Orosomucoid proteins limit endoplasmic reticulum stress in plants

Summary Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 240; no. 3; pp. 1134 - 1148
Main Authors Wang, Ling‐Yan, Li, Jian, Gong, Benqiang, Wang, Rui‐Hua, Chen, Yi‐Li, Yin, Jian, Yang, Chang, Lin, Jia‐Ting, Liu, Hao‐Zhuo, Yang, Yubing, Li, Jianfeng, Li, Chunyu, Yao, Nan
Format Journal Article
LanguageEnglish
Published Lancaster Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER‐associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS‐O 12 (MLO‐12). ORM1 and ORM2 bind to EMS‐MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant‐specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.
AbstractList Summary Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER‐associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS‐O 12 (MLO‐12). ORM1 and ORM2 bind to EMS‐MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant‐specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.
Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana . Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER‐associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS‐O 12 (MLO‐12). ORM1 and ORM2 bind to EMS‐MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant‐specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.
Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants.In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana.Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER‐associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS‐O 12 (MLO‐12). ORM1 and ORM2 bind to EMS‐MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant‐specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis.Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.
Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.
Author Wang, Rui‐Hua
Liu, Hao‐Zhuo
Wang, Ling‐Yan
Yang, Chang
Yao, Nan
Yang, Yubing
Yin, Jian
Li, Jianfeng
Li, Chunyu
Gong, Benqiang
Chen, Yi‐Li
Lin, Jia‐Ting
Li, Jian
Author_xml – sequence: 1
  givenname: Ling‐Yan
  surname: Wang
  fullname: Wang, Ling‐Yan
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Jian
  surname: Li
  fullname: Li, Jian
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Benqiang
  surname: Gong
  fullname: Gong, Benqiang
  organization: Sun Yat‐sen University
– sequence: 4
  givenname: Rui‐Hua
  surname: Wang
  fullname: Wang, Rui‐Hua
  organization: Sun Yat‐sen University
– sequence: 5
  givenname: Yi‐Li
  surname: Chen
  fullname: Chen, Yi‐Li
  organization: Sun Yat‐sen University
– sequence: 6
  givenname: Jian
  surname: Yin
  fullname: Yin, Jian
  organization: Sun Yat‐sen University
– sequence: 7
  givenname: Chang
  surname: Yang
  fullname: Yang, Chang
  organization: Sun Yat‐sen University
– sequence: 8
  givenname: Jia‐Ting
  surname: Lin
  fullname: Lin, Jia‐Ting
  organization: Sun Yat‐sen University
– sequence: 9
  givenname: Hao‐Zhuo
  surname: Liu
  fullname: Liu, Hao‐Zhuo
  organization: Sun Yat‐sen University
– sequence: 10
  givenname: Yubing
  surname: Yang
  fullname: Yang, Yubing
  organization: Sun Yat‐sen University
– sequence: 11
  givenname: Jianfeng
  surname: Li
  fullname: Li, Jianfeng
  organization: Sun Yat‐sen University
– sequence: 12
  givenname: Chunyu
  surname: Li
  fullname: Li, Chunyu
  organization: Guangdong Academy of Agricultural Sciences
– sequence: 13
  givenname: Nan
  orcidid: 0000-0002-2045-5462
  surname: Yao
  fullname: Yao, Nan
  email: yaonan@mail.sysu.edu.cn
  organization: Sun Yat‐sen University
BookMark eNqFkE9LAzEQxYNUsK0e_AYLXvSwbZLNbjbHUtQKxXpQ8LZk8wdTdpOaZJF-e6PtSRTnMgPze8ObNwEj66wC4BLBGUo1t7u3GWIYwhMwRqRieY0KOgJjCHGdV6R6PQOTELYQQlZWeAwWG--C6wfhjMx23kVlbMg605uYKSvdruOhNyLzKhoxdEOfhehVCJmxWdrZGM7BqeZdUBfHPgUvd7fPy1W-3tw_LBfrXBRVAXOkEdJctiUnUDAhtYA1KSmWLdOUpbFCFNNWUVlozSRsJSmQrhjlkrQcq2IKrg93k8v3QYXY9CYI1SUTyg2hwYxgBMsSFf-jdUlYRRklCb36gW7d4G16JFEUlzUlmCVqfqBESit4pRthIo_G2ei56RoEm6_0m5R-851-Utz8UOy86bnf_8oer3-YTu3_BpvHp9VB8QmMI5Yi
CitedBy_id crossref_primary_10_1093_plphys_kiae460
crossref_primary_10_1038_s41576_024_00710_4
crossref_primary_10_3390_plants13020299
crossref_primary_10_1360_SSV_2024_0140
crossref_primary_10_18699_vjgb_24_102
crossref_primary_10_1002_bod2_12017
crossref_primary_10_1016_j_pbi_2025_102704
crossref_primary_10_1111_tpj_16952
Cites_doi 10.1105/tpc.104.026625
10.3389/fpls.2020.00145
10.1016/j.molcel.2007.05.015
10.1105/tpc.16.00574
10.1038/s41594-020-00551-9
10.1007/978-1-4419-6741-1_9
10.1016/j.tplants.2010.02.006
10.1242/jcs.100578
10.1038/s41594-019-0324-9
10.1101/gad.1140503
10.1105/tpc.108.061879
10.1104/pp.15.00987
10.1038/nrm.2017.107
10.1105/tpc.106.050021
10.3390/ijms20235842
10.1105/tpc.111.093062
10.1073/pnas.0911617107
10.1194/jlr.M900216-JLR200
10.1038/s41467-019-11480-7
10.1073/pnas.1511724112
10.1073/pnas.1609844114
10.1104/pp.107.113506
10.1016/j.tibs.2019.10.008
10.1515/BC.2007.035
10.1111/tpj.15639
10.1038/s41586-019-1449-z
10.1016/j.ceb.2014.12.002
10.1038/nature08787
10.1199/tab.0170
10.1074/jbc.M113.472860
10.1111/nph.13915
10.1073/pnas.1013251108
10.1126/science.1176709
10.3389/fpls.2016.00650
10.1126/science.aaz2449
10.1105/tpc.20.00015
10.1093/mp/sss042
10.1111/tpj.15393
10.1111/tpj.12769
10.1016/j.devcel.2018.04.023
10.1111/j.1365-313X.2008.03420.x
10.3389/fpls.2020.600458
10.1016/j.molp.2018.11.011
10.1016/j.plipres.2010.10.003
10.1105/tpc.17.00438
10.1105/tpc.114.127050
10.1038/s41594-020-00553-7
10.1016/j.molcel.2017.06.012
10.1016/j.molp.2020.10.011
10.1093/mp/sst059
10.1073/pnas.1217611110
ContentType Journal Article
Copyright 2023 The Authors. © 2023 New Phytologist Foundation
Copyright © 2023 New Phytologist Trust
2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
Copyright_xml – notice: 2023 The Authors. © 2023 New Phytologist Foundation
– notice: Copyright © 2023 New Phytologist Trust
– notice: 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
DBID AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.19200
DatabaseName CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1148
ExternalDocumentID 10_1111_nph_19200
NPH19200
Genre researchArticle
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  funderid: 2019B1515120088
– fundername: National Natural Science Foundation of China
  funderid: 31771357; 32070196
– fundername: Open Founding of Guangdong Provincial Key Laboratory of Plant Resources
  funderid: 2020PlantKF05
– fundername: China Postdoctoral Science Foundation
  funderid: 2020M683028
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABGDZ
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3630-1f11fadb5a40c9cdfc084572db9f7984561727be7d3ff9d0bd431f697ad4ba2e3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:31:23 EDT 2025
Fri Jul 11 04:47:49 EDT 2025
Fri Jul 25 11:55:51 EDT 2025
Tue Jul 01 02:28:47 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Sun Jul 06 04:46:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3630-1f11fadb5a40c9cdfc084572db9f7984561727be7d3ff9d0bd431f697ad4ba2e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2045-5462
PQID 2872587429
PQPubID 2026848
PageCount 1148
ParticipantIDs proquest_miscellaneous_2942105513
proquest_miscellaneous_2854967974
proquest_journals_2872587429
crossref_citationtrail_10_1111_nph_19200
crossref_primary_10_1111_nph_19200
wiley_primary_10_1111_nph_19200_NPH19200
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationPlace Lancaster
PublicationPlace_xml – name: Lancaster
PublicationTitle The New phytologist
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 388
2010; 15
2010; 107
2019; 10
2021; 28
2019; 12
2015; 33
2013; 288
2014; 26
2010; 463
2020; 368
2003; 17
2020; 11
2008; 146
2012; 125
2017; 114
2013; 6
2018; 46
2019; 20
2015; 81
2009; 50
2019; 26
2020; 45
2013; 110
2008; 20
2012; 24
2014; 12
2009; 325
2007; 26
2007; 19
2010; 688
2015; 169
2017; 67
2021; 107
2008; 54
2017; 29
2020; 32
2021; 14
2018; 19
2016; 7
2011; 108
2015; 112
2011; 50
2016; 211
2016; 28
2022; 109
2005; 17
2012; 5
2019; 572
2016; 172
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Kimberlin AN (e_1_2_9_19_1) 2016; 172
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 172
  start-page: 889
  year: 2016
  end-page: 900
  article-title: ORM expression alters sphingolipid homeostasis and differentially affects ceramide synthase activity
  publication-title: Plant Physiology
– volume: 45
  start-page: 123
  year: 2020
  end-page: 136
  article-title: Functional diversification of ER stress responses in Arabidopsis
  publication-title: Trends in Biochemical Sciences
– volume: 26
  start-page: 3449
  year: 2014
  end-page: 3467
  article-title: Loss of ceramide kinase in Arabidopsis impairs defenses and promotes ceramide accumulation and mitochondrial H O bursts
  publication-title: Plant Cell
– volume: 33
  start-page: 67
  year: 2015
  end-page: 73
  article-title: Lipid‐dependent regulation of the unfolded protein response
  publication-title: Current Opinion in Cell Biology
– volume: 146
  start-page: 1322
  year: 2008
  end-page: 1332
  article-title: Serine palmitoyltransferase, a key enzyme for synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis
  publication-title: Plant Physiology
– volume: 12
  start-page: 113
  year: 2019
  end-page: 123
  article-title: A plant immune receptor degraded by selective autophagy
  publication-title: Molecular Plant
– volume: 19
  start-page: 175
  year: 2018
  end-page: 191
  article-title: Sphingolipids and their metabolism in physiology and disease
  publication-title: Nature Reviews. Molecular Cell Biology
– volume: 7
  start-page: 650
  year: 2016
  article-title: Identification of novel components of the unfolded protein response in Arabidopsis
  publication-title: Frontiers in Plant Science
– volume: 50
  start-page: 104
  year: 2011
  end-page: 114
  article-title: Sphingolipids and expression regulation of genes in cancer
  publication-title: Progress in Lipid Research
– volume: 110
  start-page: 4628
  year: 2013
  end-page: 4633
  article-title: Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 288
  start-page: 20453
  year: 2013
  end-page: 20463
  article-title: Orm proteins integryate multiple signals to maintain sphingolipid homeostasis
  publication-title: The Journal of Biological Chemistry
– volume: 6
  start-page: 1605
  year: 2013
  end-page: 1615
  article-title: The lumen‐facing domain is important for the biological function and organelle‐to‐organelle movement of bZIP28 during ER stress in Arabidopsis
  publication-title: Molecular Plant
– volume: 17
  start-page: 2636
  year: 2003
  end-page: 2641
  article-title: Ceramides modulate programmed cell death in plants
  publication-title: Genes & Development
– volume: 325
  start-page: 1254
  year: 2009
  end-page: 1257
  article-title: Regulation of histone acetylation in the nucleus by sphingosine‐1‐phosphate
  publication-title: Science
– volume: 17
  start-page: 149
  year: 2005
  end-page: 163
  article-title: Conserved ERAD‐like quality control of a plant polytopic membrane protein
  publication-title: Plant Cell
– volume: 28
  start-page: 3038
  year: 2016
  end-page: 3051
  article-title: Orosomucoid proteins interact with the small subunit of serine palmitoyltransferase and contribute to sphingolipid homeostasis and stress responses in Arabidopsis
  publication-title: Plant Cell
– volume: 10
  start-page: 3492
  year: 2019
  article-title: PAWH1 and PAWH2 are plant‐specific components of an Arabidopsis endoplasmic reticulum‐associated degradation complex
  publication-title: Nature Communications
– volume: 112
  start-page: 12205
  year: 2015
  end-page: 12210
  article-title: EBS7 is a plant‐specific component of a highly conserved endoplasmic reticulum‐associated degradation system in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 12
  year: 2014
  article-title: PROTOCOLS: chromatin immunoprecipitation from Arabidopsis tissues
  publication-title: Arabidopsis Book
– volume: 26
  start-page: 1053
  year: 2019
  end-page: 1062
  article-title: UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor
  publication-title: Nature Structural & Molecular Biology
– volume: 109
  start-page: 1427
  year: 2022
  end-page: 1440
  article-title: Ceramides regulate defense response by binding to RbohD in Arabidopsis
  publication-title: The Plant Journal
– volume: 28
  start-page: 240
  year: 2021
  end-page: 248
  article-title: Structural insights into the regulation of human serine palmitoyltransferase complexes
  publication-title: Nature Structural & Molecular Biology
– volume: 20
  start-page: 3418
  year: 2008
  end-page: 3429
  article-title: Multiple mechanism‐mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis
  publication-title: Plant Cell
– volume: 211
  start-page: 418
  year: 2016
  end-page: 428
  article-title: Managing the protein folding demands in the endoplasmic reticulum of plants
  publication-title: New Phytologist
– volume: 28
  start-page: 249
  year: 2021
  end-page: 257
  article-title: Structural insights into the assembly and substrate selectivity of human SPT‐ORMDL3 complex
  publication-title: Nature Structural & Molecular Biology
– volume: 5
  start-page: 929
  year: 2012
  end-page: 940
  article-title: The Arabidopsis homolog of the mammalian OS‐9 protein plays a key role in the endoplasmic reticulum‐associated degradation of misfolded receptor‐like kinases
  publication-title: Molecular Plant
– volume: 688
  start-page: 131
  year: 2010
  end-page: 140
  article-title: Ceramide‐1‐phosphate in phagocytosis and calcium homeostasis
  publication-title: Advances in Experimental Medicine and Biology
– volume: 32
  start-page: 2474
  year: 2020
  end-page: 2490
  article-title: Unregulated sphingolipid biosynthesis in gene‐edited Arabidopsis ORM mutants results in nonviable seeds with strongly reduced oil content
  publication-title: Plant Cell
– volume: 54
  start-page: 284
  year: 2008
  end-page: 298
  article-title: Loss‐of‐function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability
  publication-title: The Plant Journal
– volume: 108
  start-page: 870
  year: 2011
  end-page: 875
  article-title: Conserved endoplasmic reticulum‐associated degradation system to eliminate mutated receptor‐like kinases in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 368
  start-page: eaaz2449
  year: 2020
  article-title: Structural basis of ER‐associated protein degradation mediated by the Hrd1 ubiquitin ligase complex
  publication-title: Science
– volume: 107
  start-page: 5851
  year: 2010
  end-page: 5856
  article-title: Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 19
  start-page: 4111
  year: 2007
  end-page: 4119
  article-title: An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane‐associated transcription factor, bZIP28
  publication-title: Plant Cell
– volume: 114
  start-page: 2084
  year: 2017
  end-page: 2089
  article-title: HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 11
  start-page: 145
  year: 2020
  article-title: Ceramide‐induced cell death depends on calcium and caspase‐like activity in rice
  publication-title: Frontiers in Plant Science
– volume: 46
  start-page: 327
  year: 2018
  end-page: 343
  article-title: The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms
  publication-title: Developmental Cell
– volume: 14
  start-page: 95
  year: 2021
  end-page: 114
  article-title: Protein quality control in plant organelles: current progress and future perspectives
  publication-title: Molecular Plant
– volume: 169
  start-page: 1108
  year: 2015
  end-page: 1117
  article-title: Overexpression of Arabidopsis ceramide synthases differentially affects growth, sphingolipid metabolism, programmed cell death, and mycotoxin resistance
  publication-title: Plant Physiology
– volume: 20
  start-page: 5842
  year: 2019
  article-title: The multifaceted roles of plant hormone salicylic acid in endoplasmic reticulum stress and unfolded protein response
  publication-title: International Journal of Molecular Sciences
– volume: 67
  start-page: 673
  year: 2017
  end-page: 684
  article-title: Activation of the unfolded protein response by lipid bilayer stress
  publication-title: Molecular Cell
– volume: 15
  start-page: 247
  year: 2010
  end-page: 258
  article-title: WRKY transcription factors
  publication-title: Trends in Plant Science
– volume: 29
  start-page: 2854
  year: 2017
  end-page: 2870
  article-title: A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence
  publication-title: Plant Cell
– volume: 463
  start-page: 1048
  year: 2010
  end-page: 1053
  article-title: Orm family proteins mediate sphingolipid homeostasis
  publication-title: Nature
– volume: 24
  start-page: 233
  year: 2012
  end-page: 244
  article-title: Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid‐mediated salt stress tolerance
  publication-title: Plant Cell
– volume: 26
  start-page: 821
  year: 2007
  end-page: 830
  article-title: Allele‐specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control
  publication-title: Molecular Cell
– volume: 572
  start-page: 341
  year: 2019
  end-page: 346
  article-title: Plant cell‐surface GIPC sphingolipids sense salt to trigger Ca influx
  publication-title: Nature
– volume: 11
  year: 2020
  article-title: Fumonisin B1: a tool for exploring the multiple functions of sphingolipids in plants
  publication-title: Frontiers in Plant Science
– volume: 388
  start-page: 315
  year: 2007
  end-page: 324
  article-title: On the presence of C2‐ceramide in mammalian tissues: possible relationship to etherphospholipids and phosphorylation by ceramide kinase
  publication-title: Biological Chemistry
– volume: 50
  start-page: 2486
  year: 2009
  end-page: 2501
  article-title: The chemical chaperone 4‐phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response
  publication-title: Journal of Lipid Research
– volume: 125
  start-page: 2428
  year: 2012
  end-page: 2435
  article-title: Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast
  publication-title: Journal of Cell Science
– volume: 81
  start-page: 767
  year: 2015
  end-page: 780
  article-title: The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance
  publication-title: The Plant Journal
– volume: 107
  start-page: 1447
  year: 2021
  end-page: 1465
  article-title: The immune components EDS1 and PAD4 are required for cell death caused by overaccumulation of ceramides in Arabidopsis
  publication-title: The Plant Journal
– ident: e_1_2_9_31_1
  doi: 10.1105/tpc.104.026625
– ident: e_1_2_9_53_1
  doi: 10.3389/fpls.2020.00145
– ident: e_1_2_9_18_1
  doi: 10.1016/j.molcel.2007.05.015
– ident: e_1_2_9_21_1
  doi: 10.1105/tpc.16.00574
– ident: e_1_2_9_46_1
  doi: 10.1038/s41594-020-00551-9
– ident: e_1_2_9_14_1
  doi: 10.1007/978-1-4419-6741-1_9
– ident: e_1_2_9_36_1
  doi: 10.1016/j.tplants.2010.02.006
– ident: e_1_2_9_28_1
  doi: 10.1242/jcs.100578
– ident: e_1_2_9_20_1
  doi: 10.1038/s41594-019-0324-9
– ident: e_1_2_9_24_1
  doi: 10.1101/gad.1140503
– ident: e_1_2_9_15_1
  doi: 10.1105/tpc.108.061879
– ident: e_1_2_9_30_1
  doi: 10.1104/pp.15.00987
– ident: e_1_2_9_13_1
  doi: 10.1038/nrm.2017.107
– volume: 172
  start-page: 889
  year: 2016
  ident: e_1_2_9_19_1
  article-title: ORM expression alters sphingolipid homeostasis and differentially affects ceramide synthase activity
  publication-title: Plant Physiology
– ident: e_1_2_9_27_1
  doi: 10.1105/tpc.106.050021
– ident: e_1_2_9_35_1
  doi: 10.3390/ijms20235842
– ident: e_1_2_9_5_1
  doi: 10.1105/tpc.111.093062
– ident: e_1_2_9_12_1
  doi: 10.1073/pnas.0911617107
– ident: e_1_2_9_2_1
  doi: 10.1194/jlr.M900216-JLR200
– ident: e_1_2_9_25_1
  doi: 10.1038/s41467-019-11480-7
– ident: e_1_2_9_29_1
  doi: 10.1073/pnas.1511724112
– ident: e_1_2_9_32_1
  doi: 10.1073/pnas.1609844114
– ident: e_1_2_9_42_1
  doi: 10.1104/pp.107.113506
– ident: e_1_2_9_33_1
  doi: 10.1016/j.tibs.2019.10.008
– ident: e_1_2_9_43_1
  doi: 10.1515/BC.2007.035
– ident: e_1_2_9_22_1
  doi: 10.1111/tpj.15639
– ident: e_1_2_9_17_1
  doi: 10.1038/s41586-019-1449-z
– ident: e_1_2_9_44_1
  doi: 10.1016/j.ceb.2014.12.002
– ident: e_1_2_9_4_1
  doi: 10.1038/nature08787
– ident: e_1_2_9_49_1
  doi: 10.1199/tab.0170
– ident: e_1_2_9_9_1
  doi: 10.1074/jbc.M113.472860
– ident: e_1_2_9_26_1
  doi: 10.1111/nph.13915
– ident: e_1_2_9_37_1
  doi: 10.1073/pnas.1013251108
– ident: e_1_2_9_10_1
  doi: 10.1126/science.1176709
– ident: e_1_2_9_16_1
  doi: 10.3389/fpls.2016.00650
– ident: e_1_2_9_48_1
  doi: 10.1126/science.aaz2449
– ident: e_1_2_9_7_1
  doi: 10.1105/tpc.20.00015
– ident: e_1_2_9_38_1
  doi: 10.1093/mp/sss042
– ident: e_1_2_9_52_1
  doi: 10.1111/tpj.15393
– ident: e_1_2_9_47_1
  doi: 10.1111/tpj.12769
– ident: e_1_2_9_41_1
  doi: 10.1016/j.devcel.2018.04.023
– ident: e_1_2_9_6_1
  doi: 10.1111/j.1365-313X.2008.03420.x
– ident: e_1_2_9_51_1
  doi: 10.3389/fpls.2020.600458
– ident: e_1_2_9_50_1
  doi: 10.1016/j.molp.2018.11.011
– ident: e_1_2_9_34_1
  doi: 10.1016/j.plipres.2010.10.003
– ident: e_1_2_9_8_1
  doi: 10.1105/tpc.17.00438
– ident: e_1_2_9_3_1
  doi: 10.1105/tpc.114.127050
– ident: e_1_2_9_23_1
  doi: 10.1038/s41594-020-00553-7
– ident: e_1_2_9_11_1
  doi: 10.1016/j.molcel.2017.06.012
– ident: e_1_2_9_39_1
  doi: 10.1016/j.molp.2020.10.011
– ident: e_1_2_9_40_1
  doi: 10.1093/mp/sst059
– ident: e_1_2_9_45_1
  doi: 10.1073/pnas.1217611110
SSID ssj0009562
Score 2.4758859
Snippet Summary Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying...
Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1134
SubjectTerms Airborne microorganisms
Arabidopsis
Arabidopsis thaliana
Cell membranes
Cellular stress response
Ceramide
ceramides
Degradation
Endoplasmic reticulum
endoplasmic reticulum (ER)‐associated degradation
endoplasmic reticulum stress
Fumonisin B1
Homeostasis
Mildew
mildews
orosomucoid proteins
Palmitoyltransferase
Protein folding
Proteins
Quality control
Serine
serine C-palmitoyltransferase
Serine palmitoyltransferase
Sphingolipids
sphingosine N-acyltransferase
Transcription
Transcription factors
unfolded protein response
Yeast
Yeasts
Title Orosomucoid proteins limit endoplasmic reticulum stress in plants
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19200
https://www.proquest.com/docview/2872587429
https://www.proquest.com/docview/2854967974
https://www.proquest.com/docview/2942105513
Volume 240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5K8eDFt1itsooHLyl5bDYNnqpYimAVsdCDEPaRxWC7KTY56K93No9aRUW8BXYWJjs7mW82O98gdEpj6tlMOpaC8G5BxFcWs7lnSd8jTDnUFcQUJ98M6WBErsf-uIHO61qYkh9iceBmPKP4XhsHZ3y-5OR69tQBeGKbfN3c1TKA6N5dItylbs3ATAkdV6xC5hbPYubnWPQBMJdhahFn-uvosdawvF7y3Mkz3hFvX8gb__kKG2itwp-4V26YTdSI9RZauUgBI75uo94tKJpOc5EmEhcUDome44kpgsKxlukMsPY0EbgofTTnhrisNcGJxjCms_kOGvWvHi4HVtVkwRIemMlylOMoJrnPiC1CIZWwu8QPXMlDFYRdg68A4vA4kJ5SobS5BMihaBgwSThzY28XNXWq4z2EOYPgBhZWjASESsoBqslAAiKGib5rt9BZvdyRqBjITSOMSVRnIrAgUbEgLXSyEJ2VtBvfCbVrm0WV580jyABdvwsJf9hCx4th8BnzI4TpOM2NDGTFNIBU6heZkLimeajjgdqFEX9WJBreDYqH_b-LHqBV07m-LGtso2b2kseHgG8yflRs5HcChPcr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5FUAkuQHmIAG0XxIGLIz_W61jqhaJGKY-AUCLlgqx9eNWosI5IcoBf39m1HULVItSbpZ2Vxjs7nm_WO98AHLOcRT5XgacxvHsY8bXHfRF5Ko4o1wELJbXFyVc91h3Q82E8bMDXuham5IeYH7hZz3Dfa-vg9kB6wcvN-GcL8YmPCfuy7ejtEqrbcIFyl4U1BzOjbFjxCtl7PPOpr6PRC8RcBKou0nTW4a7Wsbxg8qs1m4qWfP6DvvF_X2ID1ioISk7LPfMRGrnZhA_fCoSJT1tweo2aFg8zWYwUcSwOIzMh97YOiuRGFWOE2w8jSVz1oz06JGW5CRkZgmNmOtmGQed7_6zrVX0WPBmhpbxAB4HmSsSc-jKVSku_TeMkVCLVSdq2EAtRjsgTFWmdKl8oRB2apQlXVPAwj3ZgyRQm3wUiOMY3NLLmNKFMMYFoTSUKQTFOjEO_CSf1emeyIiG3vTDuszoZwQXJ3II04WguOi6ZN_4mdFAbLaucb5JhEhjGbcz50yYczofRbey_EG7yYmZlMDFmCWZTb8ikNLT9Q4MI1XZW_LciWe-m6x723i_6BVa6_avL7PJH72IfVm0j-7LK8QCWpo-z_BPCnan47Hb1b2y9-0Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hQGgvPHdFoYBBHLikysNxGnEqj6q7QEFokXpYKfIjFhXgVLQ9wK9nnEcpCNCKWySPpYnHk_nG8XwDsM9SFrhceY7G8O5gxNcOd0XgqDCgXHvMl9QWJ190WeeG_umFvRk4rGphCn6IyYGb9Yz8e20dfKD0lJObwW0D4YmL-focZW7TbumTa3-KcZf5FQUzo6xX0grZazyTqW-D0SvCnMapeaBpL8G_SsXifsldYzwSDfn8jr3xm--wDIslACWtYseswExqVmH-KEOQ-LQGrUtUNHsYy6yvSM7h0DdDcm-roEhqVDZAsP3QlySvfbQHh6QoNiF9Q3DMjIY_4aZ9-ve445RdFhwZoJ0cT3ue5kqEnLoylkpLt0nDyFci1lHctAALMY5IIxVoHStXKMQcmsURV1RwPw1-wazJTLoORHCMbmhizWlEmWICsZqKFEJinBj6bg0OquVOZElBbjth3CdVKoILkuQLUoO9ieig4N34SKhe2SwpXW-YYAroh03M-OMa7E6G0WnsnxBu0mxsZTAtZhHmUl_IxNS33UO9ANXOjfi5Ikn3qpM_bPy_6A4sXJ20k_Pf3bNN-GG72BcljnWYHT2O0y3EOiOxne_pF5-X-f4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orosomucoid+proteins+limit+endoplasmic+reticulum+stress+in+plants&rft.jtitle=The+New+phytologist&rft.au=Wang%2C+Ling%E2%80%90Yan&rft.au=Li%2C+Jian&rft.au=Gong%2C+Benqiang&rft.au=Wang%2C+Rui%E2%80%90Hua&rft.date=2023-11-01&rft.issn=0028-646X&rft.volume=240&rft.issue=3+p.1134-1148&rft.spage=1134&rft.epage=1148&rft_id=info:doi/10.1111%2Fnph.19200&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon