Orosomucoid proteins limit endoplasmic reticulum stress in plants
Summary Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid...
Saved in:
Published in | The New phytologist Vol. 240; no. 3; pp. 1134 - 1148 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lancaster
Wiley Subscription Services, Inc
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants.
In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana.
Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER‐associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS‐O 12 (MLO‐12). ORM1 and ORM2 bind to EMS‐MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant‐specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis.
Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses. |
---|---|
AbstractList | Summary
Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants.
In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana.
Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER‐associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS‐O 12 (MLO‐12). ORM1 and ORM2 bind to EMS‐MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant‐specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis.
Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses. Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana . Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER‐associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS‐O 12 (MLO‐12). ORM1 and ORM2 bind to EMS‐MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant‐specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses. Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants.In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana.Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER‐associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS‐O 12 (MLO‐12). ORM1 and ORM2 bind to EMS‐MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant‐specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis.Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses. Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses.Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is unknown. Orosomucoid proteins (ORMs) negatively regulate serine palmitoyltransferase activity, thus helping maintain proper sphingolipid levels in humans, yeast, and plants. In this report, we explored the roles of ORMs in regulating ER stress in Arabidopsis thaliana. Loss of ORM1 and ORM2 function caused constitutive activation of the unfolded protein response (UPR), as did treatment with the ceramide synthase inhibitor Fumonisin B1 (FB1) or ceramides. FB1 treatment induced the transcription factor bZIP28 to relocate from the ER membrane to the nucleus. The transcription factor WRKY75 positively regulates the UPR and physically interacted with bZIP28. We also found that the orm mutants showed impaired ER-associated degradation (ERAD), blocking the degradation of misfolded MILDEW RESISTANCE LOCUS-O 12 (MLO-12). ORM1 and ORM2 bind to EMS-MUTAGENIZED BRI1 SUPPRESSOR 7 (EBS7), a plant-specific component of the Arabidopsis ERAD complex, and regulate its stability. These data strongly suggest that ORMs in the ER membrane play vital roles in the UPR and ERAD pathways to prevent ER stress in Arabidopsis. Our results reveal that ORMs coordinate sphingolipid homeostasis with ER quality control and play a role in stress responses. |
Author | Wang, Rui‐Hua Liu, Hao‐Zhuo Wang, Ling‐Yan Yang, Chang Yao, Nan Yang, Yubing Yin, Jian Li, Jianfeng Li, Chunyu Gong, Benqiang Chen, Yi‐Li Lin, Jia‐Ting Li, Jian |
Author_xml | – sequence: 1 givenname: Ling‐Yan surname: Wang fullname: Wang, Ling‐Yan organization: Sun Yat‐sen University – sequence: 2 givenname: Jian surname: Li fullname: Li, Jian organization: Chinese Academy of Sciences – sequence: 3 givenname: Benqiang surname: Gong fullname: Gong, Benqiang organization: Sun Yat‐sen University – sequence: 4 givenname: Rui‐Hua surname: Wang fullname: Wang, Rui‐Hua organization: Sun Yat‐sen University – sequence: 5 givenname: Yi‐Li surname: Chen fullname: Chen, Yi‐Li organization: Sun Yat‐sen University – sequence: 6 givenname: Jian surname: Yin fullname: Yin, Jian organization: Sun Yat‐sen University – sequence: 7 givenname: Chang surname: Yang fullname: Yang, Chang organization: Sun Yat‐sen University – sequence: 8 givenname: Jia‐Ting surname: Lin fullname: Lin, Jia‐Ting organization: Sun Yat‐sen University – sequence: 9 givenname: Hao‐Zhuo surname: Liu fullname: Liu, Hao‐Zhuo organization: Sun Yat‐sen University – sequence: 10 givenname: Yubing surname: Yang fullname: Yang, Yubing organization: Sun Yat‐sen University – sequence: 11 givenname: Jianfeng surname: Li fullname: Li, Jianfeng organization: Sun Yat‐sen University – sequence: 12 givenname: Chunyu surname: Li fullname: Li, Chunyu organization: Guangdong Academy of Agricultural Sciences – sequence: 13 givenname: Nan orcidid: 0000-0002-2045-5462 surname: Yao fullname: Yao, Nan email: yaonan@mail.sysu.edu.cn organization: Sun Yat‐sen University |
BookMark | eNqFkE9LAzEQxYNUsK0e_AYLXvSwbZLNbjbHUtQKxXpQ8LZk8wdTdpOaZJF-e6PtSRTnMgPze8ObNwEj66wC4BLBGUo1t7u3GWIYwhMwRqRieY0KOgJjCHGdV6R6PQOTELYQQlZWeAwWG--C6wfhjMx23kVlbMg605uYKSvdruOhNyLzKhoxdEOfhehVCJmxWdrZGM7BqeZdUBfHPgUvd7fPy1W-3tw_LBfrXBRVAXOkEdJctiUnUDAhtYA1KSmWLdOUpbFCFNNWUVlozSRsJSmQrhjlkrQcq2IKrg93k8v3QYXY9CYI1SUTyg2hwYxgBMsSFf-jdUlYRRklCb36gW7d4G16JFEUlzUlmCVqfqBESit4pRthIo_G2ei56RoEm6_0m5R-851-Utz8UOy86bnf_8oer3-YTu3_BpvHp9VB8QmMI5Yi |
CitedBy_id | crossref_primary_10_1093_plphys_kiae460 crossref_primary_10_1038_s41576_024_00710_4 crossref_primary_10_3390_plants13020299 crossref_primary_10_1360_SSV_2024_0140 crossref_primary_10_18699_vjgb_24_102 crossref_primary_10_1002_bod2_12017 crossref_primary_10_1016_j_pbi_2025_102704 crossref_primary_10_1111_tpj_16952 |
Cites_doi | 10.1105/tpc.104.026625 10.3389/fpls.2020.00145 10.1016/j.molcel.2007.05.015 10.1105/tpc.16.00574 10.1038/s41594-020-00551-9 10.1007/978-1-4419-6741-1_9 10.1016/j.tplants.2010.02.006 10.1242/jcs.100578 10.1038/s41594-019-0324-9 10.1101/gad.1140503 10.1105/tpc.108.061879 10.1104/pp.15.00987 10.1038/nrm.2017.107 10.1105/tpc.106.050021 10.3390/ijms20235842 10.1105/tpc.111.093062 10.1073/pnas.0911617107 10.1194/jlr.M900216-JLR200 10.1038/s41467-019-11480-7 10.1073/pnas.1511724112 10.1073/pnas.1609844114 10.1104/pp.107.113506 10.1016/j.tibs.2019.10.008 10.1515/BC.2007.035 10.1111/tpj.15639 10.1038/s41586-019-1449-z 10.1016/j.ceb.2014.12.002 10.1038/nature08787 10.1199/tab.0170 10.1074/jbc.M113.472860 10.1111/nph.13915 10.1073/pnas.1013251108 10.1126/science.1176709 10.3389/fpls.2016.00650 10.1126/science.aaz2449 10.1105/tpc.20.00015 10.1093/mp/sss042 10.1111/tpj.15393 10.1111/tpj.12769 10.1016/j.devcel.2018.04.023 10.1111/j.1365-313X.2008.03420.x 10.3389/fpls.2020.600458 10.1016/j.molp.2018.11.011 10.1016/j.plipres.2010.10.003 10.1105/tpc.17.00438 10.1105/tpc.114.127050 10.1038/s41594-020-00553-7 10.1016/j.molcel.2017.06.012 10.1016/j.molp.2020.10.011 10.1093/mp/sst059 10.1073/pnas.1217611110 |
ContentType | Journal Article |
Copyright | 2023 The Authors. © 2023 New Phytologist Foundation Copyright © 2023 New Phytologist Trust 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. |
Copyright_xml | – notice: 2023 The Authors. © 2023 New Phytologist Foundation – notice: Copyright © 2023 New Phytologist Trust – notice: 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation. |
DBID | AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.19200 |
DatabaseName | CrossRef Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1148 |
ExternalDocumentID | 10_1111_nph_19200 NPH19200 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province funderid: 2019B1515120088 – fundername: National Natural Science Foundation of China funderid: 31771357; 32070196 – fundername: Open Founding of Guangdong Provincial Key Laboratory of Plant Resources funderid: 2020PlantKF05 – fundername: China Postdoctoral Science Foundation funderid: 2020M683028 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABGDZ ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADXHL ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3630-1f11fadb5a40c9cdfc084572db9f7984561727be7d3ff9d0bd431f697ad4ba2e3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:31:23 EDT 2025 Fri Jul 11 04:47:49 EDT 2025 Fri Jul 25 11:55:51 EDT 2025 Tue Jul 01 02:28:47 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Sun Jul 06 04:46:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3630-1f11fadb5a40c9cdfc084572db9f7984561727be7d3ff9d0bd431f697ad4ba2e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2045-5462 |
PQID | 2872587429 |
PQPubID | 2026848 |
PageCount | 1148 |
ParticipantIDs | proquest_miscellaneous_2942105513 proquest_miscellaneous_2854967974 proquest_journals_2872587429 crossref_citationtrail_10_1111_nph_19200 crossref_primary_10_1111_nph_19200 wiley_primary_10_1111_nph_19200_NPH19200 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2023 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationPlace | Lancaster |
PublicationPlace_xml | – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 388 2010; 15 2010; 107 2019; 10 2021; 28 2019; 12 2015; 33 2013; 288 2014; 26 2010; 463 2020; 368 2003; 17 2020; 11 2008; 146 2012; 125 2017; 114 2013; 6 2018; 46 2019; 20 2015; 81 2009; 50 2019; 26 2020; 45 2013; 110 2008; 20 2012; 24 2014; 12 2009; 325 2007; 26 2007; 19 2010; 688 2015; 169 2017; 67 2021; 107 2008; 54 2017; 29 2020; 32 2021; 14 2018; 19 2016; 7 2011; 108 2015; 112 2011; 50 2016; 211 2016; 28 2022; 109 2005; 17 2012; 5 2019; 572 2016; 172 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Kimberlin AN (e_1_2_9_19_1) 2016; 172 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 172 start-page: 889 year: 2016 end-page: 900 article-title: ORM expression alters sphingolipid homeostasis and differentially affects ceramide synthase activity publication-title: Plant Physiology – volume: 45 start-page: 123 year: 2020 end-page: 136 article-title: Functional diversification of ER stress responses in Arabidopsis publication-title: Trends in Biochemical Sciences – volume: 26 start-page: 3449 year: 2014 end-page: 3467 article-title: Loss of ceramide kinase in Arabidopsis impairs defenses and promotes ceramide accumulation and mitochondrial H O bursts publication-title: Plant Cell – volume: 33 start-page: 67 year: 2015 end-page: 73 article-title: Lipid‐dependent regulation of the unfolded protein response publication-title: Current Opinion in Cell Biology – volume: 146 start-page: 1322 year: 2008 end-page: 1332 article-title: Serine palmitoyltransferase, a key enzyme for synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis publication-title: Plant Physiology – volume: 12 start-page: 113 year: 2019 end-page: 123 article-title: A plant immune receptor degraded by selective autophagy publication-title: Molecular Plant – volume: 19 start-page: 175 year: 2018 end-page: 191 article-title: Sphingolipids and their metabolism in physiology and disease publication-title: Nature Reviews. Molecular Cell Biology – volume: 7 start-page: 650 year: 2016 article-title: Identification of novel components of the unfolded protein response in Arabidopsis publication-title: Frontiers in Plant Science – volume: 50 start-page: 104 year: 2011 end-page: 114 article-title: Sphingolipids and expression regulation of genes in cancer publication-title: Progress in Lipid Research – volume: 110 start-page: 4628 year: 2013 end-page: 4633 article-title: Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains publication-title: Proceedings of the National Academy of Sciences, USA – volume: 288 start-page: 20453 year: 2013 end-page: 20463 article-title: Orm proteins integryate multiple signals to maintain sphingolipid homeostasis publication-title: The Journal of Biological Chemistry – volume: 6 start-page: 1605 year: 2013 end-page: 1615 article-title: The lumen‐facing domain is important for the biological function and organelle‐to‐organelle movement of bZIP28 during ER stress in Arabidopsis publication-title: Molecular Plant – volume: 17 start-page: 2636 year: 2003 end-page: 2641 article-title: Ceramides modulate programmed cell death in plants publication-title: Genes & Development – volume: 325 start-page: 1254 year: 2009 end-page: 1257 article-title: Regulation of histone acetylation in the nucleus by sphingosine‐1‐phosphate publication-title: Science – volume: 17 start-page: 149 year: 2005 end-page: 163 article-title: Conserved ERAD‐like quality control of a plant polytopic membrane protein publication-title: Plant Cell – volume: 28 start-page: 3038 year: 2016 end-page: 3051 article-title: Orosomucoid proteins interact with the small subunit of serine palmitoyltransferase and contribute to sphingolipid homeostasis and stress responses in Arabidopsis publication-title: Plant Cell – volume: 10 start-page: 3492 year: 2019 article-title: PAWH1 and PAWH2 are plant‐specific components of an Arabidopsis endoplasmic reticulum‐associated degradation complex publication-title: Nature Communications – volume: 112 start-page: 12205 year: 2015 end-page: 12210 article-title: EBS7 is a plant‐specific component of a highly conserved endoplasmic reticulum‐associated degradation system in Arabidopsis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 12 year: 2014 article-title: PROTOCOLS: chromatin immunoprecipitation from Arabidopsis tissues publication-title: Arabidopsis Book – volume: 26 start-page: 1053 year: 2019 end-page: 1062 article-title: UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor publication-title: Nature Structural & Molecular Biology – volume: 109 start-page: 1427 year: 2022 end-page: 1440 article-title: Ceramides regulate defense response by binding to RbohD in Arabidopsis publication-title: The Plant Journal – volume: 28 start-page: 240 year: 2021 end-page: 248 article-title: Structural insights into the regulation of human serine palmitoyltransferase complexes publication-title: Nature Structural & Molecular Biology – volume: 20 start-page: 3418 year: 2008 end-page: 3429 article-title: Multiple mechanism‐mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis publication-title: Plant Cell – volume: 211 start-page: 418 year: 2016 end-page: 428 article-title: Managing the protein folding demands in the endoplasmic reticulum of plants publication-title: New Phytologist – volume: 28 start-page: 249 year: 2021 end-page: 257 article-title: Structural insights into the assembly and substrate selectivity of human SPT‐ORMDL3 complex publication-title: Nature Structural & Molecular Biology – volume: 5 start-page: 929 year: 2012 end-page: 940 article-title: The Arabidopsis homolog of the mammalian OS‐9 protein plays a key role in the endoplasmic reticulum‐associated degradation of misfolded receptor‐like kinases publication-title: Molecular Plant – volume: 688 start-page: 131 year: 2010 end-page: 140 article-title: Ceramide‐1‐phosphate in phagocytosis and calcium homeostasis publication-title: Advances in Experimental Medicine and Biology – volume: 32 start-page: 2474 year: 2020 end-page: 2490 article-title: Unregulated sphingolipid biosynthesis in gene‐edited Arabidopsis ORM mutants results in nonviable seeds with strongly reduced oil content publication-title: Plant Cell – volume: 54 start-page: 284 year: 2008 end-page: 298 article-title: Loss‐of‐function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability publication-title: The Plant Journal – volume: 108 start-page: 870 year: 2011 end-page: 875 article-title: Conserved endoplasmic reticulum‐associated degradation system to eliminate mutated receptor‐like kinases in Arabidopsis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 368 start-page: eaaz2449 year: 2020 article-title: Structural basis of ER‐associated protein degradation mediated by the Hrd1 ubiquitin ligase complex publication-title: Science – volume: 107 start-page: 5851 year: 2010 end-page: 5856 article-title: Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control publication-title: Proceedings of the National Academy of Sciences, USA – volume: 19 start-page: 4111 year: 2007 end-page: 4119 article-title: An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane‐associated transcription factor, bZIP28 publication-title: Plant Cell – volume: 114 start-page: 2084 year: 2017 end-page: 2089 article-title: HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis publication-title: Proceedings of the National Academy of Sciences, USA – volume: 11 start-page: 145 year: 2020 article-title: Ceramide‐induced cell death depends on calcium and caspase‐like activity in rice publication-title: Frontiers in Plant Science – volume: 46 start-page: 327 year: 2018 end-page: 343 article-title: The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms publication-title: Developmental Cell – volume: 14 start-page: 95 year: 2021 end-page: 114 article-title: Protein quality control in plant organelles: current progress and future perspectives publication-title: Molecular Plant – volume: 169 start-page: 1108 year: 2015 end-page: 1117 article-title: Overexpression of Arabidopsis ceramide synthases differentially affects growth, sphingolipid metabolism, programmed cell death, and mycotoxin resistance publication-title: Plant Physiology – volume: 20 start-page: 5842 year: 2019 article-title: The multifaceted roles of plant hormone salicylic acid in endoplasmic reticulum stress and unfolded protein response publication-title: International Journal of Molecular Sciences – volume: 67 start-page: 673 year: 2017 end-page: 684 article-title: Activation of the unfolded protein response by lipid bilayer stress publication-title: Molecular Cell – volume: 15 start-page: 247 year: 2010 end-page: 258 article-title: WRKY transcription factors publication-title: Trends in Plant Science – volume: 29 start-page: 2854 year: 2017 end-page: 2870 article-title: A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence publication-title: Plant Cell – volume: 463 start-page: 1048 year: 2010 end-page: 1053 article-title: Orm family proteins mediate sphingolipid homeostasis publication-title: Nature – volume: 24 start-page: 233 year: 2012 end-page: 244 article-title: Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid‐mediated salt stress tolerance publication-title: Plant Cell – volume: 26 start-page: 821 year: 2007 end-page: 830 article-title: Allele‐specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control publication-title: Molecular Cell – volume: 572 start-page: 341 year: 2019 end-page: 346 article-title: Plant cell‐surface GIPC sphingolipids sense salt to trigger Ca influx publication-title: Nature – volume: 11 year: 2020 article-title: Fumonisin B1: a tool for exploring the multiple functions of sphingolipids in plants publication-title: Frontiers in Plant Science – volume: 388 start-page: 315 year: 2007 end-page: 324 article-title: On the presence of C2‐ceramide in mammalian tissues: possible relationship to etherphospholipids and phosphorylation by ceramide kinase publication-title: Biological Chemistry – volume: 50 start-page: 2486 year: 2009 end-page: 2501 article-title: The chemical chaperone 4‐phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response publication-title: Journal of Lipid Research – volume: 125 start-page: 2428 year: 2012 end-page: 2435 article-title: Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast publication-title: Journal of Cell Science – volume: 81 start-page: 767 year: 2015 end-page: 780 article-title: The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance publication-title: The Plant Journal – volume: 107 start-page: 1447 year: 2021 end-page: 1465 article-title: The immune components EDS1 and PAD4 are required for cell death caused by overaccumulation of ceramides in Arabidopsis publication-title: The Plant Journal – ident: e_1_2_9_31_1 doi: 10.1105/tpc.104.026625 – ident: e_1_2_9_53_1 doi: 10.3389/fpls.2020.00145 – ident: e_1_2_9_18_1 doi: 10.1016/j.molcel.2007.05.015 – ident: e_1_2_9_21_1 doi: 10.1105/tpc.16.00574 – ident: e_1_2_9_46_1 doi: 10.1038/s41594-020-00551-9 – ident: e_1_2_9_14_1 doi: 10.1007/978-1-4419-6741-1_9 – ident: e_1_2_9_36_1 doi: 10.1016/j.tplants.2010.02.006 – ident: e_1_2_9_28_1 doi: 10.1242/jcs.100578 – ident: e_1_2_9_20_1 doi: 10.1038/s41594-019-0324-9 – ident: e_1_2_9_24_1 doi: 10.1101/gad.1140503 – ident: e_1_2_9_15_1 doi: 10.1105/tpc.108.061879 – ident: e_1_2_9_30_1 doi: 10.1104/pp.15.00987 – ident: e_1_2_9_13_1 doi: 10.1038/nrm.2017.107 – volume: 172 start-page: 889 year: 2016 ident: e_1_2_9_19_1 article-title: ORM expression alters sphingolipid homeostasis and differentially affects ceramide synthase activity publication-title: Plant Physiology – ident: e_1_2_9_27_1 doi: 10.1105/tpc.106.050021 – ident: e_1_2_9_35_1 doi: 10.3390/ijms20235842 – ident: e_1_2_9_5_1 doi: 10.1105/tpc.111.093062 – ident: e_1_2_9_12_1 doi: 10.1073/pnas.0911617107 – ident: e_1_2_9_2_1 doi: 10.1194/jlr.M900216-JLR200 – ident: e_1_2_9_25_1 doi: 10.1038/s41467-019-11480-7 – ident: e_1_2_9_29_1 doi: 10.1073/pnas.1511724112 – ident: e_1_2_9_32_1 doi: 10.1073/pnas.1609844114 – ident: e_1_2_9_42_1 doi: 10.1104/pp.107.113506 – ident: e_1_2_9_33_1 doi: 10.1016/j.tibs.2019.10.008 – ident: e_1_2_9_43_1 doi: 10.1515/BC.2007.035 – ident: e_1_2_9_22_1 doi: 10.1111/tpj.15639 – ident: e_1_2_9_17_1 doi: 10.1038/s41586-019-1449-z – ident: e_1_2_9_44_1 doi: 10.1016/j.ceb.2014.12.002 – ident: e_1_2_9_4_1 doi: 10.1038/nature08787 – ident: e_1_2_9_49_1 doi: 10.1199/tab.0170 – ident: e_1_2_9_9_1 doi: 10.1074/jbc.M113.472860 – ident: e_1_2_9_26_1 doi: 10.1111/nph.13915 – ident: e_1_2_9_37_1 doi: 10.1073/pnas.1013251108 – ident: e_1_2_9_10_1 doi: 10.1126/science.1176709 – ident: e_1_2_9_16_1 doi: 10.3389/fpls.2016.00650 – ident: e_1_2_9_48_1 doi: 10.1126/science.aaz2449 – ident: e_1_2_9_7_1 doi: 10.1105/tpc.20.00015 – ident: e_1_2_9_38_1 doi: 10.1093/mp/sss042 – ident: e_1_2_9_52_1 doi: 10.1111/tpj.15393 – ident: e_1_2_9_47_1 doi: 10.1111/tpj.12769 – ident: e_1_2_9_41_1 doi: 10.1016/j.devcel.2018.04.023 – ident: e_1_2_9_6_1 doi: 10.1111/j.1365-313X.2008.03420.x – ident: e_1_2_9_51_1 doi: 10.3389/fpls.2020.600458 – ident: e_1_2_9_50_1 doi: 10.1016/j.molp.2018.11.011 – ident: e_1_2_9_34_1 doi: 10.1016/j.plipres.2010.10.003 – ident: e_1_2_9_8_1 doi: 10.1105/tpc.17.00438 – ident: e_1_2_9_3_1 doi: 10.1105/tpc.114.127050 – ident: e_1_2_9_23_1 doi: 10.1038/s41594-020-00553-7 – ident: e_1_2_9_11_1 doi: 10.1016/j.molcel.2017.06.012 – ident: e_1_2_9_39_1 doi: 10.1016/j.molp.2020.10.011 – ident: e_1_2_9_40_1 doi: 10.1093/mp/sst059 – ident: e_1_2_9_45_1 doi: 10.1073/pnas.1217611110 |
SSID | ssj0009562 |
Score | 2.4758859 |
Snippet | Summary
Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying... Sphingolipids are cell membrane components and signaling molecules that induce endoplasmic reticulum (ER) stress responses, but the underlying mechanism is... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1134 |
SubjectTerms | Airborne microorganisms Arabidopsis Arabidopsis thaliana Cell membranes Cellular stress response Ceramide ceramides Degradation Endoplasmic reticulum endoplasmic reticulum (ER)‐associated degradation endoplasmic reticulum stress Fumonisin B1 Homeostasis Mildew mildews orosomucoid proteins Palmitoyltransferase Protein folding Proteins Quality control Serine serine C-palmitoyltransferase Serine palmitoyltransferase Sphingolipids sphingosine N-acyltransferase Transcription Transcription factors unfolded protein response Yeast Yeasts |
Title | Orosomucoid proteins limit endoplasmic reticulum stress in plants |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.19200 https://www.proquest.com/docview/2872587429 https://www.proquest.com/docview/2854967974 https://www.proquest.com/docview/2942105513 |
Volume | 240 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5K8eDFt1itsooHLyl5bDYNnqpYimAVsdCDEPaRxWC7KTY56K93No9aRUW8BXYWJjs7mW82O98gdEpj6tlMOpaC8G5BxFcWs7lnSd8jTDnUFcQUJ98M6WBErsf-uIHO61qYkh9iceBmPKP4XhsHZ3y-5OR69tQBeGKbfN3c1TKA6N5dItylbs3ATAkdV6xC5hbPYubnWPQBMJdhahFn-uvosdawvF7y3Mkz3hFvX8gb__kKG2itwp-4V26YTdSI9RZauUgBI75uo94tKJpOc5EmEhcUDome44kpgsKxlukMsPY0EbgofTTnhrisNcGJxjCms_kOGvWvHi4HVtVkwRIemMlylOMoJrnPiC1CIZWwu8QPXMlDFYRdg68A4vA4kJ5SobS5BMihaBgwSThzY28XNXWq4z2EOYPgBhZWjASESsoBqslAAiKGib5rt9BZvdyRqBjITSOMSVRnIrAgUbEgLXSyEJ2VtBvfCbVrm0WV580jyABdvwsJf9hCx4th8BnzI4TpOM2NDGTFNIBU6heZkLimeajjgdqFEX9WJBreDYqH_b-LHqBV07m-LGtso2b2kseHgG8yflRs5HcChPcr |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5FUAkuQHmIAG0XxIGLIz_W61jqhaJGKY-AUCLlgqx9eNWosI5IcoBf39m1HULVItSbpZ2Vxjs7nm_WO98AHLOcRT5XgacxvHsY8bXHfRF5Ko4o1wELJbXFyVc91h3Q82E8bMDXuham5IeYH7hZz3Dfa-vg9kB6wcvN-GcL8YmPCfuy7ejtEqrbcIFyl4U1BzOjbFjxCtl7PPOpr6PRC8RcBKou0nTW4a7Wsbxg8qs1m4qWfP6DvvF_X2ID1ioISk7LPfMRGrnZhA_fCoSJT1tweo2aFg8zWYwUcSwOIzMh97YOiuRGFWOE2w8jSVz1oz06JGW5CRkZgmNmOtmGQed7_6zrVX0WPBmhpbxAB4HmSsSc-jKVSku_TeMkVCLVSdq2EAtRjsgTFWmdKl8oRB2apQlXVPAwj3ZgyRQm3wUiOMY3NLLmNKFMMYFoTSUKQTFOjEO_CSf1emeyIiG3vTDuszoZwQXJ3II04WguOi6ZN_4mdFAbLaucb5JhEhjGbcz50yYczofRbey_EG7yYmZlMDFmCWZTb8ikNLT9Q4MI1XZW_LciWe-m6x723i_6BVa6_avL7PJH72IfVm0j-7LK8QCWpo-z_BPCnan47Hb1b2y9-0Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hQGgvPHdFoYBBHLikysNxGnEqj6q7QEFokXpYKfIjFhXgVLQ9wK9nnEcpCNCKWySPpYnHk_nG8XwDsM9SFrhceY7G8O5gxNcOd0XgqDCgXHvMl9QWJ190WeeG_umFvRk4rGphCn6IyYGb9Yz8e20dfKD0lJObwW0D4YmL-focZW7TbumTa3-KcZf5FQUzo6xX0grZazyTqW-D0SvCnMapeaBpL8G_SsXifsldYzwSDfn8jr3xm--wDIslACWtYseswExqVmH-KEOQ-LQGrUtUNHsYy6yvSM7h0DdDcm-roEhqVDZAsP3QlySvfbQHh6QoNiF9Q3DMjIY_4aZ9-ve445RdFhwZoJ0cT3ue5kqEnLoylkpLt0nDyFci1lHctAALMY5IIxVoHStXKMQcmsURV1RwPw1-wazJTLoORHCMbmhizWlEmWICsZqKFEJinBj6bg0OquVOZElBbjth3CdVKoILkuQLUoO9ieig4N34SKhe2SwpXW-YYAroh03M-OMa7E6G0WnsnxBu0mxsZTAtZhHmUl_IxNS33UO9ANXOjfi5Ikn3qpM_bPy_6A4sXJ20k_Pf3bNN-GG72BcljnWYHT2O0y3EOiOxne_pF5-X-f4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orosomucoid+proteins+limit+endoplasmic+reticulum+stress+in+plants&rft.jtitle=The+New+phytologist&rft.au=Wang%2C+Ling%E2%80%90Yan&rft.au=Li%2C+Jian&rft.au=Gong%2C+Benqiang&rft.au=Wang%2C+Rui%E2%80%90Hua&rft.date=2023-11-01&rft.issn=0028-646X&rft.volume=240&rft.issue=3+p.1134-1148&rft.spage=1134&rft.epage=1148&rft_id=info:doi/10.1111%2Fnph.19200&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |