Boundary Value Technique for Finding Numerical Solution to Boundary Value Problems for Third Order Singularly Perturbed Ordinary Differential Equations

A class of singularly perturbed two point boundary value problems (BVPs) for third order ordinary differential equations is considered. The BVP is reduced to a weakly coupled system of one first order Ordinary Differential Equation (ODE) with a suitable initial condition and one second order singula...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer mathematics Vol. 79; no. 6; pp. 747 - 763
Main Authors Valarmathi, S., Ramanujam, N.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis Group 2002
Taylor and Francis
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A class of singularly perturbed two point boundary value problems (BVPs) for third order ordinary differential equations is considered. The BVP is reduced to a weakly coupled system of one first order Ordinary Differential Equation (ODE) with a suitable initial condition and one second order singularly perturbed ODE subject to boundary conditions. In order to solve this system, a computational method is suggested in this paper. This method combines an exponentially fitted finite difference scheme and a classical finite difference scheme. The proposed method is distinguished by the fact that, first we divide the domain of definition of the differential equation into three subintervals called inner and outer regions. Then we solve the boundary value problem over these regions as two point boundary value problems. The terminal boundary conditions of the inner regions are obtained using zero order asymptotic expansion approximation of the solution of the problem. The present method can be extended to system of two equations, of which, one is a first order ODE and the other is a singularly perturbed second order ODE. Examples are presented to illustrate the method.
AbstractList A class of singularly perturbed two point boundary value problems (BVPs) for third order ordinary differential equations is considered. The BVP is reduced to a weakly coupled system of one first order Ordinary Differential Equation (ODE) with a suitable initial condition and one second order singularly perturbed ODE subject to boundary conditions. In order to solve this system, a computational method is suggested in this paper. This method combines an exponentially fitted finite difference scheme and a classical finite difference scheme. The proposed method is distinguished by the fact that, first we divide the domain of definition of the differential equation into three subintervals called inner and outer regions. Then we solve the boundary value problem over these regions as two point boundary value problems. The terminal boundary conditions of the inner regions are obtained using zero order asymptotic expansion approximation of the solution of the problem. The present method can be extended to system of two equations, of which, one is a first order ODE and the other is a singularly perturbed second order ODE. Examples are presented to illustrate the method.
Author Ramanujam, N.
Valarmathi, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Valarmathi
  fullname: Valarmathi, S.
  organization: Department of Mathematics , Bharathidasan University
– sequence: 2
  givenname: N.
  surname: Ramanujam
  fullname: Ramanujam, N.
  organization: Department of Mathematics , Bharathidasan University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13652753$$DView record in Pascal Francis
BookMark eNqFkEtPHDEQhK0IpCwk15x9yXGgPW8fwyuJhACJhevI4wcYeW1oe0T2l_B341mIEEgRJ7dU9ZW7a4ds-eA1Id8Y7DHoYR-ghI61UDJW9vUnsmBQ8gLKttkii1ksZvUz2YnxDgB63rUL8nQQJq8Erum1cJOmSy1vvX3IkwlIT6xX1t_Qs2ml0Urh6GVwU7LB0xToO_QCw-j0Km7I5a1FRc9RaaSXOWJyAt2aXmhME456I1k_w0fWGI3aJ5vjjx8mMcfHL2TbCBf115d3l1ydHC8PfxWn5z9_H_44LWTVlqkwxsi2NZ2BmjVibDquFO8VU7XpOAcNnJlGdFwz0fRK1zVUrOlGOUoo-1701S75_px7L2K-z6Dw0sbhHu0qLzewqm3Krqmyb-_ZJzHEiNq8WmCY6x_e1p-B-h0gbdrcllBY9yFmfa5xJR4DOjUksXYB_y33FhnSn5Qx_iFW_efLvzS4sI4
CODEN IJCMAT
CitedBy_id crossref_primary_10_1016_j_cam_2018_03_021
crossref_primary_10_1016_j_jocs_2024_102338
crossref_primary_10_1007_s00500_022_07290_7
crossref_primary_10_1016_S0096_3003_02_00654_9
crossref_primary_10_1016_j_asej_2016_09_018
crossref_primary_10_1007_s40010_019_00605_8
crossref_primary_10_1016_j_camwa_2004_06_015
crossref_primary_10_1016_S0096_3003_02_00312_0
crossref_primary_10_11948_2017059
crossref_primary_10_1016_S0096_3003_01_00257_0
Cites_doi 10.1007/BF01436920
10.1016/0898-1221(94)90078-7
10.1006/jdeq.1994.1076
10.1090/S0025-5718-1988-0935072-1
10.1002/zamm.19750550314
10.1093/imanum/14.1.97
10.1016/0096-3003(87)90003-8
10.1142/2933
10.1007/BF01390214
10.1007/978-1-4612-0977-5
10.1007/978-3-662-03206-0
10.1016/0096-3003(93)90004-X
10.1016/0022-247X(88)90412-X
10.1016/0096-3003(87)90001-4
10.1137/0143065
10.1016/S0096-3003(97)10056-X
10.1093/imanum/7.4.459
10.1016/0022-247X(82)90139-1
10.1093/imanum/15.1.117
10.1137/0513005
10.1016/0096-3003(87)90020-8
10.1016/0022-0396(90)90099-B
10.1093/imanum/15.2.197
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2002
2002 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2002
– notice: 2002 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1080/00207160211284
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
EISSN 1029-0265
EndPage 763
ExternalDocumentID 13652753
10_1080_00207160211284
10079785
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
1TA
29J
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACUHS
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AMPGV
AMVHM
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
07G
AAGDL
AAHIA
AAIKQ
AAKBW
AAYJJ
AAYXX
ABEFU
ACGEE
ACTIO
AEUMN
AFFNX
AGCQS
AGLEN
AMXXU
AQRUH
BCCOT
BPLKW
C06
CITATION
DWIFK
HF~
H~9
IVXBP
LJTGL
NUSFT
TAQ
TFMCV
UB9
UU8
V3K
V4Q
ZY4
IQODW
TASJS
ID FETCH-LOGICAL-c362t-fffc66f7f0415ab579dd98d1d4f7990e091f5a79e1a58de4403157bcbc0288a83
ISSN 0020-7160
IngestDate Mon Jul 21 09:15:36 EDT 2025
Tue Jul 01 01:04:26 EDT 2025
Thu Apr 24 23:14:07 EDT 2025
Mon May 13 12:10:04 EDT 2019
Fri May 09 05:53:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Third order equation
Boundary value problem
Asymptotic expansion
Differential equation
Two point boundary value problem
Singular perturbation
Maximum principle
Asymptotic approximation
Boundary layer
Finite difference method
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c362t-fffc66f7f0415ab579dd98d1d4f7990e091f5a79e1a58de4403157bcbc0288a83
PageCount 17
ParticipantIDs pascalfrancis_primary_13652753
crossref_citationtrail_10_1080_00207160211284
crossref_primary_10_1080_00207160211284
informaworld_taylorfrancis_310_1080_00207160211284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-00-00
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – year: 2002
  text: 2002-00-00
PublicationDecade 2000
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2002
Publisher Taylor & Francis Group
Taylor and Francis
Publisher_xml – name: Taylor & Francis Group
– name: Taylor and Francis
References Protter M.H. (CIT0032) 1967
CIT0010
CIT0031
CIT0012
CIT0011
O'Malley R.E. (CIT0005) 1974
O'Malley R.E. (CIT0006) 1990
Ramanujam N. (CIT0022) 1980; 23
ROOS H.G. (CIT0008) 1996
CIT0014
CIT0013
Krishnamooithy E.V (CIT0017) 1986
CIT0016
CIT0015
CIT0018
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
Doolan E.P. (CIT0002) 1980
Roos H.G. (CIT0028) 1991; 228
Miller J.J.H. (CIT0004) 1996
Nayfeh A.H. (CIT0007) 1981
CIT0003
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0009
Ramanujam N. (CIT0030) 1979; 71
References_xml – ident: CIT0001
  doi: 10.1007/BF01436920
– ident: CIT0014
  doi: 10.1016/0898-1221(94)90078-7
– ident: CIT0016
  doi: 10.1006/jdeq.1994.1076
– volume-title: Numerical algorithms-computations in science and engineering
  year: 1986
  ident: CIT0017
– volume: 228
  start-page: 30
  year: 1991
  ident: CIT0028
  publication-title: Bonner mam. Schriften
– ident: CIT0024
  doi: 10.1090/S0025-5718-1988-0935072-1
– volume-title: Singular pertuibation methods for ordinary differential equations
  year: 1990
  ident: CIT0006
– ident: CIT0021
  doi: 10.1002/zamm.19750550314
– volume-title: Introduction to singular perturbations
  year: 1974
  ident: CIT0005
– ident: CIT0027
  doi: 10.1093/imanum/14.1.97
– ident: CIT0020
  doi: 10.1016/0096-3003(87)90003-8
– volume-title: Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions
  year: 1996
  ident: CIT0004
  doi: 10.1142/2933
– ident: CIT0023
  doi: 10.1007/BF01390214
– ident: CIT0029
  doi: 10.1007/978-1-4612-0977-5
– volume-title: Numerical methods for singularly perturbed differential equations- convectiondiffution and flow problems
  year: 1996
  ident: CIT0008
  doi: 10.1007/978-3-662-03206-0
– ident: CIT0013
  doi: 10.1016/0096-3003(93)90004-X
– ident: CIT0011
  doi: 10.1016/0022-247X(88)90412-X
– volume: 23
  year: 1980
  ident: CIT0022
  publication-title: Funkcialaj Ekvacioj
– ident: CIT0019
  doi: 10.1016/0096-3003(87)90001-4
– volume-title: Maximum principles in differential equations
  year: 1967
  ident: CIT0032
– ident: CIT0010
  doi: 10.1137/0143065
– ident: CIT0015
  doi: 10.1016/S0096-3003(97)10056-X
– ident: CIT0003
  doi: 10.1093/imanum/7.4.459
– volume: 71
  year: 1979
  ident: CIT0030
  publication-title: JMAA
– volume-title: Uniform numerical methods for problems with initial and boundary layers
  year: 1980
  ident: CIT0002
– ident: CIT0031
  doi: 10.1016/0022-247X(82)90139-1
– ident: CIT0026
  doi: 10.1093/imanum/15.1.117
– volume-title: Introduction to pertuibation methods
  year: 1981
  ident: CIT0007
– ident: CIT0009
  doi: 10.1137/0513005
– ident: CIT0018
  doi: 10.1016/0096-3003(87)90020-8
– ident: CIT0012
  doi: 10.1016/0022-0396(90)90099-B
– ident: CIT0025
  doi: 10.1093/imanum/15.2.197
SSID ssj0008976
Score 1.6071081
Snippet A class of singularly perturbed two point boundary value problems (BVPs) for third order ordinary differential equations is considered. The BVP is reduced to a...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 747
SubjectTerms Asymptotic Approximation
Boundary Layer
Classical Finite Difference Scheme
Exact sciences and technology
Exponentially Fitted Finite Difference Scheme
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Sciences and techniques of general use
Self Adjoint Boundary Value Problem
Singular Perturbation
Third Order Differential Equation
Title Boundary Value Technique for Finding Numerical Solution to Boundary Value Problems for Third Order Singularly Perturbed Ordinary Differential Equations
URI https://www.tandfonline.com/doi/abs/10.1080/00207160211284
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZK5wIHlgFEWUY-IHGIglqPm7jHsKkgOodRCyMule3YCDRkoJNKwB9B_Fue1zgDw3aJqtZOor5Pfoufvw-h-5xocMtC59RsElIqWS7AMecKJhRiTKRi5uzw4qCYr-iLo-nRYPA96VratuKh_PrLcyX_Y1X4DuxqTsn-g2XjTeEL-Az2hStYGK5_ZeNHVhNp8yUzlN0q6_hYTe-g3Y1u3mbN1m3KHGfhZUy8KfpTva7Mqe86fLepM0vKmZlSgulUNUUQtQH_JJT9yR3jDfIqram7q0_bpPz3vmuR7yqOCU-F9HIS2YdIHBvD-1fVy-pwUS3nz3vF2UNwEAcrcBPdFlKoV3R5rStB2D0RLxqSLsyQxULqNk4XZqcy4wGYrrKlI-n0DtuvkD_5gtA8ScbmxpDoEidG1yfdPuMMY4uiaf8jkMtdQDsEMhAyRDvV_Mmb19HNs5lVLoxvHhhBDXF775m9iKfHh2sacfkpAEC7_yOJbJZX0WWfkuDK4esaGqhmF10Jch_Yr_676NKis9R19C2AD1sE4Qg-DE_GHnw4gg8H8OH2BIv-1AA-O9OCD1vw4Q58OIIPB_DhFHw4gu8GWj17unw8z73KRy4heGpzrbUsCl1qQxbBxbSc1fWM1ZOa6hJCJQUBrZ7ycqYmfMpqRanRJSmFFBJCY8bZ_k00bE4adQthoQvKlVYlGStIAyhnEvIRLihVUpScjVAeLLGWngLfKLEcryeRKTe13Ag9iOM_OvKXc0fmqWHXrcW6N-uZsev2cztC5Dfj9897yF4PLt07eaze_tOAO-iiVTOyJcS7aNhutuoeBNWt2PPw_gFIqNeR
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VcoALLX9qCm19AHFylWy8u94DB6CN0r9QiRT1ttheW626SmmyEYQX4SF4FR6qM97dNAkqB6QeOK_ttezxfP6Z-T6AVypwCMvacUGPhEIYyTUCM7dYIdLNwFhJucNHvah7IvZPw9Ml-FXnwlBYJZ2hXUkU4X01LW66jK5D4iiFG5ExQngi71pFVB7YyTc8r43e7u3g5L4Ogs5u_0OXV5IC3KCnLrhzzkSRix1lpisdxkmWJTJrZcLF6JctoqcLVZzYlgplZoUgEYRYG20Qh6WSbWz3HtwPkyimRdVu9qZuXyZeyY76xqlzNUPkH_2dQ8A5flQKzFQjnBtXimrMIF1nBX7XY1QGuFxsjwu9bX4s0Ef-J4O4Co-qHTd7Vy6Rx7BkB09gpVazYJVzewo_33uFqeGEfVb52LJ-zW7LcOhY59yn_7DeuHziyll9ociKS7ZQ9bhU6Rn5mv2z82HGPhLFKfuETVDcbz5hx3aIaK-t_-STotlOJVaDTjdnu1clCfvoGZzcyfA8h-XB5cCuAdMuEso6GwdNi_taoaTBDbbSQlijYyUbwGtTSk3F6U7SInnamlK_zs5yA95My38t2UxuLclnLTMt_P1RZZcLZdPie9GA4C_l27f9ZHPO3m_61I7CAA_S6__S6hY86PaPDtPDvd7BC3jo5Xv8ndlLWC6GY7uBu8hCb_rVy-DLXVv6NeNJe34
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VIiEubfkTKW2ZA4iTq2Tj3XUOHFrSqD8QIpGi3hbba4uqq7RNNoL0RfoOfRVeirF3N02CygGpB85rey17PJ9_Zr4P4I0MLMGysoy7R0LOtWCKgJkZqhCpeqCNcLnDn7rR_jE_PAlPluCmyoVxYZXuDG0Logjvq93ivkhtFRHnMrgJGCNCJ-dcy4DKIzP5Qce10fuDNs3t2yDo7PU_7LNSUYBpctQ5s9bqKLKxdYnpUoVxK01bIm2k3Mbklg2Bpw1l3DINGYrUcO40EGKllSYYFlI0qd0H8DByGZ0uXaTenXp90fJCdq5vzHWuIoj8o79zADhHj-riMuWIpsYWmhozQNdZhV_VEBXxLWfb41xt66sF9sj_YwzXYKXcb-NOsUCewJIZPIXVSssCS9f2DK53vb7UcIJfZTY22K-4bZFGDjunPvkHu-PigSvD6joR83NcqNorNHpGvmb_--kwxc-O4BS_UBMu6jebYM8MCeuV8Z98SjS2S6kacrkZ7l0WFOyj53B8L8PzApYH5wPzElDZiEtjTRzUDe1quRSattdScW60iqWoAassKdElo7sTFsmSxpT4dXaWa_BuWv6i4DK5sySbNcwk97dHpVkulE3yn3kNgr-Ub971k605c7_tUzMKAzpGr_9Lq6_hUa_dST4edI9ewWOv3eMvzDZgOR-OzSZtIXO15dcuwrf7NvTftaJ6Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundary+value+technique+for+finding+numerical+solution+to+boundary+value+problems+for+third+order+singularly+perturbed+ordinary+differential+equations&rft.jtitle=International+journal+of+computer+mathematics&rft.au=VALARMATHI%2C+S&rft.au=RAMANUJAM%2C+N&rft.date=2002&rft.pub=Taylor+and+Francis&rft.issn=0020-7160&rft.volume=79&rft.issue=6&rft.spage=747&rft.epage=763&rft_id=info:doi/10.1080%2F00207160211284&rft.externalDBID=n%2Fa&rft.externalDocID=13652753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon