Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features
MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-bas...
Saved in:
Published in | Neural networks Vol. 165; pp. 491 - 505 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2023.05.052 |
Cover
Loading…
Abstract | MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations. |
---|---|
AbstractList | MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations.MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations. MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations. |
Author | Cao, Jinde Ruan, Xiaoli Guo, Yanbu Zhou, Dongming |
Author_xml | – sequence: 1 givenname: Yanbu orcidid: 0000-0001-9532-2309 surname: Guo fullname: Guo, Yanbu email: guoyanbu@gmail.com organization: College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China – sequence: 2 givenname: Dongming orcidid: 0000-0003-0139-9415 surname: Zhou fullname: Zhou, Dongming email: zhoudm@ynu.edu.cn organization: School of Information Science and Engineering, Yunnan University, Kunming 650500, China – sequence: 3 givenname: Xiaoli orcidid: 0000-0002-4672-531X surname: Ruan fullname: Ruan, Xiaoli email: xlruan@gzu.edu.cn organization: State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China – sequence: 4 givenname: Jinde orcidid: 0000-0003-3133-7119 surname: Cao fullname: Cao, Jinde email: jdcao@seu.edu.cn organization: School of Mathematics, Southeast University, Nanjing 211189, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37336034$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuLFTEQhYOMOHdG_4FIL930NUl1utMuhGHwBYOCqNuQTipDLt3JmKR9LP3n5tozLlwoFBRUfecszjkjJyEGJOQxo3tGWf_ssA-4Bix7TjnsqajD75Edk8PY8kHyE7KjcoS2p5KekrOcD5TSXnbwgJzCANBT6Hbk52edvC4-Bj0317qgbfRaIgYTLaZ20rleHOqyJmzwe0naHOFmqe-5cTE1PjhMyYfrxvqMlW8X_-HdRaNzjmazzs3mc9Stc_FfPX67M80PyX2n54yPbvc5-fTq5cfLN-3V-9dvLy-uWgM9L61jDruBmn4CJzUIJxy3YLgDADFyMwwCeofMMWssTExISUcBZkI3MaYtnJOnm-9Nil9WzEUtPhucZx0wrllxyYeRd9CJij65RddpQatukl90-qHuYqtAtwEmxZwTuj8Io-rYjjqorR11bEdRUYdX2fO_ZMaX3wnVXP38P_GLTYw1pJpgUtn42hNan9AUZaP_t8EvojSw1w |
CitedBy_id | crossref_primary_10_1049_ell2_13163 crossref_primary_10_1109_TIFS_2024_3447242 crossref_primary_10_1109_JSEN_2024_3413990 crossref_primary_10_1016_j_aca_2025_343635 crossref_primary_10_1016_j_infrared_2024_105514 crossref_primary_10_1021_acs_jcim_4c01757 crossref_primary_10_1021_acs_jcim_4c00546 crossref_primary_10_1109_JSEN_2024_3393619 crossref_primary_10_1109_JBHI_2024_3483999 crossref_primary_10_1109_TETCI_2024_3377680 crossref_primary_10_1109_JIOT_2024_3446036 crossref_primary_10_1109_JBHI_2024_3471807 crossref_primary_10_1109_JSTARS_2025_3536878 crossref_primary_10_1021_acs_jcim_4c00737 crossref_primary_10_1109_TIFS_2024_3441947 crossref_primary_10_1007_s10462_023_10662_6 crossref_primary_10_1016_j_knosys_2025_113055 crossref_primary_10_1109_LSP_2024_3412531 crossref_primary_10_1080_07391102_2024_2323144 crossref_primary_10_1109_MWC_003_2400006 crossref_primary_10_1109_JSEN_2024_3461682 crossref_primary_10_1080_07391102_2024_2313712 crossref_primary_10_1016_j_dsp_2024_104670 crossref_primary_10_1109_MIS_2024_3378921 crossref_primary_10_1109_LSP_2024_3386112 crossref_primary_10_1109_LSP_2025_3544969 crossref_primary_10_1109_JBHI_2024_3445112 crossref_primary_10_1016_j_imavis_2024_105102 crossref_primary_10_1021_acs_jcim_3c01726 crossref_primary_10_1109_ACCESS_2023_3339552 crossref_primary_10_1080_17509653_2024_2353585 crossref_primary_10_1109_LSP_2024_3460483 crossref_primary_10_1155_2024_4650233 crossref_primary_10_1038_s41598_024_71864_8 crossref_primary_10_1109_JSEN_2024_3496726 crossref_primary_10_1109_THMS_2024_3412273 crossref_primary_10_1109_ACCESS_2024_3395651 crossref_primary_10_1145_3680286 crossref_primary_10_1016_j_neunet_2024_107040 crossref_primary_10_1038_s41598_024_78212_w crossref_primary_10_1109_TPAMI_2025_3529264 crossref_primary_10_1155_2024_7863381 crossref_primary_10_1007_s11760_024_03229_7 crossref_primary_10_1109_TCYB_2024_3474651 crossref_primary_10_1109_TETCI_2024_3386619 crossref_primary_10_26599_TST_2024_9010036 crossref_primary_10_1080_01605682_2024_2398762 crossref_primary_10_1109_JSEN_2024_3512524 crossref_primary_10_1080_10255842_2024_2436909 crossref_primary_10_1109_ACCESS_2024_3361286 crossref_primary_10_1109_JSEN_2025_3525674 crossref_primary_10_1080_07391102_2024_2431664 crossref_primary_10_1093_nar_gkae197 crossref_primary_10_1016_j_knosys_2023_111099 crossref_primary_10_1109_LSP_2024_3395176 crossref_primary_10_1080_0305215X_2024_2346930 crossref_primary_10_1021_acs_jcim_3c02088 crossref_primary_10_1007_s11432_024_4100_7 crossref_primary_10_1021_acs_jcim_4c01544 crossref_primary_10_1109_JSEN_2024_3491095 crossref_primary_10_1109_TII_2024_3498096 crossref_primary_10_1109_TPAMI_2024_3523364 crossref_primary_10_1109_JSEN_2024_3394874 crossref_primary_10_1109_JBHI_2024_3515995 crossref_primary_10_1021_acs_jcim_4c00802 crossref_primary_10_1016_j_compeleceng_2025_110242 crossref_primary_10_1002_biot_202400203 crossref_primary_10_1109_JBHI_2024_3431693 crossref_primary_10_1016_j_neunet_2024_106401 |
Cites_doi | 10.1093/bioinformatics/btt677 10.1080/15476286.2019.1568820 10.1016/j.inffus.2021.07.013 10.1109/TCBB.2016.2599866 10.1016/j.knosys.2019.03.023 10.1016/j.neunet.2022.04.025 10.1109/TASLP.2019.2955276 10.1093/bioinformatics/btz965 10.1186/1752-0509-7-101 10.1093/bioinformatics/btz475 10.1093/nar/gkab1079 10.1016/j.neunet.2021.10.023 10.1016/j.neunet.2023.01.032 10.1093/nar/gkt1023 10.1016/j.neunet.2020.01.021 10.1016/j.jbi.2018.05.005 10.1016/j.patcog.2020.107385 10.1016/j.neunet.2021.03.005 10.1016/j.neunet.2023.02.027 10.1158/1535-7163.MCT-11-0055 10.1093/bioinformatics/btq064 10.1093/bib/bbac079 10.1371/journal.pcbi.1005455 10.1109/CVPR52688.2022.01404 10.1093/bioinformatics/btv039 10.1093/nar/gky1010 10.1016/j.inffus.2021.09.014 10.1016/j.inffus.2020.03.003 10.1109/TCBB.2017.2776280 10.1093/bioinformatics/btr500 10.1016/j.eswa.2022.118004 10.1109/TNNLS.2019.2900734 10.1109/JBHI.2021.3088342 10.3390/cells8091040 10.1038/s41586-021-03524-0 10.1093/bib/bbab453 10.1109/TNNLS.2020.3036192 10.1109/TCBB.2020.3013837 10.1016/S0092-8674(04)00045-5 10.1016/j.ymthe.2022.01.041 10.1016/j.neunet.2020.05.027 10.1093/bioinformatics/btz254 10.1016/j.ymeth.2020.08.004 10.1016/j.sigpro.2021.108312 10.1177/1176934320919707 10.1038/nmeth.2810 10.1186/1752-0509-4-S1-S2 10.1109/TPAMI.2021.3120428 10.1093/bioinformatics/btq241 10.1109/TNNLS.2021.3105484 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.neunet.2023.05.052 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 505 |
ExternalDocumentID | 37336034 10_1016_j_neunet_2023_05_052 S0893608023002964 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c362t-f1fe470c6b3f8a35f5f2d3c2f333592c77536fe1f1dcd3b15880953cbefb11ad3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Thu Sep 04 21:19:00 EDT 2025 Thu Apr 03 07:10:10 EDT 2025 Tue Jul 01 03:32:15 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Fri Feb 23 02:35:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph autoencoders Feature fusion Neural networks Disease-miRNA associations |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-f1fe470c6b3f8a35f5f2d3c2f333592c77536fe1f1dcd3b15880953cbefb11ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0139-9415 0000-0001-9532-2309 0000-0002-4672-531X 0000-0003-3133-7119 |
PMID | 37336034 |
PQID | 2827924345 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2827924345 pubmed_primary_37336034 crossref_primary_10_1016_j_neunet_2023_05_052 crossref_citationtrail_10_1016_j_neunet_2023_05_052 elsevier_sciencedirect_doi_10_1016_j_neunet_2023_05_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 2023-Aug 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ding, Lei, Liao, Wu (b4) 2022 Ding, Tian, Lei, Liao, Wu (b6) 2021; 192 Peng, Hui, Li, Chen, Hao, Jiang, Shang, Wei (b26) 2019; 35 Pan, Shen (b25) 2020; 105 Wang, Mezlini, Demir, Fiume, Tu, Brudno, Haibe-Kains, Goldenberg (b35) 2014; 11 Zhang, Chen, Yin (b46) 2019; 8 Zhao, Chen, Yin (b49) 2020; 36 You, Huang, Zhu, Yan, Li, Wen, Chen (b44) 2017; 13 Wang, Chen, Yin, Qu (b33) 2019; 16 Xuan, Fan, Cui, Zhang, Nakaguchi (b41) 2022; 23 Ding, Lei, Liao, Wu (b5) 2022; 26 Niu, Wang, Yan, Chen (b24) 2019; 20 Li, Zhao, Li (b17) 2022; 44 Lopez-Martin, Sanchez-Esguevillas, Arribas, Carro (b21) 2022; 79 Xu, Tan (b40) 2020; 31 Yu, Li, Qin, Bo, Wu, Wang (b45) 2010; 26 Wang, Wang, Lu, Song, Cui (b36) 2010; 26 Jiang, Hao, Wang, Juan, Zhang, Teng, Liu, Wang (b13) 2010; 4 Zhu, Ma, Yuan, Zhu (b53) 2022; 77 Tan, Wang (b31) 2020; 28 Ding, Wang, Lei, Liao, Wu (b7) 2020; 16 Wu, Zhou, Nie, Cao (b37) 2020; 124 Mørk, Pletscher-Frankild, Palleja Caro, Gorodkin, Jensen (b23) 2014; 30 Xiao, Dai, Luo, Fujita (b38) 2019; 175 van Laarhoven, Nabuurs, Marchiori (b32) 2011; 27 Luo, Ding, Liang, Cao, Chen (b22) 2017; 14 Tan, Chen, Kang, Zhou, Abusorrah, Sedraoui (b30) 2022; 33 Fan, Zhang, Wei, Li, Zou, Gao, Dai (b8) 2021 Liu, Zhang, Liu, Cao (b20) 2022; 145 Shuang, Yang, Loo, Li, Gu (b28) 2020; 61 Tahir, Hayat, Chong (b29) 2020; 129 Zhang, C., Zhang, K., Pham, T. X., Niu, A., Qiao, Z., Yoo, C. D., & Kweon, I. S. (2022). Dual temperature helps contrastive learning without many negative samples: Towards understanding and simplifying moco. In Liang, Liu, Liu (b19) 2023; 162 Bartel (b2) 2004; 116 Aguilera, Olmos, Artés-Rodríguez, Pérez-Cruz (b1) 2023; 161 Huang, Shi, Gao, Cui, Zhang, Li, Zhou, Cui (b12) 2019; 47 Wang, Li, Huang, Chen (b34) 2022; 23 Zhang, Zou, Rodriguez-Paton, Zeng (b48) 2017; 16 (pp. 14441–14450). Li, Qiu, Tu, Geng, Yang, Jiang, Cui (b15) 2014; 42 Huang, Lin, Cui, Huang, Tang (b11) 2022; 50 Guo, Li, Zhou, Cao, Liang (b9) 2022; 152 Shi, Xu, Zhang, Xu, Li, Wang, Zhao, Jiang, Guo, Li (b27) 2013; 7 Zheng, Zhang, Wan (b51) 2022; 190 Li, Zhong, Huang, You, Nie (b18) 2022 Guo, Zhou, Li, Cao (b10) 2022; 207 Li, Luo, Xiao, Liang, Ding (b14) 2018; 82 Li, Zhang, Liu, Ning, Zhang, Zhou (b16) 2020; 36 Cui, Lyu, Ding, Ke, Yang, Pirouz, Qi, Ong, Gao, Du, Gregory (b3) 2021; 593 Zhou, Yin, Jiao, Zhao, Zheng, Liu (b52) 2021 Xue, Pan, He, Xie, Soong (b43) 2021; 140 Xuan, Han, Guo, Li, Li, Zhong, Zhang, Ding (b42) 2015; 31 Xu, Li, Lv, Li, Xiao, Shao, Huo, Li, Zou, Han (b39) 2011; 10 Zheng, You, Wang, Li, Zhou, Zeng (b50) 2021; 18 Wang (10.1016/j.neunet.2023.05.052_b35) 2014; 11 Guo (10.1016/j.neunet.2023.05.052_b10) 2022; 207 Li (10.1016/j.neunet.2023.05.052_b17) 2022; 44 You (10.1016/j.neunet.2023.05.052_b44) 2017; 13 Lopez-Martin (10.1016/j.neunet.2023.05.052_b21) 2022; 79 Tan (10.1016/j.neunet.2023.05.052_b31) 2020; 28 Li (10.1016/j.neunet.2023.05.052_b18) 2022 10.1016/j.neunet.2023.05.052_b47 Xue (10.1016/j.neunet.2023.05.052_b43) 2021; 140 Zhang (10.1016/j.neunet.2023.05.052_b48) 2017; 16 van Laarhoven (10.1016/j.neunet.2023.05.052_b32) 2011; 27 Mørk (10.1016/j.neunet.2023.05.052_b23) 2014; 30 Wang (10.1016/j.neunet.2023.05.052_b33) 2019; 16 Ding (10.1016/j.neunet.2023.05.052_b7) 2020; 16 Xuan (10.1016/j.neunet.2023.05.052_b42) 2015; 31 Zheng (10.1016/j.neunet.2023.05.052_b50) 2021; 18 Xuan (10.1016/j.neunet.2023.05.052_b41) 2022; 23 Zhu (10.1016/j.neunet.2023.05.052_b53) 2022; 77 Bartel (10.1016/j.neunet.2023.05.052_b2) 2004; 116 Liu (10.1016/j.neunet.2023.05.052_b20) 2022; 145 Jiang (10.1016/j.neunet.2023.05.052_b13) 2010; 4 Shuang (10.1016/j.neunet.2023.05.052_b28) 2020; 61 Tan (10.1016/j.neunet.2023.05.052_b30) 2022; 33 Wu (10.1016/j.neunet.2023.05.052_b37) 2020; 124 Huang (10.1016/j.neunet.2023.05.052_b11) 2022; 50 Ding (10.1016/j.neunet.2023.05.052_b4) 2022 Ding (10.1016/j.neunet.2023.05.052_b6) 2021; 192 Xiao (10.1016/j.neunet.2023.05.052_b38) 2019; 175 Luo (10.1016/j.neunet.2023.05.052_b22) 2017; 14 Zheng (10.1016/j.neunet.2023.05.052_b51) 2022; 190 Li (10.1016/j.neunet.2023.05.052_b15) 2014; 42 Cui (10.1016/j.neunet.2023.05.052_b3) 2021; 593 Zhang (10.1016/j.neunet.2023.05.052_b46) 2019; 8 Yu (10.1016/j.neunet.2023.05.052_b45) 2010; 26 Pan (10.1016/j.neunet.2023.05.052_b25) 2020; 105 Wang (10.1016/j.neunet.2023.05.052_b34) 2022; 23 Peng (10.1016/j.neunet.2023.05.052_b26) 2019; 35 Tahir (10.1016/j.neunet.2023.05.052_b29) 2020; 129 Wang (10.1016/j.neunet.2023.05.052_b36) 2010; 26 Zhou (10.1016/j.neunet.2023.05.052_b52) 2021 Xu (10.1016/j.neunet.2023.05.052_b39) 2011; 10 Ding (10.1016/j.neunet.2023.05.052_b5) 2022; 26 Zhao (10.1016/j.neunet.2023.05.052_b49) 2020; 36 Li (10.1016/j.neunet.2023.05.052_b14) 2018; 82 Xu (10.1016/j.neunet.2023.05.052_b40) 2020; 31 Huang (10.1016/j.neunet.2023.05.052_b12) 2019; 47 Aguilera (10.1016/j.neunet.2023.05.052_b1) 2023; 161 Fan (10.1016/j.neunet.2023.05.052_b8) 2021 Niu (10.1016/j.neunet.2023.05.052_b24) 2019; 20 Li (10.1016/j.neunet.2023.05.052_b16) 2020; 36 Liang (10.1016/j.neunet.2023.05.052_b19) 2023; 162 Guo (10.1016/j.neunet.2023.05.052_b9) 2022; 152 Shi (10.1016/j.neunet.2023.05.052_b27) 2013; 7 |
References_xml | – volume: 28 start-page: 380 year: 2020 end-page: 390 ident: b31 article-title: Learning complex spectral mapping with gated convolutional recurrent networks for monaural speech enhancement publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing – year: 2022 ident: b4 article-title: MLRDFM: a multi-view Laplacian regularized deepfm model for predicting mirna-disease associations publication-title: Briefings in Bioinformatics – volume: 16 start-page: 1 year: 2020 end-page: 10 ident: b7 article-title: Deep belief network–based matrix factorization model for MicroRNA-disease associations prediction publication-title: Evolutionary Bioinformatics – volume: 23 start-page: bbab453 year: 2022 ident: b41 article-title: GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction publication-title: Briefings in Bioinformatics – volume: 145 start-page: 308 year: 2022 end-page: 318 ident: b20 article-title: Minimum spanning tree based graph neural network for emotion classification using EEG publication-title: Neural Networks – volume: 16 start-page: 283 year: 2017 end-page: 291 ident: b48 article-title: Meta-path methods for prioritizing candidate disease miRNAs publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 36 start-page: 330 year: 2020 ident: b49 article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations publication-title: Bioinformatics – volume: 35 start-page: 4364 year: 2019 end-page: 4371 ident: b26 article-title: A learning-based framework for miRNA-disease association identification using neural networks publication-title: Bioinformatics – volume: 161 start-page: 565 year: 2023 end-page: 574 ident: b1 article-title: Regularizing transformers with deep probabilistic layers publication-title: Neural Networks – volume: 140 start-page: 223 year: 2021 end-page: 236 ident: b43 article-title: Cycle consistent network for end-to-end style transfer TTS training publication-title: Neural Networks – volume: 50 start-page: D222 year: 2022 end-page: d230 ident: b11 article-title: MirTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions publication-title: Nucleic Acids Research – volume: 33 start-page: 973 year: 2022 end-page: 982 ident: b30 article-title: Dynamic embedding projection-gated convolutional neural networks for text classification publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 18 start-page: 1733 year: 2021 end-page: 1742 ident: b50 article-title: MISSIM: An incremental learning-based model with applications to the prediction of miRNA-disease association publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 42 start-page: D1070 year: 2014 end-page: 1074 ident: b15 article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations publication-title: Nucleic Acids Research – start-page: 1 year: 2021 end-page: 10 ident: b52 article-title: Predicting miRNA-disease associations through deep autoencoder with multiple kernel learning publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 192 start-page: 25 year: 2021 end-page: 34 ident: b6 article-title: Variational graph auto-encoders for miRNA-disease association prediction publication-title: Methods – volume: 175 start-page: 118 year: 2019 end-page: 129 ident: b38 article-title: Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs publication-title: Knowledge-Based Systems – volume: 207 year: 2022 ident: b10 article-title: Deep multiscale Gaussian residual networks for contextual-aware translation initiation site recognition publication-title: Expert Systems with Applications – volume: 26 start-page: 976 year: 2010 end-page: 978 ident: b45 article-title: GOSemSim: an R package for measuring semantic similarity among GO terms and gene products publication-title: Bioinformatics – volume: 31 start-page: 1805 year: 2015 end-page: 1815 ident: b42 article-title: Prediction of potential disease-associated microRNAs based on random walk publication-title: Bioinformatics – volume: 26 start-page: 446 year: 2022 end-page: 457 ident: b5 article-title: Predicting miRNA-disease associations based on multi-view variational graph auto-encoder with matrix factorization publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 47 start-page: D1013 year: 2019 end-page: d1017 ident: b12 article-title: HMDD v3.0: a database for experimentally supported human microRNA-disease associations publication-title: Nucleic Acids Research – volume: 10 start-page: 1857 year: 2011 end-page: 1866 ident: b39 article-title: Prioritizing candidate disease miRNAs by topological features in the miRNA target–dysregulated network: Case study of prostate cancer publication-title: Molecular Cancer Therapeutics – volume: 26 start-page: 1644 year: 2010 end-page: 1650 ident: b36 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics – volume: 36 start-page: 2538 year: 2020 end-page: 2546 ident: b16 article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction publication-title: Bioinformatics – volume: 44 start-page: 8861 year: 2022 end-page: 8873 ident: b17 article-title: Co-VAE: Drug-target binding affinity prediction by co-regularized variational autoencoders publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 14 start-page: 1468 year: 2017 end-page: 1475 ident: b22 article-title: Collective prediction of disease-associated miRNAs based on transduction learning publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – reference: Zhang, C., Zhang, K., Pham, T. X., Niu, A., Qiao, Z., Yoo, C. D., & Kweon, I. S. (2022). Dual temperature helps contrastive learning without many negative samples: Towards understanding and simplifying moco. In – volume: 61 start-page: 13 year: 2020 end-page: 23 ident: b28 article-title: Feature distillation network for aspect-based sentiment analysis publication-title: Information Fusion – volume: 79 start-page: 200 year: 2022 end-page: 228 ident: b21 article-title: Supervised contrastive learning over prototype-label embeddings for network intrusion detection publication-title: Information Fusion – volume: 27 start-page: 3036 year: 2011 end-page: 3043 ident: b32 article-title: Gaussian interaction profile kernels for predicting drug–target interaction publication-title: Bioinformatics – volume: 162 start-page: 21 year: 2023 end-page: 33 ident: b19 article-title: Multi-UAV autonomous collision avoidance based on PPO-GIC algorithm with CNN–LSTM fusion network publication-title: Neural Networks – volume: 23 start-page: 1 year: 2022 end-page: 11 ident: b34 article-title: Prediction of potential miRNA–disease associations based on stacked autoencoder publication-title: Briefings in Bioinformatics – volume: 4 start-page: 1 year: 2010 end-page: 9 ident: b13 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC Systems Biology – volume: 8 start-page: 1040 year: 2019 ident: b46 article-title: Prediction of potential mirna–disease associations through a novel unsupervised deep learning framework with variational autoencoder publication-title: Cells – volume: 77 start-page: 53 year: 2022 end-page: 61 ident: b53 article-title: Interpretable learning based dynamic graph convolutional networks for alzheimer’s disease analysis publication-title: Information Fusion – volume: 82 start-page: 169 year: 2018 end-page: 177 ident: b14 article-title: Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity publication-title: Journal of Biomedical Informatics – volume: 20 year: 2019 ident: b24 article-title: Integrating random walk and binary regression to identify novel miRNA-disease association publication-title: BMC Bioinformatics – reference: (pp. 14441–14450). – volume: 116 start-page: 281 year: 2004 end-page: 297 ident: b2 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell – year: 2022 ident: b18 article-title: Hierarchical graph attention network for miRNA-disease association prediction publication-title: Molecular Therapy – volume: 124 start-page: 308 year: 2020 end-page: 318 ident: b37 article-title: Effective metric learning with co-occurrence embedding for collaborative recommendations publication-title: Neural Networks – volume: 7 start-page: 1 year: 2013 end-page: 12 ident: b27 article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes publication-title: BMC Systems Biology – volume: 105 year: 2020 ident: b25 article-title: Scoring disease-microRNA associations by integrating disease hierarchy into graph convolutional networks publication-title: Pattern Recognition – volume: 30 start-page: 392 year: 2014 end-page: 397 ident: b23 article-title: Protein-driven inference of miRNA–disease associations publication-title: Bioinformatics – volume: 152 start-page: 287 year: 2022 end-page: 299 ident: b9 article-title: Context-aware dynamic neural computational models for accurate Poly(A) signal prediction publication-title: Neural Networks – volume: 16 start-page: 257 year: 2019 end-page: 269 ident: b33 article-title: An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy publication-title: RNA Biology – volume: 190 year: 2022 ident: b51 article-title: MiRNA-Disease association prediction via non-negative matrix factorization based matrix completion publication-title: Signal Processing – volume: 13 year: 2017 ident: b44 article-title: PBMDA: A novel and effective path-based computational model for mirna-disease association prediction publication-title: PLoS Computational Biology – volume: 129 start-page: 385 year: 2020 end-page: 391 ident: b29 article-title: Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations publication-title: Neural Networks – volume: 593 start-page: 602 year: 2021 end-page: 606 ident: b3 article-title: Global miRNA dosage control of embryonic germ layer specification publication-title: Nature – start-page: 1 year: 2021 end-page: 14 ident: b8 article-title: Heterogeneous hypergraph variational autoencoder for link prediction publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 31 start-page: 295 year: 2020 end-page: 308 ident: b40 article-title: Semisupervised text classification by variational autoencoder publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 11 start-page: 333 year: 2014 end-page: 337 ident: b35 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nature Methods – volume: 30 start-page: 392 year: 2014 ident: 10.1016/j.neunet.2023.05.052_b23 article-title: Protein-driven inference of miRNA–disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt677 – volume: 16 start-page: 257 year: 2019 ident: 10.1016/j.neunet.2023.05.052_b33 article-title: An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy publication-title: RNA Biology doi: 10.1080/15476286.2019.1568820 – volume: 77 start-page: 53 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b53 article-title: Interpretable learning based dynamic graph convolutional networks for alzheimer’s disease analysis publication-title: Information Fusion doi: 10.1016/j.inffus.2021.07.013 – volume: 14 start-page: 1468 year: 2017 ident: 10.1016/j.neunet.2023.05.052_b22 article-title: Collective prediction of disease-associated miRNAs based on transduction learning publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2016.2599866 – volume: 175 start-page: 118 year: 2019 ident: 10.1016/j.neunet.2023.05.052_b38 article-title: Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.03.023 – volume: 152 start-page: 287 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b9 article-title: Context-aware dynamic neural computational models for accurate Poly(A) signal prediction publication-title: Neural Networks doi: 10.1016/j.neunet.2022.04.025 – volume: 20 issue: 59 year: 2019 ident: 10.1016/j.neunet.2023.05.052_b24 article-title: Integrating random walk and binary regression to identify novel miRNA-disease association publication-title: BMC Bioinformatics – volume: 28 start-page: 380 year: 2020 ident: 10.1016/j.neunet.2023.05.052_b31 article-title: Learning complex spectral mapping with gated convolutional recurrent networks for monaural speech enhancement publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2019.2955276 – volume: 36 start-page: 2538 year: 2020 ident: 10.1016/j.neunet.2023.05.052_b16 article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz965 – volume: 7 start-page: 1 year: 2013 ident: 10.1016/j.neunet.2023.05.052_b27 article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes publication-title: BMC Systems Biology doi: 10.1186/1752-0509-7-101 – volume: 36 start-page: 330 year: 2020 ident: 10.1016/j.neunet.2023.05.052_b49 article-title: Adaptive boosting-based computational model for predicting potential miRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz475 – volume: 23 start-page: 1 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b34 article-title: Prediction of potential miRNA–disease associations based on stacked autoencoder publication-title: Briefings in Bioinformatics – volume: 50 start-page: D222 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b11 article-title: MirTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions publication-title: Nucleic Acids Research doi: 10.1093/nar/gkab1079 – volume: 145 start-page: 308 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b20 article-title: Minimum spanning tree based graph neural network for emotion classification using EEG publication-title: Neural Networks doi: 10.1016/j.neunet.2021.10.023 – volume: 161 start-page: 565 year: 2023 ident: 10.1016/j.neunet.2023.05.052_b1 article-title: Regularizing transformers with deep probabilistic layers publication-title: Neural Networks doi: 10.1016/j.neunet.2023.01.032 – volume: 42 start-page: D1070 year: 2014 ident: 10.1016/j.neunet.2023.05.052_b15 article-title: HMDD v2.0: a database for experimentally supported human microRNA and disease associations publication-title: Nucleic Acids Research doi: 10.1093/nar/gkt1023 – volume: 124 start-page: 308 year: 2020 ident: 10.1016/j.neunet.2023.05.052_b37 article-title: Effective metric learning with co-occurrence embedding for collaborative recommendations publication-title: Neural Networks doi: 10.1016/j.neunet.2020.01.021 – volume: 82 start-page: 169 year: 2018 ident: 10.1016/j.neunet.2023.05.052_b14 article-title: Predicting microRNA-disease associations using label propagation based on linear neighborhood similarity publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2018.05.005 – volume: 105 year: 2020 ident: 10.1016/j.neunet.2023.05.052_b25 article-title: Scoring disease-microRNA associations by integrating disease hierarchy into graph convolutional networks publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107385 – volume: 140 start-page: 223 year: 2021 ident: 10.1016/j.neunet.2023.05.052_b43 article-title: Cycle consistent network for end-to-end style transfer TTS training publication-title: Neural Networks doi: 10.1016/j.neunet.2021.03.005 – volume: 162 start-page: 21 year: 2023 ident: 10.1016/j.neunet.2023.05.052_b19 article-title: Multi-UAV autonomous collision avoidance based on PPO-GIC algorithm with CNN–LSTM fusion network publication-title: Neural Networks doi: 10.1016/j.neunet.2023.02.027 – volume: 10 start-page: 1857 year: 2011 ident: 10.1016/j.neunet.2023.05.052_b39 article-title: Prioritizing candidate disease miRNAs by topological features in the miRNA target–dysregulated network: Case study of prostate cancer publication-title: Molecular Cancer Therapeutics doi: 10.1158/1535-7163.MCT-11-0055 – volume: 26 start-page: 976 year: 2010 ident: 10.1016/j.neunet.2023.05.052_b45 article-title: GOSemSim: an R package for measuring semantic similarity among GO terms and gene products publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq064 – year: 2022 ident: 10.1016/j.neunet.2023.05.052_b4 article-title: MLRDFM: a multi-view Laplacian regularized deepfm model for predicting mirna-disease associations publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbac079 – volume: 13 year: 2017 ident: 10.1016/j.neunet.2023.05.052_b44 article-title: PBMDA: A novel and effective path-based computational model for mirna-disease association prediction publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1005455 – ident: 10.1016/j.neunet.2023.05.052_b47 doi: 10.1109/CVPR52688.2022.01404 – volume: 31 start-page: 1805 year: 2015 ident: 10.1016/j.neunet.2023.05.052_b42 article-title: Prediction of potential disease-associated microRNAs based on random walk publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv039 – volume: 47 start-page: D1013 year: 2019 ident: 10.1016/j.neunet.2023.05.052_b12 article-title: HMDD v3.0: a database for experimentally supported human microRNA-disease associations publication-title: Nucleic Acids Research doi: 10.1093/nar/gky1010 – volume: 79 start-page: 200 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b21 article-title: Supervised contrastive learning over prototype-label embeddings for network intrusion detection publication-title: Information Fusion doi: 10.1016/j.inffus.2021.09.014 – volume: 61 start-page: 13 year: 2020 ident: 10.1016/j.neunet.2023.05.052_b28 article-title: Feature distillation network for aspect-based sentiment analysis publication-title: Information Fusion doi: 10.1016/j.inffus.2020.03.003 – volume: 16 start-page: 283 year: 2017 ident: 10.1016/j.neunet.2023.05.052_b48 article-title: Meta-path methods for prioritizing candidate disease miRNAs publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2017.2776280 – volume: 27 start-page: 3036 year: 2011 ident: 10.1016/j.neunet.2023.05.052_b32 article-title: Gaussian interaction profile kernels for predicting drug–target interaction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr500 – volume: 207 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b10 article-title: Deep multiscale Gaussian residual networks for contextual-aware translation initiation site recognition publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118004 – volume: 31 start-page: 295 year: 2020 ident: 10.1016/j.neunet.2023.05.052_b40 article-title: Semisupervised text classification by variational autoencoder publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2019.2900734 – volume: 26 start-page: 446 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b5 article-title: Predicting miRNA-disease associations based on multi-view variational graph auto-encoder with matrix factorization publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2021.3088342 – volume: 8 start-page: 1040 year: 2019 ident: 10.1016/j.neunet.2023.05.052_b46 article-title: Prediction of potential mirna–disease associations through a novel unsupervised deep learning framework with variational autoencoder publication-title: Cells doi: 10.3390/cells8091040 – volume: 593 start-page: 602 year: 2021 ident: 10.1016/j.neunet.2023.05.052_b3 article-title: Global miRNA dosage control of embryonic germ layer specification publication-title: Nature doi: 10.1038/s41586-021-03524-0 – volume: 23 start-page: bbab453 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b41 article-title: GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug–protein interaction prediction publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbab453 – volume: 33 start-page: 973 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b30 article-title: Dynamic embedding projection-gated convolutional neural networks for text classification publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2020.3036192 – start-page: 1 year: 2021 ident: 10.1016/j.neunet.2023.05.052_b8 article-title: Heterogeneous hypergraph variational autoencoder for link prediction publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 18 start-page: 1733 year: 2021 ident: 10.1016/j.neunet.2023.05.052_b50 article-title: MISSIM: An incremental learning-based model with applications to the prediction of miRNA-disease association publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics doi: 10.1109/TCBB.2020.3013837 – volume: 116 start-page: 281 year: 2004 ident: 10.1016/j.neunet.2023.05.052_b2 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – year: 2022 ident: 10.1016/j.neunet.2023.05.052_b18 article-title: Hierarchical graph attention network for miRNA-disease association prediction publication-title: Molecular Therapy doi: 10.1016/j.ymthe.2022.01.041 – volume: 129 start-page: 385 year: 2020 ident: 10.1016/j.neunet.2023.05.052_b29 article-title: Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations publication-title: Neural Networks doi: 10.1016/j.neunet.2020.05.027 – volume: 35 start-page: 4364 year: 2019 ident: 10.1016/j.neunet.2023.05.052_b26 article-title: A learning-based framework for miRNA-disease association identification using neural networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz254 – volume: 192 start-page: 25 year: 2021 ident: 10.1016/j.neunet.2023.05.052_b6 article-title: Variational graph auto-encoders for miRNA-disease association prediction publication-title: Methods doi: 10.1016/j.ymeth.2020.08.004 – volume: 190 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b51 article-title: MiRNA-Disease association prediction via non-negative matrix factorization based matrix completion publication-title: Signal Processing doi: 10.1016/j.sigpro.2021.108312 – volume: 16 start-page: 1 year: 2020 ident: 10.1016/j.neunet.2023.05.052_b7 article-title: Deep belief network–based matrix factorization model for MicroRNA-disease associations prediction publication-title: Evolutionary Bioinformatics doi: 10.1177/1176934320919707 – volume: 11 start-page: 333 year: 2014 ident: 10.1016/j.neunet.2023.05.052_b35 article-title: Similarity network fusion for aggregating data types on a genomic scale publication-title: Nature Methods doi: 10.1038/nmeth.2810 – volume: 4 start-page: 1 year: 2010 ident: 10.1016/j.neunet.2023.05.052_b13 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC Systems Biology doi: 10.1186/1752-0509-4-S1-S2 – volume: 44 start-page: 8861 year: 2022 ident: 10.1016/j.neunet.2023.05.052_b17 article-title: Co-VAE: Drug-target binding affinity prediction by co-regularized variational autoencoders publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2021.3120428 – volume: 26 start-page: 1644 year: 2010 ident: 10.1016/j.neunet.2023.05.052_b36 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – start-page: 1 year: 2021 ident: 10.1016/j.neunet.2023.05.052_b52 article-title: Predicting miRNA-disease associations through deep autoencoder with multiple kernel learning publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3105484 |
SSID | ssj0006843 |
Score | 2.6476192 |
Snippet | MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 491 |
SubjectTerms | Disease-miRNA associations Feature fusion Graph autoencoders Neural networks |
Title | Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features |
URI | https://dx.doi.org/10.1016/j.neunet.2023.05.052 https://www.ncbi.nlm.nih.gov/pubmed/37336034 https://www.proquest.com/docview/2827924345 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhvfTSpunLTRoU6FW1VyNp7aMJCU5CfGibkptYvcClXQc_roH-886stAk5hEBhL7tIWqGRZkbSN98w9gXkOGhopKjiWAm011G4KlUoEAqzNF5lsuqruZldq4sbfbPDTvpYGIJVFt2fdXqnrcuXYRnN4e1iMfw-QlNrKFQU6GrJECeoUjXx53-9e4B5mHFGzmFhQaX78LkO49XGbRsJUSmh4-_U8inz9JT72Zmhsz32qviPfJq7-IbtxHafve5zM_CyVN-yvz9xE1wO-jgdlQXebDdLoq0McSXIeAWeYkfryVFBr3KAA-8y43D0ZDnBtFZ06sfLJY74s_g2n_LmQaBrntuhegRMpGuGvtH1O3Z9dvrjZCZKugXh0YptRKpSVPXIGwdp3IBOOskAXiYA0BPpa9zZmBRRksEHcJXGpT_R4F1MrqqaAO_Zbrts40cKBE9ShVjVRjcKjHYhTAB9-WbilHbODxj0o2x94SKnlBi_bQ86-2WzbCzJxo40PnLAxH2t28zF8Uz5uhegfTSnLJqLZ2oe9_K2uNzoDqVp43K7trhDrXHLCkoP2Ic8Ee77AkQtOQL16b__e8Be0lsGGB6y3c1qGz-j07NxR92sPmIvpueXs_k_PQgD6A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcCFlldZSsFIXM1uPLaze6wqqi20e4AW9WbFL2kRzVb7uCLxz5mJnVYcqkqVckpsx_KM5-H5ZszYJ5DjoKGRoopjJVBfR-GqVCFBKM3SeJWLVZ_NzPRCfb3Ul1vsqM-FIVhlkf1ZpnfSurwZltUcXs_nwx8jVLWGUkWBQktGPWKPlYaaWPvzn1uchxln6By2FtS8z5_rQF5t3LSRIJUSugKeWt6ln-6yPzs9dLzLnhUDkh_mOT5nW7F9wXb6yxl42asv2d-f6AWXkz5OZ2WBN5v1gupWhrgUpL0CT7Gr68lRQi9zhgPvrsbhaMpywmkt6diPlyiOuJp_nx3y5paiK57HoX6ETKQ4Qz_o6hW7OP5yfjQV5b4F4VGNrUWqUlT1yBsHadyATjrJAF4mANAT6Wt0bUyKSMrgA7hK496faPAuJldVTYDXbLtdtPENZYInqUKsaqMbBUa7ECaAxnwzcUo75wcM-lW2vhQjpzsxftsedfbLZtpYoo0daXzkgImbXte5GMc97euegPY_prKoL-7p-bGnt8X9RkGUpo2Lzcqii1qjzwpKD9heZoSbuQDVlhyBevvg_35gT6bnZ6f29GT2bZ89pS8ZbfiOba-Xm3iAFtDave84_B8t5QV- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+gated+autoencoder-based+feature+extraction+model+for+inferring+disease-miRNA+associations+based+on+multiview+features&rft.jtitle=Neural+networks&rft.au=Guo%2C+Yanbu&rft.au=Zhou%2C+Dongming&rft.au=Ruan%2C+Xiaoli&rft.au=Cao%2C+Jinde&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=165&rft.spage=491&rft.epage=505&rft_id=info:doi/10.1016%2Fj.neunet.2023.05.052&rft.externalDocID=S0893608023002964 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |