A comparative study of fruit detection and counting methods for yield mapping in apple orchards
We present a modular end‐to‐end system for yield estimation in apple orchards. Our goal is to identify fruit detection and counting methods with the best performance for this task. We propose a novel semantic segmentation‐based approach for fruit detection and counting and perform extensive comparat...
Saved in:
Published in | Journal of field robotics Vol. 37; no. 2; pp. 263 - 282 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a modular end‐to‐end system for yield estimation in apple orchards. Our goal is to identify fruit detection and counting methods with the best performance for this task. We propose a novel semantic segmentation‐based approach for fruit detection and counting and perform extensive comparative analysis against other state‐of‐the‐art techniques. This is the first work comparing multiple fruit detection and counting methods head‐to‐head on the same data sets. Fruit detection results indicate that the semisupervised method, based on Gaussian Mixture Models, outperforms the deep learning‐based methods in the majority of the data sets. For fruit counting though, the deep learning‐based approach performs better for all of the data sets. Combining these two methods, we achieve yield estimation accuracies ranging from 95.56% to 97.83%. |
---|---|
AbstractList | We present a modular end‐to‐end system for yield estimation in apple orchards. Our goal is to identify fruit detection and counting methods with the best performance for this task. We propose a novel semantic segmentation‐based approach for fruit detection and counting and perform extensive comparative analysis against other state‐of‐the‐art techniques. This is the first work comparing multiple fruit detection and counting methods head‐to‐head on the same data sets. Fruit detection results indicate that the semisupervised method, based on Gaussian Mixture Models, outperforms the deep learning‐based methods in the majority of the data sets. For fruit counting though, the deep learning‐based approach performs better for all of the data sets. Combining these two methods, we achieve yield estimation accuracies ranging from 95.56% to 97.83%. |
Author | Roy, Pravakar Häni, Nicolai Isler, Volkan |
Author_xml | – sequence: 1 givenname: Nicolai orcidid: 0000-0003-4042-3318 surname: Häni fullname: Häni, Nicolai email: haeni001@umn.edu organization: University of Minnesota – sequence: 2 givenname: Pravakar orcidid: 0000-0002-5410-1486 surname: Roy fullname: Roy, Pravakar organization: University of Minnesota – sequence: 3 givenname: Volkan orcidid: 0000-0002-0868-5441 surname: Isler fullname: Isler, Volkan organization: University of Minnesota |
BookMark | eNp1kEtLAzEUhYMo2FYX_oOAKxfT5jGZx7IWX1AoiK5DJg-bMp2MSUaZf--MLS5EV_fC_c65nDMFp41rNABXGM0xQmThXTUnuETkBEwwY1mSlll--rOz8hxMQ9ghlNKiZBPAl1C6fSu8iPZDwxA71UNnoPGdjVDpqGW0roGiUQPYNdE2b3Cv49apAI3zsLe6VnAv2na82IFs21pD5-VWeBUuwJkRddCXxzkDr_d3L6vHZL15eFot14mkGSVJhqqUEqGNMirPs5QoaSQyjBEhFclIJatKUma0MEzllcAFKbQsyrwQBpMC0Rm4Pvi23r13OkS-c51vhpecUJbRwRKP1OJASe9C8NpwaaMYA0YvbM0x4mOLfGiRf7c4KG5-KVpv98L3f7JH909b6_5_kD9vbg-KL7pchUY |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107513 crossref_primary_10_1016_j_postharvbio_2023_112691 crossref_primary_10_1016_j_atech_2024_100614 crossref_primary_10_3897_BDJ_8_e57090 crossref_primary_10_1109_LRA_2020_2965061 crossref_primary_10_3389_fpls_2020_541960 crossref_primary_10_1016_j_compag_2024_109534 crossref_primary_10_3389_fpls_2021_684328 crossref_primary_10_1109_ACCESS_2024_3390581 crossref_primary_10_1109_LRA_2020_2966398 crossref_primary_10_1016_j_compag_2020_105856 crossref_primary_10_1038_s41598_022_12732_1 crossref_primary_10_1016_j_compag_2023_107635 crossref_primary_10_1080_08839514_2022_2031823 crossref_primary_10_1007_s11694_024_03062_z crossref_primary_10_3390_s22072456 crossref_primary_10_3389_fpls_2022_1030962 crossref_primary_10_1109_TASE_2023_3318008 crossref_primary_10_3389_fpls_2022_864458 crossref_primary_10_1016_j_compag_2020_105606 crossref_primary_10_1109_ACCESS_2022_3155652 crossref_primary_10_31202_ecjse_962269 crossref_primary_10_3390_agronomy13092279 crossref_primary_10_1016_j_compag_2020_105687 crossref_primary_10_1016_j_compag_2022_106812 crossref_primary_10_1016_j_agsy_2024_103867 crossref_primary_10_1186_s13007_020_00698_y crossref_primary_10_17660_ActaHortic_2023_1360_6 crossref_primary_10_22144_ctu_jen_2022_006 crossref_primary_10_3389_fpls_2022_765523 crossref_primary_10_1007_s11042_023_15630_4 crossref_primary_10_34133_plantphenomics_0030 crossref_primary_10_3390_agronomy12020440 crossref_primary_10_1016_j_compag_2020_105634 crossref_primary_10_3390_drones8100541 crossref_primary_10_34133_2020_4152816 crossref_primary_10_3390_agriculture12122089 crossref_primary_10_1016_j_compag_2022_107339 crossref_primary_10_1016_j_atech_2022_100129 crossref_primary_10_1016_j_compag_2021_106178 crossref_primary_10_1016_j_cosrev_2024_100694 crossref_primary_10_1016_j_compind_2022_103635 crossref_primary_10_1016_j_heliyon_2024_e40836 crossref_primary_10_1016_j_atech_2024_100688 crossref_primary_10_1016_j_biosystemseng_2021_03_012 crossref_primary_10_1155_2023_6675523 crossref_primary_10_1007_s11119_023_10034_8 crossref_primary_10_1007_s00542_020_05123_x crossref_primary_10_1016_j_compag_2023_108156 crossref_primary_10_1016_j_compag_2024_108972 crossref_primary_10_1007_s12065_021_00595_w crossref_primary_10_1016_j_compag_2023_108036 crossref_primary_10_3389_frobt_2021_627280 crossref_primary_10_1016_j_postharvbio_2023_112587 crossref_primary_10_1002_rob_22178 crossref_primary_10_1016_j_compag_2024_108926 crossref_primary_10_3390_s22176473 crossref_primary_10_1002_ppp3_10275 crossref_primary_10_1007_s10846_022_01793_z crossref_primary_10_1007_s11042_022_13390_1 crossref_primary_10_3390_app122211420 crossref_primary_10_3390_app13148306 crossref_primary_10_1007_s12393_023_09353_3 crossref_primary_10_1016_j_atech_2025_100784 crossref_primary_10_1016_j_biosystemseng_2021_06_015 crossref_primary_10_1109_ACCESS_2019_2962513 crossref_primary_10_1016_j_compag_2020_105760 crossref_primary_10_1002_rob_21876 crossref_primary_10_3390_agriculture13061117 crossref_primary_10_3390_agriculture15050483 crossref_primary_10_1007_s00217_023_04436_1 crossref_primary_10_3233_JIFS_232104 crossref_primary_10_1016_j_compag_2024_109564 crossref_primary_10_1002_rob_22398 crossref_primary_10_3390_jimaging11020034 crossref_primary_10_3390_cli10020011 crossref_primary_10_1002_rob_21987 crossref_primary_10_3390_informatics11040087 crossref_primary_10_1080_01140671_2022_2032213 crossref_primary_10_2139_ssrn_4770722 crossref_primary_10_1109_TIP_2021_3050673 crossref_primary_10_3390_rs13010054 crossref_primary_10_1109_LRA_2022_3199026 crossref_primary_10_1016_j_biosystemseng_2023_09_005 crossref_primary_10_1016_j_compag_2024_109199 crossref_primary_10_1590_s1982_21702021000200014 crossref_primary_10_1002_rob_22147 crossref_primary_10_3390_horticulturae9040498 crossref_primary_10_3390_su15032707 crossref_primary_10_1016_j_biosystemseng_2022_08_013 crossref_primary_10_1016_j_biosystemseng_2024_07_019 crossref_primary_10_1016_j_compag_2022_107081 crossref_primary_10_1186_s13007_019_0528_3 crossref_primary_10_1007_s11042_023_16570_9 crossref_primary_10_1016_j_atech_2024_100491 crossref_primary_10_1016_j_compag_2023_108196 crossref_primary_10_1051_e3sconf_202341201083 crossref_primary_10_3390_su13148054 crossref_primary_10_1007_s11042_021_10704_7 crossref_primary_10_1016_j_compag_2022_106715 crossref_primary_10_1002_rob_22260 crossref_primary_10_1007_s11119_020_09709_3 crossref_primary_10_3390_rs13091619 |
Cites_doi | 10.1109/CoASE.2015.7294123 10.1109/CVPR.2015.7298965 10.1145/3065386 10.1109/TSMC.1979.4310076 10.1109/LRA.2017.2651944 10.1109/IROS.2018.8594239 10.3390/agronomy8100211 10.1007/978-3-642-35740-4_21 10.1007/978-3-540-75404-6_51 10.1109/CVPR.2016.90 10.1109/ICCV.2017.324 10.1109/ICCV.2003.1238387 10.1109/IROS.2018.8594167 10.1109/CVPR.2017.106 10.1109/COASE.2016.7743500 10.1007/978-3-319-46448-0_2 10.1109/TPAMI.2016.2644615 10.3390/s16081222 10.1007/978-0-8176-8154-8_6 10.1109/IROS.2017.8206500 10.1023/B:VISI.0000011205.11775.fd 10.1109/ICRA.2017.7989417 10.1007/978-3-319-24574-4_28 10.1016/j.compag.2015.05.021 10.1007/s11263-015-0816-y 10.1007/978-3-319-00065-7_50 10.1109/CVPR.2017.351 10.1016/j.compag.2015.10.022 10.1002/nav.3800020109 10.1007/978-3-319-50115-4_42 10.1002/rob.21699 10.1007/978-3-319-07488-7_33 10.1109/79.543975 10.3390/s17040905 10.3390/s16111915 10.1109/TPAMI.2012.120 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. 2020 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rob.21902 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1556-4967 |
EndPage | 282 |
ExternalDocumentID | 10_1002_rob_21902 ROB21902 |
Genre | article |
GrantInformation_xml | – fundername: National Institute of Food and Agriculture funderid: MIN‐98‐G02 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION 1OB 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3632-60b432aefdfd77642dcfc0f552acd262bcbbc35feaf5d7ba1828ec8978af12803 |
IEDL.DBID | DR2 |
ISSN | 1556-4959 |
IngestDate | Wed Aug 13 03:09:40 EDT 2025 Tue Jul 01 04:33:51 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Sun Jul 06 04:45:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3632-60b432aefdfd77642dcfc0f552acd262bcbbc35feaf5d7ba1828ec8978af12803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5410-1486 0000-0003-4042-3318 0000-0002-0868-5441 |
PQID | 2356364210 |
PQPubID | 1006410 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2356364210 crossref_citationtrail_10_1002_rob_21902 crossref_primary_10_1002_rob_21902 wiley_primary_10_1002_rob_21902_ROB21902 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of field robotics |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_10_1_27_1 Roy P. (e_1_2_10_1_44_1) 2018; 164 e_1_2_10_1_29_1 e_1_2_10_1_23_1 e_1_2_10_1_46_1 e_1_2_10_1_25_1 e_1_2_10_1_48_1 e_1_2_10_1_42_1 e_1_2_10_1_40_1 e_1_2_10_1_9_1 e_1_2_10_1_7_1 e_1_2_10_1_16_1 e_1_2_10_1_39_1 Ren S. (e_1_2_10_1_38_1) 2015 e_1_2_10_1_18_1 Szegedy C. (e_1_2_10_1_50_1) 2016 e_1_2_10_1_12_1 e_1_2_10_1_35_1 e_1_2_10_1_14_1 e_1_2_10_1_37_1 e_1_2_10_1_31_1 e_1_2_10_1_5_1 e_1_2_10_1_52_1 e_1_2_10_1_3_1 Häni N. (e_1_2_10_1_21_1) 2018 Beucher S. (e_1_2_10_1_10_1) 1992 e_1_2_10_1_28_1 e_1_2_10_1_49_1 Pedersen S. J. K. (e_1_2_10_1_36_1) 2007; 123 e_1_2_10_1_24_1 e_1_2_10_1_45_1 e_1_2_10_1_26_1 e_1_2_10_1_47_1 e_1_2_10_1_20_1 e_1_2_10_1_41_1 e_1_2_10_1_22_1 e_1_2_10_1_43_1 e_1_2_10_1_8_1 e_1_2_10_1_17_1 e_1_2_10_1_19_1 e_1_2_10_1_2_1 Lucas B. D. (e_1_2_10_1_33_1) 1981; 2 e_1_2_10_1_13_1 e_1_2_10_1_34_1 e_1_2_10_1_15_1 e_1_2_10_1_6_1 e_1_2_10_1_30_1 e_1_2_10_1_4_1 e_1_2_10_1_11_1 e_1_2_10_1_32_1 e_1_2_10_1_51_1 |
References_xml | – ident: e_1_2_10_1_14_1 doi: 10.1109/CoASE.2015.7294123 – ident: e_1_2_10_1_32_1 doi: 10.1109/CVPR.2015.7298965 – ident: e_1_2_10_1_26_1 doi: 10.1145/3065386 – ident: e_1_2_10_1_47_1 – start-page: 299 year: 1992 ident: e_1_2_10_1_10_1 article-title: The Watershed Transformation Applied To Image Segmentation publication-title: Scanning Microscopy International – ident: e_1_2_10_1_35_1 doi: 10.1109/TSMC.1979.4310076 – ident: e_1_2_10_1_11_1 doi: 10.1109/LRA.2017.2651944 – ident: e_1_2_10_1_31_1 doi: 10.1109/IROS.2018.8594239 – start-page: 91 volume-title: Advances in neural information processing systems year: 2015 ident: e_1_2_10_1_38_1 – start-page: 3626 year: 2018 ident: e_1_2_10_1_21_1 article-title: Apple Counting using Convolutional Neural Networks publication-title: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – ident: e_1_2_10_1_23_1 doi: 10.3390/agronomy8100211 – ident: e_1_2_10_1_48_1 doi: 10.1007/978-3-642-35740-4_21 – ident: e_1_2_10_1_6_1 doi: 10.1007/978-3-540-75404-6_51 – ident: e_1_2_10_1_22_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_10_1_29_1 doi: 10.1109/ICCV.2017.324 – ident: e_1_2_10_1_18_1 doi: 10.1109/ICCV.2003.1238387 – ident: e_1_2_10_1_17_1 – ident: e_1_2_10_1_2_1 – ident: e_1_2_10_1_51_1 – ident: e_1_2_10_1_40_1 doi: 10.1109/IROS.2018.8594167 – ident: e_1_2_10_1_28_1 doi: 10.1109/CVPR.2017.106 – ident: e_1_2_10_1_41_1 doi: 10.1109/COASE.2016.7743500 – ident: e_1_2_10_1_13_1 – ident: e_1_2_10_1_30_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_10_1_5_1 doi: 10.1109/TPAMI.2016.2644615 – volume: 164 start-page: 478 year: 2018 ident: e_1_2_10_1_44_1 article-title: Vision‐based preharvest yield mapping for apple orchards publication-title: Computers and Electronics in Agriculture – ident: e_1_2_10_1_16_1 – ident: e_1_2_10_1_46_1 doi: 10.3390/s16081222 – ident: e_1_2_10_1_4_1 doi: 10.1007/978-0-8176-8154-8_6 – ident: e_1_2_10_1_42_1 doi: 10.1109/IROS.2017.8206500 – ident: e_1_2_10_1_7_1 doi: 10.1023/B:VISI.0000011205.11775.fd – ident: e_1_2_10_1_8_1 doi: 10.1109/ICRA.2017.7989417 – start-page: 4278 year: 2016 ident: e_1_2_10_1_50_1 article-title: Inception‐v4, Inception‐ResNet and the Impact of Residual Connections on Learning publication-title: AAAI 2017 – ident: e_1_2_10_1_39_1 doi: 10.1007/978-3-319-24574-4_28 – volume: 2 start-page: 674 year: 1981 ident: e_1_2_10_1_33_1 article-title: An iterative image registration technique with an application to stereo vision publication-title: Proceedings of the 7th International Joint Conference on Artificial Intelligence – ident: e_1_2_10_1_19_1 doi: 10.1016/j.compag.2015.05.021 – ident: e_1_2_10_1_45_1 doi: 10.1007/s11263-015-0816-y – ident: e_1_2_10_1_52_1 doi: 10.1007/978-3-319-00065-7_50 – ident: e_1_2_10_1_12_1 – ident: e_1_2_10_1_24_1 doi: 10.1109/CVPR.2017.351 – ident: e_1_2_10_1_20_1 doi: 10.1016/j.compag.2015.10.022 – ident: e_1_2_10_1_27_1 doi: 10.1002/nav.3800020109 – ident: e_1_2_10_1_43_1 doi: 10.1007/978-3-319-50115-4_42 – ident: e_1_2_10_1_9_1 doi: 10.1002/rob.21699 – ident: e_1_2_10_1_25_1 doi: 10.1007/978-3-319-07488-7_33 – ident: e_1_2_10_1_34_1 doi: 10.1109/79.543975 – ident: e_1_2_10_1_37_1 doi: 10.3390/s17040905 – ident: e_1_2_10_1_15_1 – volume: 123 start-page: 6 year: 2007 ident: e_1_2_10_1_36_1 article-title: Circular hough transform publication-title: Aalborg University, Vision, Graphics, and Interactive Systems – ident: e_1_2_10_1_49_1 doi: 10.3390/s16111915 – ident: e_1_2_10_1_3_1 doi: 10.1109/TPAMI.2012.120 |
SSID | ssj0043895 |
Score | 2.5840132 |
Snippet | We present a modular end‐to‐end system for yield estimation in apple orchards. Our goal is to identify fruit detection and counting methods with the best... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 263 |
SubjectTerms | agriculture Comparative studies Datasets Deep learning Fruits Identification methods learning Machine learning Mapping Modular systems Orchards perception Probabilistic models Semantic segmentation |
Title | A comparative study of fruit detection and counting methods for yield mapping in apple orchards |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.21902 https://www.proquest.com/docview/2356364210 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMeX0pMefIvVKot48JI2brJJg6cqliKoUCz0IIR9lqImkqYH_fTObh6toiDeEpi8dnd2_xNmf4PQmat9wZkOHK1l5Pgs1A5nrnAozJgm6Zu7Fil0dx8Mx_7thE4a6LLaC1PwIeofbsYz7HxtHJzxeXcJDc1S3gF3syBJk6tlBNGoRkeZot7UslJp4EAQEFVUIZd06yu_rkVLgbkqU-06M9hET9UbFuklz51Fzjvi4xu88Z-fsIU2Sv2J-8WA2UYNleyg9f40KxkcCs5WGIW7KO5jsSSEY4ujxanGOlvMcixVbnO5EswSiavCE7ioSz3HoIjxu8mRw6_MgCCmeAaWIHwVTrNiw9ceGg9uHq-HTlmVwRFe4BEncLnvEaa01DIMIXyRQgtXU0qYkCQgXHAuPKoV01SGnEEA01OiB9Eq0xemFtY-aiZpog4QjkDeaeJSTUAGMYjVVM_3ZChBBpodRFELnVf9E4sSWW4qZ7zEBWyZxNCCsW3BFjqtTd8KTsdPRu2qk-PSVecx8Wjgme2-LjzO9tbvN4hHD1f24PDvpkdojZgY3eattVEzzxbqGIRMzk_siP0EdXTwTA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMeD6EE9-Fv8MTWIBy-dNW3aDbxMcUzdJsgELxLyc4jaSdcd9K_3JW23KQrirYX0V5KXfl947_MQOvJNKAU3kWeMqnshj40nuC89CiumDfoWvkMKdbpR6z68fqAPM-iszIXJ-RDjDTdrGW69tgZuN6RPJtTQdCCqYG-WJDlnK3o7h-puDI-yZb2po6XSyAM3oF5yhXxyMr70699oIjGnhar70zSX0WP5jnmAyXN1lImq_PiGb_zvR6ygpUKC4kY-Z1bRjE7W0GKjnxYYDg1nU5jCdcQaWE4g4dgRafHAYJOOnjKsdObCuRLME4XL2hM4L009xCCK8bsNk8Ov3LIg-vgJWoL21XiQ5jlfG-i-edm7aHlFYQZPBlFAvMgXYUC4NsqoOAYPRkkjfUMp4VKRiAgphAyo0dxQFQsOPkxNyxo4rNyc2nJYm2g2GSR6C-E6KDxDfGoIKCEO7pquhYGKFShBm0RU30bH5QAxWVDLbfGMF5bzlgmDHmSuB7fR4bjpW47q-KlRpRxlVljrkJGARoHN-PXhcW64fr8Bu7s9dwc7f296gOZbvU6bta-6N7togViX3YWxVdBslo70HuiaTOy76fsJdU30Zw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LT9wwEIctRCXUHlqgVKWFYiEOvXgxTpxk1dO2dMW7FQKJA5Ll16xQ2ywK2UP56xk7yS6tQELcEmnysj32b6LxN4RscUit0ZAxANdnqc6BGc0tkzhjhqRvwyNS6Pgk2ztPDy7kxRz50u2FafgQ0x9uwTPifB0c_NrB9gwaWo1ND90tgCRfpBkvwpDePZ2yo0JVbxlhqTJjGAX0O6wQF9vTS_9djGYK875OjQvN8A257F6xyS_51ZvUpmdv_6M3PvMbFsnrVoDSQTNilsicL5fJq8GoaiEcHs_uQQrfEjWgdoYIp5FHS8dAoZpc1dT5OiZzlVSXjnaVJ2hTmPqGoiSmf0OSHP2jAwliRK_QEpWvp-Oq2fG1Qs6H38--7bG2LAOzSZYIlnGTJkJ7cODyHOMXZ8FykFJo60QmjDXGJhK8BulyozGCKbwtMFzVsBOKYb0j8-W49O8J7aO-A8ElCNRBGoM1X6SJyx3qwLCFqL9KPnf9o2zLLA-lM36rhrYsFLagii24SjanptcNqOMho7Wuk1XrqzdKJDJLwn5fjo-LvfX4DdTpj6_x4MPTTTfIws_doTraPzn8SF6KEK_zhIlijczX1cSvo6ipzac4eO8AwrHzKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+fruit+detection+and+counting+methods+for+yield+mapping+in+apple+orchards&rft.jtitle=Journal+of+field+robotics&rft.au=H%C3%A4ni%2C+Nicolai&rft.au=Roy%2C+Pravakar&rft.au=Isler%2C+Volkan&rft.date=2020-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=37&rft.issue=2&rft.spage=263&rft.epage=282&rft_id=info:doi/10.1002%2Frob.21902&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |