Crucial time of emergency monitoring for reliable numerical pollution source identification

•Crucial time exists in the accumulation of monitoring data for Bayesian inversion.•Section number and location impact crucial time, but frequency and error level do not.•Relative crucial time determined by Peclet number and mainly controlled by dispersion.•Spatial structure of crucial time uncovere...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 265; p. 122303
Main Authors Yang, Ruiyi, Jiang, Jiping, Pang, Tianrui, Yang, Zhonghua, Han, Feng, Li, Hailong, Wang, Hongjie, Zheng, Yi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Crucial time exists in the accumulation of monitoring data for Bayesian inversion.•Section number and location impact crucial time, but frequency and error level do not.•Relative crucial time determined by Peclet number and mainly controlled by dispersion.•Spatial structure of crucial time uncovered and explained by information entropy theory.•Novel design method on emergency monitoring largely improve PSI practicality. The Pollution source identification (PSI) is an important issue on river water quality management especially for urban receiving water. Numerical inversion method is theoretically an effective PSI technique, which employs monitored downstream pollutant breakthrough curves to identify the pollution source. In practice, it is important to know how much monitoring data should be accumulated to provide PSI results with acceptable accuracy and uncertainty. However, no literature reports on this key point and it seriously handers the numerical PSI technology to mature practical applications. To seek a monitoring guideline for PSI, we conducted extensively numerical experiments for single-point source instantaneous release taking Bayesian-MCMC method as the baseline inversion technique. The crucial time (Tc) phenomenon was found during the data accumulation process for Bayesian source inversion. After Tc, estimated source parameters subsequent sustained low error levels and uncertainty convergence. Results shown the presence of Tc impacted by the number and location of monitoring sections, while monitoring frequency and data error do not. Under different river hydrodynamic conditions, relative crucial time (Λ) is determined by the river's Peclet number, and minimum effective Λ was controlled by dispersion coefficient (Dx). Analytic spatial structure of Λ(U, Dx) was uncovered and this relationship successfully explained by the information entropy theory. Based on these findings, a novel design method of PSI emergency monitoring network for preparedness plan and a practical framework of PSI for emergency response were established. These findings fill the important knowledge gap in PSI applications and the guidelines provide valuable references for river water quality management. [Display omitted]
AbstractList The Pollution source identification (PSI) is an important issue on river water quality management especially for urban receiving water. Numerical inversion method is theoretically an effective PSI technique, which employs monitored downstream pollutant breakthrough curves to identify the pollution source. In practice, it is important to know how much monitoring data should be accumulated to provide PSI results with acceptable accuracy and uncertainty. However, no literature reports on this key point and it seriously handers the numerical PSI technology to mature practical applications. To seek a monitoring guideline for PSI, we conducted extensively numerical experiments for single-point source instantaneous release taking Bayesian-MCMC method as the baseline inversion technique. The crucial time (T ) phenomenon was found during the data accumulation process for Bayesian source inversion. After T , estimated source parameters subsequent sustained low error levels and uncertainty convergence. Results shown the presence of T impacted by the number and location of monitoring sections, while monitoring frequency and data error do not. Under different river hydrodynamic conditions, relative crucial time (Λ) is determined by the river's Peclet number, and minimum effective Λ was controlled by dispersion coefficient (D ). Analytic spatial structure of Λ(U, D ) was uncovered and this relationship successfully explained by the information entropy theory. Based on these findings, a novel design method of PSI emergency monitoring network for preparedness plan and a practical framework of PSI for emergency response were established. These findings fill the important knowledge gap in PSI applications and the guidelines provide valuable references for river water quality management.
The Pollution source identification (PSI) is an important issue on river water quality management especially for urban receiving water. Numerical inversion method is theoretically an effective PSI technique, which employs monitored downstream pollutant breakthrough curves to identify the pollution source. In practice, it is important to know how much monitoring data should be accumulated to provide PSI results with acceptable accuracy and uncertainty. However, no literature reports on this key point and it seriously handers the numerical PSI technology to mature practical applications. To seek a monitoring guideline for PSI, we conducted extensively numerical experiments for single-point source instantaneous release taking Bayesian-MCMC method as the baseline inversion technique. The crucial time (Tc) phenomenon was found during the data accumulation process for Bayesian source inversion. After Tc, estimated source parameters subsequent sustained low error levels and uncertainty convergence. Results shown the presence of Tc impacted by the number and location of monitoring sections, while monitoring frequency and data error do not. Under different river hydrodynamic conditions, relative crucial time (Λ) is determined by the river's Peclet number, and minimum effective Λ was controlled by dispersion coefficient (Dx). Analytic spatial structure of Λ(U, Dx) was uncovered and this relationship successfully explained by the information entropy theory. Based on these findings, a novel design method of PSI emergency monitoring network for preparedness plan and a practical framework of PSI for emergency response were established. These findings fill the important knowledge gap in PSI applications and the guidelines provide valuable references for river water quality management.The Pollution source identification (PSI) is an important issue on river water quality management especially for urban receiving water. Numerical inversion method is theoretically an effective PSI technique, which employs monitored downstream pollutant breakthrough curves to identify the pollution source. In practice, it is important to know how much monitoring data should be accumulated to provide PSI results with acceptable accuracy and uncertainty. However, no literature reports on this key point and it seriously handers the numerical PSI technology to mature practical applications. To seek a monitoring guideline for PSI, we conducted extensively numerical experiments for single-point source instantaneous release taking Bayesian-MCMC method as the baseline inversion technique. The crucial time (Tc) phenomenon was found during the data accumulation process for Bayesian source inversion. After Tc, estimated source parameters subsequent sustained low error levels and uncertainty convergence. Results shown the presence of Tc impacted by the number and location of monitoring sections, while monitoring frequency and data error do not. Under different river hydrodynamic conditions, relative crucial time (Λ) is determined by the river's Peclet number, and minimum effective Λ was controlled by dispersion coefficient (Dx). Analytic spatial structure of Λ(U, Dx) was uncovered and this relationship successfully explained by the information entropy theory. Based on these findings, a novel design method of PSI emergency monitoring network for preparedness plan and a practical framework of PSI for emergency response were established. These findings fill the important knowledge gap in PSI applications and the guidelines provide valuable references for river water quality management.
•Crucial time exists in the accumulation of monitoring data for Bayesian inversion.•Section number and location impact crucial time, but frequency and error level do not.•Relative crucial time determined by Peclet number and mainly controlled by dispersion.•Spatial structure of crucial time uncovered and explained by information entropy theory.•Novel design method on emergency monitoring largely improve PSI practicality. The Pollution source identification (PSI) is an important issue on river water quality management especially for urban receiving water. Numerical inversion method is theoretically an effective PSI technique, which employs monitored downstream pollutant breakthrough curves to identify the pollution source. In practice, it is important to know how much monitoring data should be accumulated to provide PSI results with acceptable accuracy and uncertainty. However, no literature reports on this key point and it seriously handers the numerical PSI technology to mature practical applications. To seek a monitoring guideline for PSI, we conducted extensively numerical experiments for single-point source instantaneous release taking Bayesian-MCMC method as the baseline inversion technique. The crucial time (Tc) phenomenon was found during the data accumulation process for Bayesian source inversion. After Tc, estimated source parameters subsequent sustained low error levels and uncertainty convergence. Results shown the presence of Tc impacted by the number and location of monitoring sections, while monitoring frequency and data error do not. Under different river hydrodynamic conditions, relative crucial time (Λ) is determined by the river's Peclet number, and minimum effective Λ was controlled by dispersion coefficient (Dx). Analytic spatial structure of Λ(U, Dx) was uncovered and this relationship successfully explained by the information entropy theory. Based on these findings, a novel design method of PSI emergency monitoring network for preparedness plan and a practical framework of PSI for emergency response were established. These findings fill the important knowledge gap in PSI applications and the guidelines provide valuable references for river water quality management. [Display omitted]
ArticleNumber 122303
Author Li, Hailong
Wang, Hongjie
Zheng, Yi
Pang, Tianrui
Jiang, Jiping
Han, Feng
Yang, Zhonghua
Yang, Ruiyi
Author_xml – sequence: 1
  givenname: Ruiyi
  surname: Yang
  fullname: Yang, Ruiyi
  organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
– sequence: 2
  givenname: Jiping
  surname: Jiang
  fullname: Jiang, Jiping
  email: jiangjp@sustech.edu.cn
  organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
– sequence: 3
  givenname: Tianrui
  surname: Pang
  fullname: Pang, Tianrui
  organization: School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
– sequence: 4
  givenname: Zhonghua
  surname: Yang
  fullname: Yang, Zhonghua
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China
– sequence: 5
  givenname: Feng
  orcidid: 0000-0003-3632-8174
  surname: Han
  fullname: Han, Feng
  organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
– sequence: 6
  givenname: Hailong
  orcidid: 0000-0002-8968-3076
  surname: Li
  fullname: Li, Hailong
  organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
– sequence: 7
  givenname: Hongjie
  surname: Wang
  fullname: Wang, Hongjie
  email: whj1533@qq.com
  organization: School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
– sequence: 8
  givenname: Yi
  surname: Zheng
  fullname: Zheng, Yi
  organization: School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39216261$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtOHDEUQK2IKCwkf4CQyzSz8Ws9MxSRohV5SEg0oaKwPJ5r5JXHXmxPEH-PNwMUKUJ1Jd9zbnF8go5CDIDQGSVrSqj8sls_6JIgrxlhYk0Z44S_QyvatX3DhOiO0IoQwRvKN-IYneS8I4RUqv-AjnnPqGSSrtDtNs3GaY-LmwBHi2GCdAfBPOIpBldicuEO25hwAu_04AGHuSLOVGcfvZ-LiwHnOCcD2I0QirN1eXj9iN5b7TN8ep6n6Ob75e_tz-bq-sev7berxnDJSmN1O8ix7XlnrZZcaDZQ2clhANPTcSSEctZTKjaDbTeCaau1aUfJrNyIrtXAT9Hn5e4-xfsZclGTywa81wHinBUnfd-RjrakoufP6DxMMKp9cpNOj-olSAXEApgUc05gXxFK1KG72qmluzp0V0v3ql38oxlX_kYoSTv_lvx1kaFG-uMgqWxc_QIYXQJT1Bjd_w88AVJmofU
CitedBy_id crossref_primary_10_1021_acs_est_5c01025
Cites_doi 10.1007/s11783-023-1685-1
10.1016/j.envpol.2021.117497
10.1016/j.jenvman.2016.05.015
10.1016/j.jhydrol.2019.123991
10.1016/S0017-9310(83)80092-1
10.1016/j.scitotenv.2017.08.232
10.1029/2003WR002378
10.1016/j.watres.2024.121130
10.1016/j.jenvman.2019.109281
10.1029/2009WR008953
10.1016/j.watres.2009.09.002
10.1021/es500949g
10.3390/hydrology6030074
10.2495/WP140291
10.1016/j.scitotenv.2017.12.121
10.1016/j.advwatres.2010.01.004
10.1016/j.jenvman.2004.06.001
10.1016/j.advwatres.2011.09.011
10.1007/s11356-020-07841-1
10.1016/j.advwatres.2015.11.019
10.1016/S0043-1354(01)00351-7
10.1007/s11783-018-1081-4
10.22161/jhed.1.2.4
10.1038/s41467-024-44947-3
10.1007/s00477-015-1191-5
10.1021/acs.est.2c01873
10.1016/j.envres.2022.113704
10.1016/j.jenvman.2021.113022
10.1029/98GL00654
10.1016/j.jhydrol.2023.129806
10.1016/j.watres.2020.115489
10.1016/j.eswa.2015.07.007
10.1016/j.jhydrol.2019.03.020
10.1016/j.envsoft.2020.104792
10.1038/s41893-019-0249-7
10.2307/3318737
10.1016/j.jenvman.2021.113211
10.1016/j.watres.2018.01.057
10.1016/j.jhydrol.2021.125955
10.1016/j.advwatres.2020.103788
10.1007/s10661-014-4003-3
10.1061/40976(316)598
10.1016/j.ymssp.2021.107834
10.1016/j.watres.2018.06.050
10.1061/(ASCE)WR.1943-5452.0000338
10.1038/s44221-023-00105-5
10.1016/j.watres.2023.121069
10.3133/ofr20081084
10.1029/2022WR032866
10.1016/j.gsd.2021.100651
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright © 2024 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Copyright © 2024 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.watres.2024.122303
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 39216261
10_1016_j_watres_2024_122303
S0043135424012028
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
LY3
LY9
M41
MVM
OHT
R2-
SEN
SEP
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c362t-fa7b6d7938ffa634a2b1686bbec91dd0013291145bf7542afaac7d62f65487ae3
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Wed Jul 30 10:57:09 EDT 2025
Mon Jul 21 06:05:23 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Tue Jul 01 03:26:07 EDT 2025
Sat Sep 07 15:51:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Peclet number
Emergency monitoring data
Chemical spill
Crucial time
Information entropy
Pollution source identification
Language English
License Copyright © 2024 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-fa7b6d7938ffa634a2b1686bbec91dd0013291145bf7542afaac7d62f65487ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8968-3076
0000-0003-3632-8174
PMID 39216261
PQID 3099808170
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3099808170
pubmed_primary_39216261
crossref_primary_10_1016_j_watres_2024_122303
crossref_citationtrail_10_1016_j_watres_2024_122303
elsevier_sciencedirect_doi_10_1016_j_watres_2024_122303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ekpe, Choo, Kang, Yun, Oh (bib0011) 2024; 252
Jiang, Tang, Han, Fu, Solomatine, Zheng (bib0021) 2020; 132
Ghane, Mazaheri, Mohammad Vali Samani (bib0012) 2016; 180
Wu, Yang, Ye, Wang, Huang, Gu, Cai, Yan, Zhao (bib0047) 2022
Haario, Saksman, Tamminen (bib0013) 2001; 7
Wang, Zhao, Lei, Zhao, Wang (bib0045) 2022; 213
Amiri, Mazaheri, Mohammad Vali Samani (bib0003) 2019; 248
Alfonso, Lobbrecht, Price (bib0001) 2010; 46
Chen, Zhang, Shi, Xie, Wei, Guo (bib0006) 2024; 250
Crompton, E.J. 2008. Traveltime for the Truckee River between Tahoe City, California, and Vista, Nevada, 2006 and 2007.
Zhu, Chen, Asif (bib0058) 2021; 285
Cooper (bib0008) 2014; 48
Zhang, Brusseau, Neupauer, Wei (bib0057) 2022; 56
Xing, Qu, Zhao, Fu, Ji, Lu (bib0048) 2019; 572
Xu, Xu, Yin, Jin, Li, He (bib0049) 2019; 2
Khorshidi, Nikoo, Sadegh (bib0028) 2018; 143
Jiang, Zhu, Wang, Liu, Zhang, Chen (bib0017) 2021; 294
Yin, Lin, Zhang, Wu, Xu (bib0054) 2023; 17
Jiang, Han, Zheng, Wang, Yuan (bib0020) 2018; 12
Shao, Xu, Chai, Yost, Zheng, Wu, He (bib0039) 2021; 297
Jiang, Chen, Wang (bib0018) 2019; 6
Zhu, Li, Sun, Liu, Zhang (bib0059) 2023; 59
Li, Mao, Li, Zhang (bib0030) 2016; 88
Marshall, Nott, Sharma (bib0031) 2004; 40
Alilou, Moghaddam Nia, Keshtkar, Han, Bray (bib0002) 2018; 624
Barati Moghaddam, Mazaheri, Mohammad Vali Samani (bib0004) 2021; 15
Senf (bib0038) 1983; 26
Yang, Jiang, Liang, Chen, Wang, Yin (bib0052) 2024
Yap, Peng, Leow (bib0053) 2019; 1
Kashefipour, Falconer (bib0027) 2002; 36
Timmers, P., Heijnen, L., Bulk, J., Sollie, S., Kardinaal, E. and Medema, G. (2019) DNA Fingerprinting in surface -and wastewater management.
Yang, Shao, Liu, Huang, Ye (bib0050) 2016; 30
Jiang, Ma, Wang, Gu, Lu, Na (bib0022) 2021; 594
Meays, Broersma, Nordin, Mazumder (bib0032) 2004; 73
Shi, Jiang, Sivakumar, Zheng, Wang (bib0041) 2018; 134
(bib0033) 2023
Jones, Bierkens, van Puijenbroek, van Beek, Wanders, Sutanudjaja, van Vliet (bib0026) 2023; 1
Rivord, J. 2008. Modeling contaminant spills on the upper Truckee River in California and Nevada. Dissertations & Theses - Gradworks.
Huang, Wu, Yang, Zhu, Chen, Yang (bib0015) 2022; 60
Lega, Ferrara, Persechino, Bishop (bib0029) 2014; 186
Jiang, Dong, Liu, Yuan (bib0019) 2017; 37
Zeunert, Meon (bib0056) 2020; 146
Wang, Bodirsky, Rijneveld, Beier, Bak, Batool, Droppers, Popp, van Vliet, Strokal (bib0046) 2024; 15
Rodríguez-Iturbe, D'Odorico, Rinaldo (bib0037) 1998; 25
Jing, Yang, Zhou, Huai, Lu (bib0024) 2020; 27
Zeng, Shi, Zhang, Wu (bib0055) 2012; 37
Pang, Jiang, Alfonso, Yang, Zheng, Wang, Zheng (bib0034) 2023; 623
Shen, Zhao (bib0040) 2010; 44
Jerez, Jensen, Beer, Broggi (bib0016) 2021; 159
Han, Zhu, Jin, Zhang (bib0014) 2014; 182
Cheng, Jia (bib0007) 2010; 33
Rivord, Saito, Miller, Stoddard (bib0036) 2014; 140
Shi, Wang, Jiang, Liu (bib0042) 2018
Jin, Zhang, Yang, Hu, Tang, Barry, Li (bib0023) 2020; 172
Jirka (bib0025) 2004
Bennasar, Hicks, Setchi (bib0005) 2015; 42
Wang, Zhao, Lei, Wang (bib0044) 2019; 577
Zhang (10.1016/j.watres.2024.122303_bib0057) 2022; 56
Li (10.1016/j.watres.2024.122303_bib0030) 2016; 88
Yap (10.1016/j.watres.2024.122303_bib0053) 2019; 1
Zhu (10.1016/j.watres.2024.122303_bib0058) 2021; 285
Rodríguez-Iturbe (10.1016/j.watres.2024.122303_bib0037) 1998; 25
Wang (10.1016/j.watres.2024.122303_bib0045) 2022; 213
Xu (10.1016/j.watres.2024.122303_bib0049) 2019; 2
Yang (10.1016/j.watres.2024.122303_bib0050) 2016; 30
Ghane (10.1016/j.watres.2024.122303_bib0012) 2016; 180
10.1016/j.watres.2024.122303_bib0043
Jones (10.1016/j.watres.2024.122303_bib0026) 2023; 1
Jin (10.1016/j.watres.2024.122303_bib0023) 2020; 172
Shi (10.1016/j.watres.2024.122303_bib0042) 2018
Cheng (10.1016/j.watres.2024.122303_bib0007) 2010; 33
Zeng (10.1016/j.watres.2024.122303_bib0055) 2012; 37
Lega (10.1016/j.watres.2024.122303_bib0029) 2014; 186
Haario (10.1016/j.watres.2024.122303_bib0013) 2001; 7
Barati Moghaddam (10.1016/j.watres.2024.122303_bib0004) 2021; 15
Ekpe (10.1016/j.watres.2024.122303_bib0011) 2024; 252
Jiang (10.1016/j.watres.2024.122303_bib0017) 2021; 294
Kashefipour (10.1016/j.watres.2024.122303_bib0027) 2002; 36
Bennasar (10.1016/j.watres.2024.122303_bib0005) 2015; 42
Zeunert (10.1016/j.watres.2024.122303_bib0056) 2020; 146
Pang (10.1016/j.watres.2024.122303_bib0034) 2023; 623
Amiri (10.1016/j.watres.2024.122303_bib0003) 2019; 248
Senf (10.1016/j.watres.2024.122303_bib0038) 1983; 26
Chen (10.1016/j.watres.2024.122303_bib0006) 2024; 250
10.1016/j.watres.2024.122303_bib0035
Xing (10.1016/j.watres.2024.122303_bib0048) 2019; 572
Jiang (10.1016/j.watres.2024.122303_bib0022) 2021; 594
Shao (10.1016/j.watres.2024.122303_bib0039) 2021; 297
Shen (10.1016/j.watres.2024.122303_bib0040) 2010; 44
Jiang (10.1016/j.watres.2024.122303_bib0019) 2017; 37
Wu (10.1016/j.watres.2024.122303_bib0047) 2022
Wang (10.1016/j.watres.2024.122303_bib0046) 2024; 15
Alfonso (10.1016/j.watres.2024.122303_bib0001) 2010; 46
Han (10.1016/j.watres.2024.122303_bib0014) 2014; 182
Zhu (10.1016/j.watres.2024.122303_bib0059) 2023; 59
Marshall (10.1016/j.watres.2024.122303_bib0031) 2004; 40
Jiang (10.1016/j.watres.2024.122303_bib0020) 2018; 12
Alilou (10.1016/j.watres.2024.122303_bib0002) 2018; 624
Yin (10.1016/j.watres.2024.122303_bib0054) 2023; 17
Meays (10.1016/j.watres.2024.122303_bib0032) 2004; 73
(10.1016/j.watres.2024.122303_bib0033) 2023
Jiang (10.1016/j.watres.2024.122303_bib0021) 2020; 132
10.1016/j.watres.2024.122303_bib0009
Cooper (10.1016/j.watres.2024.122303_bib0008) 2014; 48
Jing (10.1016/j.watres.2024.122303_bib0024) 2020; 27
Wang (10.1016/j.watres.2024.122303_bib0044) 2019; 577
Jiang (10.1016/j.watres.2024.122303_bib0018) 2019; 6
Khorshidi (10.1016/j.watres.2024.122303_bib0028) 2018; 143
Rivord (10.1016/j.watres.2024.122303_bib0036) 2014; 140
Shi (10.1016/j.watres.2024.122303_bib0041) 2018; 134
Huang (10.1016/j.watres.2024.122303_bib0015) 2022; 60
Yang (10.1016/j.watres.2024.122303_bib0052) 2024
Jerez (10.1016/j.watres.2024.122303_bib0016) 2021; 159
Jirka (10.1016/j.watres.2024.122303_bib0025) 2004
References_xml – volume: 180
  start-page: 164
  year: 2016
  end-page: 171
  ident: bib0012
  article-title: Location and release time identification of pollution point source in river networks based on the Backward Probability Method
  publication-title: J. Environ. Manage
– volume: 2
  start-page: 158
  year: 2019
  end-page: 160
  ident: bib0049
  article-title: Urban river pollution control in developing countries
  publication-title: Nat. Sustain.
– year: 2023
  ident: bib0033
  article-title: Technical Guideline For Supervision and Management of Sewage Outfalls Into Environmental Water Bodies—General Rule of Source Tracing (in Chinese)
– volume: 132
  year: 2020
  ident: bib0021
  article-title: A comprehensive review on the design and optimization of surface water quality monitoring networks
  publication-title: Environ. Modell. Software
– volume: 140
  start-page: 343
  year: 2014
  end-page: 354
  ident: bib0036
  article-title: Modeling contaminant spills in the Truckee River in the western United States
  publication-title: J. Water Resour. Plan. Manage.-ASCE
– volume: 159
  year: 2021
  ident: bib0016
  article-title: Contaminant source identification in water distribution networks: a Bayesian framework
  publication-title: Mech. Syst. Signal Process.
– volume: 252
  year: 2024
  ident: bib0011
  article-title: Identification of organic chemical indicators for tracking pollution sources in groundwater by machine learning from GC-HRMS-based suspect and non-target screening data
  publication-title: Water Res.
– volume: 12
  start-page: 6
  year: 2018
  ident: bib0020
  article-title: Inverse uncertainty characteristics of pollution source identification for river chemical spill incidents by stochastic analysis
  publication-title: Front. Environ. Sci. Eng.
– volume: 30
  start-page: 507
  year: 2016
  end-page: 522
  ident: bib0050
  article-title: Multi-point source identification of sudden water pollution accidents in surface waters based on differential evolution and Metropolis–Hastings–Markov Chain Monte Carlo
  publication-title: Stochast. Environ. Res. Risk Assess.
– volume: 15
  start-page: 880
  year: 2024
  ident: bib0046
  article-title: A triple increase in global river basins with water scarcity due to future pollution
  publication-title: Nat. Commun.
– volume: 172
  year: 2020
  ident: bib0023
  article-title: Mitigation of impact of a major benzene spill into a river through flow control and in-situ activated carbon absorption
  publication-title: Water Res.
– volume: 294
  year: 2021
  ident: bib0017
  article-title: Inverse identification of pollution source release information for surface river chemical spills using a hybrid optimization model
  publication-title: J. Environ. Manage.
– volume: 40
  start-page: 183
  year: 2004
  end-page: 188
  ident: bib0031
  article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
  publication-title: Water Resour. Res.
– start-page: 1390
  year: 2018
  end-page: 1399
  ident: bib0042
  article-title: Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: 223
  year: 2001
  end-page: 242
  ident: bib0013
  article-title: An adaptive metropolis algorithm
  publication-title: Bernoulli
– volume: 46
  year: 2010
  ident: bib0001
  article-title: Optimization of water level monitoring network in polder systems using information theory
  publication-title: Water Resour. Res.
– volume: 33
  start-page: 397
  year: 2010
  end-page: 410
  ident: bib0007
  article-title: Identification of contaminant point source in surface waters based on backward location probability density function method
  publication-title: Adv. Water Resour.
– volume: 25
  start-page: 1015
  year: 1998
  end-page: 1018
  ident: bib0037
  article-title: Configuration entropy of fractal landscapes
  publication-title: Geophys. Res. Lett.
– volume: 577
  year: 2019
  ident: bib0044
  article-title: An effective method for point pollution source identification in rivers with performance-improved ensemble Kalman filter
  publication-title: J. Hydrol.
– volume: 56
  start-page: 10743
  year: 2022
  end-page: 10753
  ident: bib0057
  article-title: General backward model to identify the source for contaminants undergoing non-fickian diffusion in water
  publication-title: Environ. Sci. Technol.
– volume: 26
  start-page: 1710
  year: 1983
  end-page: 1712
  ident: bib0038
  article-title: Diffusion and information
  publication-title: Int. J. Heat Mass Transf.
– volume: 213
  year: 2022
  ident: bib0045
  article-title: Release process identification of non-instantaneous point source pollution in rivers via reverse flow and pollution routing
  publication-title: Environ. Res.
– volume: 134
  start-page: 140
  year: 2018
  end-page: 152
  ident: bib0041
  article-title: Quantitative design of emergency monitoring network for river chemical spills based on discrete entropy theory
  publication-title: Water Res.
– reference: Crompton, E.J. 2008. Traveltime for the Truckee River between Tahoe City, California, and Vista, Nevada, 2006 and 2007.
– start-page: 523
  year: 2024
  end-page: 536
  ident: bib0052
  article-title: Water Security: Big Data-Driven Risk Identification, Assessment and Control of Emerging Contaminants
– start-page: 1037
  year: 2022
  end-page: 1045
  ident: bib0047
  article-title: Recognition Method of River Sewage Outlets in UAV Aerial Images Based on Deep Learning
– volume: 1
  start-page: 82
  year: 2019
  end-page: 87
  ident: bib0053
  article-title: Contamination in Pasir Gudang Area, Peninsular Malaysia: what can we learn from Kim Kim River chemical waste contamination?
  publication-title: J. Humanit. Educ. Dev.
– volume: 186
  start-page: 8291
  year: 2014
  end-page: 8301
  ident: bib0029
  article-title: Remote sensing in environmental police investigations: aerial platforms and an innovative application of thermography to detect several illegal activities
  publication-title: Environ. Monit. Assess.
– volume: 37
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib0055
  article-title: A sparse grid based Bayesian method for contaminant source identification
  publication-title: Adv. Water Resour.
– volume: 88
  start-page: 68
  year: 2016
  end-page: 79
  ident: bib0030
  article-title: Estimation of river pollution source using the space-time radial basis collocation method
  publication-title: Adv. Water Resour.
– volume: 285
  year: 2021
  ident: bib0058
  article-title: Identification of point source emission in river pollution incidents based on Bayesian inference and genetic algorithm: inverse modeling, sensitivity, and uncertainty analysis
  publication-title: Environ. Pollut.
– volume: 36
  start-page: 1596
  year: 2002
  end-page: 1608
  ident: bib0027
  article-title: Longitudinal dispersion coefficients in natural channels
  publication-title: Water Res.
– volume: 15
  year: 2021
  ident: bib0004
  article-title: Inverse modeling of contaminant transport for pollution source identification in surface and groundwaters: a review
  publication-title: Groundwater Sustain. Develop.
– volume: 6
  start-page: 74
  year: 2019
  ident: bib0018
  article-title: Pollution source identification for river chemical spills by modular-bayesian approach: a retrospective study on the ‘Landmark’ spill incident in China
  publication-title: Hydrology
– reference: Timmers, P., Heijnen, L., Bulk, J., Sollie, S., Kardinaal, E. and Medema, G. (2019) DNA Fingerprinting in surface -and wastewater management.
– volume: 248
  year: 2019
  ident: bib0003
  article-title: Introducing a general framework for pollution source identification in surface water resources (theory and application)
  publication-title: J. Environ. Manage.
– volume: 297
  year: 2021
  ident: bib0039
  article-title: A Bayesian-SWMM coupled stochastic model developed to reconstruct the complete profile of an unknown discharging incidence in sewer networks
  publication-title: J. Environ. Manage.
– volume: 572
  start-page: 501
  year: 2019
  end-page: 516
  ident: bib0048
  article-title: Identifying the release history of a groundwater contaminant source based on an ensemble surrogate model
  publication-title: J. Hydrol.
– volume: 37
  start-page: 3813
  year: 2017
  end-page: 3825
  ident: bib0019
  article-title: Applicability of Bayesian inference approach for pollution source identification of river chemical spills: a tracer experiment based analysis of algorithmic parameters, impacts and comparison with Frequentist approaches
  publication-title: Zhongguo Huanjing Kexue/China Environ. Sci.
– volume: 1
  start-page: 602
  year: 2023
  end-page: 613
  ident: bib0026
  article-title: Sub-Saharan Africa will increasingly become the dominant hotspot of surface water pollution
  publication-title: Nat. Water
– volume: 42
  start-page: 8520
  year: 2015
  end-page: 8532
  ident: bib0005
  article-title: Feature selection using joint mutual information maximisation
  publication-title: Expert Syst. Appl.
– volume: 73
  start-page: 71
  year: 2004
  end-page: 79
  ident: bib0032
  article-title: Source tracking fecal bacteria in water: a critical review of current methods
  publication-title: J. Environ. Manage.
– volume: 59
  year: 2023
  ident: bib0059
  article-title: A decision support framework for pollution source detection via coupled forward-inverse optimization and multi-information fusion
  publication-title: Water Resour. Res.
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: bib0015
  article-title: An improved deep learning approach for retrieving outfalls into rivers from UAS imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 44
  start-page: 77
  year: 2010
  end-page: 84
  ident: bib0040
  article-title: Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation
  publication-title: Water Res.
– start-page: 13
  year: 2004
  end-page: 27
  ident: bib0025
  article-title: Mixing and Dispersion in Rivers
– volume: 146
  year: 2020
  ident: bib0056
  article-title: Influence of the spatial and temporal monitoring design on the identification of an instantaneous pollutant release in a river
  publication-title: Adv. Water Resour.
– volume: 17
  year: 2023
  ident: bib0054
  article-title: Identification of pollution sources in rivers using a hydrodynamic diffusion wave model and improved Bayesian-Markov chain Monte Carlo algorithm
  publication-title: Front. Environ. Sci. Eng.
– volume: 143
  start-page: 218
  year: 2018
  end-page: 228
  ident: bib0028
  article-title: Optimal and objective placement of sensors in water distribution systems using information theory
  publication-title: Water Res.
– volume: 48
  start-page: 3095
  year: 2014
  ident: bib0008
  article-title: Responding to crisis: the west virginia chemical spill
  publication-title: Environ. Sci. Technol.
– volume: 594
  year: 2021
  ident: bib0022
  article-title: Two-stage surrogate model-assisted Bayesian framework for groundwater contaminant source identification
  publication-title: J. Hydrol.
– volume: 624
  start-page: 283
  year: 2018
  end-page: 293
  ident: bib0002
  article-title: A cost-effective and efficient framework to determine water quality monitoring network locations
  publication-title: Sci. Total Environ.
– volume: 250
  year: 2024
  ident: bib0006
  article-title: Eavesdropping on wastewater pollution: detecting discharge events from river outfalls via fiber-optic distributed acoustic sensing
  publication-title: Water Res.
– volume: 182
  start-page: 333
  year: 2014
  end-page: 342
  ident: bib0014
  article-title: Inverse problem of an instantaneous pollution source in a wide and shallow river and the analysis on inversion accuracy
  publication-title: WIT Trans. Ecol. Environ.
– volume: 623
  year: 2023
  ident: bib0034
  article-title: Deriving analytical expressions of the spatial information entropy index on riverine water quality dynamics
  publication-title: J. Hydrol.
– volume: 27
  start-page: 14679
  year: 2020
  end-page: 14689
  ident: bib0024
  article-title: Inverse estimation of finite-duration source release mass in river pollution accidents based on adjoint equation method
  publication-title: Environ. Sci. Pollut. Res.
– reference: Rivord, J. 2008. Modeling contaminant spills on the upper Truckee River in California and Nevada. Dissertations & Theses - Gradworks.
– volume: 37
  start-page: 3813
  issue: 10
  year: 2017
  ident: 10.1016/j.watres.2024.122303_bib0019
  article-title: Applicability of Bayesian inference approach for pollution source identification of river chemical spills: a tracer experiment based analysis of algorithmic parameters, impacts and comparison with Frequentist approaches
  publication-title: Zhongguo Huanjing Kexue/China Environ. Sci.
– volume: 17
  issue: 7
  year: 2023
  ident: 10.1016/j.watres.2024.122303_bib0054
  article-title: Identification of pollution sources in rivers using a hydrodynamic diffusion wave model and improved Bayesian-Markov chain Monte Carlo algorithm
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-023-1685-1
– volume: 285
  year: 2021
  ident: 10.1016/j.watres.2024.122303_bib0058
  article-title: Identification of point source emission in river pollution incidents based on Bayesian inference and genetic algorithm: inverse modeling, sensitivity, and uncertainty analysis
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.117497
– volume: 180
  start-page: 164
  year: 2016
  ident: 10.1016/j.watres.2024.122303_bib0012
  article-title: Location and release time identification of pollution point source in river networks based on the Backward Probability Method
  publication-title: J. Environ. Manage
  doi: 10.1016/j.jenvman.2016.05.015
– volume: 577
  year: 2019
  ident: 10.1016/j.watres.2024.122303_bib0044
  article-title: An effective method for point pollution source identification in rivers with performance-improved ensemble Kalman filter
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123991
– volume: 26
  start-page: 1710
  issue: 11
  year: 1983
  ident: 10.1016/j.watres.2024.122303_bib0038
  article-title: Diffusion and information
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(83)80092-1
– start-page: 1390
  year: 2018
  ident: 10.1016/j.watres.2024.122303_bib0042
  article-title: Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.232
– volume: 40
  start-page: 183
  issue: 2
  year: 2004
  ident: 10.1016/j.watres.2024.122303_bib0031
  article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002378
– volume: 252
  year: 2024
  ident: 10.1016/j.watres.2024.122303_bib0011
  article-title: Identification of organic chemical indicators for tracking pollution sources in groundwater by machine learning from GC-HRMS-based suspect and non-target screening data
  publication-title: Water Res.
  doi: 10.1016/j.watres.2024.121130
– volume: 248
  year: 2019
  ident: 10.1016/j.watres.2024.122303_bib0003
  article-title: Introducing a general framework for pollution source identification in surface water resources (theory and application)
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.109281
– volume: 46
  issue: 12
  year: 2010
  ident: 10.1016/j.watres.2024.122303_bib0001
  article-title: Optimization of water level monitoring network in polder systems using information theory
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008953
– volume: 44
  start-page: 77
  issue: 1
  year: 2010
  ident: 10.1016/j.watres.2024.122303_bib0040
  article-title: Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.09.002
– volume: 48
  start-page: 3095
  issue: 6
  year: 2014
  ident: 10.1016/j.watres.2024.122303_bib0008
  article-title: Responding to crisis: the west virginia chemical spill
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500949g
– volume: 6
  start-page: 74
  issue: 3
  year: 2019
  ident: 10.1016/j.watres.2024.122303_bib0018
  article-title: Pollution source identification for river chemical spills by modular-bayesian approach: a retrospective study on the ‘Landmark’ spill incident in China
  publication-title: Hydrology
  doi: 10.3390/hydrology6030074
– volume: 182
  start-page: 333
  year: 2014
  ident: 10.1016/j.watres.2024.122303_bib0014
  article-title: Inverse problem of an instantaneous pollution source in a wide and shallow river and the analysis on inversion accuracy
  publication-title: WIT Trans. Ecol. Environ.
  doi: 10.2495/WP140291
– volume: 624
  start-page: 283
  year: 2018
  ident: 10.1016/j.watres.2024.122303_bib0002
  article-title: A cost-effective and efficient framework to determine water quality monitoring network locations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.121
– volume: 33
  start-page: 397
  issue: 4
  year: 2010
  ident: 10.1016/j.watres.2024.122303_bib0007
  article-title: Identification of contaminant point source in surface waters based on backward location probability density function method
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2010.01.004
– ident: 10.1016/j.watres.2024.122303_bib0043
– volume: 73
  start-page: 71
  issue: 1
  year: 2004
  ident: 10.1016/j.watres.2024.122303_bib0032
  article-title: Source tracking fecal bacteria in water: a critical review of current methods
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2004.06.001
– volume: 37
  start-page: 1
  year: 2012
  ident: 10.1016/j.watres.2024.122303_bib0055
  article-title: A sparse grid based Bayesian method for contaminant source identification
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.09.011
– volume: 27
  start-page: 14679
  issue: 13
  year: 2020
  ident: 10.1016/j.watres.2024.122303_bib0024
  article-title: Inverse estimation of finite-duration source release mass in river pollution accidents based on adjoint equation method
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-07841-1
– volume: 88
  start-page: 68
  year: 2016
  ident: 10.1016/j.watres.2024.122303_bib0030
  article-title: Estimation of river pollution source using the space-time radial basis collocation method
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.11.019
– volume: 36
  start-page: 1596
  issue: 6
  year: 2002
  ident: 10.1016/j.watres.2024.122303_bib0027
  article-title: Longitudinal dispersion coefficients in natural channels
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00351-7
– volume: 12
  start-page: 6
  issue: 5
  year: 2018
  ident: 10.1016/j.watres.2024.122303_bib0020
  article-title: Inverse uncertainty characteristics of pollution source identification for river chemical spill incidents by stochastic analysis
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-018-1081-4
– volume: 1
  start-page: 82
  issue: 2
  year: 2019
  ident: 10.1016/j.watres.2024.122303_bib0053
  article-title: Contamination in Pasir Gudang Area, Peninsular Malaysia: what can we learn from Kim Kim River chemical waste contamination?
  publication-title: J. Humanit. Educ. Dev.
  doi: 10.22161/jhed.1.2.4
– volume: 15
  start-page: 880
  issue: 1
  year: 2024
  ident: 10.1016/j.watres.2024.122303_bib0046
  article-title: A triple increase in global river basins with water scarcity due to future pollution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-44947-3
– volume: 30
  start-page: 507
  issue: 2
  year: 2016
  ident: 10.1016/j.watres.2024.122303_bib0050
  article-title: Multi-point source identification of sudden water pollution accidents in surface waters based on differential evolution and Metropolis–Hastings–Markov Chain Monte Carlo
  publication-title: Stochast. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-015-1191-5
– volume: 56
  start-page: 10743
  issue: 15
  year: 2022
  ident: 10.1016/j.watres.2024.122303_bib0057
  article-title: General backward model to identify the source for contaminants undergoing non-fickian diffusion in water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c01873
– volume: 213
  year: 2022
  ident: 10.1016/j.watres.2024.122303_bib0045
  article-title: Release process identification of non-instantaneous point source pollution in rivers via reverse flow and pollution routing
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113704
– start-page: 523
  year: 2024
  ident: 10.1016/j.watres.2024.122303_bib0052
– volume: 294
  year: 2021
  ident: 10.1016/j.watres.2024.122303_bib0017
  article-title: Inverse identification of pollution source release information for surface river chemical spills using a hybrid optimization model
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.113022
– volume: 25
  start-page: 1015
  issue: 7
  year: 1998
  ident: 10.1016/j.watres.2024.122303_bib0037
  article-title: Configuration entropy of fractal landscapes
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/98GL00654
– volume: 623
  year: 2023
  ident: 10.1016/j.watres.2024.122303_bib0034
  article-title: Deriving analytical expressions of the spatial information entropy index on riverine water quality dynamics
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129806
– volume: 172
  year: 2020
  ident: 10.1016/j.watres.2024.122303_bib0023
  article-title: Mitigation of impact of a major benzene spill into a river through flow control and in-situ activated carbon absorption
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115489
– volume: 42
  start-page: 8520
  issue: 22
  year: 2015
  ident: 10.1016/j.watres.2024.122303_bib0005
  article-title: Feature selection using joint mutual information maximisation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.07.007
– volume: 572
  start-page: 501
  year: 2019
  ident: 10.1016/j.watres.2024.122303_bib0048
  article-title: Identifying the release history of a groundwater contaminant source based on an ensemble surrogate model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.020
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.watres.2024.122303_bib0015
  article-title: An improved deep learning approach for retrieving outfalls into rivers from UAS imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 132
  year: 2020
  ident: 10.1016/j.watres.2024.122303_bib0021
  article-title: A comprehensive review on the design and optimization of surface water quality monitoring networks
  publication-title: Environ. Modell. Software
  doi: 10.1016/j.envsoft.2020.104792
– volume: 2
  start-page: 158
  issue: 3
  year: 2019
  ident: 10.1016/j.watres.2024.122303_bib0049
  article-title: Urban river pollution control in developing countries
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0249-7
– volume: 7
  start-page: 223
  issue: 2
  year: 2001
  ident: 10.1016/j.watres.2024.122303_bib0013
  article-title: An adaptive metropolis algorithm
  publication-title: Bernoulli
  doi: 10.2307/3318737
– volume: 297
  year: 2021
  ident: 10.1016/j.watres.2024.122303_bib0039
  article-title: A Bayesian-SWMM coupled stochastic model developed to reconstruct the complete profile of an unknown discharging incidence in sewer networks
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.113211
– year: 2023
  ident: 10.1016/j.watres.2024.122303_bib0033
– start-page: 13
  year: 2004
  ident: 10.1016/j.watres.2024.122303_bib0025
– volume: 134
  start-page: 140
  year: 2018
  ident: 10.1016/j.watres.2024.122303_bib0041
  article-title: Quantitative design of emergency monitoring network for river chemical spills based on discrete entropy theory
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.01.057
– volume: 594
  year: 2021
  ident: 10.1016/j.watres.2024.122303_bib0022
  article-title: Two-stage surrogate model-assisted Bayesian framework for groundwater contaminant source identification
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.125955
– start-page: 1037
  year: 2022
  ident: 10.1016/j.watres.2024.122303_bib0047
– volume: 146
  year: 2020
  ident: 10.1016/j.watres.2024.122303_bib0056
  article-title: Influence of the spatial and temporal monitoring design on the identification of an instantaneous pollutant release in a river
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103788
– volume: 186
  start-page: 8291
  issue: 12
  year: 2014
  ident: 10.1016/j.watres.2024.122303_bib0029
  article-title: Remote sensing in environmental police investigations: aerial platforms and an innovative application of thermography to detect several illegal activities
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-014-4003-3
– ident: 10.1016/j.watres.2024.122303_bib0035
  doi: 10.1061/40976(316)598
– volume: 159
  year: 2021
  ident: 10.1016/j.watres.2024.122303_bib0016
  article-title: Contaminant source identification in water distribution networks: a Bayesian framework
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.107834
– volume: 143
  start-page: 218
  year: 2018
  ident: 10.1016/j.watres.2024.122303_bib0028
  article-title: Optimal and objective placement of sensors in water distribution systems using information theory
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.06.050
– volume: 140
  start-page: 343
  issue: 3
  year: 2014
  ident: 10.1016/j.watres.2024.122303_bib0036
  article-title: Modeling contaminant spills in the Truckee River in the western United States
  publication-title: J. Water Resour. Plan. Manage.-ASCE
  doi: 10.1061/(ASCE)WR.1943-5452.0000338
– volume: 1
  start-page: 602
  issue: 7
  year: 2023
  ident: 10.1016/j.watres.2024.122303_bib0026
  article-title: Sub-Saharan Africa will increasingly become the dominant hotspot of surface water pollution
  publication-title: Nat. Water
  doi: 10.1038/s44221-023-00105-5
– volume: 250
  year: 2024
  ident: 10.1016/j.watres.2024.122303_bib0006
  article-title: Eavesdropping on wastewater pollution: detecting discharge events from river outfalls via fiber-optic distributed acoustic sensing
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.121069
– ident: 10.1016/j.watres.2024.122303_bib0009
  doi: 10.3133/ofr20081084
– volume: 59
  issue: 6
  year: 2023
  ident: 10.1016/j.watres.2024.122303_bib0059
  article-title: A decision support framework for pollution source detection via coupled forward-inverse optimization and multi-information fusion
  publication-title: Water Resour. Res.
  doi: 10.1029/2022WR032866
– volume: 15
  year: 2021
  ident: 10.1016/j.watres.2024.122303_bib0004
  article-title: Inverse modeling of contaminant transport for pollution source identification in surface and groundwaters: a review
  publication-title: Groundwater Sustain. Develop.
  doi: 10.1016/j.gsd.2021.100651
SSID ssj0002239
Score 2.4824471
Snippet •Crucial time exists in the accumulation of monitoring data for Bayesian inversion.•Section number and location impact crucial time, but frequency and error...
The Pollution source identification (PSI) is an important issue on river water quality management especially for urban receiving water. Numerical inversion...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122303
SubjectTerms Chemical spill
Crucial time
Emergency monitoring data
Information entropy
Peclet number
Pollution source identification
Title Crucial time of emergency monitoring for reliable numerical pollution source identification
URI https://dx.doi.org/10.1016/j.watres.2024.122303
https://www.ncbi.nlm.nih.gov/pubmed/39216261
https://www.proquest.com/docview/3099808170
Volume 265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jvuiD-O38GBF87ba0ado9juGYCntyMPAhJG0Ck9mNueGbf7t3TTMVkYGPLRca7pLc73r3yxFyG-qsmyPtA8CHCjgLRZAikItt3Il0aDvclFW-IzEc84dJPKmRvufCYFlldfa7M708ras37Uqb7cV0ihxfcH5RzMEnMQjhkfDLeYKrvPXxVeYB7q_rs8wo7elzZY3Xu0JCBkSJIW8xkPSts367p7_gZ-mGBgdkv8KPtOemeEhqpjgie99uFTwmz32wFywrin3j6dxS4ymW9LXcwShGAazSpZlNkTpFi7VL3MzoAlsfo7Go-61Pp3lVT1Sa8ISMB3dP_WFQ9VAIMnBNq8CqRIscNmFqrRIRV6FmIhUaTNdleV6mWuC847G22AtXWaWyJBehxX7yiTLRKakX88KcE8qN0FyEBiIWhTBG80yHmVXg8FMWMdMgkVedzKoLxrHPxUz6SrIX6RQuUeHSKbxBgs2ohbtgY4t84q0ifywUCT5gy8gbb0QJewgTI6ow8_WbjAAmYweSpNMgZ866m7kAfmQQ9LGLf3_3kuzikyMwXpH6ark214BkVrpZLtUm2endPw5Hn9wS8ss
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED6V9mHsYWJsYx2MeRKvgTpxnPQRVataCn0CqdIeLDuxpaKSVqUVf5-7OK5AE0Laa2Ir1p199zl33x3AWWyKfkm0DwQfOhI8llFOQC51aS8xsesJW2f5TuXoTlzN0lkLBoELQ2mVje33Nr221s2Ti0aaF6v5nDi-6PySVKBP4niFz_egQ9Wp0jZ0LseT0XRnkNED9kOgmSYEBl2d5vWkiZOBF8VYnHMcGbpn_euh3kKgtScaHsCnBkKyS7_Kz9Cy1SF8fFFY8Av8HaDKcGcxah3Plo7ZwLJkD_UhpmEM8Spb28Wc2FOs2vrYzYKtqPsx6Yv5P_tsXjYpRbUWv8Ld8M_tYBQ1bRSiAr3TJnI6M7LEc5g7p2UidGy4zKVB7fV5WdbRFjR5IjWO2uFqp3WRlTJ21FI-0zb5Bu1qWdnvwISVRsjY4qVFE5IxojBx4TT6_Jwn3HYhCaJTRVNjnFpdLFRIJrtXXuCKBK68wLsQ7WatfI2Nd8ZnQSvq1V5R6Abemfk7KFHhMaLYiK7scvuoEkTK1IQk63XhyGt3txaEkBzvffzHf3_3F3wY3d5cq-vxdHIM-_TG8xlPoL1Zb-1PBDYbc9ps3GcszvV8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crucial+time+of+emergency+monitoring+for+reliable+numerical+pollution+source+identification&rft.jtitle=Water+research+%28Oxford%29&rft.au=Yang%2C+Ruiyi&rft.au=Jiang%2C+Jiping&rft.au=Pang%2C+Tianrui&rft.au=Yang%2C+Zhonghua&rft.date=2024-11-01&rft.eissn=1879-2448&rft.volume=265&rft.spage=122303&rft_id=info:doi/10.1016%2Fj.watres.2024.122303&rft_id=info%3Apmid%2F39216261&rft.externalDocID=39216261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon