident: e_1_2_10_1_9_1
  doi: 10.1002/rob.21699
– ident: e_1_2_10_1_25_1
  doi: 10.1007/978-3-319-07488-7_33
– ident: e_1_2_10_1_34_1
  doi: 10.1109/79.543975
– ident: e_1_2_10_1_37_1
  doi: 10.3390/s17040905
– ident: e_1_2_10_1_15_1
– volume: 123
  start-page: 6
  year: 2007
  ident: e_1_2_10_1_36_1
  article-title: Circular hough transform
  publication-title: Aalborg University, Vision, Graphics, and Interactive Systems
– ident: e_1_2_10_1_49_1
  doi: 10.3390/s16111915
– ident: e_1_2_10_1_3_1
  doi: 10.1109/TPAMI.2012.120
SSID ssj0043895
Score 2.5840132
Snippet We present a modular end‐to‐end system for yield estimation in apple orchards. Our goal is to identify fruit detection and counting methods with the best...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 263
SubjectTerms agriculture
Comparative studies
Datasets
Deep learning
Fruits
Identification methods
learning
Machine learning
Mapping
Modular systems
Orchards
perception
Probabilistic models
Semantic segmentation
Title A comparative study of fruit detection and counting methods for yield mapping in apple orchards
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.21902
https://www.proquest.com/docview/2356364210
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeX0pMefIvVKot48JI2brJJg6cqliKoUCz0IIR9lqImkqYH_fTObh6toiDeEpi8dnd2_xNmf4PQmat9wZkOHK1l5Pgs1A5nrnAozJgm6Zu7Fil0dx8Mx_7thE4a6LLaC1PwIeofbsYz7HxtHJzxeXcJDc1S3gF3syBJk6tlBNGoRkeZot7UslJp4EAQEFVUIZd06yu_rkVLgbkqU-06M9hET9UbFuklz51Fzjvi4xu88Z-fsIU2Sv2J-8WA2UYNleyg9f40KxkcCs5WGIW7KO5jsSSEY4ujxanGOlvMcixVbnO5EswSiavCE7ioSz3HoIjxu8mRw6_MgCCmeAaWIHwVTrNiw9ceGg9uHq-HTlmVwRFe4BEncLnvEaa01DIMIXyRQgtXU0qYkCQgXHAuPKoV01SGnEEA01OiB9Eq0xemFtY-aiZpog4QjkDeaeJSTUAGMYjVVM_3ZChBBpodRFELnVf9E4sSWW4qZ7zEBWyZxNCCsW3BFjqtTd8KTsdPRu2qk-PSVecx8Wjgme2-LjzO9tbvN4hHD1f24PDvpkdojZgY3eattVEzzxbqGIRMzk_siP0EdXTwTA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD6EE9-Fv8MTWIBy-dNW3aDbxMcUzdJsgELxLyc4jaSdcd9K_3JW23KQrirYX0V5KXfl947_MQOvJNKAU3kWeMqnshj40nuC89CiumDfoWvkMKdbpR6z68fqAPM-iszIXJ-RDjDTdrGW69tgZuN6RPJtTQdCCqYG-WJDlnK3o7h-puDI-yZb2po6XSyAM3oF5yhXxyMr70699oIjGnhar70zSX0WP5jnmAyXN1lImq_PiGb_zvR6ygpUKC4kY-Z1bRjE7W0GKjnxYYDg1nU5jCdcQaWE4g4dgRafHAYJOOnjKsdObCuRLME4XL2hM4L009xCCK8bsNk8Ov3LIg-vgJWoL21XiQ5jlfG-i-edm7aHlFYQZPBlFAvMgXYUC4NsqoOAYPRkkjfUMp4VKRiAgphAyo0dxQFQsOPkxNyxo4rNyc2nJYm2g2GSR6C-E6KDxDfGoIKCEO7pquhYGKFShBm0RU30bH5QAxWVDLbfGMF5bzlgmDHmSuB7fR4bjpW47q-KlRpRxlVljrkJGARoHN-PXhcW64fr8Bu7s9dwc7f296gOZbvU6bta-6N7togViX3YWxVdBslo70HuiaTOy76fsJdU30Zw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LT9wwEIctRCXUHlqgVKWFYiEOvXgxTpxk1dO2dMW7FQKJA5Ll16xQ2ywK2UP56xk7yS6tQELcEmnysj32b6LxN4RscUit0ZAxANdnqc6BGc0tkzhjhqRvwyNS6Pgk2ztPDy7kxRz50u2FafgQ0x9uwTPifB0c_NrB9gwaWo1ND90tgCRfpBkvwpDePZ2yo0JVbxlhqTJjGAX0O6wQF9vTS_9djGYK875OjQvN8A257F6xyS_51ZvUpmdv_6M3PvMbFsnrVoDSQTNilsicL5fJq8GoaiEcHs_uQQrfEjWgdoYIp5FHS8dAoZpc1dT5OiZzlVSXjnaVJ2hTmPqGoiSmf0OSHP2jAwliRK_QEpWvp-Oq2fG1Qs6H38--7bG2LAOzSZYIlnGTJkJ7cODyHOMXZ8FykFJo60QmjDXGJhK8BulyozGCKbwtMFzVsBOKYb0j8-W49O8J7aO-A8ElCNRBGoM1X6SJyx3qwLCFqL9KPnf9o2zLLA-lM36rhrYsFLagii24SjanptcNqOMho7Wuk1XrqzdKJDJLwn5fjo-LvfX4DdTpj6_x4MPTTTfIws_doTraPzn8SF6KEK_zhIlijczX1cSvo6ipzac4eO8AwrHzKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+fruit+detection+and+counting+methods+for+yield+mapping+in+apple+orchards&rft.jtitle=Journal+of+field+robotics&rft.au=H%C3%A4ni%2C+Nicolai&rft.au=Roy%2C+Pravakar&rft.au=Isler%2C+Volkan&rft.date=2020-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=37&rft.issue=2&rft.spage=263&rft.epage=282&rft_id=info:doi/10.1002%2Frob.21902&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon