The Charcoal Vision: A Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality
Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally transform biomass into bio‐oil, syngas, and charcoal. The syngas could provide the energy needs of the pyrolyzer. Bio‐oil is an energy raw ma...
Saved in:
Published in | Agronomy journal Vol. 100; no. 1; pp. 178 - 181 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Madison
American Society of Agronomy
01.01.2008
|
Online Access | Get full text |
Cover
Loading…
Abstract | Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally transform biomass into bio‐oil, syngas, and charcoal. The syngas could provide the energy needs of the pyrolyzer. Bio‐oil is an energy raw material (∼17 MJ kg−1) that can be burned to generate heat or shipped to a refinery for processing into transportation fuels. Charcoal could also be used to generate energy; however, application of the charcoal co‐product to soils may be key to sustainability. Application of charcoal to soils is hypothesized to increase bioavailable water, build soil organic matter, enhance nutrient cycling, lower bulk density, act as a liming agent, and reduce leaching of pesticides and nutrients to surface and ground water. The half‐life of C in soil charcoal is in excess of 1000 yr. Hence, soil‐applied charcoal will make both a lasting contribution to soil quality and C in the charcoal will be removed from the atmosphere and sequestered for millennia. Assuming the United States can annually produce 1.1 × 109 Mg of biomass from harvestable forest and crop lands, national implementation of The Charcoal Vision would generate enough bio‐oil to displace 1.91 billion barrels of fossil fuel oil per year or about 25% of the current U.S. annual oil consumption. The combined C credit for fossil fuel displacement and permanent sequestration, 363 Tg per year, is 10% of the average annual U.S. emissions of CO2–C. |
---|---|
AbstractList | Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally transform biomass into bio‐oil, syngas, and charcoal. The syngas could provide the energy needs of the pyrolyzer. Bio‐oil is an energy raw material (∼17 MJ kg−1) that can be burned to generate heat or shipped to a refinery for processing into transportation fuels. Charcoal could also be used to generate energy; however, application of the charcoal co‐product to soils may be key to sustainability. Application of charcoal to soils is hypothesized to increase bioavailable water, build soil organic matter, enhance nutrient cycling, lower bulk density, act as a liming agent, and reduce leaching of pesticides and nutrients to surface and ground water. The half‐life of C in soil charcoal is in excess of 1000 yr. Hence, soil‐applied charcoal will make both a lasting contribution to soil quality and C in the charcoal will be removed from the atmosphere and sequestered for millennia. Assuming the United States can annually produce 1.1 × 109 Mg of biomass from harvestable forest and crop lands, national implementation of The Charcoal Vision would generate enough bio‐oil to displace 1.91 billion barrels of fossil fuel oil per year or about 25% of the current U.S. annual oil consumption. The combined C credit for fossil fuel displacement and permanent sequestration, 363 Tg per year, is 10% of the average annual U.S. emissions of CO2–C. Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally transform biomass into bio‐oil, syngas, and charcoal. The syngas could provide the energy needs of the pyrolyzer. Bio‐oil is an energy raw material (∼17 MJ kg −1 ) that can be burned to generate heat or shipped to a refinery for processing into transportation fuels. Charcoal could also be used to generate energy; however, application of the charcoal co‐product to soils may be key to sustainability. Application of charcoal to soils is hypothesized to increase bioavailable water, build soil organic matter, enhance nutrient cycling, lower bulk density, act as a liming agent, and reduce leaching of pesticides and nutrients to surface and ground water. The half‐life of C in soil charcoal is in excess of 1000 yr. Hence, soil‐applied charcoal will make both a lasting contribution to soil quality and C in the charcoal will be removed from the atmosphere and sequestered for millennia. Assuming the United States can annually produce 1.1 × 10 9 Mg of biomass from harvestable forest and crop lands, national implementation of The Charcoal Vision would generate enough bio‐oil to displace 1.91 billion barrels of fossil fuel oil per year or about 25% of the current U.S. annual oil consumption. The combined C credit for fossil fuel displacement and permanent sequestration, 363 Tg per year, is 10% of the average annual U.S. emissions of CO 2 –C. |
Author | Laird, David A. |
Author_xml | – sequence: 1 givenname: David A. surname: Laird fullname: Laird, David A. email: david.laird@ars.usda.gov organization: USDA, ARS, National Soil Tilth Laboratory |
BookMark | eNqFkM1OwkAUhScGExFdu50HoDA__cONQaIIIYIWZdkM5RaGlBmctpLufAcfwHfzSWzFaOJCN_cmN-ecm_Mdo5rSChA6o6TFKLfbYmm0WjNCvBahLj1AdWpzxyKu7dRQnRDCLNpx2RE6TtM1IZR2bFpHb9MV4N5KmEiLBD_KVGp1jrt4JtX7y-v3xEEEShipcawNDuQmTzKhQOdpUuCJ0Ys8kmqJL6UGBWZZNPEEzKZUqKwUBPCUQ5qBqTQ9YeZaNfFuJRPAg83W6OfqHmiZYKEWeCZKJb7LRSKz4gQdxiJJ4fRrN9DD9dW0d2ONxv1BrzuyIu5yank29eee43V45HICfly2psQjzO5wR3hzAO65PrNjh3NY-ILxiFOfcbJgLp37hDdQe58bGZ2mBuJwa-RGmCKkJKz4hj98w4pv6XB-OSKZiazklxkhkz98F3vfruxf_Pcm7PaHrNu_H98Oq9tnwgccoZlh |
CitedBy_id | crossref_primary_10_1111_nph_15042 crossref_primary_10_2134_jeq2011_0118 crossref_primary_10_1016_j_eti_2021_101837 crossref_primary_10_1007_s10668_024_04888_9 crossref_primary_10_1016_j_joei_2020_04_011 crossref_primary_10_1016_j_geoderma_2021_115301 crossref_primary_10_3390_ijms9050768 crossref_primary_10_1021_ef400972z crossref_primary_10_3390_agriculture6010010 crossref_primary_10_3390_agriculture9070153 crossref_primary_10_1016_j_psep_2017_11_006 crossref_primary_10_2136_sssaj2010_0270 crossref_primary_10_1016_j_renene_2017_04_035 crossref_primary_10_2134_cs2019_52_0102 crossref_primary_10_4141_cjss2011_066 crossref_primary_10_1002_jeq2_20468 crossref_primary_10_1016_j_rser_2017_05_057 crossref_primary_10_3390_en6010164 crossref_primary_10_1007_s10570_019_02651_2 crossref_primary_10_1016_j_geoderma_2020_114184 crossref_primary_10_1111_ejss_70010 crossref_primary_10_1016_j_renene_2016_03_087 crossref_primary_10_2134_jeq2013_07_0290 crossref_primary_10_2134_jeq2011_0103 crossref_primary_10_1016_j_joei_2020_04_016 crossref_primary_10_3390_agronomy11071290 crossref_primary_10_1016_j_agee_2017_01_025 crossref_primary_10_1016_j_ufug_2018_06_021 crossref_primary_10_3390_agronomy11071297 crossref_primary_10_3390_microbiolres14010018 crossref_primary_10_1016_j_biombioe_2022_106581 crossref_primary_10_3390_app9061139 crossref_primary_10_1016_j_biopha_2021_112191 crossref_primary_10_1111_sum_12413 crossref_primary_10_1088_1755_1315_724_1_012002 crossref_primary_10_1371_journal_pone_0224556 crossref_primary_10_1098_rstb_2020_0180 crossref_primary_10_1016_j_chemosphere_2015_05_062 crossref_primary_10_1039_C8EM00278A crossref_primary_10_1016_j_scitotenv_2019_06_277 crossref_primary_10_1186_s40538_020_00204_5 crossref_primary_10_1002_tqem_21766 crossref_primary_10_2134_jeq2011_0131 crossref_primary_10_3934_environsci_2019_5_379 crossref_primary_10_2134_jeq2011_0133 crossref_primary_10_1007_s10725_022_00868_z crossref_primary_10_1080_10643389_2020_1811590 crossref_primary_10_1115_1_4007659 crossref_primary_10_3390_en16104131 crossref_primary_10_3390_environments9110138 crossref_primary_10_3390_app112411772 crossref_primary_10_1016_j_envint_2019_06_009 crossref_primary_10_21273_HORTTECH03490_16 crossref_primary_10_1007_s10653_017_9947_0 crossref_primary_10_2134_jeq2011_0126 crossref_primary_10_24266_0738_2898_41_4_141 crossref_primary_10_1016_j_rser_2016_11_165 crossref_primary_10_1080_15427528_2018_1425791 crossref_primary_10_3390_app11041473 crossref_primary_10_1097_SS_0b013e3182357ca9 crossref_primary_10_1016_j_carbon_2017_03_056 crossref_primary_10_2136_vzj2018_11_0207 crossref_primary_10_1007_s10661_019_7400_9 crossref_primary_10_1039_C6SE00080K crossref_primary_10_1038_s41598_020_69798_y crossref_primary_10_1039_b809492f crossref_primary_10_3390_agronomy13051412 crossref_primary_10_3390_f14112238 crossref_primary_10_1016_j_scitotenv_2021_148170 crossref_primary_10_1016_j_soilbio_2017_11_017 crossref_primary_10_2136_sssaj2017_01_0010 crossref_primary_10_24857_rgsa_v19n3_101 crossref_primary_10_3390_app9132602 crossref_primary_10_1186_s13705_019_0189_0 crossref_primary_10_1080_23311932_2018_1423719 crossref_primary_10_1007_s12517_020_05376_w crossref_primary_10_1097_SS_0000000000000123 crossref_primary_10_1051_e3sconf_202561003001 crossref_primary_10_1021_ef300356u crossref_primary_10_1080_01904167_2020_1845369 crossref_primary_10_1007_s42250_021_00293_1 crossref_primary_10_2134_cftm2018_02_0008 crossref_primary_10_3390_agronomy11040615 crossref_primary_10_1016_j_scitotenv_2021_148479 crossref_primary_10_1007_s42452_019_0172_6 crossref_primary_10_1002_jpln_200900290 crossref_primary_10_1038_ncomms9708 crossref_primary_10_1007_s10499_023_01077_9 crossref_primary_10_3390_agronomy10121903 crossref_primary_10_1016_j_scitotenv_2021_150789 crossref_primary_10_4236_ojss_2024_141004 crossref_primary_10_1016_j_apenergy_2016_02_084 crossref_primary_10_1016_j_jhazmat_2010_04_103 crossref_primary_10_1016_j_jenvman_2023_119271 crossref_primary_10_1016_j_pedobi_2011_07_005 crossref_primary_10_1007_s10343_023_00868_7 crossref_primary_10_3389_fmicb_2022_999399 crossref_primary_10_1016_j_scitotenv_2024_170804 crossref_primary_10_3390_su16104060 crossref_primary_10_3390_agriculture12071028 crossref_primary_10_1016_j_esd_2021_07_002 crossref_primary_10_1007_s40858_020_00332_1 crossref_primary_10_1155_2015_541818 crossref_primary_10_3390_ijms26010109 crossref_primary_10_3390_w12072012 crossref_primary_10_2134_jeq2012_0019 crossref_primary_10_1016_j_jece_2020_104764 crossref_primary_10_1007_s42773_021_00112_3 crossref_primary_10_1016_j_scitotenv_2021_149580 crossref_primary_10_5802_crchim_234 crossref_primary_10_1007_s13399_023_04272_z crossref_primary_10_1016_j_ecoleng_2016_01_020 crossref_primary_10_1080_00103624_2023_2177669 crossref_primary_10_1016_j_orggeochem_2017_06_012 crossref_primary_10_1088_1755_1315_712_1_012027 crossref_primary_10_1002_ep_12503 crossref_primary_10_1080_09542299_2018_1544035 crossref_primary_10_2136_sssaj2010_0435 crossref_primary_10_1002_ep_10446 crossref_primary_10_1111_jac_12382 crossref_primary_10_1111_gcbb_12314 crossref_primary_10_3934_agrfood_2021043 crossref_primary_10_1016_j_jes_2023_04_008 crossref_primary_10_1111_gcbb_12553 crossref_primary_10_1080_01904167_2021_1943678 crossref_primary_10_3390_agronomy11102028 crossref_primary_10_3390_horticulturae5010014 crossref_primary_10_1007_s10021_018_0248_y crossref_primary_10_1016_j_soilbio_2015_01_014 crossref_primary_10_2134_jeq2011_0069 crossref_primary_10_1002_jpln_201500497 crossref_primary_10_1111_gcbb_12789 crossref_primary_10_1111_gcbb_12665 crossref_primary_10_3390_c9020049 crossref_primary_10_1016_j_jenvman_2014_11_027 crossref_primary_10_3390_agronomy10081142 crossref_primary_10_7717_peerj_11937 crossref_primary_10_1016_j_scitotenv_2018_03_189 crossref_primary_10_3390_bioengineering6020033 crossref_primary_10_1016_j_scitotenv_2022_160722 crossref_primary_10_3389_fpls_2022_1094633 crossref_primary_10_1007_s13399_019_00571_6 crossref_primary_10_1016_j_geoderma_2016_02_017 crossref_primary_10_3390_su16208838 crossref_primary_10_1111_gcbb_12414 crossref_primary_10_1038_s41598_024_83372_w crossref_primary_10_1016_j_cej_2022_141003 crossref_primary_10_3389_fpls_2024_1384065 crossref_primary_10_1016_j_watres_2018_03_021 crossref_primary_10_1021_es301029g crossref_primary_10_1016_j_still_2015_11_006 crossref_primary_10_3390_agriculture11111112 crossref_primary_10_3955_046_092_0102 crossref_primary_10_2136_sssaj2010_0325 crossref_primary_10_1016_j_biteb_2021_100838 crossref_primary_10_1111_gcbb_12889 crossref_primary_10_1016_j_fuel_2022_123378 crossref_primary_10_1038_ncomms1053 crossref_primary_10_1155_2021_6630982 crossref_primary_10_1021_es305337r crossref_primary_10_3390_agriculture5041076 crossref_primary_10_1016_j_jenvman_2017_03_087 crossref_primary_10_1016_j_fcr_2022_108541 crossref_primary_10_1021_es405676h crossref_primary_10_1080_09593330_2020_1804466 crossref_primary_10_1021_acs_est_1c03478 crossref_primary_10_1088_1757_899X_274_1_012156 crossref_primary_10_3390_f15111914 crossref_primary_10_1021_acs_energyfuels_5b01020 crossref_primary_10_5194_se_5_499_2014 crossref_primary_10_1016_j_seta_2017_09_006 crossref_primary_10_1016_j_renene_2018_06_081 crossref_primary_10_1016_j_ecoleng_2017_01_034 crossref_primary_10_1111_gcbb_12878 crossref_primary_10_1002_fsn3_808 crossref_primary_10_1007_s11157_024_09712_4 crossref_primary_10_1007_s44246_024_00123_2 crossref_primary_10_1016_j_scitotenv_2021_146573 crossref_primary_10_3390_land10020161 crossref_primary_10_15377_2410_3624_2024_11_2 crossref_primary_10_1155_2013_354965 crossref_primary_10_3390_polym13020283 crossref_primary_10_7717_peerj_7576 crossref_primary_10_1007_s11356_023_30153_z crossref_primary_10_2478_johh_2021_0024 crossref_primary_10_1108_MEQ_07_2014_0101 crossref_primary_10_61186_jeer_14_1_158 crossref_primary_10_1002_clen_201501020 crossref_primary_10_1007_s12210_024_01273_6 crossref_primary_10_21273_HORTSCI15428_20 crossref_primary_10_1097_SS_0b013e3181981d9a crossref_primary_10_1016_j_resconrec_2013_04_005 crossref_primary_10_2134_jeq2010_0453 crossref_primary_10_3390_horticulturae10040368 crossref_primary_10_1016_j_indcrop_2020_112224 crossref_primary_10_1080_00103624_2023_2211097 crossref_primary_10_1016_j_scitotenv_2017_09_124 crossref_primary_10_4081_ija_2020_1581 crossref_primary_10_1016_j_jenvman_2018_11_043 crossref_primary_10_1016_j_pnmrs_2016_11_003 crossref_primary_10_1016_j_still_2018_09_013 crossref_primary_10_3390_en9110869 crossref_primary_10_1002_ep_12838 crossref_primary_10_1007_s13399_020_00949_x crossref_primary_10_3390_spectroscj1020009 crossref_primary_10_1038_s41598_018_35534_w crossref_primary_10_2134_jeq2015_10_0529 crossref_primary_10_1016_j_scitotenv_2020_136498 crossref_primary_10_1111_gcbb_12720 crossref_primary_10_1071_SR10008 crossref_primary_10_3389_fmicb_2017_00589 crossref_primary_10_1007_s10584_021_03121_0 crossref_primary_10_2134_agronj2009_0083 crossref_primary_10_2134_agronj2010_0188 crossref_primary_10_1016_j_agee_2016_11_016 crossref_primary_10_1016_j_envpol_2020_114449 crossref_primary_10_1080_03650340_2019_1575510 crossref_primary_10_1016_j_foreco_2021_119047 crossref_primary_10_1002_ente_201700211 crossref_primary_10_1016_j_jaap_2019_104670 crossref_primary_10_1097_SS_0b013e31824e5593 crossref_primary_10_1016_j_biortech_2009_03_005 crossref_primary_10_1088_1748_9326_aafcf0 crossref_primary_10_1111_gcbb_12037 crossref_primary_10_1111_gcbb_12156 crossref_primary_10_1016_j_scitotenv_2020_137775 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118988 crossref_primary_10_1016_j_rser_2015_05_058 crossref_primary_10_1088_1755_1315_1252_1_012080 crossref_primary_10_1002_jctb_2461 crossref_primary_10_1007_s12155_010_9097_z crossref_primary_10_1021_es502669s crossref_primary_10_1016_j_enpol_2017_12_014 crossref_primary_10_1016_j_scitotenv_2017_06_186 crossref_primary_10_3390_agronomy12061440 crossref_primary_10_1016_j_envpol_2022_120100 crossref_primary_10_1016_j_ufug_2018_09_001 crossref_primary_10_1016_j_jhazmat_2014_10_052 crossref_primary_10_2298_HEMIND221222013L crossref_primary_10_3390_plants11233346 crossref_primary_10_1039_C5GC00828J crossref_primary_10_1016_j_eja_2018_08_009 crossref_primary_10_1111_gcbb_12265 crossref_primary_10_1016_j_soilbio_2010_09_013 crossref_primary_10_1016_j_njas_2011_05_002 crossref_primary_10_1016_j_jenvman_2024_122366 crossref_primary_10_3390_plants12183319 crossref_primary_10_1016_j_scitotenv_2017_12_343 crossref_primary_10_31545_intagr_143945 crossref_primary_10_1002_bbb_2043 crossref_primary_10_1111_gcbb_12376 crossref_primary_10_1007_s13399_025_06728_w crossref_primary_10_1111_gcbb_12132 crossref_primary_10_3390_agriculture3040715 crossref_primary_10_1002_bbb_344 crossref_primary_10_1016_j_envpol_2020_115684 crossref_primary_10_1371_journal_pone_0091114 crossref_primary_10_2134_jeq2018_06_0248 crossref_primary_10_1016_j_geoderma_2018_08_019 crossref_primary_10_1128_AEM_02555_20 crossref_primary_10_1007_s13762_017_1470_4 crossref_primary_10_1002_agj2_20540 crossref_primary_10_1016_j_jcis_2020_06_054 crossref_primary_10_1097_SS_0b013e3182171eac crossref_primary_10_1039_D2VA00324D crossref_primary_10_1111_1751_7915_12779 crossref_primary_10_1111_gcbb_12005 crossref_primary_10_1515_opag_2020_0040 crossref_primary_10_1021_es405647e crossref_primary_10_1111_gcbb_12486 crossref_primary_10_1016_j_envres_2022_113954 crossref_primary_10_2134_jeq2016_02_0062 crossref_primary_10_12974_2311_858X_2021_09_2 crossref_primary_10_2136_sssaj2019_04_0115 crossref_primary_10_3390_plants12091871 crossref_primary_10_1111_j_1757_1707_2010_01061_x crossref_primary_10_1016_j_ejsobi_2019_103095 crossref_primary_10_1007_s42452_020_2156_y crossref_primary_10_4081_ija_2016_780 crossref_primary_10_2134_jeq2016_09_0369 crossref_primary_10_1002_ehs2_1202 crossref_primary_10_1007_s11104_010_0544_6 crossref_primary_10_1016_j_jconhyd_2017_05_005 crossref_primary_10_1515_ssa_2016_0018 crossref_primary_10_1016_j_indcrop_2022_115837 crossref_primary_10_1021_es405190q crossref_primary_10_1016_j_jenvman_2017_01_068 crossref_primary_10_1016_j_soilbio_2014_02_009 crossref_primary_10_29278_azd_1532898 crossref_primary_10_1007_s12155_019_10047_0 crossref_primary_10_3390_agronomy7010006 crossref_primary_10_1080_00103624_2019_1632343 crossref_primary_10_1016_j_apsoil_2022_104485 crossref_primary_10_3389_fpls_2015_00429 crossref_primary_10_15835_nbha49312344 crossref_primary_10_2134_jeq2017_11_0432 crossref_primary_10_1016_j_biortech_2016_03_077 crossref_primary_10_1021_es301107c crossref_primary_10_1016_j_indcrop_2017_11_036 crossref_primary_10_1111_ejss_12941 crossref_primary_10_3389_fpls_2021_782072 crossref_primary_10_1038_ismej_2016_68 crossref_primary_10_1016_j_scitotenv_2024_172433 crossref_primary_10_1007_s42729_021_00580_3 crossref_primary_10_1002_agg2_20094 crossref_primary_10_1002_bbb_2092 crossref_primary_10_1016_S1002_0160_17_60482_X crossref_primary_10_1080_00103624_2018_1563101 crossref_primary_10_3390_en11102535 crossref_primary_10_1016_j_renene_2019_05_028 crossref_primary_10_1371_journal_pone_0314984 crossref_primary_10_3390_w14203343 crossref_primary_10_1111_gcbb_12213 crossref_primary_10_1016_j_scitotenv_2015_11_054 crossref_primary_10_3390_app9204394 crossref_primary_10_1017_S1742170522000412 crossref_primary_10_1016_j_scienta_2013_08_002 crossref_primary_10_3390_en15176234 crossref_primary_10_1002_ep_10378 crossref_primary_10_1080_10643389_2017_1418580 crossref_primary_10_1111_gcbb_12449 crossref_primary_10_1016_j_geoderma_2019_114170 crossref_primary_10_5194_soil_8_451_2022 crossref_primary_10_3390_pr9050882 crossref_primary_10_1080_03650340_2019_1572882 crossref_primary_10_1016_j_chemosphere_2022_133671 crossref_primary_10_1002_bbb_254 crossref_primary_10_4028_www_scientific_net_AMR_518_523_807 crossref_primary_10_1002_bbb_169 crossref_primary_10_1016_j_chemosphere_2017_11_151 crossref_primary_10_1016_j_carbon_2019_07_004 crossref_primary_10_2136_sssaj2013_07_0258 crossref_primary_10_1016_j_scitotenv_2017_04_160 crossref_primary_10_1080_00103624_2019_1705324 crossref_primary_10_1021_ef101342v crossref_primary_10_1111_sum_12026 crossref_primary_10_1016_j_biosystemseng_2021_03_010 crossref_primary_10_5004_dwt_2017_0479 crossref_primary_10_3390_su8020131 crossref_primary_10_1016_j_chemosphere_2013_06_004 crossref_primary_10_1021_acs_est_8b01338 crossref_primary_10_2134_agronj2012_0363 crossref_primary_10_1021_acsestengg_3c00027 crossref_primary_10_1016_j_chemosphere_2016_01_036 crossref_primary_10_1007_s10705_023_10281_1 crossref_primary_10_1039_C7GC01719G crossref_primary_10_1016_j_fuel_2012_11_029 crossref_primary_10_1088_1755_1315_215_1_012008 crossref_primary_10_1016_j_apenergy_2016_05_100 crossref_primary_10_1016_j_scitotenv_2018_06_280 crossref_primary_10_1016_j_soilbio_2019_107678 crossref_primary_10_1016_j_biortech_2009_03_071 crossref_primary_10_1007_s11368_019_02398_0 crossref_primary_10_1111_gcbb_12093 crossref_primary_10_1111_ejss_12064 crossref_primary_10_1007_s11356_017_9234_8 crossref_primary_10_3390_agronomy10020224 crossref_primary_10_1007_s12649_010_9024_8 crossref_primary_10_1007_s11104_010_0464_5 crossref_primary_10_1016_j_orggeochem_2017_09_001 crossref_primary_10_1016_j_geoderma_2016_11_025 crossref_primary_10_2136_sssaj2014_05_0198 crossref_primary_10_1016_j_eti_2022_102389 crossref_primary_10_2134_agronj2008_0087 crossref_primary_10_1016_j_scitotenv_2019_07_116 crossref_primary_10_1002_bbb_181 crossref_primary_10_1016_S1002_0160_20_60013_3 crossref_primary_10_3390_soilsystems3010008 crossref_primary_10_1016_S1002_0160_15_30045_X crossref_primary_10_1021_ef3003922 crossref_primary_10_1039_C7EE00682A crossref_primary_10_1016_j_jhazmat_2021_125116 crossref_primary_10_1016_j_jece_2024_112987 crossref_primary_10_17660_ActaHortic_2021_1305_33 crossref_primary_10_1016_j_jenvman_2023_118092 crossref_primary_10_1097_SS_0000000000000050 crossref_primary_10_1016_j_gca_2024_08_018 crossref_primary_10_1016_j_biosystemseng_2020_01_006 crossref_primary_10_1016_j_gca_2018_07_004 crossref_primary_10_1111_are_14922 crossref_primary_10_22207_JPAM_18_1_58 crossref_primary_10_1016_j_scitotenv_2016_02_129 crossref_primary_10_1016_j_indcrop_2016_12_017 crossref_primary_10_1111_gcbb_12191 crossref_primary_10_1007_s11356_018_3463_3 crossref_primary_10_1155_2018_6837404 crossref_primary_10_1016_j_soilbio_2020_107803 crossref_primary_10_1007_s12517_020_05586_2 crossref_primary_10_1016_j_fcr_2017_09_012 crossref_primary_10_1016_j_jaap_2022_105729 crossref_primary_10_1016_j_biortech_2017_06_049 crossref_primary_10_1016_j_chemosphere_2013_12_024 crossref_primary_10_1111_gcbb_12180 crossref_primary_10_1007_s11356_019_04473_y crossref_primary_10_3389_fenvs_2021_609621 crossref_primary_10_2136_sssaj2009_0115 crossref_primary_10_2136_sssaj2013_05_0160 crossref_primary_10_1016_j_scienta_2012_05_018 crossref_primary_10_1016_j_scitotenv_2017_11_023 crossref_primary_10_1007_s12155_018_9940_1 crossref_primary_10_1016_j_geoderma_2018_09_034 crossref_primary_10_1007_s11368_018_02226_x crossref_primary_10_1016_j_envres_2022_113883 crossref_primary_10_3390_su71013317 crossref_primary_10_1002_mrc_4391 crossref_primary_10_3390_microorganisms12020295 crossref_primary_10_1021_acs_chemmater_1c02961 crossref_primary_10_1007_s10342_019_01217_y crossref_primary_10_1016_j_resconrec_2021_106109 crossref_primary_10_1007_s42773_022_00147_0 crossref_primary_10_3390_agronomy14040676 crossref_primary_10_1016_j_catena_2019_104307 crossref_primary_10_1007_s42773_023_00279_x crossref_primary_10_3390_soilsystems4040069 crossref_primary_10_1016_j_chemosphere_2023_140419 crossref_primary_10_1016_j_scitotenv_2017_11_008 crossref_primary_10_1088_1755_1315_752_1_012018 crossref_primary_10_3390_agronomy13020505 crossref_primary_10_5004_dwt_2022_28706 crossref_primary_10_1016_j_fcr_2015_12_013 crossref_primary_10_1371_journal_pone_0224179 |
Cites_doi | 10.1016/j.biombioe.2005.07.011 10.1017/CBO9780511546013 10.1111/j.1744-7976.2005.00028.x 10.1016/j.biombioe.2006.07.006 10.1016/S0146-6380(99)00120-5 10.2134/agronj2004.1000a 10.1111/j.1467-7652.2006.00230.x 10.1016/j.biombioe.2007.01.012 10.1038/445014a 10.2136/sssaj2002.1249 10.1007/s11027-005-9006-5 10.1007/s00374-002-0466-4 10.1038/447143a 10.1016/j.orggeochem.2005.03.011 |
ContentType | Journal Article |
Copyright | Copyright © 2008 by the American Society of Agronomy |
Copyright_xml | – notice: Copyright © 2008 by the American Society of Agronomy |
DBID | AAYXX CITATION |
DOI | 10.2134/agronj2007.0161 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1435-0645 |
EndPage | 181 |
ExternalDocumentID | 10_2134_agronj2007_0161 AGJ2AGRONJ20070161 |
Genre | article |
GrantInformation_xml | – fundername: The Charcoal Vision |
GroupedDBID | -~X .86 .~0 0R~ 186 1OB 1OC 23M 2WC 33P 3V. 5GY 6J9 6KN 7X2 7XC 88I 8FE 8FG 8FH 8FW 8G5 8R4 8R5 AABCJ AAHBH AAHHS AAHQN AAMNL AANLZ AAYCA ABCQX ABCUV ABEFU ABJCF ABJNI ABRSH ABUWG ACAWQ ACCFJ ACCZN ACGFO ACGOD ACIWK ACPOU ACQAM ACXQS ADFRT ADKYN ADMHG ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFFPM AFKRA AFRAH AFWVQ AHBTC AI. AIDBO AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ATCPS AZQEC BCR BCU BEC BENPR BES BFHJK BGLVJ BHPHI BLC BPHCQ C1A CCPQU D0L DCZOG DROCM DWQXO E3Z EBS ECGQY EJD F5P GNUQQ GUQSH H13 HCIFZ HF~ HGLYW L6V L7B LAS LATKE LEEKS LPU M0K M2O M2P M7S MEWTI MV1 NEJ NHAZY NHB O9- P2P PATMY PEA PQQKQ PROAC PTHSS PYCSY Q2X QF4 QM4 QN7 ROL RPX RWL S0X SAMSI SJFOW SJN SUPJJ TAE TR2 TWZ U2A VH1 VOH WOQ WXSBR Y6R YR5 YYP ZCG ~02 ~KM AAYXX AETEA AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c3631-7418b75793c630e8f645107024935a7bee376824f533ed8a23c318230d261b803 |
ISSN | 0002-1962 |
IngestDate | Tue Jul 01 02:17:06 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Wed Jan 22 16:39:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3631-7418b75793c630e8f645107024935a7bee376824f533ed8a23c318230d261b803 |
Notes | All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. |
PageCount | 4 |
ParticipantIDs | crossref_primary_10_2134_agronj2007_0161 crossref_citationtrail_10_2134_agronj2007_0161 wiley_primary_10_2134_agronj2007_0161_AGJ2AGRONJ20070161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2008 2008-01-00 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – month: 01 year: 2008 text: January 2008 |
PublicationDecade | 2000 |
PublicationPlace | Madison |
PublicationPlace_xml | – name: Madison |
PublicationTitle | Agronomy journal |
PublicationYear | 2008 |
Publisher | American Society of Agronomy |
Publisher_xml | – name: American Society of Agronomy |
References | 2007; 445 2004; 96 2006; 30 2007; 446 2006; 11 2002; 35 2002; 66 2007 2005; 53 2006 2005 1999; 30 2007; 31 2005; 36 Weersink A. (e_1_2_3_16_1) 2005; 53 Laird D.A. (e_1_2_3_10_1) 2005 USDOE (e_1_2_3_15_1) 2007 e_1_2_3_2_1 e_1_2_3_17_1 e_1_2_3_4_1 e_1_2_3_18_1 e_1_2_3_3_1 e_1_2_3_12_1 e_1_2_3_13_1 e_1_2_3_8_1 e_1_2_3_14_1 e_1_2_3_7_1 Bryan M. (e_1_2_3_5_1) 2006 Intergovernmental Panel on Climate Change (e_1_2_3_9_1) 2007 Lehmann J. (e_1_2_3_11_1) 2007; 446 Fowels M. (e_1_2_3_6_1) 2007; 31 |
References_xml | – volume: 445 start-page: 14 year: 2007 end-page: 17 article-title: That's oil, folks… Optimists see oil gushing for decades; pessimists see the planet's energy future drying up publication-title: Nature – volume: 96 start-page: 1 year: 2004 end-page: 17 article-title: Crop and Soil Productivity Response to Corn Residue Removal: A Literature Review publication-title: Agron. J. – volume: 53 start-page: 425 year: 2005 end-page: 441 article-title: Agriculture's likely role in meeting Canada's Kyoto commitments publication-title: Can. J. Agric. Econ. – year: 2005 – volume: 11 start-page: 403 year: 2006 end-page: 427 article-title: Bio‐char sequestration in terrestrial ecosystems—A review publication-title: Mitigation Adapt. Strat. Global Change – volume: 66 start-page: 1249 year: 2002 end-page: 1255 article-title: Charcoal Carbon in U.S. Agricultural Soils publication-title: Soil Sci. Soc. Am. J. – year: 2007 – year: 2006 – volume: 35 start-page: 219 year: 2002 end-page: 230 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review publication-title: Biol. Fertil. Soils – volume: 31 start-page: 126 year: 2007 end-page: 136 article-title: Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios publication-title: Biomass Bioenergy – volume: 36 start-page: 1299 year: 2005 end-page: 1310 article-title: Revised black carbon assessment using benzene polycarboxylic acids publication-title: Org. Geochem. – volume: 31 start-page: 426 year: 2007 end-page: 432 article-title: Black carbon sequestration as an alternative to bioenergy publication-title: Biomass Bioenergy – volume: 446 start-page: 143 year: 2007 end-page: 144 article-title: A handful of carbon publication-title: Nature – volume: 30 start-page: 321 year: 2006 end-page: 325 article-title: Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—A preliminary assessment publication-title: Biomass Bioenergy – volume: 30 start-page: 1479 year: 1999 end-page: 1493 article-title: An overview of fast pyrolysis of biomass publication-title: Org. Geochem. – volume-title: Office of Public Affairs, Washington, DC year: 2007 ident: e_1_2_3_15_1 – ident: e_1_2_3_2_1 doi: 10.1016/j.biombioe.2005.07.011 – volume-title: Climate Change 2007, The 4th Assessment Report year: 2007 ident: e_1_2_3_9_1 doi: 10.1017/CBO9780511546013 – volume: 53 start-page: 425 year: 2005 ident: e_1_2_3_16_1 article-title: Agriculture's likely role in meeting Canada's Kyoto commitments publication-title: Can. J. Agric. Econ. doi: 10.1111/j.1744-7976.2005.00028.x – ident: e_1_2_3_8_1 doi: 10.1016/j.biombioe.2006.07.006 – ident: e_1_2_3_3_1 doi: 10.1016/S0146-6380(99)00120-5 – ident: e_1_2_3_17_1 doi: 10.2134/agronj2004.1000a – volume-title: Certificate of analysis for Dynamotive char shows total C content at 72.48% and fixed C at 63.72% year: 2006 ident: e_1_2_3_5_1 – ident: e_1_2_3_13_1 doi: 10.1111/j.1467-7652.2006.00230.x – volume: 31 start-page: 426 year: 2007 ident: e_1_2_3_6_1 article-title: Black carbon sequestration as an alternative to bioenergy publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2007.01.012 – ident: e_1_2_3_18_1 doi: 10.1038/445014a – ident: e_1_2_3_14_1 doi: 10.2136/sssaj2002.1249 – ident: e_1_2_3_12_1 doi: 10.1007/s11027-005-9006-5 – volume-title: Use of charcoal to enhance soil quality in a future powered by bioenergy year: 2005 ident: e_1_2_3_10_1 – ident: e_1_2_3_7_1 doi: 10.1007/s00374-002-0466-4 – volume: 446 start-page: 143 year: 2007 ident: e_1_2_3_11_1 article-title: A handful of carbon publication-title: Nature doi: 10.1038/447143a – ident: e_1_2_3_4_1 doi: 10.1016/j.orggeochem.2005.03.011 |
SSID | ssj0011941 |
Score | 2.4512994 |
Snippet | Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 178 |
Title | The Charcoal Vision: A Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality |
URI | https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fagronj2007.0161 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9gKHik9RvjQHDkipQ-y1Y4ebi0qrSATUtLQ3y2tvIKiyq5IIiRO_AX4A_41fwptdx7EDFYWL5aycjZ15ntm3O_NWiKdS5jLHUMDx9BQEZRB6ztDT-JiqMAx0lPlGbf_1eHBw7I9Og9NO51sja2kxV73syx_rSv7HqmiDXblK9h8sW3eKBpzDvjjCwjhe2ca8Xp6V-KPfmSpxW2l-ArpfZTHItXO8zboAQS5NguFkxhmFaaHLxaczLhZk_VeePdidldqUBdokXi4tQHjCJRNtIolRMOR0EWWX7T9_gHvprqYoJuXMihCcpCzDaKU6WkvI8fsLU1DRbT6qkYCcNdLtu3GvNTERNSYmVs4WL7h1ttr6V4zOHJbIazngfv83pFl36trtfarI7NrNXdadPmvScUTju_5oNSldK_DeltdeC3t1MiJoEHeRrDpIuINrYtMD9YDv3NzdG789rNem3KHvLkkVP54VjOIunq_dQ2us0-Q-ZvBydFNsVayDYguhW6Kji9viBixQKa_oO-IHwERLMJEF0wuKCZD5-fV7faQlfAjwoTZ8qIYP1fDZoQZ4qAkesuDZIQMdqqFDDB0CdMhAhyro3BXHr_aOXh441e4dTiYH0nVYFkmFAfx_NpB9HU1hdRcBBnxfBmmotEZsizx_CsKh8yj1ZIb4Akacg9SrqC_viY2iLPR9QSD1-TALPBn6yo-UThU8jCuzdBq4aqj9bdFb_s9JVknb8w4rZ8kltt0Wz-ovnFtVl8svjYzh_nZdEu-PvHj_8M14xG3c9ODqv_JQXF-9Qo_ExvxioR9jtDtXTyr4_QKdtKp5 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Charcoal+Vision%3A+A+Win%E2%80%93Win%E2%80%93Win+Scenario+for+Simultaneously+Producing+Bioenergy%2C+Permanently+Sequestering+Carbon%2C+while+Improving+Soil+and+Water+Quality&rft.jtitle=Agronomy+journal&rft.au=Laird%2C+David+A.&rft.date=2008-01-01&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=100&rft.issue=1&rft.spage=178&rft.epage=181&rft_id=info:doi/10.2134%2Fagronj2007.0161&rft.externalDBID=n%2Fa&rft.externalDocID=10_2134_agronj2007_0161 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon |