Boundary Value Technique for Finding Numerical Solution to Boundary Value Problems for Third Order Singularly Perturbed Ordinary Differential Equations
A class of singularly perturbed two point boundary value problems (BVPs) for third order ordinary differential equations is considered. The BVP is reduced to a weakly coupled system of one first order Ordinary Differential Equation (ODE) with a suitable initial condition and one second order singula...
Saved in:
Published in | International journal of computer mathematics Vol. 79; no. 6; pp. 747 - 763 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis Group
2002
Taylor and Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A class of singularly perturbed two point boundary value problems (BVPs) for third order ordinary differential equations is considered. The BVP is reduced to a weakly coupled system of one first order Ordinary Differential Equation (ODE) with a suitable initial condition and one second order singularly perturbed ODE subject to boundary conditions. In order to solve this system, a computational method is suggested in this paper. This method combines an exponentially fitted finite difference scheme and a classical finite difference scheme. The proposed method is distinguished by the fact that, first we divide the domain of definition of the differential equation into three subintervals called inner and outer regions. Then we solve the boundary value problem over these regions as two point boundary value problems. The terminal boundary conditions of the inner regions are obtained using zero order asymptotic expansion approximation of the solution of the problem. The present method can be extended to system of two equations, of which, one is a first order ODE and the other is a singularly perturbed second order ODE. Examples are presented to illustrate the method. |
---|---|
AbstractList | A class of singularly perturbed two point boundary value problems (BVPs) for third order ordinary differential equations is considered. The BVP is reduced to a weakly coupled system of one first order Ordinary Differential Equation (ODE) with a suitable initial condition and one second order singularly perturbed ODE subject to boundary conditions. In order to solve this system, a computational method is suggested in this paper. This method combines an exponentially fitted finite difference scheme and a classical finite difference scheme. The proposed method is distinguished by the fact that, first we divide the domain of definition of the differential equation into three subintervals called inner and outer regions. Then we solve the boundary value problem over these regions as two point boundary value problems. The terminal boundary conditions of the inner regions are obtained using zero order asymptotic expansion approximation of the solution of the problem. The present method can be extended to system of two equations, of which, one is a first order ODE and the other is a singularly perturbed second order ODE. Examples are presented to illustrate the method. |
Author | Ramanujam, N. Valarmathi, S. |
Author_xml | – sequence: 1 givenname: S. surname: Valarmathi fullname: Valarmathi, S. organization: Department of Mathematics , Bharathidasan University – sequence: 2 givenname: N. surname: Ramanujam fullname: Ramanujam, N. organization: Department of Mathematics , Bharathidasan University |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13652753$$DView record in Pascal Francis |
BookMark | eNqFkEtPHDEQhK0IpCwk15x9yXGgPW8fwyuJhACJhevI4wcYeW1oe0T2l_B341mIEEgRJ7dU9ZW7a4ds-eA1Id8Y7DHoYR-ghI61UDJW9vUnsmBQ8gLKttkii1ksZvUz2YnxDgB63rUL8nQQJq8Erum1cJOmSy1vvX3IkwlIT6xX1t_Qs2ml0Urh6GVwU7LB0xToO_QCw-j0Km7I5a1FRc9RaaSXOWJyAt2aXmhME456I1k_w0fWGI3aJ5vjjx8mMcfHL2TbCBf115d3l1ydHC8PfxWn5z9_H_44LWTVlqkwxsi2NZ2BmjVibDquFO8VU7XpOAcNnJlGdFwz0fRK1zVUrOlGOUoo-1701S75_px7L2K-z6Dw0sbhHu0qLzewqm3Krqmyb-_ZJzHEiNq8WmCY6x_e1p-B-h0gbdrcllBY9yFmfa5xJR4DOjUksXYB_y33FhnSn5Qx_iFW_efLvzS4sI4 |
CODEN | IJCMAT |
CitedBy_id | crossref_primary_10_1016_j_cam_2018_03_021 crossref_primary_10_1016_j_jocs_2024_102338 crossref_primary_10_1007_s00500_022_07290_7 crossref_primary_10_1016_S0096_3003_02_00654_9 crossref_primary_10_1016_j_asej_2016_09_018 crossref_primary_10_1007_s40010_019_00605_8 crossref_primary_10_1016_j_camwa_2004_06_015 crossref_primary_10_1016_S0096_3003_02_00312_0 crossref_primary_10_11948_2017059 crossref_primary_10_1016_S0096_3003_01_00257_0 |
Cites_doi | 10.1007/BF01436920 10.1016/0898-1221(94)90078-7 10.1006/jdeq.1994.1076 10.1090/S0025-5718-1988-0935072-1 10.1002/zamm.19750550314 10.1093/imanum/14.1.97 10.1016/0096-3003(87)90003-8 10.1142/2933 10.1007/BF01390214 10.1007/978-1-4612-0977-5 10.1007/978-3-662-03206-0 10.1016/0096-3003(93)90004-X 10.1016/0022-247X(88)90412-X 10.1016/0096-3003(87)90001-4 10.1137/0143065 10.1016/S0096-3003(97)10056-X 10.1093/imanum/7.4.459 10.1016/0022-247X(82)90139-1 10.1093/imanum/15.1.117 10.1137/0513005 10.1016/0096-3003(87)90020-8 10.1016/0022-0396(90)90099-B 10.1093/imanum/15.2.197 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2002 2002 INIST-CNRS |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2002 – notice: 2002 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1080/00207160211284 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Mathematics |
EISSN | 1029-0265 |
EndPage | 763 |
ExternalDocumentID | 13652753 10_1080_00207160211284 10079785 |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 1TA 29J 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEJ ACGFS ACGOD ACIWK ACNCT ACUHS ADCVX ADGTB ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AGROQ AHDZW AHMOU AI. AIJEM AIYEW AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AMPGV AMVHM ARCSS AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DGEBU DKSSO DMQIW DU5 EAP EBS EDO EJD EMK EPL EST ESX E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z MK~ NA5 NY~ O9- P2P PQQKQ QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TUS TWF UPT UT5 UU3 VH1 WH7 ZGOLN ~S~ 07G AAGDL AAHIA AAIKQ AAKBW AAYJJ AAYXX ABEFU ACGEE ACTIO AEUMN AFFNX AGCQS AGLEN AMXXU AQRUH BCCOT BPLKW C06 CITATION DWIFK HF~ H~9 IVXBP LJTGL NUSFT TAQ TFMCV UB9 UU8 V3K V4Q ZY4 IQODW TASJS |
ID | FETCH-LOGICAL-c362t-fffc66f7f0415ab579dd98d1d4f7990e091f5a79e1a58de4403157bcbc0288a83 |
ISSN | 0020-7160 |
IngestDate | Mon Jul 21 09:15:36 EDT 2025 Tue Jul 01 01:04:26 EDT 2025 Thu Apr 24 23:14:07 EDT 2025 Mon May 13 12:10:04 EDT 2019 Fri May 09 05:53:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Third order equation Boundary value problem Asymptotic expansion Differential equation Two point boundary value problem Singular perturbation Maximum principle Asymptotic approximation Boundary layer Finite difference method |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c362t-fffc66f7f0415ab579dd98d1d4f7990e091f5a79e1a58de4403157bcbc0288a83 |
PageCount | 17 |
ParticipantIDs | pascalfrancis_primary_13652753 crossref_citationtrail_10_1080_00207160211284 crossref_primary_10_1080_00207160211284 informaworld_taylorfrancis_310_1080_00207160211284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-00-00 |
PublicationDateYYYYMMDD | 2002-01-01 |
PublicationDate_xml | – year: 2002 text: 2002-00-00 |
PublicationDecade | 2000 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of computer mathematics |
PublicationYear | 2002 |
Publisher | Taylor & Francis Group Taylor and Francis |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor and Francis |
References | Protter M.H. (CIT0032) 1967 CIT0010 CIT0031 CIT0012 CIT0011 O'Malley R.E. (CIT0005) 1974 O'Malley R.E. (CIT0006) 1990 Ramanujam N. (CIT0022) 1980; 23 ROOS H.G. (CIT0008) 1996 CIT0014 CIT0013 Krishnamooithy E.V (CIT0017) 1986 CIT0016 CIT0015 CIT0018 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 Doolan E.P. (CIT0002) 1980 Roos H.G. (CIT0028) 1991; 228 Miller J.J.H. (CIT0004) 1996 Nayfeh A.H. (CIT0007) 1981 CIT0003 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0009 Ramanujam N. (CIT0030) 1979; 71 |
References_xml | – ident: CIT0001 doi: 10.1007/BF01436920 – ident: CIT0014 doi: 10.1016/0898-1221(94)90078-7 – ident: CIT0016 doi: 10.1006/jdeq.1994.1076 – volume-title: Numerical algorithms-computations in science and engineering year: 1986 ident: CIT0017 – volume: 228 start-page: 30 year: 1991 ident: CIT0028 publication-title: Bonner mam. Schriften – ident: CIT0024 doi: 10.1090/S0025-5718-1988-0935072-1 – volume-title: Singular pertuibation methods for ordinary differential equations year: 1990 ident: CIT0006 – ident: CIT0021 doi: 10.1002/zamm.19750550314 – volume-title: Introduction to singular perturbations year: 1974 ident: CIT0005 – ident: CIT0027 doi: 10.1093/imanum/14.1.97 – ident: CIT0020 doi: 10.1016/0096-3003(87)90003-8 – volume-title: Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions year: 1996 ident: CIT0004 doi: 10.1142/2933 – ident: CIT0023 doi: 10.1007/BF01390214 – ident: CIT0029 doi: 10.1007/978-1-4612-0977-5 – volume-title: Numerical methods for singularly perturbed differential equations- convectiondiffution and flow problems year: 1996 ident: CIT0008 doi: 10.1007/978-3-662-03206-0 – ident: CIT0013 doi: 10.1016/0096-3003(93)90004-X – ident: CIT0011 doi: 10.1016/0022-247X(88)90412-X – volume: 23 year: 1980 ident: CIT0022 publication-title: Funkcialaj Ekvacioj – ident: CIT0019 doi: 10.1016/0096-3003(87)90001-4 – volume-title: Maximum principles in differential equations year: 1967 ident: CIT0032 – ident: CIT0010 doi: 10.1137/0143065 – ident: CIT0015 doi: 10.1016/S0096-3003(97)10056-X – ident: CIT0003 doi: 10.1093/imanum/7.4.459 – volume: 71 year: 1979 ident: CIT0030 publication-title: JMAA – volume-title: Uniform numerical methods for problems with initial and boundary layers year: 1980 ident: CIT0002 – ident: CIT0031 doi: 10.1016/0022-247X(82)90139-1 – ident: CIT0026 doi: 10.1093/imanum/15.1.117 – volume-title: Introduction to pertuibation methods year: 1981 ident: CIT0007 – ident: CIT0009 doi: 10.1137/0513005 – ident: CIT0018 doi: 10.1016/0096-3003(87)90020-8 – ident: CIT0012 doi: 10.1016/0022-0396(90)90099-B – ident: CIT0025 doi: 10.1093/imanum/15.2.197 |
SSID | ssj0008976 |
Score | 1.6071081 |
Snippet | A class of singularly perturbed two point boundary value problems (BVPs) for third order ordinary differential equations is considered. The BVP is reduced to a... |
SourceID | pascalfrancis crossref informaworld |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 747 |
SubjectTerms | Asymptotic Approximation Boundary Layer Classical Finite Difference Scheme Exact sciences and technology Exponentially Fitted Finite Difference Scheme Mathematics Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Sciences and techniques of general use Self Adjoint Boundary Value Problem Singular Perturbation Third Order Differential Equation |
Title | Boundary Value Technique for Finding Numerical Solution to Boundary Value Problems for Third Order Singularly Perturbed Ordinary Differential Equations |
URI | https://www.tandfonline.com/doi/abs/10.1080/00207160211284 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZK5wIHlgFEWUY-IHGIglqPm7jHsKkgOodRCyMule3YCDRkoJNKwB9B_Fue1zgDw3aJqtZOor5Pfoufvw-h-5xocMtC59RsElIqWS7AMecKJhRiTKRi5uzw4qCYr-iLo-nRYPA96VratuKh_PrLcyX_Y1X4DuxqTsn-g2XjTeEL-Az2hStYGK5_ZeNHVhNp8yUzlN0q6_hYTe-g3Y1u3mbN1m3KHGfhZUy8KfpTva7Mqe86fLepM0vKmZlSgulUNUUQtQH_JJT9yR3jDfIqram7q0_bpPz3vmuR7yqOCU-F9HIS2YdIHBvD-1fVy-pwUS3nz3vF2UNwEAcrcBPdFlKoV3R5rStB2D0RLxqSLsyQxULqNk4XZqcy4wGYrrKlI-n0DtuvkD_5gtA8ScbmxpDoEidG1yfdPuMMY4uiaf8jkMtdQDsEMhAyRDvV_Mmb19HNs5lVLoxvHhhBDXF775m9iKfHh2sacfkpAEC7_yOJbJZX0WWfkuDK4esaGqhmF10Jch_Yr_676NKis9R19C2AD1sE4Qg-DE_GHnw4gg8H8OH2BIv-1AA-O9OCD1vw4Q58OIIPB_DhFHw4gu8GWj17unw8z73KRy4heGpzrbUsCl1qQxbBxbSc1fWM1ZOa6hJCJQUBrZ7ycqYmfMpqRanRJSmFFBJCY8bZ_k00bE4adQthoQvKlVYlGStIAyhnEvIRLihVUpScjVAeLLGWngLfKLEcryeRKTe13Ag9iOM_OvKXc0fmqWHXrcW6N-uZsev2cztC5Dfj9897yF4PLt07eaze_tOAO-iiVTOyJcS7aNhutuoeBNWt2PPw_gFIqNeR |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VcoALLX9qCm19AHFylWy8u94DB6CN0r9QiRT1ttheW626SmmyEYQX4SF4FR6qM97dNAkqB6QeOK_ttezxfP6Z-T6AVypwCMvacUGPhEIYyTUCM7dYIdLNwFhJucNHvah7IvZPw9Ml-FXnwlBYJZ2hXUkU4X01LW66jK5D4iiFG5ExQngi71pFVB7YyTc8r43e7u3g5L4Ogs5u_0OXV5IC3KCnLrhzzkSRix1lpisdxkmWJTJrZcLF6JctoqcLVZzYlgplZoUgEYRYG20Qh6WSbWz3HtwPkyimRdVu9qZuXyZeyY76xqlzNUPkH_2dQ8A5flQKzFQjnBtXimrMIF1nBX7XY1QGuFxsjwu9bX4s0Ef-J4O4Co-qHTd7Vy6Rx7BkB09gpVazYJVzewo_33uFqeGEfVb52LJ-zW7LcOhY59yn_7DeuHziyll9ociKS7ZQ9bhU6Rn5mv2z82HGPhLFKfuETVDcbz5hx3aIaK-t_-STotlOJVaDTjdnu1clCfvoGZzcyfA8h-XB5cCuAdMuEso6GwdNi_taoaTBDbbSQlijYyUbwGtTSk3F6U7SInnamlK_zs5yA95My38t2UxuLclnLTMt_P1RZZcLZdPie9GA4C_l27f9ZHPO3m_61I7CAA_S6__S6hY86PaPDtPDvd7BC3jo5Xv8ndlLWC6GY7uBu8hCb_rVy-DLXVv6NeNJe34 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIiEubfkTKW2ZA4iTq2Tj3XUOHFrSqD8QIpGi3hbba4uqq7RNNoL0RfoOfRVeirF3N02CygGpB85rey17PJ9_Zr4P4I0MLMGysoy7R0LOtWCKgJkZqhCpeqCNcLnDn7rR_jE_PAlPluCmyoVxYZXuDG0Logjvq93ivkhtFRHnMrgJGCNCJ-dcy4DKIzP5Qce10fuDNs3t2yDo7PU_7LNSUYBpctQ5s9bqKLKxdYnpUoVxK01bIm2k3Mbklg2Bpw1l3DINGYrUcO40EGKllSYYFlI0qd0H8DByGZ0uXaTenXp90fJCdq5vzHWuIoj8o79zADhHj-riMuWIpsYWmhozQNdZhV_VEBXxLWfb41xt66sF9sj_YwzXYKXcb-NOsUCewJIZPIXVSssCS9f2DK53vb7UcIJfZTY22K-4bZFGDjunPvkHu-PigSvD6joR83NcqNorNHpGvmb_--kwxc-O4BS_UBMu6jebYM8MCeuV8Z98SjS2S6kacrkZ7l0WFOyj53B8L8PzApYH5wPzElDZiEtjTRzUDe1quRSattdScW60iqWoAassKdElo7sTFsmSxpT4dXaWa_BuWv6i4DK5sySbNcwk97dHpVkulE3yn3kNgr-Ub971k605c7_tUzMKAzpGr_9Lq6_hUa_dST4edI9ewWOv3eMvzDZgOR-OzSZtIXO15dcuwrf7NvTftaJ6Ig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundary+value+technique+for+finding+numerical+solution+to+boundary+value+problems+for+third+order+singularly+perturbed+ordinary+differential+equations&rft.jtitle=International+journal+of+computer+mathematics&rft.au=VALARMATHI%2C+S&rft.au=RAMANUJAM%2C+N&rft.date=2002&rft.pub=Taylor+and+Francis&rft.issn=0020-7160&rft.volume=79&rft.issue=6&rft.spage=747&rft.epage=763&rft_id=info:doi/10.1080%2F00207160211284&rft.externalDBID=n%2Fa&rft.externalDocID=13652753 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon |