Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features

MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-bas...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 165; pp. 491 - 505
Main Authors Guo, Yanbu, Zhou, Dongming, Ruan, Xiaoli, Cao, Jinde
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2023.05.052

Cover

Loading…
Abstract MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations.
AbstractList MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations.MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations.
MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations.
Author Cao, Jinde
Ruan, Xiaoli
Guo, Yanbu
Zhou, Dongming
Author_xml – sequence: 1
  givenname: Yanbu
  orcidid: 0000-0001-9532-2309
  surname: Guo
  fullname: Guo, Yanbu
  email: guoyanbu@gmail.com
  organization: College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
– sequence: 2
  givenname: Dongming
  orcidid: 0000-0003-0139-9415
  surname: Zhou
  fullname: Zhou, Dongming
  email: zhoudm@ynu.edu.cn
  organization: School of Information Science and Engineering, Yunnan University, Kunming 650500, China
– sequence: 3
  givenname: Xiaoli
  orcidid: 0000-0002-4672-531X
  surname: Ruan
  fullname: Ruan, Xiaoli
  email: xlruan@gzu.edu.cn
  organization: State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
– sequence: 4
  givenname: Jinde
  orcidid: 0000-0003-3133-7119
  surname: Cao
  fullname: Cao, Jinde
  email: jdcao@seu.edu.cn
  organization: School of Mathematics, Southeast University, Nanjing 211189, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37336034$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuLFTEQhYOMOHdG_4FIL930NUl1utMuhGHwBYOCqNuQTipDLt3JmKR9LP3n5tozLlwoFBRUfecszjkjJyEGJOQxo3tGWf_ssA-4Bix7TjnsqajD75Edk8PY8kHyE7KjcoS2p5KekrOcD5TSXnbwgJzCANBT6Hbk52edvC4-Bj0317qgbfRaIgYTLaZ20rleHOqyJmzwe0naHOFmqe-5cTE1PjhMyYfrxvqMlW8X_-HdRaNzjmazzs3mc9Stc_FfPX67M80PyX2n54yPbvc5-fTq5cfLN-3V-9dvLy-uWgM9L61jDruBmn4CJzUIJxy3YLgDADFyMwwCeofMMWssTExISUcBZkI3MaYtnJOnm-9Nil9WzEUtPhucZx0wrllxyYeRd9CJij65RddpQatukl90-qHuYqtAtwEmxZwTuj8Io-rYjjqorR11bEdRUYdX2fO_ZMaX3wnVXP38P_GLTYw1pJpgUtn42hNan9AUZaP_t8EvojSw1w
CitedBy_id crossref_primary_10_1049_ell2_13163
crossref_primary_10_1109_TIFS_2024_3447242
crossref_primary_10_1109_JSEN_2024_3413990
crossref_primary_10_1016_j_aca_2025_343635
crossref_primary_10_1016_j_infrared_2024_105514
crossref_primary_10_1021_acs_jcim_4c01757
crossref_primary_10_1021_acs_jcim_4c00546
crossref_primary_10_1109_JSEN_2024_3393619
crossref_primary_10_1109_JBHI_2024_3483999
crossref_primary_10_1109_TETCI_2024_3377680
crossref_primary_10_1109_JIOT_2024_3446036
crossref_primary_10_1109_JBHI_2024_3471807
crossref_primary_10_1109_JSTARS_2025_3536878
crossref_primary_10_1021_acs_jcim_4c00737
crossref_primary_10_1109_TIFS_2024_3441947
crossref_primary_10_1007_s10462_023_10662_6
crossref_primary_10_1016_j_knosys_2025_113055
crossref_primary_10_1109_LSP_2024_3412531
crossref_primary_10_1080_07391102_2024_2323144
crossref_primary_10_1109_MWC_003_2400006
crossref_primary_10_1109_JSEN_2024_3461682
crossref_primary_10_1080_07391102_2024_2313712
crossref_primary_10_1016_j_dsp_2024_104670
crossref_primary_10_1109_MIS_2024_3378921
crossref_primary_10_1109_LSP_2024_3386112
crossref_primary_10_1109_LSP_2025_3544969
crossref_primary_10_1109_JBHI_2024_3445112
crossref_primary_10_1016_j_imavis_2024_105102
crossref_primary_10_1021_acs_jcim_3c01726
crossref_primary_10_1109_ACCESS_2023_3339552
crossref_primary_10_1080_17509653_2024_2353585
crossref_primary_10_1109_LSP_2024_3460483
crossref_primary_10_1155_2024_4650233
crossref_primary_10_1038_s41598_024_71864_8
crossref_primary_10_1109_JSEN_2024_3496726
crossref_primary_10_1109_THMS_2024_3412273
crossref_primary_10_1109_ACCESS_2024_3395651
crossref_primary_10_1145_3680286
crossref_primary_10_1016_j_neunet_2024_107040
crossref_primary_10_1038_s41598_024_78212_w
crossref_primary_10_1109_TPAMI_2025_3529264
crossref_primary_10_1155_2024_7863381
crossref_primary_10_1007_s11760_024_03229_7
crossref_primary_10_1109_TCYB_2024_3474651
crossref_primary_10_1109_TETCI_2024_3386619
crossref_primary_10_26599_TST_2024_9010036
crossref_primary_10_1080_01605682_2024_2398762
crossref_primary_10_1109_JSEN_2024_3512524
crossref_primary_10_1080_10255842_2024_2436909
crossref_primary_10_1109_ACCESS_2024_3361286
crossref_primary_10_1109_JSEN_2025_3525674
crossref_primary_10_1080_07391102_2024_2431664
crossref_primary_10_1093_nar_gkae197
crossref_primary_10_1016_j_knosys_2023_111099
crossref_primary_10_1109_LSP_2024_3395176
crossref_primary_10_1080_0305215X_2024_2346930
crossref_primary_10_1021_acs_jcim_3c02088
crossref_primary_10_1007_s11432_024_4100_7
crossref_primary_10_1021_acs_jcim_4c01544
crossref_primary_10_1109_JSEN_2024_3491095
crossref_primary_10_1109_TII_2024_3498096
crossref_primary_10_1109_TPAMI_2024_3523364
crossref_primary_10_1109_JSEN_2024_3394874
crossref_primary_10_1109_JBHI_2024_3515995
crossref_primary_10_1021_acs_jcim_4c00802
crossref_primary_10_1016_j_compeleceng_2025_110242
crossref_primary_10_1002_biot_202400203
crossref_primary_10_1109_JBHI_2024_3431693
crossref_primary_10_1016_j_neunet_2024_106401
Cites_doi 10.1093/bioinformatics/btt677
10.1080/15476286.2019.1568820
10.1016/j.inffus.2021.07.013
10.1109/TCBB.2016.2599866
10.1016/j.knosys.2019.03.023
10.1016/j.neunet.2022.04.025
10.1109/TASLP.2019.2955276
10.1093/bioinformatics/btz965
10.1186/1752-0509-7-101
10.1093/bioinformatics/btz475
10.1093/nar/gkab1079
10.1016/j.neunet.2021.10.023
10.1016/j.neunet.2023.01.032
10.1093/nar/gkt1023
10.1016/j.neunet.2020.01.021
10.1016/j.jbi.2018.05.005
10.1016/j.patcog.2020.107385
10.1016/j.neunet.2021.03.005
10.1016/j.neunet.2023.02.027
10.1158/1535-7163.MCT-11-0055
10.1093/bioinformatics/btq064
10.1093/bib/bbac079
10.1371/journal.pcbi.1005455
10.1109/CVPR52688.2022.01404
10.1093/bioinformatics/btv039
10.1093/nar/gky1010
10.1016/j.inffus.2021.09.014
10.1016/j.inffus.2020.03.003
10.1109/TCBB.2017.2776280
10.1093/bioinformatics/btr500
10.1016/j.eswa.2022.118004
10.1109/TNNLS.2019.2900734
10.1109/JBHI.2021.3088342
10.3390/cells8091040
10.1038/s41586-021-03524-0
10.1093/bib/bbab453
10.1109/TNNLS.2020.3036192
10.1109/TCBB.2020.3013837
10.1016/S0092-8674(04)00045-5
10.1016/j.ymthe.2022.01.041
10.1016/j.neunet.2020.05.027
10.1093/bioinformatics/btz254
10.1016/j.ymeth.2020.08.004
10.1016/j.sigpro.2021.108312
10.1177/1176934320919707
10.1038/nmeth.2810
10.1186/1752-0509-4-S1-S2
10.1109/TPAMI.2021.3120428
10.1093/bioinformatics/btq241
10.1109/TNNLS.2021.3105484
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2023.05.052
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 505
ExternalDocumentID 37336034
10_1016_j_neunet_2023_05_052
S0893608023002964
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c362t-f1fe470c6b3f8a35f5f2d3c2f333592c77536fe1f1dcd3b15880953cbefb11ad3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Thu Sep 04 21:19:00 EDT 2025
Thu Apr 03 07:10:10 EDT 2025
Tue Jul 01 03:32:15 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Fri Feb 23 02:35:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph autoencoders
Feature fusion
Neural networks
Disease-miRNA associations
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-f1fe470c6b3f8a35f5f2d3c2f333592c77536fe1f1dcd3b15880953cbefb11ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0139-9415
0000-0001-9532-2309
0000-0002-4672-531X
0000-0003-3133-7119
PMID 37336034
PQID 2827924345
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2827924345
pubmed_primary_37336034
crossref_primary_10_1016_j_neunet_2023_05_052
crossref_citationtrail_10_1016_j_neunet_2023_05_052
elsevier_sciencedirect_doi_10_1016_j_neunet_2023_05_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
2023-Aug
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ding, Lei, Liao, Wu (b4) 2022
Ding, Tian, Lei, Liao, Wu (b6) 2021; 192
Peng, Hui, Li, Chen, Hao, Jiang, Shang, Wei (b26) 2019; 35
Pan, Shen (b25) 2020; 105
Wang, Mezlini, Demir, Fiume, Tu, Brudno, Haibe-Kains, Goldenberg (b35) 2014; 11
Zhang, Chen, Yin (b46) 2019; 8
Zhao, Chen, Yin (b49) 2020; 36
You, Huang, Zhu, Yan, Li, Wen, Chen (b44) 2017; 13
Wang, Chen, Yin, Qu (b33) 2019; 16
Xuan, Fan, Cui, Zhang, Nakaguchi (b41) 2022; 23
Ding, Lei, Liao, Wu (b5) 2022; 26
Niu, Wang, Yan, Chen (b24) 2019; 20
Li, Zhao, Li (b17) 2022; 44
Lopez-Martin, Sanchez-Esguevillas, Arribas, Carro (b21) 2022; 79
Xu, Tan (b40) 2020; 31
Yu, Li, Qin, Bo, Wu, Wang (b45) 2010; 26
Wang, Wang, Lu, Song, Cui (b36) 2010; 26
Jiang, Hao, Wang, Juan, Zhang, Teng, Liu, Wang (b13) 2010; 4
Zhu, Ma, Yuan, Zhu (b53) 2022; 77
Tan, Wang (b31) 2020; 28
Ding, Wang, Lei, Liao, Wu (b7) 2020; 16
Wu, Zhou, Nie, Cao (b37) 2020; 124
Mørk, Pletscher-Frankild, Palleja Caro, Gorodkin, Jensen (b23) 2014; 30
Xiao, Dai, Luo, Fujita (b38) 2019; 175
van Laarhoven, Nabuurs, Marchiori (b32) 2011; 27
Luo, Ding, Liang, Cao, Chen (b22) 2017; 14
Tan, Chen, Kang, Zhou, Abusorrah, Sedraoui (b30) 2022; 33
Fan, Zhang, Wei, Li, Zou, Gao, Dai (b8) 2021
Liu, Zhang, Liu, Cao (b20) 2022; 145
Shuang, Yang, Loo, Li, Gu (b28) 2020; 61
Tahir, Hayat, Chong (b29) 2020; 129
Zhang, C., Zhang, K., Pham, T. X., Niu, A., Qiao, Z., Yoo, C. D., & Kweon, I. S. (2022). Dual temperature helps contrastive learning without many negative samples: Towards understanding and simplifying moco. In
Liang, Liu, Liu (b19) 2023; 162
Bartel (b2) 2004; 116
Aguilera, Olmos, Artés-Rodríguez, Pérez-Cruz (b1) 2023; 161
Huang, Shi, Gao, Cui, Zhang, Li, Zhou, Cui (b12) 2019; 47
Wang, Li, Huang, Chen (b34) 2022; 23
Zhang, Zou, Rodriguez-Paton, Zeng (b48) 2017; 16
(pp. 14441–14450).
Li, Qiu, Tu, Geng, Yang, Jiang, Cui (b15) 2014; 42
Huang, Lin, Cui, Huang, Tang (b11) 2022; 50
Guo, Li, Zhou, Cao, Liang (b9) 2022; 152
Shi, Xu, Zhang, Xu, Li, Wang, Zhao, Jiang, Guo, Li (b27) 2013; 7
Zheng, Zhang, Wan (b51) 2022; 190
Li, Zhong, Huang, You, Nie (b18) 2022
Guo, Zhou, Li, Cao (b10) 2022; 207
Li, Luo, Xiao, Liang, Ding (b14) 2018; 82
Li, Zhang, Liu, Ning, Zhang, Zhou (b16) 2020; 36
Cui, Lyu, Ding, Ke, Yang, Pirouz, Qi, Ong, Gao, Du, Gregory (b3) 2021; 593
Zhou, Yin, Jiao, Zhao, Zheng, Liu (b52) 2021
Xue, Pan, He, Xie, Soong (b43) 2021; 140
Xuan, Han, Guo, Li, Li, Zhong, Zhang, Ding (b42) 2015; 31
Xu, Li, Lv, Li, Xiao, Shao, Huo, Li, Zou, Han (b39) 2011; 10
Zheng, You, Wang, Li, Zhou, Zeng (b50) 2021; 18
Wang (10.1016/j.neunet.2023.05.052_b35) 2014; 11
Guo (10.1016/j.neunet.2023.05.052_b10) 2022; 207
Li (10.1016/j.neunet.2023.05.052_b17) 2022; 44
You (10.1016/j.neunet.2023.05.052_b44) 2017; 13
Lopez-Martin (10.1016/j.neunet.2023.05.052_b21) 2022; 79
Tan (10.1016/j.neunet.2023.05.052_b31) 2020; 28
Li (10.1016/j.neunet.2023.05.052_b18) 2022
10.1016/j.neunet.2023.05.052_b47
Xue (10.1016/j.neunet.2023.05.052_b43) 2021; 140
Zhang (10.1016/j.neunet.2023.05.052_b48) 2017; 16
van Laarhoven (10.1016/j.neunet.2023.05.052_b32) 2011; 27
Mørk (10.1016/j.neunet.2023.05.052_b23) 2014; 30
Wang (10.1016/j.neunet.2023.05.052_b33) 2019; 16
Ding (10.1016/j.neunet.2023.05.052_b7) 2020; 16
Xuan (10.1016/j.neunet.2023.05.052_b42) 2015; 31
Zheng (10.1016/j.neunet.2023.05.052_b50) 2021; 18
Xuan (10.1016/j.neunet.2023.05.052_b41) 2022; 23
Zhu (10.1016/j.neunet.2023.05.052_b53) 2022; 77
Bartel (10.1016/j.neunet.2023.05.052_b2) 2004; 116
Liu (10.1016/j.neunet.2023.05.052_b20) 2022; 145
Jiang (10.1016/j.neunet.2023.05.052_b13) 2010; 4
Shuang (10.1016/j.neunet.2023.05.052_b28) 2020; 61
Tan (10.1016/j.neunet.2023.05.052_b30) 2022; 33
Wu (10.1016/j.neunet.2023.05.052_b37) 2020; 124
Huang (10.1016/j.neunet.2023.05.052_b11) 2022; 50
Ding (10.1016/j.neunet.2023.05.052_b4) 2022
Ding (10.1016/j.neunet.2023.05.052_b6) 2021; 192
Xiao (10.1016/j.neunet.2023.05.052_b38) 2019; 175
Luo (10.1016/j.neunet.2023.05.052_b22) 2017; 14
Zheng (10.1016/j.neunet.2023.05.052_b51) 2022; 190
Li (10.1016/j.neunet.2023.05.052_b15) 2014; 42
Cui (10.1016/j.neunet.2023.05.052_b3) 2021; 593
Zhang (10.1016/j.neunet.2023.05.052_b46) 2019; 8
Yu (10.1016/j.neunet.2023.05.052_b45) 2010; 26
Pan (10.1016/j.neunet.2023.05.052_b25) 2020; 105
Wang (10.1016/j.neunet.2023.05.052_b34) 2022; 23
Peng (10.1016/j.neunet.2023.05.052_b26) 2019; 35
Tahir (10.1016/j.neunet.2023.05.052_b29) 2020; 129
Wang (10.1016/j.neunet.2023.05.052_b36) 2010; 26
Zhou (10.1016/j.neunet.2023.05.052_b52) 2021
Xu (10.1016/j.neunet.2023.05.052_b39) 2011; 10
Ding (10.1016/j.neunet.2023.05.052_b5) 2022; 26
Zhao (10.1016/j.neunet.2023.05.052_b49) 2020; 36
Li (10.1016/j.neunet.2023.05.052_b14) 2018; 82
Xu (10.1016/j.neunet.2023.05.052_b40) 2020; 31
Huang (10.1016/j.neunet.2023.05.052_b12) 2019; 47
Aguilera (10.1016/j.neunet.2023.05.052_b1) 2023; 161
Fan (10.1016/j.neunet.2023.05.052_b8) 2021
Niu (10.1016/j.neunet.2023.05.052_b24) 2019; 20
Li (10.1016/j.neunet.2023.05.052_b16) 2020; 36
Liang (10.1016/j.neunet.2023.05.052_b19) 2023; 162
Guo (10.1016/j.neunet.2023.05.052_b9) 2022; 152
Shi (10.1016/j.neunet.2023.05.052_b27) 2013; 7
References_xml – volume: 28
  start-page: 380
  year: 2020
  end-page: 390
  ident: b31
  article-title: Learning complex spectral mapping with gated convolutional recurrent networks for monaural speech enhancement
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– year: 2022
  ident: b4
  article-title: MLRDFM: a multi-view Laplacian regularized deepfm model for predicting mirna-disease associations
  publication-title: Briefings in Bioinformatics
– volume: 16
  start-page: 1
  year: 2020
  end-page: 10
  ident: b7
  article-title: Deep belief network–based matrix factorization model for MicroRNA-disease associations prediction
  publication-title: Evolutionary Bioinformatics
– volume: 23
  start-page: bbab453
  year: 2022
  ident: b41
  article-title: GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction
  publication-title: Briefings in Bioinformatics
– volume: 145
  start-page: 308
  year: 2022
  end-page: 318
  ident: b20
  article-title: Minimum spanning tree based graph neural network for emotion classification using EEG
  publication-title: Neural Networks
– volume: 16
  start-page: 283
  year: 2017
  end-page: 291
  ident: b48
  article-title: Meta-path methods for prioritizing candidate disease miRNAs
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 36
  start-page: 330
  year: 2020
  ident: b49
  article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations
  publication-title: Bioinformatics
– volume: 35
  start-page: 4364
  year: 2019
  end-page: 4371
  ident: b26
  article-title: A learning-based framework for miRNA-disease association identification using neural networks
  publication-title: Bioinformatics
– volume: 161
  start-page: 565
  year: 2023
  end-page: 574
  ident: b1
  article-title: Regularizing transformers with deep probabilistic layers
  publication-title: Neural Networks
– volume: 140
  start-page: 223
  year: 2021
  end-page: 236
  ident: b43
  article-title: Cycle consistent network for end-to-end style transfer TTS training
  publication-title: Neural Networks
– volume: 50
  start-page: D222
  year: 2022
  end-page: d230
  ident: b11
  article-title: MirTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions
  publication-title: Nucleic Acids Research
– volume: 33
  start-page: 973
  year: 2022
  end-page: 982
  ident: b30
  article-title: Dynamic embedding projection-gated convolutional neural networks for text classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 18
  start-page: 1733
  year: 2021
  end-page: 1742
  ident: b50
  article-title: MISSIM: An incremental learning-based model with applications to the prediction of miRNA-disease association
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 42
  start-page: D1070
  year: 2014
  end-page: 1074
  ident: b15
  article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations
  publication-title: Nucleic Acids Research
– start-page: 1
  year: 2021
  end-page: 10
  ident: b52
  article-title: Predicting miRNA-disease associations through deep autoencoder with multiple kernel learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 192
  start-page: 25
  year: 2021
  end-page: 34
  ident: b6
  article-title: Variational graph auto-encoders for miRNA-disease association prediction
  publication-title: Methods
– volume: 175
  start-page: 118
  year: 2019
  end-page: 129
  ident: b38
  article-title: Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs
  publication-title: Knowledge-Based Systems
– volume: 207
  year: 2022
  ident: b10
  article-title: Deep multiscale Gaussian residual networks for contextual-aware translation initiation site recognition
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 976
  year: 2010
  end-page: 978
  ident: b45
  article-title: GOSemSim: an R package for measuring semantic similarity among GO terms and gene products
  publication-title: Bioinformatics
– volume: 31
  start-page: 1805
  year: 2015
  end-page: 1815
  ident: b42
  article-title: Prediction of potential disease-associated microRNAs based on random walk
  publication-title: Bioinformatics
– volume: 26
  start-page: 446
  year: 2022
  end-page: 457
  ident: b5
  article-title: Predicting miRNA-disease associations based on multi-view variational graph auto-encoder with matrix factorization
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 47
  start-page: D1013
  year: 2019
  end-page: d1017
  ident: b12
  article-title: HMDD v3.0: a database for experimentally supported human microRNA-disease associations
  publication-title: Nucleic Acids Research
– volume: 10
  start-page: 1857
  year: 2011
  end-page: 1866
  ident: b39
  article-title: Prioritizing candidate disease miRNAs by topological features in the miRNA target–dysregulated network: Case study of prostate cancer
  publication-title: Molecular Cancer Therapeutics
– volume: 26
  start-page: 1644
  year: 2010
  end-page: 1650
  ident: b36
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
– volume: 36
  start-page: 2538
  year: 2020
  end-page: 2546
  ident: b16
  article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction
  publication-title: Bioinformatics
– volume: 44
  start-page: 8861
  year: 2022
  end-page: 8873
  ident: b17
  article-title: Co-VAE: Drug-target binding affinity prediction by co-regularized variational autoencoders
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 14
  start-page: 1468
  year: 2017
  end-page: 1475
  ident: b22
  article-title: Collective prediction of disease-associated miRNAs based on transduction learning
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– reference: Zhang, C., Zhang, K., Pham, T. X., Niu, A., Qiao, Z., Yoo, C. D., & Kweon, I. S. (2022). Dual temperature helps contrastive learning without many negative samples: Towards understanding and simplifying moco. In
– volume: 61
  start-page: 13
  year: 2020
  end-page: 23
  ident: b28
  article-title: Feature distillation network for aspect-based sentiment analysis
  publication-title: Information Fusion
– volume: 79
  start-page: 200
  year: 2022
  end-page: 228
  ident: b21
  article-title: Supervised contrastive learning over prototype-label embeddings for network intrusion detection
  publication-title: Information Fusion
– volume: 27
  start-page: 3036
  year: 2011
  end-page: 3043
  ident: b32
  article-title: Gaussian interaction profile kernels for predicting drug–target interaction
  publication-title: Bioinformatics
– volume: 162
  start-page: 21
  year: 2023
  end-page: 33
  ident: b19
  article-title: Multi-UAV autonomous collision avoidance based on PPO-GIC algorithm with CNN–LSTM fusion network
  publication-title: Neural Networks
– volume: 23
  start-page: 1
  year: 2022
  end-page: 11
  ident: b34
  article-title: Prediction of potential miRNA–disease associations based on stacked autoencoder
  publication-title: Briefings in Bioinformatics
– volume: 4
  start-page: 1
  year: 2010
  end-page: 9
  ident: b13
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC Systems Biology
– volume: 8
  start-page: 1040
  year: 2019
  ident: b46
  article-title: Prediction of potential mirna–disease associations through a novel unsupervised deep learning framework with variational autoencoder
  publication-title: Cells
– volume: 77
  start-page: 53
  year: 2022
  end-page: 61
  ident: b53
  article-title: Interpretable learning based dynamic graph convolutional networks for alzheimer’s disease analysis
  publication-title: Information Fusion
– volume: 82
  start-page: 169
  year: 2018
  end-page: 177
  ident: b14
  article-title: Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity
  publication-title: Journal of Biomedical Informatics
– volume: 20
  year: 2019
  ident: b24
  article-title: Integrating random walk and binary regression to identify novel miRNA-disease association
  publication-title: BMC Bioinformatics
– reference: (pp. 14441–14450).
– volume: 116
  start-page: 281
  year: 2004
  end-page: 297
  ident: b2
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
– year: 2022
  ident: b18
  article-title: Hierarchical graph attention network for miRNA-disease association prediction
  publication-title: Molecular Therapy
– volume: 124
  start-page: 308
  year: 2020
  end-page: 318
  ident: b37
  article-title: Effective metric learning with co-occurrence embedding for collaborative recommendations
  publication-title: Neural Networks
– volume: 7
  start-page: 1
  year: 2013
  end-page: 12
  ident: b27
  article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes
  publication-title: BMC Systems Biology
– volume: 105
  year: 2020
  ident: b25
  article-title: Scoring disease-microRNA associations by integrating disease hierarchy into graph convolutional networks
  publication-title: Pattern Recognition
– volume: 30
  start-page: 392
  year: 2014
  end-page: 397
  ident: b23
  article-title: Protein-driven inference of miRNA–disease associations
  publication-title: Bioinformatics
– volume: 152
  start-page: 287
  year: 2022
  end-page: 299
  ident: b9
  article-title: Context-aware dynamic neural computational models for accurate Poly(A) signal prediction
  publication-title: Neural Networks
– volume: 16
  start-page: 257
  year: 2019
  end-page: 269
  ident: b33
  article-title: An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy
  publication-title: RNA Biology
– volume: 190
  year: 2022
  ident: b51
  article-title: MiRNA-Disease association prediction via non-negative matrix factorization based matrix completion
  publication-title: Signal Processing
– volume: 13
  year: 2017
  ident: b44
  article-title: PBMDA: A novel and effective path-based computational model for mirna-disease association prediction
  publication-title: PLoS Computational Biology
– volume: 129
  start-page: 385
  year: 2020
  end-page: 391
  ident: b29
  article-title: Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations
  publication-title: Neural Networks
– volume: 593
  start-page: 602
  year: 2021
  end-page: 606
  ident: b3
  article-title: Global miRNA dosage control of embryonic germ layer specification
  publication-title: Nature
– start-page: 1
  year: 2021
  end-page: 14
  ident: b8
  article-title: Heterogeneous hypergraph variational autoencoder for link prediction
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 31
  start-page: 295
  year: 2020
  end-page: 308
  ident: b40
  article-title: Semisupervised text classification by variational autoencoder
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 11
  start-page: 333
  year: 2014
  end-page: 337
  ident: b35
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nature Methods
– volume: 30
  start-page: 392
  year: 2014
  ident: 10.1016/j.neunet.2023.05.052_b23
  article-title: Protein-driven inference of miRNA–disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt677
– volume: 16
  start-page: 257
  year: 2019
  ident: 10.1016/j.neunet.2023.05.052_b33
  article-title: An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy
  publication-title: RNA Biology
  doi: 10.1080/15476286.2019.1568820
– volume: 77
  start-page: 53
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b53
  article-title: Interpretable learning based dynamic graph convolutional networks for alzheimer’s disease analysis
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.07.013
– volume: 14
  start-page: 1468
  year: 2017
  ident: 10.1016/j.neunet.2023.05.052_b22
  article-title: Collective prediction of disease-associated miRNAs based on transduction learning
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2016.2599866
– volume: 175
  start-page: 118
  year: 2019
  ident: 10.1016/j.neunet.2023.05.052_b38
  article-title: Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.03.023
– volume: 152
  start-page: 287
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b9
  article-title: Context-aware dynamic neural computational models for accurate Poly(A) signal prediction
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2022.04.025
– volume: 20
  issue: 59
  year: 2019
  ident: 10.1016/j.neunet.2023.05.052_b24
  article-title: Integrating random walk and binary regression to identify novel miRNA-disease association
  publication-title: BMC Bioinformatics
– volume: 28
  start-page: 380
  year: 2020
  ident: 10.1016/j.neunet.2023.05.052_b31
  article-title: Learning complex spectral mapping with gated convolutional recurrent networks for monaural speech enhancement
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASLP.2019.2955276
– volume: 36
  start-page: 2538
  year: 2020
  ident: 10.1016/j.neunet.2023.05.052_b16
  article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz965
– volume: 7
  start-page: 1
  year: 2013
  ident: 10.1016/j.neunet.2023.05.052_b27
  article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes
  publication-title: BMC Systems Biology
  doi: 10.1186/1752-0509-7-101
– volume: 36
  start-page: 330
  year: 2020
  ident: 10.1016/j.neunet.2023.05.052_b49
  article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz475
– volume: 23
  start-page: 1
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b34
  article-title: Prediction of potential miRNA–disease associations based on stacked autoencoder
  publication-title: Briefings in Bioinformatics
– volume: 50
  start-page: D222
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b11
  article-title: MirTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkab1079
– volume: 145
  start-page: 308
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b20
  article-title: Minimum spanning tree based graph neural network for emotion classification using EEG
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.10.023
– volume: 161
  start-page: 565
  year: 2023
  ident: 10.1016/j.neunet.2023.05.052_b1
  article-title: Regularizing transformers with deep probabilistic layers
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.01.032
– volume: 42
  start-page: D1070
  year: 2014
  ident: 10.1016/j.neunet.2023.05.052_b15
  article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkt1023
– volume: 124
  start-page: 308
  year: 2020
  ident: 10.1016/j.neunet.2023.05.052_b37
  article-title: Effective metric learning with co-occurrence embedding for collaborative recommendations
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.01.021
– volume: 82
  start-page: 169
  year: 2018
  ident: 10.1016/j.neunet.2023.05.052_b14
  article-title: Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2018.05.005
– volume: 105
  year: 2020
  ident: 10.1016/j.neunet.2023.05.052_b25
  article-title: Scoring disease-microRNA associations by integrating disease hierarchy into graph convolutional networks
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107385
– volume: 140
  start-page: 223
  year: 2021
  ident: 10.1016/j.neunet.2023.05.052_b43
  article-title: Cycle consistent network for end-to-end style transfer TTS training
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.03.005
– volume: 162
  start-page: 21
  year: 2023
  ident: 10.1016/j.neunet.2023.05.052_b19
  article-title: Multi-UAV autonomous collision avoidance based on PPO-GIC algorithm with CNN–LSTM fusion network
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.02.027
– volume: 10
  start-page: 1857
  year: 2011
  ident: 10.1016/j.neunet.2023.05.052_b39
  article-title: Prioritizing candidate disease miRNAs by topological features in the miRNA target–dysregulated network: Case study of prostate cancer
  publication-title: Molecular Cancer Therapeutics
  doi: 10.1158/1535-7163.MCT-11-0055
– volume: 26
  start-page: 976
  year: 2010
  ident: 10.1016/j.neunet.2023.05.052_b45
  article-title: GOSemSim: an R package for measuring semantic similarity among GO terms and gene products
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq064
– year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b4
  article-title: MLRDFM: a multi-view Laplacian regularized deepfm model for predicting mirna-disease associations
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbac079
– volume: 13
  year: 2017
  ident: 10.1016/j.neunet.2023.05.052_b44
  article-title: PBMDA: A novel and effective path-based computational model for mirna-disease association prediction
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1005455
– ident: 10.1016/j.neunet.2023.05.052_b47
  doi: 10.1109/CVPR52688.2022.01404
– volume: 31
  start-page: 1805
  year: 2015
  ident: 10.1016/j.neunet.2023.05.052_b42
  article-title: Prediction of potential disease-associated microRNAs based on random walk
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv039
– volume: 47
  start-page: D1013
  year: 2019
  ident: 10.1016/j.neunet.2023.05.052_b12
  article-title: HMDD v3.0: a database for experimentally supported human microRNA-disease associations
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gky1010
– volume: 79
  start-page: 200
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b21
  article-title: Supervised contrastive learning over prototype-label embeddings for network intrusion detection
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2021.09.014
– volume: 61
  start-page: 13
  year: 2020
  ident: 10.1016/j.neunet.2023.05.052_b28
  article-title: Feature distillation network for aspect-based sentiment analysis
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.03.003
– volume: 16
  start-page: 283
  year: 2017
  ident: 10.1016/j.neunet.2023.05.052_b48
  article-title: Meta-path methods for prioritizing candidate disease miRNAs
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2017.2776280
– volume: 27
  start-page: 3036
  year: 2011
  ident: 10.1016/j.neunet.2023.05.052_b32
  article-title: Gaussian interaction profile kernels for predicting drug–target interaction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr500
– volume: 207
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b10
  article-title: Deep multiscale Gaussian residual networks for contextual-aware translation initiation site recognition
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118004
– volume: 31
  start-page: 295
  year: 2020
  ident: 10.1016/j.neunet.2023.05.052_b40
  article-title: Semisupervised text classification by variational autoencoder
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2019.2900734
– volume: 26
  start-page: 446
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b5
  article-title: Predicting miRNA-disease associations based on multi-view variational graph auto-encoder with matrix factorization
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2021.3088342
– volume: 8
  start-page: 1040
  year: 2019
  ident: 10.1016/j.neunet.2023.05.052_b46
  article-title: Prediction of potential mirna–disease associations through a novel unsupervised deep learning framework with variational autoencoder
  publication-title: Cells
  doi: 10.3390/cells8091040
– volume: 593
  start-page: 602
  year: 2021
  ident: 10.1016/j.neunet.2023.05.052_b3
  article-title: Global miRNA dosage control of embryonic germ layer specification
  publication-title: Nature
  doi: 10.1038/s41586-021-03524-0
– volume: 23
  start-page: bbab453
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b41
  article-title: GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbab453
– volume: 33
  start-page: 973
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b30
  article-title: Dynamic embedding projection-gated convolutional neural networks for text classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.3036192
– start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2023.05.052_b8
  article-title: Heterogeneous hypergraph variational autoencoder for link prediction
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 18
  start-page: 1733
  year: 2021
  ident: 10.1016/j.neunet.2023.05.052_b50
  article-title: MISSIM: An incremental learning-based model with applications to the prediction of miRNA-disease association
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
  doi: 10.1109/TCBB.2020.3013837
– volume: 116
  start-page: 281
  year: 2004
  ident: 10.1016/j.neunet.2023.05.052_b2
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b18
  article-title: Hierarchical graph attention network for miRNA-disease association prediction
  publication-title: Molecular Therapy
  doi: 10.1016/j.ymthe.2022.01.041
– volume: 129
  start-page: 385
  year: 2020
  ident: 10.1016/j.neunet.2023.05.052_b29
  article-title: Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.05.027
– volume: 35
  start-page: 4364
  year: 2019
  ident: 10.1016/j.neunet.2023.05.052_b26
  article-title: A learning-based framework for miRNA-disease association identification using neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz254
– volume: 192
  start-page: 25
  year: 2021
  ident: 10.1016/j.neunet.2023.05.052_b6
  article-title: Variational graph auto-encoders for miRNA-disease association prediction
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.08.004
– volume: 190
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b51
  article-title: MiRNA-Disease association prediction via non-negative matrix factorization based matrix completion
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2021.108312
– volume: 16
  start-page: 1
  year: 2020
  ident: 10.1016/j.neunet.2023.05.052_b7
  article-title: Deep belief network–based matrix factorization model for MicroRNA-disease associations prediction
  publication-title: Evolutionary Bioinformatics
  doi: 10.1177/1176934320919707
– volume: 11
  start-page: 333
  year: 2014
  ident: 10.1016/j.neunet.2023.05.052_b35
  article-title: Similarity network fusion for aggregating data types on a genomic scale
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2810
– volume: 4
  start-page: 1
  year: 2010
  ident: 10.1016/j.neunet.2023.05.052_b13
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC Systems Biology
  doi: 10.1186/1752-0509-4-S1-S2
– volume: 44
  start-page: 8861
  year: 2022
  ident: 10.1016/j.neunet.2023.05.052_b17
  article-title: Co-VAE: Drug-target binding affinity prediction by co-regularized variational autoencoders
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2021.3120428
– volume: 26
  start-page: 1644
  year: 2010
  ident: 10.1016/j.neunet.2023.05.052_b36
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2023.05.052_b52
  article-title: Predicting miRNA-disease associations through deep autoencoder with multiple kernel learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2021.3105484
SSID ssj0006843
Score 2.6476192
Snippet MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 491
SubjectTerms Disease-miRNA associations
Feature fusion
Graph autoencoders
Neural networks
Title Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features
URI https://dx.doi.org/10.1016/j.neunet.2023.05.052
https://www.ncbi.nlm.nih.gov/pubmed/37336034
https://www.proquest.com/docview/2827924345
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhvfTSpunLTRoU6FW1VyNp7aMJCU5CfGibkptYvcClXQc_roH-886stAk5hEBhL7tIWqGRZkbSN98w9gXkOGhopKjiWAm011G4KlUoEAqzNF5lsuqruZldq4sbfbPDTvpYGIJVFt2fdXqnrcuXYRnN4e1iMfw-QlNrKFQU6GrJECeoUjXx53-9e4B5mHFGzmFhQaX78LkO49XGbRsJUSmh4-_U8inz9JT72Zmhsz32qviPfJq7-IbtxHafve5zM_CyVN-yvz9xE1wO-jgdlQXebDdLoq0McSXIeAWeYkfryVFBr3KAA-8y43D0ZDnBtFZ06sfLJY74s_g2n_LmQaBrntuhegRMpGuGvtH1O3Z9dvrjZCZKugXh0YptRKpSVPXIGwdp3IBOOskAXiYA0BPpa9zZmBRRksEHcJXGpT_R4F1MrqqaAO_Zbrts40cKBE9ShVjVRjcKjHYhTAB9-WbilHbODxj0o2x94SKnlBi_bQ86-2WzbCzJxo40PnLAxH2t28zF8Uz5uhegfTSnLJqLZ2oe9_K2uNzoDqVp43K7trhDrXHLCkoP2Ic8Ee77AkQtOQL16b__e8Be0lsGGB6y3c1qGz-j07NxR92sPmIvpueXs_k_PQgD6A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcCFlldZSsFIXM1uPLaze6wqqi20e4AW9WbFL2kRzVb7uCLxz5mJnVYcqkqVckpsx_KM5-H5ZszYJ5DjoKGRoopjJVBfR-GqVCFBKM3SeJWLVZ_NzPRCfb3Ul1vsqM-FIVhlkf1ZpnfSurwZltUcXs_nwx8jVLWGUkWBQktGPWKPlYaaWPvzn1uchxln6By2FtS8z5_rQF5t3LSRIJUSugKeWt6ln-6yPzs9dLzLnhUDkh_mOT5nW7F9wXb6yxl42asv2d-f6AWXkz5OZ2WBN5v1gupWhrgUpL0CT7Gr68lRQi9zhgPvrsbhaMpywmkt6diPlyiOuJp_nx3y5paiK57HoX6ETKQ4Qz_o6hW7OP5yfjQV5b4F4VGNrUWqUlT1yBsHadyATjrJAF4mANAT6Wt0bUyKSMrgA7hK496faPAuJldVTYDXbLtdtPENZYInqUKsaqMbBUa7ECaAxnwzcUo75wcM-lW2vhQjpzsxftsedfbLZtpYoo0daXzkgImbXte5GMc97euegPY_prKoL-7p-bGnt8X9RkGUpo2Lzcqii1qjzwpKD9heZoSbuQDVlhyBevvg_35gT6bnZ6f29GT2bZ89pS8ZbfiOba-Xm3iAFtDave84_B8t5QV-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+gated+autoencoder-based+feature+extraction+model+for+inferring+disease-miRNA+associations+based+on+multiview+features&rft.jtitle=Neural+networks&rft.au=Guo%2C+Yanbu&rft.au=Zhou%2C+Dongming&rft.au=Ruan%2C+Xiaoli&rft.au=Cao%2C+Jinde&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=165&rft.spage=491&rft.epage=505&rft_id=info:doi/10.1016%2Fj.neunet.2023.05.052&rft.externalDocID=S0893608023002964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon