The Charcoal Vision: A Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality

Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally transform biomass into bio‐oil, syngas, and charcoal. The syngas could provide the energy needs of the pyrolyzer. Bio‐oil is an energy raw ma...

Full description

Saved in:
Bibliographic Details
Published inAgronomy journal Vol. 100; no. 1; pp. 178 - 181
Main Author Laird, David A.
Format Journal Article
LanguageEnglish
Published Madison American Society of Agronomy 01.01.2008
Online AccessGet full text

Cover

Loading…
Abstract Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally transform biomass into bio‐oil, syngas, and charcoal. The syngas could provide the energy needs of the pyrolyzer. Bio‐oil is an energy raw material (∼17 MJ kg−1) that can be burned to generate heat or shipped to a refinery for processing into transportation fuels. Charcoal could also be used to generate energy; however, application of the charcoal co‐product to soils may be key to sustainability. Application of charcoal to soils is hypothesized to increase bioavailable water, build soil organic matter, enhance nutrient cycling, lower bulk density, act as a liming agent, and reduce leaching of pesticides and nutrients to surface and ground water. The half‐life of C in soil charcoal is in excess of 1000 yr. Hence, soil‐applied charcoal will make both a lasting contribution to soil quality and C in the charcoal will be removed from the atmosphere and sequestered for millennia. Assuming the United States can annually produce 1.1 × 109 Mg of biomass from harvestable forest and crop lands, national implementation of The Charcoal Vision would generate enough bio‐oil to displace 1.91 billion barrels of fossil fuel oil per year or about 25% of the current U.S. annual oil consumption. The combined C credit for fossil fuel displacement and permanent sequestration, 363 Tg per year, is 10% of the average annual U.S. emissions of CO2–C.
AbstractList Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally transform biomass into bio‐oil, syngas, and charcoal. The syngas could provide the energy needs of the pyrolyzer. Bio‐oil is an energy raw material (∼17 MJ kg−1) that can be burned to generate heat or shipped to a refinery for processing into transportation fuels. Charcoal could also be used to generate energy; however, application of the charcoal co‐product to soils may be key to sustainability. Application of charcoal to soils is hypothesized to increase bioavailable water, build soil organic matter, enhance nutrient cycling, lower bulk density, act as a liming agent, and reduce leaching of pesticides and nutrients to surface and ground water. The half‐life of C in soil charcoal is in excess of 1000 yr. Hence, soil‐applied charcoal will make both a lasting contribution to soil quality and C in the charcoal will be removed from the atmosphere and sequestered for millennia. Assuming the United States can annually produce 1.1 × 109 Mg of biomass from harvestable forest and crop lands, national implementation of The Charcoal Vision would generate enough bio‐oil to displace 1.91 billion barrels of fossil fuel oil per year or about 25% of the current U.S. annual oil consumption. The combined C credit for fossil fuel displacement and permanent sequestration, 363 Tg per year, is 10% of the average annual U.S. emissions of CO2–C.
Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally transform biomass into bio‐oil, syngas, and charcoal. The syngas could provide the energy needs of the pyrolyzer. Bio‐oil is an energy raw material (∼17 MJ kg −1 ) that can be burned to generate heat or shipped to a refinery for processing into transportation fuels. Charcoal could also be used to generate energy; however, application of the charcoal co‐product to soils may be key to sustainability. Application of charcoal to soils is hypothesized to increase bioavailable water, build soil organic matter, enhance nutrient cycling, lower bulk density, act as a liming agent, and reduce leaching of pesticides and nutrients to surface and ground water. The half‐life of C in soil charcoal is in excess of 1000 yr. Hence, soil‐applied charcoal will make both a lasting contribution to soil quality and C in the charcoal will be removed from the atmosphere and sequestered for millennia. Assuming the United States can annually produce 1.1 × 10 9 Mg of biomass from harvestable forest and crop lands, national implementation of The Charcoal Vision would generate enough bio‐oil to displace 1.91 billion barrels of fossil fuel oil per year or about 25% of the current U.S. annual oil consumption. The combined C credit for fossil fuel displacement and permanent sequestration, 363 Tg per year, is 10% of the average annual U.S. emissions of CO 2 –C.
Author Laird, David A.
Author_xml – sequence: 1
  givenname: David A.
  surname: Laird
  fullname: Laird, David A.
  email: david.laird@ars.usda.gov
  organization: USDA, ARS, National Soil Tilth Laboratory
BookMark eNqFkM1OwkAUhScGExFdu50HoDA__cONQaIIIYIWZdkM5RaGlBmctpLufAcfwHfzSWzFaOJCN_cmN-ecm_Mdo5rSChA6o6TFKLfbYmm0WjNCvBahLj1AdWpzxyKu7dRQnRDCLNpx2RE6TtM1IZR2bFpHb9MV4N5KmEiLBD_KVGp1jrt4JtX7y-v3xEEEShipcawNDuQmTzKhQOdpUuCJ0Ys8kmqJL6UGBWZZNPEEzKZUqKwUBPCUQ5qBqTQ9YeZaNfFuJRPAg83W6OfqHmiZYKEWeCZKJb7LRSKz4gQdxiJJ4fRrN9DD9dW0d2ONxv1BrzuyIu5yank29eee43V45HICfly2psQjzO5wR3hzAO65PrNjh3NY-ILxiFOfcbJgLp37hDdQe58bGZ2mBuJwa-RGmCKkJKz4hj98w4pv6XB-OSKZiazklxkhkz98F3vfruxf_Pcm7PaHrNu_H98Oq9tnwgccoZlh
CitedBy_id crossref_primary_10_1111_nph_15042
crossref_primary_10_2134_jeq2011_0118
crossref_primary_10_1016_j_eti_2021_101837
crossref_primary_10_1007_s10668_024_04888_9
crossref_primary_10_1016_j_joei_2020_04_011
crossref_primary_10_1016_j_geoderma_2021_115301
crossref_primary_10_3390_ijms9050768
crossref_primary_10_1021_ef400972z
crossref_primary_10_3390_agriculture6010010
crossref_primary_10_3390_agriculture9070153
crossref_primary_10_1016_j_psep_2017_11_006
crossref_primary_10_2136_sssaj2010_0270
crossref_primary_10_1016_j_renene_2017_04_035
crossref_primary_10_2134_cs2019_52_0102
crossref_primary_10_4141_cjss2011_066
crossref_primary_10_1002_jeq2_20468
crossref_primary_10_1016_j_rser_2017_05_057
crossref_primary_10_3390_en6010164
crossref_primary_10_1007_s10570_019_02651_2
crossref_primary_10_1016_j_geoderma_2020_114184
crossref_primary_10_1111_ejss_70010
crossref_primary_10_1016_j_renene_2016_03_087
crossref_primary_10_2134_jeq2013_07_0290
crossref_primary_10_2134_jeq2011_0103
crossref_primary_10_1016_j_joei_2020_04_016
crossref_primary_10_3390_agronomy11071290
crossref_primary_10_1016_j_agee_2017_01_025
crossref_primary_10_1016_j_ufug_2018_06_021
crossref_primary_10_3390_agronomy11071297
crossref_primary_10_3390_microbiolres14010018
crossref_primary_10_1016_j_biombioe_2022_106581
crossref_primary_10_3390_app9061139
crossref_primary_10_1016_j_biopha_2021_112191
crossref_primary_10_1111_sum_12413
crossref_primary_10_1088_1755_1315_724_1_012002
crossref_primary_10_1371_journal_pone_0224556
crossref_primary_10_1098_rstb_2020_0180
crossref_primary_10_1016_j_chemosphere_2015_05_062
crossref_primary_10_1039_C8EM00278A
crossref_primary_10_1016_j_scitotenv_2019_06_277
crossref_primary_10_1186_s40538_020_00204_5
crossref_primary_10_1002_tqem_21766
crossref_primary_10_2134_jeq2011_0131
crossref_primary_10_3934_environsci_2019_5_379
crossref_primary_10_2134_jeq2011_0133
crossref_primary_10_1007_s10725_022_00868_z
crossref_primary_10_1080_10643389_2020_1811590
crossref_primary_10_1115_1_4007659
crossref_primary_10_3390_en16104131
crossref_primary_10_3390_environments9110138
crossref_primary_10_3390_app112411772
crossref_primary_10_1016_j_envint_2019_06_009
crossref_primary_10_21273_HORTTECH03490_16
crossref_primary_10_1007_s10653_017_9947_0
crossref_primary_10_2134_jeq2011_0126
crossref_primary_10_24266_0738_2898_41_4_141
crossref_primary_10_1016_j_rser_2016_11_165
crossref_primary_10_1080_15427528_2018_1425791
crossref_primary_10_3390_app11041473
crossref_primary_10_1097_SS_0b013e3182357ca9
crossref_primary_10_1016_j_carbon_2017_03_056
crossref_primary_10_2136_vzj2018_11_0207
crossref_primary_10_1007_s10661_019_7400_9
crossref_primary_10_1039_C6SE00080K
crossref_primary_10_1038_s41598_020_69798_y
crossref_primary_10_1039_b809492f
crossref_primary_10_3390_agronomy13051412
crossref_primary_10_3390_f14112238
crossref_primary_10_1016_j_scitotenv_2021_148170
crossref_primary_10_1016_j_soilbio_2017_11_017
crossref_primary_10_2136_sssaj2017_01_0010
crossref_primary_10_24857_rgsa_v19n3_101
crossref_primary_10_3390_app9132602
crossref_primary_10_1186_s13705_019_0189_0
crossref_primary_10_1080_23311932_2018_1423719
crossref_primary_10_1007_s12517_020_05376_w
crossref_primary_10_1097_SS_0000000000000123
crossref_primary_10_1051_e3sconf_202561003001
crossref_primary_10_1021_ef300356u
crossref_primary_10_1080_01904167_2020_1845369
crossref_primary_10_1007_s42250_021_00293_1
crossref_primary_10_2134_cftm2018_02_0008
crossref_primary_10_3390_agronomy11040615
crossref_primary_10_1016_j_scitotenv_2021_148479
crossref_primary_10_1007_s42452_019_0172_6
crossref_primary_10_1002_jpln_200900290
crossref_primary_10_1038_ncomms9708
crossref_primary_10_1007_s10499_023_01077_9
crossref_primary_10_3390_agronomy10121903
crossref_primary_10_1016_j_scitotenv_2021_150789
crossref_primary_10_4236_ojss_2024_141004
crossref_primary_10_1016_j_apenergy_2016_02_084
crossref_primary_10_1016_j_jhazmat_2010_04_103
crossref_primary_10_1016_j_jenvman_2023_119271
crossref_primary_10_1016_j_pedobi_2011_07_005
crossref_primary_10_1007_s10343_023_00868_7
crossref_primary_10_3389_fmicb_2022_999399
crossref_primary_10_1016_j_scitotenv_2024_170804
crossref_primary_10_3390_su16104060
crossref_primary_10_3390_agriculture12071028
crossref_primary_10_1016_j_esd_2021_07_002
crossref_primary_10_1007_s40858_020_00332_1
crossref_primary_10_1155_2015_541818
crossref_primary_10_3390_ijms26010109
crossref_primary_10_3390_w12072012
crossref_primary_10_2134_jeq2012_0019
crossref_primary_10_1016_j_jece_2020_104764
crossref_primary_10_1007_s42773_021_00112_3
crossref_primary_10_1016_j_scitotenv_2021_149580
crossref_primary_10_5802_crchim_234
crossref_primary_10_1007_s13399_023_04272_z
crossref_primary_10_1016_j_ecoleng_2016_01_020
crossref_primary_10_1080_00103624_2023_2177669
crossref_primary_10_1016_j_orggeochem_2017_06_012
crossref_primary_10_1088_1755_1315_712_1_012027
crossref_primary_10_1002_ep_12503
crossref_primary_10_1080_09542299_2018_1544035
crossref_primary_10_2136_sssaj2010_0435
crossref_primary_10_1002_ep_10446
crossref_primary_10_1111_jac_12382
crossref_primary_10_1111_gcbb_12314
crossref_primary_10_3934_agrfood_2021043
crossref_primary_10_1016_j_jes_2023_04_008
crossref_primary_10_1111_gcbb_12553
crossref_primary_10_1080_01904167_2021_1943678
crossref_primary_10_3390_agronomy11102028
crossref_primary_10_3390_horticulturae5010014
crossref_primary_10_1007_s10021_018_0248_y
crossref_primary_10_1016_j_soilbio_2015_01_014
crossref_primary_10_2134_jeq2011_0069
crossref_primary_10_1002_jpln_201500497
crossref_primary_10_1111_gcbb_12789
crossref_primary_10_1111_gcbb_12665
crossref_primary_10_3390_c9020049
crossref_primary_10_1016_j_jenvman_2014_11_027
crossref_primary_10_3390_agronomy10081142
crossref_primary_10_7717_peerj_11937
crossref_primary_10_1016_j_scitotenv_2018_03_189
crossref_primary_10_3390_bioengineering6020033
crossref_primary_10_1016_j_scitotenv_2022_160722
crossref_primary_10_3389_fpls_2022_1094633
crossref_primary_10_1007_s13399_019_00571_6
crossref_primary_10_1016_j_geoderma_2016_02_017
crossref_primary_10_3390_su16208838
crossref_primary_10_1111_gcbb_12414
crossref_primary_10_1038_s41598_024_83372_w
crossref_primary_10_1016_j_cej_2022_141003
crossref_primary_10_3389_fpls_2024_1384065
crossref_primary_10_1016_j_watres_2018_03_021
crossref_primary_10_1021_es301029g
crossref_primary_10_1016_j_still_2015_11_006
crossref_primary_10_3390_agriculture11111112
crossref_primary_10_3955_046_092_0102
crossref_primary_10_2136_sssaj2010_0325
crossref_primary_10_1016_j_biteb_2021_100838
crossref_primary_10_1111_gcbb_12889
crossref_primary_10_1016_j_fuel_2022_123378
crossref_primary_10_1038_ncomms1053
crossref_primary_10_1155_2021_6630982
crossref_primary_10_1021_es305337r
crossref_primary_10_3390_agriculture5041076
crossref_primary_10_1016_j_jenvman_2017_03_087
crossref_primary_10_1016_j_fcr_2022_108541
crossref_primary_10_1021_es405676h
crossref_primary_10_1080_09593330_2020_1804466
crossref_primary_10_1021_acs_est_1c03478
crossref_primary_10_1088_1757_899X_274_1_012156
crossref_primary_10_3390_f15111914
crossref_primary_10_1021_acs_energyfuels_5b01020
crossref_primary_10_5194_se_5_499_2014
crossref_primary_10_1016_j_seta_2017_09_006
crossref_primary_10_1016_j_renene_2018_06_081
crossref_primary_10_1016_j_ecoleng_2017_01_034
crossref_primary_10_1111_gcbb_12878
crossref_primary_10_1002_fsn3_808
crossref_primary_10_1007_s11157_024_09712_4
crossref_primary_10_1007_s44246_024_00123_2
crossref_primary_10_1016_j_scitotenv_2021_146573
crossref_primary_10_3390_land10020161
crossref_primary_10_15377_2410_3624_2024_11_2
crossref_primary_10_1155_2013_354965
crossref_primary_10_3390_polym13020283
crossref_primary_10_7717_peerj_7576
crossref_primary_10_1007_s11356_023_30153_z
crossref_primary_10_2478_johh_2021_0024
crossref_primary_10_1108_MEQ_07_2014_0101
crossref_primary_10_61186_jeer_14_1_158
crossref_primary_10_1002_clen_201501020
crossref_primary_10_1007_s12210_024_01273_6
crossref_primary_10_21273_HORTSCI15428_20
crossref_primary_10_1097_SS_0b013e3181981d9a
crossref_primary_10_1016_j_resconrec_2013_04_005
crossref_primary_10_2134_jeq2010_0453
crossref_primary_10_3390_horticulturae10040368
crossref_primary_10_1016_j_indcrop_2020_112224
crossref_primary_10_1080_00103624_2023_2211097
crossref_primary_10_1016_j_scitotenv_2017_09_124
crossref_primary_10_4081_ija_2020_1581
crossref_primary_10_1016_j_jenvman_2018_11_043
crossref_primary_10_1016_j_pnmrs_2016_11_003
crossref_primary_10_1016_j_still_2018_09_013
crossref_primary_10_3390_en9110869
crossref_primary_10_1002_ep_12838
crossref_primary_10_1007_s13399_020_00949_x
crossref_primary_10_3390_spectroscj1020009
crossref_primary_10_1038_s41598_018_35534_w
crossref_primary_10_2134_jeq2015_10_0529
crossref_primary_10_1016_j_scitotenv_2020_136498
crossref_primary_10_1111_gcbb_12720
crossref_primary_10_1071_SR10008
crossref_primary_10_3389_fmicb_2017_00589
crossref_primary_10_1007_s10584_021_03121_0
crossref_primary_10_2134_agronj2009_0083
crossref_primary_10_2134_agronj2010_0188
crossref_primary_10_1016_j_agee_2016_11_016
crossref_primary_10_1016_j_envpol_2020_114449
crossref_primary_10_1080_03650340_2019_1575510
crossref_primary_10_1016_j_foreco_2021_119047
crossref_primary_10_1002_ente_201700211
crossref_primary_10_1016_j_jaap_2019_104670
crossref_primary_10_1097_SS_0b013e31824e5593
crossref_primary_10_1016_j_biortech_2009_03_005
crossref_primary_10_1088_1748_9326_aafcf0
crossref_primary_10_1111_gcbb_12037
crossref_primary_10_1111_gcbb_12156
crossref_primary_10_1016_j_scitotenv_2020_137775
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118988
crossref_primary_10_1016_j_rser_2015_05_058
crossref_primary_10_1088_1755_1315_1252_1_012080
crossref_primary_10_1002_jctb_2461
crossref_primary_10_1007_s12155_010_9097_z
crossref_primary_10_1021_es502669s
crossref_primary_10_1016_j_enpol_2017_12_014
crossref_primary_10_1016_j_scitotenv_2017_06_186
crossref_primary_10_3390_agronomy12061440
crossref_primary_10_1016_j_envpol_2022_120100
crossref_primary_10_1016_j_ufug_2018_09_001
crossref_primary_10_1016_j_jhazmat_2014_10_052
crossref_primary_10_2298_HEMIND221222013L
crossref_primary_10_3390_plants11233346
crossref_primary_10_1039_C5GC00828J
crossref_primary_10_1016_j_eja_2018_08_009
crossref_primary_10_1111_gcbb_12265
crossref_primary_10_1016_j_soilbio_2010_09_013
crossref_primary_10_1016_j_njas_2011_05_002
crossref_primary_10_1016_j_jenvman_2024_122366
crossref_primary_10_3390_plants12183319
crossref_primary_10_1016_j_scitotenv_2017_12_343
crossref_primary_10_31545_intagr_143945
crossref_primary_10_1002_bbb_2043
crossref_primary_10_1111_gcbb_12376
crossref_primary_10_1007_s13399_025_06728_w
crossref_primary_10_1111_gcbb_12132
crossref_primary_10_3390_agriculture3040715
crossref_primary_10_1002_bbb_344
crossref_primary_10_1016_j_envpol_2020_115684
crossref_primary_10_1371_journal_pone_0091114
crossref_primary_10_2134_jeq2018_06_0248
crossref_primary_10_1016_j_geoderma_2018_08_019
crossref_primary_10_1128_AEM_02555_20
crossref_primary_10_1007_s13762_017_1470_4
crossref_primary_10_1002_agj2_20540
crossref_primary_10_1016_j_jcis_2020_06_054
crossref_primary_10_1097_SS_0b013e3182171eac
crossref_primary_10_1039_D2VA00324D
crossref_primary_10_1111_1751_7915_12779
crossref_primary_10_1111_gcbb_12005
crossref_primary_10_1515_opag_2020_0040
crossref_primary_10_1021_es405647e
crossref_primary_10_1111_gcbb_12486
crossref_primary_10_1016_j_envres_2022_113954
crossref_primary_10_2134_jeq2016_02_0062
crossref_primary_10_12974_2311_858X_2021_09_2
crossref_primary_10_2136_sssaj2019_04_0115
crossref_primary_10_3390_plants12091871
crossref_primary_10_1111_j_1757_1707_2010_01061_x
crossref_primary_10_1016_j_ejsobi_2019_103095
crossref_primary_10_1007_s42452_020_2156_y
crossref_primary_10_4081_ija_2016_780
crossref_primary_10_2134_jeq2016_09_0369
crossref_primary_10_1002_ehs2_1202
crossref_primary_10_1007_s11104_010_0544_6
crossref_primary_10_1016_j_jconhyd_2017_05_005
crossref_primary_10_1515_ssa_2016_0018
crossref_primary_10_1016_j_indcrop_2022_115837
crossref_primary_10_1021_es405190q
crossref_primary_10_1016_j_jenvman_2017_01_068
crossref_primary_10_1016_j_soilbio_2014_02_009
crossref_primary_10_29278_azd_1532898
crossref_primary_10_1007_s12155_019_10047_0
crossref_primary_10_3390_agronomy7010006
crossref_primary_10_1080_00103624_2019_1632343
crossref_primary_10_1016_j_apsoil_2022_104485
crossref_primary_10_3389_fpls_2015_00429
crossref_primary_10_15835_nbha49312344
crossref_primary_10_2134_jeq2017_11_0432
crossref_primary_10_1016_j_biortech_2016_03_077
crossref_primary_10_1021_es301107c
crossref_primary_10_1016_j_indcrop_2017_11_036
crossref_primary_10_1111_ejss_12941
crossref_primary_10_3389_fpls_2021_782072
crossref_primary_10_1038_ismej_2016_68
crossref_primary_10_1016_j_scitotenv_2024_172433
crossref_primary_10_1007_s42729_021_00580_3
crossref_primary_10_1002_agg2_20094
crossref_primary_10_1002_bbb_2092
crossref_primary_10_1016_S1002_0160_17_60482_X
crossref_primary_10_1080_00103624_2018_1563101
crossref_primary_10_3390_en11102535
crossref_primary_10_1016_j_renene_2019_05_028
crossref_primary_10_1371_journal_pone_0314984
crossref_primary_10_3390_w14203343
crossref_primary_10_1111_gcbb_12213
crossref_primary_10_1016_j_scitotenv_2015_11_054
crossref_primary_10_3390_app9204394
crossref_primary_10_1017_S1742170522000412
crossref_primary_10_1016_j_scienta_2013_08_002
crossref_primary_10_3390_en15176234
crossref_primary_10_1002_ep_10378
crossref_primary_10_1080_10643389_2017_1418580
crossref_primary_10_1111_gcbb_12449
crossref_primary_10_1016_j_geoderma_2019_114170
crossref_primary_10_5194_soil_8_451_2022
crossref_primary_10_3390_pr9050882
crossref_primary_10_1080_03650340_2019_1572882
crossref_primary_10_1016_j_chemosphere_2022_133671
crossref_primary_10_1002_bbb_254
crossref_primary_10_4028_www_scientific_net_AMR_518_523_807
crossref_primary_10_1002_bbb_169
crossref_primary_10_1016_j_chemosphere_2017_11_151
crossref_primary_10_1016_j_carbon_2019_07_004
crossref_primary_10_2136_sssaj2013_07_0258
crossref_primary_10_1016_j_scitotenv_2017_04_160
crossref_primary_10_1080_00103624_2019_1705324
crossref_primary_10_1021_ef101342v
crossref_primary_10_1111_sum_12026
crossref_primary_10_1016_j_biosystemseng_2021_03_010
crossref_primary_10_5004_dwt_2017_0479
crossref_primary_10_3390_su8020131
crossref_primary_10_1016_j_chemosphere_2013_06_004
crossref_primary_10_1021_acs_est_8b01338
crossref_primary_10_2134_agronj2012_0363
crossref_primary_10_1021_acsestengg_3c00027
crossref_primary_10_1016_j_chemosphere_2016_01_036
crossref_primary_10_1007_s10705_023_10281_1
crossref_primary_10_1039_C7GC01719G
crossref_primary_10_1016_j_fuel_2012_11_029
crossref_primary_10_1088_1755_1315_215_1_012008
crossref_primary_10_1016_j_apenergy_2016_05_100
crossref_primary_10_1016_j_scitotenv_2018_06_280
crossref_primary_10_1016_j_soilbio_2019_107678
crossref_primary_10_1016_j_biortech_2009_03_071
crossref_primary_10_1007_s11368_019_02398_0
crossref_primary_10_1111_gcbb_12093
crossref_primary_10_1111_ejss_12064
crossref_primary_10_1007_s11356_017_9234_8
crossref_primary_10_3390_agronomy10020224
crossref_primary_10_1007_s12649_010_9024_8
crossref_primary_10_1007_s11104_010_0464_5
crossref_primary_10_1016_j_orggeochem_2017_09_001
crossref_primary_10_1016_j_geoderma_2016_11_025
crossref_primary_10_2136_sssaj2014_05_0198
crossref_primary_10_1016_j_eti_2022_102389
crossref_primary_10_2134_agronj2008_0087
crossref_primary_10_1016_j_scitotenv_2019_07_116
crossref_primary_10_1002_bbb_181
crossref_primary_10_1016_S1002_0160_20_60013_3
crossref_primary_10_3390_soilsystems3010008
crossref_primary_10_1016_S1002_0160_15_30045_X
crossref_primary_10_1021_ef3003922
crossref_primary_10_1039_C7EE00682A
crossref_primary_10_1016_j_jhazmat_2021_125116
crossref_primary_10_1016_j_jece_2024_112987
crossref_primary_10_17660_ActaHortic_2021_1305_33
crossref_primary_10_1016_j_jenvman_2023_118092
crossref_primary_10_1097_SS_0000000000000050
crossref_primary_10_1016_j_gca_2024_08_018
crossref_primary_10_1016_j_biosystemseng_2020_01_006
crossref_primary_10_1016_j_gca_2018_07_004
crossref_primary_10_1111_are_14922
crossref_primary_10_22207_JPAM_18_1_58
crossref_primary_10_1016_j_scitotenv_2016_02_129
crossref_primary_10_1016_j_indcrop_2016_12_017
crossref_primary_10_1111_gcbb_12191
crossref_primary_10_1007_s11356_018_3463_3
crossref_primary_10_1155_2018_6837404
crossref_primary_10_1016_j_soilbio_2020_107803
crossref_primary_10_1007_s12517_020_05586_2
crossref_primary_10_1016_j_fcr_2017_09_012
crossref_primary_10_1016_j_jaap_2022_105729
crossref_primary_10_1016_j_biortech_2017_06_049
crossref_primary_10_1016_j_chemosphere_2013_12_024
crossref_primary_10_1111_gcbb_12180
crossref_primary_10_1007_s11356_019_04473_y
crossref_primary_10_3389_fenvs_2021_609621
crossref_primary_10_2136_sssaj2009_0115
crossref_primary_10_2136_sssaj2013_05_0160
crossref_primary_10_1016_j_scienta_2012_05_018
crossref_primary_10_1016_j_scitotenv_2017_11_023
crossref_primary_10_1007_s12155_018_9940_1
crossref_primary_10_1016_j_geoderma_2018_09_034
crossref_primary_10_1007_s11368_018_02226_x
crossref_primary_10_1016_j_envres_2022_113883
crossref_primary_10_3390_su71013317
crossref_primary_10_1002_mrc_4391
crossref_primary_10_3390_microorganisms12020295
crossref_primary_10_1021_acs_chemmater_1c02961
crossref_primary_10_1007_s10342_019_01217_y
crossref_primary_10_1016_j_resconrec_2021_106109
crossref_primary_10_1007_s42773_022_00147_0
crossref_primary_10_3390_agronomy14040676
crossref_primary_10_1016_j_catena_2019_104307
crossref_primary_10_1007_s42773_023_00279_x
crossref_primary_10_3390_soilsystems4040069
crossref_primary_10_1016_j_chemosphere_2023_140419
crossref_primary_10_1016_j_scitotenv_2017_11_008
crossref_primary_10_1088_1755_1315_752_1_012018
crossref_primary_10_3390_agronomy13020505
crossref_primary_10_5004_dwt_2022_28706
crossref_primary_10_1016_j_fcr_2015_12_013
crossref_primary_10_1371_journal_pone_0224179
Cites_doi 10.1016/j.biombioe.2005.07.011
10.1017/CBO9780511546013
10.1111/j.1744-7976.2005.00028.x
10.1016/j.biombioe.2006.07.006
10.1016/S0146-6380(99)00120-5
10.2134/agronj2004.1000a
10.1111/j.1467-7652.2006.00230.x
10.1016/j.biombioe.2007.01.012
10.1038/445014a
10.2136/sssaj2002.1249
10.1007/s11027-005-9006-5
10.1007/s00374-002-0466-4
10.1038/447143a
10.1016/j.orggeochem.2005.03.011
ContentType Journal Article
Copyright Copyright © 2008 by the American Society of Agronomy
Copyright_xml – notice: Copyright © 2008 by the American Society of Agronomy
DBID AAYXX
CITATION
DOI 10.2134/agronj2007.0161
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1435-0645
EndPage 181
ExternalDocumentID 10_2134_agronj2007_0161
AGJ2AGRONJ20070161
Genre article
GrantInformation_xml – fundername: The Charcoal Vision
GroupedDBID -~X
.86
.~0
0R~
186
1OB
1OC
23M
2WC
33P
3V.
5GY
6J9
6KN
7X2
7XC
88I
8FE
8FG
8FH
8FW
8G5
8R4
8R5
AABCJ
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
ABCQX
ABCUV
ABEFU
ABJCF
ABJNI
ABRSH
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACPOU
ACQAM
ACXQS
ADFRT
ADKYN
ADMHG
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFFPM
AFKRA
AFRAH
AFWVQ
AHBTC
AI.
AIDBO
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BLC
BPHCQ
C1A
CCPQU
D0L
DCZOG
DROCM
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
HF~
HGLYW
L6V
L7B
LAS
LATKE
LEEKS
LPU
M0K
M2O
M2P
M7S
MEWTI
MV1
NEJ
NHAZY
NHB
O9-
P2P
PATMY
PEA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
QF4
QM4
QN7
ROL
RPX
RWL
S0X
SAMSI
SJFOW
SJN
SUPJJ
TAE
TR2
TWZ
U2A
VH1
VOH
WOQ
WXSBR
Y6R
YR5
YYP
ZCG
~02
~KM
AAYXX
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c3631-7418b75793c630e8f645107024935a7bee376824f533ed8a23c318230d261b803
ISSN 0002-1962
IngestDate Tue Jul 01 02:17:06 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Wed Jan 22 16:39:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3631-7418b75793c630e8f645107024935a7bee376824f533ed8a23c318230d261b803
Notes All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher.
PageCount 4
ParticipantIDs crossref_primary_10_2134_agronj2007_0161
crossref_citationtrail_10_2134_agronj2007_0161
wiley_primary_10_2134_agronj2007_0161_AGJ2AGRONJ20070161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2008
2008-01-00
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: January 2008
PublicationDecade 2000
PublicationPlace Madison
PublicationPlace_xml – name: Madison
PublicationTitle Agronomy journal
PublicationYear 2008
Publisher American Society of Agronomy
Publisher_xml – name: American Society of Agronomy
References 2007; 445
2004; 96
2006; 30
2007; 446
2006; 11
2002; 35
2002; 66
2007
2005; 53
2006
2005
1999; 30
2007; 31
2005; 36
Weersink A. (e_1_2_3_16_1) 2005; 53
Laird D.A. (e_1_2_3_10_1) 2005
USDOE (e_1_2_3_15_1) 2007
e_1_2_3_2_1
e_1_2_3_17_1
e_1_2_3_4_1
e_1_2_3_18_1
e_1_2_3_3_1
e_1_2_3_12_1
e_1_2_3_13_1
e_1_2_3_8_1
e_1_2_3_14_1
e_1_2_3_7_1
Bryan M. (e_1_2_3_5_1) 2006
Intergovernmental Panel on Climate Change (e_1_2_3_9_1) 2007
Lehmann J. (e_1_2_3_11_1) 2007; 446
Fowels M. (e_1_2_3_6_1) 2007; 31
References_xml – volume: 445
  start-page: 14
  year: 2007
  end-page: 17
  article-title: That's oil, folks… Optimists see oil gushing for decades; pessimists see the planet's energy future drying up
  publication-title: Nature
– volume: 96
  start-page: 1
  year: 2004
  end-page: 17
  article-title: Crop and Soil Productivity Response to Corn Residue Removal: A Literature Review
  publication-title: Agron. J.
– volume: 53
  start-page: 425
  year: 2005
  end-page: 441
  article-title: Agriculture's likely role in meeting Canada's Kyoto commitments
  publication-title: Can. J. Agric. Econ.
– year: 2005
– volume: 11
  start-page: 403
  year: 2006
  end-page: 427
  article-title: Bio‐char sequestration in terrestrial ecosystems—A review
  publication-title: Mitigation Adapt. Strat. Global Change
– volume: 66
  start-page: 1249
  year: 2002
  end-page: 1255
  article-title: Charcoal Carbon in U.S. Agricultural Soils
  publication-title: Soil Sci. Soc. Am. J.
– year: 2007
– year: 2006
– volume: 35
  start-page: 219
  year: 2002
  end-page: 230
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review
  publication-title: Biol. Fertil. Soils
– volume: 31
  start-page: 126
  year: 2007
  end-page: 136
  article-title: Engineering, nutrient removal, and feedstock conversion evaluations of four corn stover harvest scenarios
  publication-title: Biomass Bioenergy
– volume: 36
  start-page: 1299
  year: 2005
  end-page: 1310
  article-title: Revised black carbon assessment using benzene polycarboxylic acids
  publication-title: Org. Geochem.
– volume: 31
  start-page: 426
  year: 2007
  end-page: 432
  article-title: Black carbon sequestration as an alternative to bioenergy
  publication-title: Biomass Bioenergy
– volume: 446
  start-page: 143
  year: 2007
  end-page: 144
  article-title: A handful of carbon
  publication-title: Nature
– volume: 30
  start-page: 321
  year: 2006
  end-page: 325
  article-title: Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—A preliminary assessment
  publication-title: Biomass Bioenergy
– volume: 30
  start-page: 1479
  year: 1999
  end-page: 1493
  article-title: An overview of fast pyrolysis of biomass
  publication-title: Org. Geochem.
– volume-title: Office of Public Affairs, Washington, DC
  year: 2007
  ident: e_1_2_3_15_1
– ident: e_1_2_3_2_1
  doi: 10.1016/j.biombioe.2005.07.011
– volume-title: Climate Change 2007, The 4th Assessment Report
  year: 2007
  ident: e_1_2_3_9_1
  doi: 10.1017/CBO9780511546013
– volume: 53
  start-page: 425
  year: 2005
  ident: e_1_2_3_16_1
  article-title: Agriculture's likely role in meeting Canada's Kyoto commitments
  publication-title: Can. J. Agric. Econ.
  doi: 10.1111/j.1744-7976.2005.00028.x
– ident: e_1_2_3_8_1
  doi: 10.1016/j.biombioe.2006.07.006
– ident: e_1_2_3_3_1
  doi: 10.1016/S0146-6380(99)00120-5
– ident: e_1_2_3_17_1
  doi: 10.2134/agronj2004.1000a
– volume-title: Certificate of analysis for Dynamotive char shows total C content at 72.48% and fixed C at 63.72%
  year: 2006
  ident: e_1_2_3_5_1
– ident: e_1_2_3_13_1
  doi: 10.1111/j.1467-7652.2006.00230.x
– volume: 31
  start-page: 426
  year: 2007
  ident: e_1_2_3_6_1
  article-title: Black carbon sequestration as an alternative to bioenergy
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2007.01.012
– ident: e_1_2_3_18_1
  doi: 10.1038/445014a
– ident: e_1_2_3_14_1
  doi: 10.2136/sssaj2002.1249
– ident: e_1_2_3_12_1
  doi: 10.1007/s11027-005-9006-5
– volume-title: Use of charcoal to enhance soil quality in a future powered by bioenergy
  year: 2005
  ident: e_1_2_3_10_1
– ident: e_1_2_3_7_1
  doi: 10.1007/s00374-002-0466-4
– volume: 446
  start-page: 143
  year: 2007
  ident: e_1_2_3_11_1
  article-title: A handful of carbon
  publication-title: Nature
  doi: 10.1038/447143a
– ident: e_1_2_3_4_1
  doi: 10.1016/j.orggeochem.2005.03.011
SSID ssj0011941
Score 2.4512994
Snippet Processing biomass through a distributed network of fast pyrolyzers may be a sustainable platform for producing energy from biomass. Fast pyrolyzers thermally...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
StartPage 178
Title The Charcoal Vision: A Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently Sequestering Carbon, while Improving Soil and Water Quality
URI https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fagronj2007.0161
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9gKHik9RvjQHDkipQ-y1Y4ebi0qrSATUtLQ3y2tvIKiyq5IIiRO_AX4A_41fwptdx7EDFYWL5aycjZ15ntm3O_NWiKdS5jLHUMDx9BQEZRB6ztDT-JiqMAx0lPlGbf_1eHBw7I9Og9NO51sja2kxV73syx_rSv7HqmiDXblK9h8sW3eKBpzDvjjCwjhe2ca8Xp6V-KPfmSpxW2l-ArpfZTHItXO8zboAQS5NguFkxhmFaaHLxaczLhZk_VeePdidldqUBdokXi4tQHjCJRNtIolRMOR0EWWX7T9_gHvprqYoJuXMihCcpCzDaKU6WkvI8fsLU1DRbT6qkYCcNdLtu3GvNTERNSYmVs4WL7h1ttr6V4zOHJbIazngfv83pFl36trtfarI7NrNXdadPmvScUTju_5oNSldK_DeltdeC3t1MiJoEHeRrDpIuINrYtMD9YDv3NzdG789rNem3KHvLkkVP54VjOIunq_dQ2us0-Q-ZvBydFNsVayDYguhW6Kji9viBixQKa_oO-IHwERLMJEF0wuKCZD5-fV7faQlfAjwoTZ8qIYP1fDZoQZ4qAkesuDZIQMdqqFDDB0CdMhAhyro3BXHr_aOXh441e4dTiYH0nVYFkmFAfx_NpB9HU1hdRcBBnxfBmmotEZsizx_CsKh8yj1ZIb4Akacg9SrqC_viY2iLPR9QSD1-TALPBn6yo-UThU8jCuzdBq4aqj9bdFb_s9JVknb8w4rZ8kltt0Wz-ovnFtVl8svjYzh_nZdEu-PvHj_8M14xG3c9ODqv_JQXF-9Qo_ExvxioR9jtDtXTyr4_QKdtKp5
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Charcoal+Vision%3A+A+Win%E2%80%93Win%E2%80%93Win+Scenario+for+Simultaneously+Producing+Bioenergy%2C+Permanently+Sequestering+Carbon%2C+while+Improving+Soil+and+Water+Quality&rft.jtitle=Agronomy+journal&rft.au=Laird%2C+David+A.&rft.date=2008-01-01&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=100&rft.issue=1&rft.spage=178&rft.epage=181&rft_id=info:doi/10.2134%2Fagronj2007.0161&rft.externalDBID=n%2Fa&rft.externalDocID=10_2134_agronj2007_0161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon