RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation

Distributed as an open‐source library since 2013, real‐time appearance‐based mapping (RTAB‐Map) started as an appearance‐based loop closure detection approach with memory management to deal with large‐scale and long‐term online operation. It then grew to implement simultaneous localization and mappi...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 36; no. 2; pp. 416 - 446
Main Authors Labbé, Mathieu, Michaud, François
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Distributed as an open‐source library since 2013, real‐time appearance‐based mapping (RTAB‐Map) started as an appearance‐based loop closure detection approach with memory management to deal with large‐scale and long‐term online operation. It then grew to implement simultaneous localization and mapping (SLAM) on various robots and mobile platforms. As each application brings its own set of constraints on sensors, processing capabilities, and locomotion, it raises the question of which SLAM approach is the most appropriate to use in terms of cost, accuracy, computation power, and ease of integration. Since most of SLAM approaches are either visual‐ or lidar‐based, comparison is difficult. Therefore, we decided to extend RTAB‐Map to support both visual and lidar SLAM, providing in one package a tool allowing users to implement and compare a variety of 3D and 2D solutions for a wide range of applications with different robots and sensors. This paper presents this extended version of RTAB‐Map and its use in comparing, both quantitatively and qualitatively, a large selection of popular real‐world datasets (e.g., KITTI, EuRoC, TUM RGB‐D, MIT Stata Center on PR2 robot), outlining strengths, and limitations of visual and lidar SLAM configurations from a practical perspective for autonomous navigation applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1556-4959
1556-4967
DOI:10.1002/rob.21831