Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences
Neuromorphic data, recording frameless spike events, have attracted considerable attention for the spatiotemporal information components and the event-driven processing fashion. Spiking neural networks (SNNs) represent a family of event-driven models with spatiotemporal dynamics for neuromorphic com...
Saved in:
Published in | Neural networks Vol. 132; pp. 108 - 120 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2020.08.001 |
Cover
Loading…
Abstract | Neuromorphic data, recording frameless spike events, have attracted considerable attention for the spatiotemporal information components and the event-driven processing fashion. Spiking neural networks (SNNs) represent a family of event-driven models with spatiotemporal dynamics for neuromorphic computing, which are widely benchmarked on neuromorphic data. Interestingly, researchers in the machine learning community can argue that recurrent (artificial) neural networks (RNNs) also have the capability to extract spatiotemporal features although they are not event-driven. Thus, the question of “what will happen if we benchmark these two kinds of models together on neuromorphic data” comes out but remains unclear.
In this work, we make a systematic study to compare SNNs and RNNs on neuromorphic data, taking the vision datasets as a case study. First, we identify the similarities and differences between SNNs and RNNs (including the vanilla RNNs and LSTM) from the modeling and learning perspectives. To improve comparability and fairness, we unify the supervised learning algorithm based on backpropagation through time (BPTT), the loss function exploiting the outputs at all timesteps, the network structure with stacked fully-connected or convolutional layers, and the hyper-parameters during training. Especially, given the mainstream loss function used in RNNs, we modify it inspired by the rate coding scheme to approach that of SNNs. Furthermore, we tune the temporal resolution of datasets to test model robustness and generalization. At last, a series of contrast experiments are conducted on two types of neuromorphic datasets: DVS-converted (N-MNIST) and DVS-captured (DVS Gesture). Extensive insights regarding recognition accuracy, feature extraction, temporal resolution and contrast, learning generalization, computational complexity and parameter volume are provided, which are beneficial for the model selection on different workloads and even for the invention of novel neural models in the future. |
---|---|
AbstractList | Neuromorphic data, recording frameless spike events, have attracted considerable attention for the spatiotemporal information components and the event-driven processing fashion. Spiking neural networks (SNNs) represent a family of event-driven models with spatiotemporal dynamics for neuromorphic computing, which are widely benchmarked on neuromorphic data. Interestingly, researchers in the machine learning community can argue that recurrent (artificial) neural networks (RNNs) also have the capability to extract spatiotemporal features although they are not event-driven. Thus, the question of "what will happen if we benchmark these two kinds of models together on neuromorphic data" comes out but remains unclear. In this work, we make a systematic study to compare SNNs and RNNs on neuromorphic data, taking the vision datasets as a case study. First, we identify the similarities and differences between SNNs and RNNs (including the vanilla RNNs and LSTM) from the modeling and learning perspectives. To improve comparability and fairness, we unify the supervised learning algorithm based on backpropagation through time (BPTT), the loss function exploiting the outputs at all timesteps, the network structure with stacked fully-connected or convolutional layers, and the hyper-parameters during training. Especially, given the mainstream loss function used in RNNs, we modify it inspired by the rate coding scheme to approach that of SNNs. Furthermore, we tune the temporal resolution of datasets to test model robustness and generalization. At last, a series of contrast experiments are conducted on two types of neuromorphic datasets: DVS-converted (N-MNIST) and DVS-captured (DVS Gesture). Extensive insights regarding recognition accuracy, feature extraction, temporal resolution and contrast, learning generalization, computational complexity and parameter volume are provided, which are beneficial for the model selection on different workloads and even for the invention of novel neural models in the future. Neuromorphic data, recording frameless spike events, have attracted considerable attention for the spatiotemporal information components and the event-driven processing fashion. Spiking neural networks (SNNs) represent a family of event-driven models with spatiotemporal dynamics for neuromorphic computing, which are widely benchmarked on neuromorphic data. Interestingly, researchers in the machine learning community can argue that recurrent (artificial) neural networks (RNNs) also have the capability to extract spatiotemporal features although they are not event-driven. Thus, the question of "what will happen if we benchmark these two kinds of models together on neuromorphic data" comes out but remains unclear. In this work, we make a systematic study to compare SNNs and RNNs on neuromorphic data, taking the vision datasets as a case study. First, we identify the similarities and differences between SNNs and RNNs (including the vanilla RNNs and LSTM) from the modeling and learning perspectives. To improve comparability and fairness, we unify the supervised learning algorithm based on backpropagation through time (BPTT), the loss function exploiting the outputs at all timesteps, the network structure with stacked fully-connected or convolutional layers, and the hyper-parameters during training. Especially, given the mainstream loss function used in RNNs, we modify it inspired by the rate coding scheme to approach that of SNNs. Furthermore, we tune the temporal resolution of datasets to test model robustness and generalization. At last, a series of contrast experiments are conducted on two types of neuromorphic datasets: DVS-converted (N-MNIST) and DVS-captured (DVS Gesture). Extensive insights regarding recognition accuracy, feature extraction, temporal resolution and contrast, learning generalization, computational complexity and parameter volume are provided, which are beneficial for the model selection on different workloads and even for the invention of novel neural models in the future.Neuromorphic data, recording frameless spike events, have attracted considerable attention for the spatiotemporal information components and the event-driven processing fashion. Spiking neural networks (SNNs) represent a family of event-driven models with spatiotemporal dynamics for neuromorphic computing, which are widely benchmarked on neuromorphic data. Interestingly, researchers in the machine learning community can argue that recurrent (artificial) neural networks (RNNs) also have the capability to extract spatiotemporal features although they are not event-driven. Thus, the question of "what will happen if we benchmark these two kinds of models together on neuromorphic data" comes out but remains unclear. In this work, we make a systematic study to compare SNNs and RNNs on neuromorphic data, taking the vision datasets as a case study. First, we identify the similarities and differences between SNNs and RNNs (including the vanilla RNNs and LSTM) from the modeling and learning perspectives. To improve comparability and fairness, we unify the supervised learning algorithm based on backpropagation through time (BPTT), the loss function exploiting the outputs at all timesteps, the network structure with stacked fully-connected or convolutional layers, and the hyper-parameters during training. Especially, given the mainstream loss function used in RNNs, we modify it inspired by the rate coding scheme to approach that of SNNs. Furthermore, we tune the temporal resolution of datasets to test model robustness and generalization. At last, a series of contrast experiments are conducted on two types of neuromorphic datasets: DVS-converted (N-MNIST) and DVS-captured (DVS Gesture). Extensive insights regarding recognition accuracy, feature extraction, temporal resolution and contrast, learning generalization, computational complexity and parameter volume are provided, which are beneficial for the model selection on different workloads and even for the invention of novel neural models in the future. Neuromorphic data, recording frameless spike events, have attracted considerable attention for the spatiotemporal information components and the event-driven processing fashion. Spiking neural networks (SNNs) represent a family of event-driven models with spatiotemporal dynamics for neuromorphic computing, which are widely benchmarked on neuromorphic data. Interestingly, researchers in the machine learning community can argue that recurrent (artificial) neural networks (RNNs) also have the capability to extract spatiotemporal features although they are not event-driven. Thus, the question of “what will happen if we benchmark these two kinds of models together on neuromorphic data” comes out but remains unclear. In this work, we make a systematic study to compare SNNs and RNNs on neuromorphic data, taking the vision datasets as a case study. First, we identify the similarities and differences between SNNs and RNNs (including the vanilla RNNs and LSTM) from the modeling and learning perspectives. To improve comparability and fairness, we unify the supervised learning algorithm based on backpropagation through time (BPTT), the loss function exploiting the outputs at all timesteps, the network structure with stacked fully-connected or convolutional layers, and the hyper-parameters during training. Especially, given the mainstream loss function used in RNNs, we modify it inspired by the rate coding scheme to approach that of SNNs. Furthermore, we tune the temporal resolution of datasets to test model robustness and generalization. At last, a series of contrast experiments are conducted on two types of neuromorphic datasets: DVS-converted (N-MNIST) and DVS-captured (DVS Gesture). Extensive insights regarding recognition accuracy, feature extraction, temporal resolution and contrast, learning generalization, computational complexity and parameter volume are provided, which are beneficial for the model selection on different workloads and even for the invention of novel neural models in the future. |
Author | Li, Guoqi He, Weihua Deng, Lei Wang, Wenhui Wang, Haoyu Xie, Yuan Tian, Yang Wu, YuJie Ding, Wei |
Author_xml | – sequence: 1 givenname: Weihua orcidid: 0000-0002-2704-9475 surname: He fullname: He, Weihua email: hewh16@mails.tsinghua.edu.cn organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: YuJie surname: Wu fullname: Wu, YuJie email: wu-yj16@mails.tsinghua.edu.cn organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Lei orcidid: 0000-0002-5172-9411 surname: Deng fullname: Deng, Lei email: leideng@ucsb.edu organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA – sequence: 4 givenname: Guoqi surname: Li fullname: Li, Guoqi email: liguoqi@mail.tsinghua.edu.cn organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Haoyu surname: Wang fullname: Wang, Haoyu email: haoyu-wa16@mails.tsinghua.edu.cn organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China – sequence: 6 givenname: Yang surname: Tian fullname: Tian, Yang email: tianyang16@mails.tsinghua.edu.cn organization: Lab of Cognitive Neuroscience, THBI, Tsinghua University, Beijing 100084, China – sequence: 7 givenname: Wei surname: Ding fullname: Ding, Wei email: dingw17@mails.tsinghua.edu.cn organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China – sequence: 8 givenname: Wenhui orcidid: 0000-0002-5884-6098 surname: Wang fullname: Wang, Wenhui email: wwh@mail.tsinghua.edu.cn organization: Department of Precision Instrument, Tsinghua University, Beijing 100084, China – sequence: 9 givenname: Yuan surname: Xie fullname: Xie, Yuan email: yuanxie@ucsb.edu organization: Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32866745$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE9rHCEYh6WkNJu036CUOeYy01dnxnFzCISl_yCk0DRncfQ1cZnRjbqBfPu6TJJDDy0eFHme3-E5IUc-eCTkI4WGAuWft43HvcfcMGDQgGgA6BuyomJY12wQ7IisQKzbmoOAY3KS0hYAuOjad-S4ZYLzoetX5HYT5p2Kzt9VN9fXqVLeVL8Oj-Crsh_DHOLu3unq0SVX_ozKKmFO59WNm91UzOxw0YyzFiN6jek9eWvVlPDD831Kbr9--b35Xl_9_PZjc3lV65azXFsq2MhHGNTAhe6Z6jom0Nquw4FqK_SoR6b6niE3goNh5YgejVWaDxSgPSVny-4uhoc9pixnlzROk_IY9kmyrl1zRoeWF_TTM7ofZzRyF92s4pN8SVGAbgF0DClFtK8IBXkoLrdyKS4PxSUIWYoX7fwvTbuscmmVo3LT_-SLRcYS6dFhlEm7Q0HjIuosTXD_HvgDWmCfHw |
CitedBy_id | crossref_primary_10_1162_neco_a_01571 crossref_primary_10_3389_fnins_2023_1047008 crossref_primary_10_1016_j_dche_2022_100012 crossref_primary_10_1109_COMST_2023_3312221 crossref_primary_10_1016_j_neucom_2024_128819 crossref_primary_10_1109_TII_2024_3393007 crossref_primary_10_3389_fnins_2023_1225871 crossref_primary_10_1109_TVLSI_2023_3282239 crossref_primary_10_1109_TNNLS_2024_3355393 crossref_primary_10_1109_TNNLS_2023_3310263 crossref_primary_10_1109_TASLP_2022_3221011 crossref_primary_10_3389_fnins_2024_1412559 crossref_primary_10_1088_1674_1056_acb9f6 crossref_primary_10_1109_TCSII_2023_3282589 crossref_primary_10_1109_TETCI_2024_3359539 crossref_primary_10_3390_brainsci12070863 crossref_primary_10_3389_fncom_2021_665662 crossref_primary_10_1016_j_neucom_2023_02_026 crossref_primary_10_1088_2634_4386_ac889b crossref_primary_10_1109_TCSII_2021_3108798 crossref_primary_10_1109_TCAD_2021_3138347 crossref_primary_10_1016_j_neucom_2021_05_020 crossref_primary_10_1038_s41598_021_96751_4 crossref_primary_10_1360_TB_2023_0775 crossref_primary_10_1088_2634_4386_ad6cef crossref_primary_10_1007_s11063_023_11247_8 crossref_primary_10_1093_nsr_nwae037 crossref_primary_10_1002_adma_202403937 crossref_primary_10_1038_s41467_024_55094_0 crossref_primary_10_1109_TNNLS_2021_3105961 crossref_primary_10_1088_1741_2552_aceca3 crossref_primary_10_1007_s11390_021_1326_8 crossref_primary_10_1016_j_neucom_2023_126832 crossref_primary_10_1016_j_jmsy_2022_09_003 crossref_primary_10_1016_j_neucom_2022_06_036 crossref_primary_10_3390_electronics14040761 crossref_primary_10_3390_rs16142680 crossref_primary_10_1007_s11633_022_1340_5 crossref_primary_10_1109_TCDS_2024_3396431 crossref_primary_10_1007_s10489_024_05629_1 crossref_primary_10_1038_s41598_023_49579_z crossref_primary_10_1016_j_engappai_2024_109415 crossref_primary_10_3390_electronics11244179 crossref_primary_10_3389_fnins_2021_608567 crossref_primary_10_3390_atmos14020315 crossref_primary_10_1002_adfm_202423548 crossref_primary_10_1109_JPROC_2024_3429360 crossref_primary_10_3390_s22166090 crossref_primary_10_1007_s11432_021_3510_6 crossref_primary_10_1109_TNNLS_2023_3278265 crossref_primary_10_1016_j_neunet_2023_07_008 crossref_primary_10_3390_biomimetics9070444 crossref_primary_10_1109_ACCESS_2024_3523411 crossref_primary_10_3390_electronics12173546 crossref_primary_10_1162_neco_a_01480 crossref_primary_10_1109_TNSRE_2023_3260301 crossref_primary_10_1016_j_neunet_2024_106677 crossref_primary_10_4103_REGENMED_REGENMED_D_24_00012 crossref_primary_10_1109_TKDE_2022_3178176 crossref_primary_10_1007_s11760_023_02569_0 crossref_primary_10_1109_TCDS_2023_3308347 crossref_primary_10_1007_s11571_024_10199_6 crossref_primary_10_1007_s11629_021_6824_1 crossref_primary_10_1038_s41467_024_51641_x crossref_primary_10_1109_TCASAI_2024_3496837 crossref_primary_10_3389_fnins_2022_951164 crossref_primary_10_1016_j_neucom_2025_129804 crossref_primary_10_1038_s41467_024_47811_6 crossref_primary_10_3390_jmse11010051 crossref_primary_10_1007_s11571_024_10133_w crossref_primary_10_1109_ACCESS_2022_3209671 crossref_primary_10_1007_s00521_024_10191_5 crossref_primary_10_1016_j_neunet_2022_07_010 crossref_primary_10_1016_j_neucom_2024_128173 |
Cites_doi | 10.1016/j.neunet.2019.09.005 10.1109/TBCAS.2018.2834558 10.1038/s41586-019-1424-8 10.1016/j.neunet.2020.02.016 10.1609/aaai.v33i01.33011311 10.1016/S0361-9230(99)00161-6 10.3389/fncom.2015.00099 10.3389/fnins.2015.00437 10.1109/MM.2018.112130359 10.1109/JSSC.2020.2970709 10.3389/fnins.2017.00083 10.1109/LRA.2018.2793357 10.1109/TPAMI.2015.2392947 10.1109/JSSC.2012.2230553 10.1109/CVPR.2017.781 10.1126/science.1254642 10.1109/JSSC.2015.2425886 10.3389/fnins.2016.00049 10.1113/jphysiol.1952.sp004764 10.1162/neco.1997.9.8.1735 10.1109/TPAMI.2019.2919301 10.1016/S0893-6080(97)00011-7 10.1109/TNN.2004.832719 10.3389/fnins.2020.00199 10.1109/JSSC.2007.914337 10.1109/TNN.2003.820440 10.3389/fnins.2016.00405 10.3389/fnins.2015.00481 10.3389/fnins.2018.00836 10.1007/s00348-011-1207-y 10.3389/fnins.2018.00331 10.3389/fnins.2017.00309 10.1609/aaai.v33i01.33011327 10.3389/fnins.2016.00184 10.1109/5.58337 10.1109/JSSC.2010.2085952 10.3389/fnins.2013.00223 10.1109/TNNLS.2014.2362542 10.3389/fnins.2016.00508 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neunet.2020.08.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 120 |
ExternalDocumentID | 32866745 10_1016_j_neunet_2020_08_001 S0893608020302902 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c362t-f182b6b07a768c52a4428eff44e71cf8cbcb2a552e6d860d2d2d85edfac671003 |
IEDL.DBID | AIKHN |
ISSN | 0893-6080 1879-2782 |
IngestDate | Fri Sep 05 13:55:14 EDT 2025 Mon Jul 21 05:28:09 EDT 2025 Tue Jul 01 01:24:36 EDT 2025 Thu Apr 24 22:53:09 EDT 2025 Fri Feb 23 02:46:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Long short-term memory Recurrent neural networks Spatiotemporal dynamics Neuromorphic dataset Spiking neural networks |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-f182b6b07a768c52a4428eff44e71cf8cbcb2a552e6d860d2d2d85edfac671003 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-5884-6098 0000-0002-2704-9475 0000-0002-5172-9411 |
PMID | 32866745 |
PQID | 2439621736 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2439621736 pubmed_primary_32866745 crossref_primary_10_1016_j_neunet_2020_08_001 crossref_citationtrail_10_1016_j_neunet_2020_08_001 elsevier_sciencedirect_doi_10_1016_j_neunet_2020_08_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 2020-Dec 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, M., Wu, J., Chua, Y., Luo, X., Pan, Z., & Liu, D., et al. (2019). MPD-AL: an efficient membrane potential driven aggregate-label learning algorithm for spiking neurons. In Iyer, Chua, Li (b22) 2018 Izhikevich (b24) 2004; 15 Vlachas, Pathak, Hunt, Sapsis, Girvan, Ott (b48) 2020 (pp. 21–26). Lichtsteiner, Posch, Delbruck (b31) 2008; 43 Hodgkin, Huxley (b20) 1952; 117 Gers, Schmidhuber, Cummins (b17) 1999 Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., & Di Nolfo, C., et al. (2017). A low power, fully event-based gesture recognition system. In Drazen, Lichtsteiner, Häfliger, Delbrück, Jensen (b15) 2011; 51 Diehl, Cook (b13) 2015; 9 Pan, Chua, Wu, Zhang, Li, Ambikairajah (b39) 2019 Ramesh, Yang, Orchard, Le Thi, Zhang, Xiang (b43) 2019 Mishra, Ghosh, Principe, Thakor, Kukreja (b36) 2017; 11 Paszke, Gross, Massa, Lerer, Bradbury, Chanan (b40) 2019 Deng, Wu, Hu, Liang, Ding, Li (b12) 2020; 121 Mikolov (b35) 2012 Boden (b4) 2002 Li, Liu, Ji, Li, Shi (b30) 2017; 11 Orchard, Jayawant, Cohen, Thakor (b37) 2015; 9 Serrano-Gotarredona, Linares-Barranco (b44) 2013; 48 Orchard, Meyer, Etienne-Cummings, Posch, Thakor, Benosman (b38) 2015; 37 Hochreiter, Schmidhuber (b19) 1997; 9 Kaiser, Mostafa, Neftci (b27) 2018 Cohen, Orchard, Leng, Tapson, Benosman, Van Schaik (b6) 2016; 10 Barranco, Fermuller, Aloimonos, Delbruck (b3) 2016; 10 Conradt, Berner, Cook, Delbruck (b7) 2009 Dua, Graff (b16) 2017 Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., & Shi, L. (2019). Direct training for spiking neural networks: Faster, larger, better. In Wu, Yılmaz, Zhang, Li, Tan (b53) 2020; 14 Werbos (b49) 1990; 78 Delbruck, T. (2008). Frame-free dynamic digital vision. In Maass (b32) 1997; 10 Jozefowicz, Zaremba, Sutskever (b26) 2015 Merolla, Arthur, Alvarez-Icaza, Cassidy, Sawada, Akopyan (b33) 2014; 345 Yang, Liu, Delbruck (b55) 2015; 50 Shrestha, Orchard (b46) 2018 (pp. 7243–7252). Deng, Wang, Li, Li, Liang, Zhu (b11) 2020 Zhao, Ding, Chen, Linares-Barranco, Tang (b57) 2014; 26 Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk (b5) 2014 Vidal, Rebecq, Horstschaefer, Scaramuzza (b47) 2018; 3 (pp. 1311–1318). Serrano-Gotarredona, Linares-Barranco (b45) 2015; 9 Posch, Matolin, Wohlgenannt (b42) 2010; 46 Davies, Srinivasa, Lin, Chinya, Cao, Choday (b8) 2018; 38 Delbruck, Lang (b10) 2013; 7 Kingma, Ba (b28) 2014 Abbott (b1) 1999; 50 Haessig, Cassidy, Alvarez, Benosman, Orchard (b18) 2018; 12 Diehl, Neil, Binas, Cook, Liu, Pfeiffer (b14) 2015 Wu, Chua, Zhang, Li, Tan (b50) 2018; 12 (pp. 1327–1334). Wu, Deng, Li, Zhu, Shi (b51) 2018; 12 Pei, Deng, Song, Zhao, Zhang, Wu (b41) 2019; 572 Miao, Gowayyed, Metze (b34) 2015 Izhikevich (b23) 2003; 14 Hu, Liu, Pfeiffer, Delbruck (b21) 2016; 10 Lee, Delbruck, Pfeiffer (b29) 2016; 10 Xiao, Tang, Ma, Yan, Orchard (b54) 2019 Jin, Zhang, Li (b25) 2018 Diehl (10.1016/j.neunet.2020.08.001_b13) 2015; 9 Iyer (10.1016/j.neunet.2020.08.001_b22) 2018 Yang (10.1016/j.neunet.2020.08.001_b55) 2015; 50 Ramesh (10.1016/j.neunet.2020.08.001_b43) 2019 Dua (10.1016/j.neunet.2020.08.001_b16) 2017 Izhikevich (10.1016/j.neunet.2020.08.001_b23) 2003; 14 Hu (10.1016/j.neunet.2020.08.001_b21) 2016; 10 10.1016/j.neunet.2020.08.001_b2 Deng (10.1016/j.neunet.2020.08.001_b12) 2020; 121 Hodgkin (10.1016/j.neunet.2020.08.001_b20) 1952; 117 Diehl (10.1016/j.neunet.2020.08.001_b14) 2015 Mishra (10.1016/j.neunet.2020.08.001_b36) 2017; 11 10.1016/j.neunet.2020.08.001_b9 Conradt (10.1016/j.neunet.2020.08.001_b7) 2009 Abbott (10.1016/j.neunet.2020.08.001_b1) 1999; 50 Deng (10.1016/j.neunet.2020.08.001_b11) 2020 Lichtsteiner (10.1016/j.neunet.2020.08.001_b31) 2008; 43 Posch (10.1016/j.neunet.2020.08.001_b42) 2010; 46 Wu (10.1016/j.neunet.2020.08.001_b50) 2018; 12 Kaiser (10.1016/j.neunet.2020.08.001_b27) 2018 Davies (10.1016/j.neunet.2020.08.001_b8) 2018; 38 Kingma (10.1016/j.neunet.2020.08.001_b28) 2014 Jin (10.1016/j.neunet.2020.08.001_b25) 2018 Shrestha (10.1016/j.neunet.2020.08.001_b46) 2018 Serrano-Gotarredona (10.1016/j.neunet.2020.08.001_b45) 2015; 9 Mikolov (10.1016/j.neunet.2020.08.001_b35) 2012 Maass (10.1016/j.neunet.2020.08.001_b32) 1997; 10 Miao (10.1016/j.neunet.2020.08.001_b34) 2015 Delbruck (10.1016/j.neunet.2020.08.001_b10) 2013; 7 Vlachas (10.1016/j.neunet.2020.08.001_b48) 2020 Orchard (10.1016/j.neunet.2020.08.001_b38) 2015; 37 Werbos (10.1016/j.neunet.2020.08.001_b49) 1990; 78 Merolla (10.1016/j.neunet.2020.08.001_b33) 2014; 345 Haessig (10.1016/j.neunet.2020.08.001_b18) 2018; 12 10.1016/j.neunet.2020.08.001_b56 Wu (10.1016/j.neunet.2020.08.001_b51) 2018; 12 Serrano-Gotarredona (10.1016/j.neunet.2020.08.001_b44) 2013; 48 Boden (10.1016/j.neunet.2020.08.001_b4) 2002 Cohen (10.1016/j.neunet.2020.08.001_b6) 2016; 10 10.1016/j.neunet.2020.08.001_b52 Wu (10.1016/j.neunet.2020.08.001_b53) 2020; 14 Drazen (10.1016/j.neunet.2020.08.001_b15) 2011; 51 Pei (10.1016/j.neunet.2020.08.001_b41) 2019; 572 Gers (10.1016/j.neunet.2020.08.001_b17) 1999 Izhikevich (10.1016/j.neunet.2020.08.001_b24) 2004; 15 Cho (10.1016/j.neunet.2020.08.001_b5) 2014 Jozefowicz (10.1016/j.neunet.2020.08.001_b26) 2015 Li (10.1016/j.neunet.2020.08.001_b30) 2017; 11 Vidal (10.1016/j.neunet.2020.08.001_b47) 2018; 3 Hochreiter (10.1016/j.neunet.2020.08.001_b19) 1997; 9 Paszke (10.1016/j.neunet.2020.08.001_b40) 2019 Orchard (10.1016/j.neunet.2020.08.001_b37) 2015; 9 Lee (10.1016/j.neunet.2020.08.001_b29) 2016; 10 Pan (10.1016/j.neunet.2020.08.001_b39) 2019 Xiao (10.1016/j.neunet.2020.08.001_b54) 2019 Zhao (10.1016/j.neunet.2020.08.001_b57) 2014; 26 Barranco (10.1016/j.neunet.2020.08.001_b3) 2016; 10 |
References_xml | – reference: Amir, A., Taba, B., Berg, D., Melano, T., McKinstry, J., & Di Nolfo, C., et al. (2017). A low power, fully event-based gesture recognition system. In – volume: 12 start-page: 860 year: 2018 end-page: 870 ident: b18 article-title: Spiking optical flow for event-based sensors using ibm’s truenorth neurosynaptic system publication-title: IEEE Transactions on Biomedical Circuits and Systems – volume: 26 start-page: 1963 year: 2014 end-page: 1978 ident: b57 article-title: Feedforward categorization on AER motion events using cortex-like features in a spiking neural network publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2019 ident: b39 article-title: An efficient and perceptually motivated auditory neural encoding and decoding algorithm for spiking neural networks – volume: 38 start-page: 82 year: 2018 end-page: 99 ident: b8 article-title: Loihi: A neuromorphic manycore processor with on-chip learning publication-title: IEEE Micro – volume: 121 start-page: 294 year: 2020 end-page: 307 ident: b12 article-title: Rethinking the performance comparison between SNNS and ANNS publication-title: Neural Networks – year: 2019 ident: b54 article-title: An event-driven categorization model for AER image sensors using multispike encoding and learning publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: Zhang, M., Wu, J., Chua, Y., Luo, X., Pan, Z., & Liu, D., et al. (2019). MPD-AL: an efficient membrane potential driven aggregate-label learning algorithm for spiking neurons. In – volume: 48 start-page: 827 year: 2013 end-page: 838 ident: b44 article-title: A publication-title: IEEE Journal of Solid-State Circuits – volume: 37 start-page: 2028 year: 2015 end-page: 2040 ident: b38 article-title: Hfirst: a temporal approach to object recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 572 start-page: 106 year: 2019 end-page: 111 ident: b41 article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture publication-title: Nature – volume: 10 start-page: 405 year: 2016 ident: b21 article-title: DVS benchmark datasets for object tracking, action recognition, and object recognition publication-title: Frontiers in Neuroscience – start-page: 8024 year: 2019 end-page: 8035 ident: b40 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Advances in neural information processing systems – volume: 9 start-page: 481 year: 2015 ident: b45 article-title: Poker-DVS and MNIST-DVS. Their history, how they were made, and other details publication-title: Frontiers in Neuroscience – reference: (pp. 21–26). – volume: 43 start-page: 566 year: 2008 end-page: 576 ident: b31 article-title: A 128 publication-title: IEEE Journal of Solid-State Circuits – year: 2002 ident: b4 article-title: A guide to recurrent neural networks and backpropagation publication-title: The Dallas project – year: 2018 ident: b22 article-title: Is neuromorphic mnist neuromorphic? analyzing the discriminative power of neuromorphic datasets in the time domain – year: 2020 ident: b11 article-title: Tianjic: A unified and scalable chip bridging spike-based and continuous neural computation publication-title: IEEE Journal of Solid-State Circuits – start-page: 1 year: 2015 end-page: 8 ident: b14 article-title: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing publication-title: 2015 international joint conference on neural networks (IJCNN) – start-page: 780 year: 2009 end-page: 785 ident: b7 article-title: An embedded AER dynamic vision sensor for low-latency pole balancing publication-title: 2009 IEEE 12th international conference on computer vision workshops, ICCV workshops – year: 2014 ident: b5 article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation – reference: Delbruck, T. (2008). Frame-free dynamic digital vision. In – volume: 14 start-page: 199 year: 2020 ident: b53 article-title: Deep spiking neural networks for large vocabulary automatic speech recognition publication-title: Frontiers in Neuroscience – reference: (pp. 1327–1334). – start-page: 2342 year: 2015 end-page: 2350 ident: b26 article-title: An empirical exploration of recurrent network architectures publication-title: International conference on machine learning – volume: 11 start-page: 309 year: 2017 ident: b30 article-title: Cifar10-dvs: An event-stream dataset for object classification publication-title: Frontiers in Neuroscience – volume: 9 start-page: 437 year: 2015 ident: b37 article-title: Converting static image datasets to spiking neuromorphic datasets using saccades publication-title: Frontiers in Neuroscience – volume: 12 year: 2018 ident: b51 article-title: Spatio-temporal backpropagation for training high-performance spiking neural networks publication-title: Frontiers in Neuroscience – volume: 50 start-page: 2149 year: 2015 end-page: 2160 ident: b55 article-title: A dynamic vision sensor with 1% temporal contrast sensitivity and in-pixel asynchronous delta modulator for event encoding publication-title: IEEE Journal of Solid-State Circuits – volume: 10 start-page: 49 year: 2016 ident: b3 article-title: A dataset for visual navigation with neuromorphic methods publication-title: Frontiers in Neuroscience – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b19 article-title: Long short-term memory publication-title: Neural Computation – volume: 10 start-page: 1659 year: 1997 end-page: 1671 ident: b32 article-title: Networks of spiking neurons: the third generation of neural network models publication-title: Neural Networks – volume: 9 start-page: 99 year: 2015 ident: b13 article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity publication-title: Frontiers in Computational Neuroscience – volume: 117 start-page: 500 year: 1952 end-page: 544 ident: b20 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: The Journal of Physiology – volume: 51 start-page: 1465 year: 2011 ident: b15 article-title: Toward real-time particle tracking using an event-based dynamic vision sensor publication-title: Experiments in Fluids – year: 2012 ident: b35 article-title: Statistical language models based on neural networks publication-title: Presentation at google, mountain view, 2nd april, Vol. 80 – volume: 46 start-page: 259 year: 2010 end-page: 275 ident: b42 article-title: A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS publication-title: IEEE Journal of Solid-State Circuits – year: 1999 ident: b17 article-title: Learning to forget: Continual prediction with LSTM – year: 2014 ident: b28 article-title: Adam: A method for stochastic optimization – volume: 3 start-page: 994 year: 2018 end-page: 1001 ident: b47 article-title: Ultimate SLAM? Combining events, images, and IMU for robust visual slam in HDR and high-speed scenarios publication-title: IEEE Robotics and Automation Letters – volume: 78 start-page: 1550 year: 1990 end-page: 1560 ident: b49 article-title: Backpropagation through time: what it does and how to do it publication-title: Proceedings of the IEEE – year: 2017 ident: b16 article-title: UCI machine learning repository – reference: (pp. 1311–1318). – year: 2019 ident: b43 article-title: DART: distribution aware retinal transform for event-based cameras publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 1412 year: 2018 end-page: 1421 ident: b46 article-title: SLAYER: Spike layer error reassignment in time publication-title: Advances in neural information processing systems – volume: 345 start-page: 668 year: 2014 end-page: 673 ident: b33 article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface publication-title: Science – volume: 10 start-page: 508 year: 2016 ident: b29 article-title: Training deep spiking neural networks using backpropagation publication-title: Frontiers in Neuroscience – start-page: 7005 year: 2018 end-page: 7015 ident: b25 article-title: Hybrid macro/micro level backpropagation for training deep spiking neural networks publication-title: Advances in neural information processing systems – volume: 7 start-page: 223 year: 2013 ident: b10 article-title: Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor publication-title: Frontiers in Neuroscience – volume: 11 start-page: 83 year: 2017 ident: b36 article-title: A saccade based framework for real-time motion segmentation using event based vision sensors publication-title: Frontiers in Neuroscience – volume: 12 start-page: 836 year: 2018 ident: b50 article-title: A spiking neural network framework for robust sound classification publication-title: Frontiers in Neuroscience – reference: (pp. 7243–7252). – volume: 15 start-page: 1063 year: 2004 end-page: 1070 ident: b24 article-title: Which model to use for cortical spiking neurons? publication-title: IEEE Transactions on Neural Networks – year: 2018 ident: b27 article-title: Synaptic plasticity dynamics for deep continuous local learning – reference: Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., & Shi, L. (2019). Direct training for spiking neural networks: Faster, larger, better. In – volume: 10 start-page: 184 year: 2016 ident: b6 article-title: Skimming digits: neuromorphic classification of spike-encoded images publication-title: Frontiers in Neuroscience – start-page: 167 year: 2015 end-page: 174 ident: b34 article-title: EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding publication-title: 2015 IEEE workshop on automatic speech recognition and understanding (ASRU) – volume: 50 start-page: 303 year: 1999 end-page: 304 ident: b1 article-title: Lapicque’s introduction of the integrate-and-fire model neuron (1907) publication-title: Brain Research Bulletin – year: 2020 ident: b48 article-title: Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics publication-title: Neural Networks – volume: 14 start-page: 1569 year: 2003 end-page: 1572 ident: b23 article-title: Simple model of spiking neurons publication-title: IEEE Transactions on Neural Networks – volume: 121 start-page: 294 year: 2020 ident: 10.1016/j.neunet.2020.08.001_b12 article-title: Rethinking the performance comparison between SNNS and ANNS publication-title: Neural Networks doi: 10.1016/j.neunet.2019.09.005 – volume: 12 start-page: 860 issue: 4 year: 2018 ident: 10.1016/j.neunet.2020.08.001_b18 article-title: Spiking optical flow for event-based sensors using ibm’s truenorth neurosynaptic system publication-title: IEEE Transactions on Biomedical Circuits and Systems doi: 10.1109/TBCAS.2018.2834558 – year: 2014 ident: 10.1016/j.neunet.2020.08.001_b5 – volume: 572 start-page: 106 issue: 7767 year: 2019 ident: 10.1016/j.neunet.2020.08.001_b41 article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture publication-title: Nature doi: 10.1038/s41586-019-1424-8 – year: 2020 ident: 10.1016/j.neunet.2020.08.001_b48 article-title: Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics publication-title: Neural Networks doi: 10.1016/j.neunet.2020.02.016 – ident: 10.1016/j.neunet.2020.08.001_b52 doi: 10.1609/aaai.v33i01.33011311 – year: 2019 ident: 10.1016/j.neunet.2020.08.001_b54 article-title: An event-driven categorization model for AER image sensors using multispike encoding and learning publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 50 start-page: 303 issue: 5–6 year: 1999 ident: 10.1016/j.neunet.2020.08.001_b1 article-title: Lapicque’s introduction of the integrate-and-fire model neuron (1907) publication-title: Brain Research Bulletin doi: 10.1016/S0361-9230(99)00161-6 – start-page: 1 year: 2015 ident: 10.1016/j.neunet.2020.08.001_b14 article-title: Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing – volume: 9 start-page: 99 year: 2015 ident: 10.1016/j.neunet.2020.08.001_b13 article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2015.00099 – volume: 9 start-page: 437 year: 2015 ident: 10.1016/j.neunet.2020.08.001_b37 article-title: Converting static image datasets to spiking neuromorphic datasets using saccades publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2015.00437 – volume: 38 start-page: 82 issue: 1 year: 2018 ident: 10.1016/j.neunet.2020.08.001_b8 article-title: Loihi: A neuromorphic manycore processor with on-chip learning publication-title: IEEE Micro doi: 10.1109/MM.2018.112130359 – year: 2020 ident: 10.1016/j.neunet.2020.08.001_b11 article-title: Tianjic: A unified and scalable chip bridging spike-based and continuous neural computation publication-title: IEEE Journal of Solid-State Circuits doi: 10.1109/JSSC.2020.2970709 – volume: 11 start-page: 83 year: 2017 ident: 10.1016/j.neunet.2020.08.001_b36 article-title: A saccade based framework for real-time motion segmentation using event based vision sensors publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2017.00083 – start-page: 8024 year: 2019 ident: 10.1016/j.neunet.2020.08.001_b40 article-title: Pytorch: An imperative style, high-performance deep learning library – start-page: 2342 year: 2015 ident: 10.1016/j.neunet.2020.08.001_b26 article-title: An empirical exploration of recurrent network architectures – ident: 10.1016/j.neunet.2020.08.001_b9 – year: 2017 ident: 10.1016/j.neunet.2020.08.001_b16 – volume: 3 start-page: 994 issue: 2 year: 2018 ident: 10.1016/j.neunet.2020.08.001_b47 article-title: Ultimate SLAM? Combining events, images, and IMU for robust visual slam in HDR and high-speed scenarios publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2793357 – volume: 37 start-page: 2028 issue: 10 year: 2015 ident: 10.1016/j.neunet.2020.08.001_b38 article-title: Hfirst: a temporal approach to object recognition publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2392947 – volume: 48 start-page: 827 issue: 3 year: 2013 ident: 10.1016/j.neunet.2020.08.001_b44 article-title: A 128×1281.5% contrast sensitivity 0.9% FPN 3 μs latency 4 mW asynchronous frame-free dynamic vision sensor using transimpedance preamplifiers publication-title: IEEE Journal of Solid-State Circuits doi: 10.1109/JSSC.2012.2230553 – ident: 10.1016/j.neunet.2020.08.001_b2 doi: 10.1109/CVPR.2017.781 – volume: 345 start-page: 668 issue: 6197 year: 2014 ident: 10.1016/j.neunet.2020.08.001_b33 article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface publication-title: Science doi: 10.1126/science.1254642 – volume: 50 start-page: 2149 issue: 9 year: 2015 ident: 10.1016/j.neunet.2020.08.001_b55 article-title: A dynamic vision sensor with 1% temporal contrast sensitivity and in-pixel asynchronous delta modulator for event encoding publication-title: IEEE Journal of Solid-State Circuits doi: 10.1109/JSSC.2015.2425886 – volume: 10 start-page: 49 year: 2016 ident: 10.1016/j.neunet.2020.08.001_b3 article-title: A dataset for visual navigation with neuromorphic methods publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2016.00049 – volume: 117 start-page: 500 issue: 4 year: 1952 ident: 10.1016/j.neunet.2020.08.001_b20 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: The Journal of Physiology doi: 10.1113/jphysiol.1952.sp004764 – year: 2002 ident: 10.1016/j.neunet.2020.08.001_b4 article-title: A guide to recurrent neural networks and backpropagation – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.neunet.2020.08.001_b19 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – year: 2019 ident: 10.1016/j.neunet.2020.08.001_b43 article-title: DART: distribution aware retinal transform for event-based cameras publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2019.2919301 – start-page: 1412 year: 2018 ident: 10.1016/j.neunet.2020.08.001_b46 article-title: SLAYER: Spike layer error reassignment in time – year: 2012 ident: 10.1016/j.neunet.2020.08.001_b35 article-title: Statistical language models based on neural networks – volume: 10 start-page: 1659 issue: 9 year: 1997 ident: 10.1016/j.neunet.2020.08.001_b32 article-title: Networks of spiking neurons: the third generation of neural network models publication-title: Neural Networks doi: 10.1016/S0893-6080(97)00011-7 – volume: 15 start-page: 1063 issue: 5 year: 2004 ident: 10.1016/j.neunet.2020.08.001_b24 article-title: Which model to use for cortical spiking neurons? publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2004.832719 – year: 2018 ident: 10.1016/j.neunet.2020.08.001_b27 – volume: 14 start-page: 199 year: 2020 ident: 10.1016/j.neunet.2020.08.001_b53 article-title: Deep spiking neural networks for large vocabulary automatic speech recognition publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2020.00199 – start-page: 167 year: 2015 ident: 10.1016/j.neunet.2020.08.001_b34 article-title: EESEN: End-to-end speech recognition using deep RNN models and WFST-based decoding – volume: 43 start-page: 566 issue: 2 year: 2008 ident: 10.1016/j.neunet.2020.08.001_b31 article-title: A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor publication-title: IEEE Journal of Solid-State Circuits doi: 10.1109/JSSC.2007.914337 – volume: 14 start-page: 1569 issue: 6 year: 2003 ident: 10.1016/j.neunet.2020.08.001_b23 article-title: Simple model of spiking neurons publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2003.820440 – volume: 10 start-page: 405 year: 2016 ident: 10.1016/j.neunet.2020.08.001_b21 article-title: DVS benchmark datasets for object tracking, action recognition, and object recognition publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2016.00405 – volume: 9 start-page: 481 year: 2015 ident: 10.1016/j.neunet.2020.08.001_b45 article-title: Poker-DVS and MNIST-DVS. Their history, how they were made, and other details publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2015.00481 – volume: 12 start-page: 836 year: 2018 ident: 10.1016/j.neunet.2020.08.001_b50 article-title: A spiking neural network framework for robust sound classification publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2018.00836 – year: 1999 ident: 10.1016/j.neunet.2020.08.001_b17 – start-page: 780 year: 2009 ident: 10.1016/j.neunet.2020.08.001_b7 article-title: An embedded AER dynamic vision sensor for low-latency pole balancing – start-page: 7005 year: 2018 ident: 10.1016/j.neunet.2020.08.001_b25 article-title: Hybrid macro/micro level backpropagation for training deep spiking neural networks – volume: 51 start-page: 1465 issue: 5 year: 2011 ident: 10.1016/j.neunet.2020.08.001_b15 article-title: Toward real-time particle tracking using an event-based dynamic vision sensor publication-title: Experiments in Fluids doi: 10.1007/s00348-011-1207-y – volume: 12 year: 2018 ident: 10.1016/j.neunet.2020.08.001_b51 article-title: Spatio-temporal backpropagation for training high-performance spiking neural networks publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2018.00331 – volume: 11 start-page: 309 year: 2017 ident: 10.1016/j.neunet.2020.08.001_b30 article-title: Cifar10-dvs: An event-stream dataset for object classification publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2017.00309 – year: 2018 ident: 10.1016/j.neunet.2020.08.001_b22 – year: 2014 ident: 10.1016/j.neunet.2020.08.001_b28 – ident: 10.1016/j.neunet.2020.08.001_b56 doi: 10.1609/aaai.v33i01.33011327 – year: 2019 ident: 10.1016/j.neunet.2020.08.001_b39 – volume: 10 start-page: 184 year: 2016 ident: 10.1016/j.neunet.2020.08.001_b6 article-title: Skimming digits: neuromorphic classification of spike-encoded images publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2016.00184 – volume: 78 start-page: 1550 issue: 10 year: 1990 ident: 10.1016/j.neunet.2020.08.001_b49 article-title: Backpropagation through time: what it does and how to do it publication-title: Proceedings of the IEEE doi: 10.1109/5.58337 – volume: 46 start-page: 259 issue: 1 year: 2010 ident: 10.1016/j.neunet.2020.08.001_b42 article-title: A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS publication-title: IEEE Journal of Solid-State Circuits doi: 10.1109/JSSC.2010.2085952 – volume: 7 start-page: 223 year: 2013 ident: 10.1016/j.neunet.2020.08.001_b10 article-title: Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2013.00223 – volume: 26 start-page: 1963 issue: 9 year: 2014 ident: 10.1016/j.neunet.2020.08.001_b57 article-title: Feedforward categorization on AER motion events using cortex-like features in a spiking neural network publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2362542 – volume: 10 start-page: 508 year: 2016 ident: 10.1016/j.neunet.2020.08.001_b29 article-title: Training deep spiking neural networks using backpropagation publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2016.00508 |
SSID | ssj0006843 |
Score | 2.6415298 |
Snippet | Neuromorphic data, recording frameless spike events, have attracted considerable attention for the spatiotemporal information components and the event-driven... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108 |
SubjectTerms | Action Potentials - physiology Algorithms Databases, Factual Humans Long short-term memory Machine Learning Neural Networks, Computer Neuromorphic dataset Neurons - physiology Recognition, Psychology - physiology Recurrent neural networks Spatiotemporal dynamics Spiking neural networks Vision, Ocular - physiology |
Title | Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences |
URI | https://dx.doi.org/10.1016/j.neunet.2020.08.001 https://www.ncbi.nlm.nih.gov/pubmed/32866745 https://www.proquest.com/docview/2439621736 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9BedkLgwGjYyAj8WqaOLGT7A1VVN0m-kCp1DfLcZwpiLrV2r7ub985dipNGkJCeUkin-Lc2fch3_0O4EYXLCsTpigrdERTFRuqoqqgqY4jzcu84srVDj9MxHiW_pjz-R4Mu1oYl1YZdL_X6a22Dm8GgZuDVdMMphGaWuFKRXGdssIBSh6wpBC8Bwd333-OJzuFLHKfPIfjqSPoKujaNC9rtta4pEoWtVieoTvMfyzUax5oa4lGR3AYXEhy52d5DHvGfoKPXXsGEnbrCcyGvseg_UWmk8maKFuRR3eztKSFsVwskcmNJr6-nLhk0bXZrL-RabNoMOJtwVZbsq6NCiqVU5iN7p-GYxq6KFCNxmlDa4wgSlFGmcLIQnOmUow4TF2nqcliXee61CVTnDMjqlxEFcMr56aqlRYO-ic5g55dWnMOBJ2XhHGVMV0kGHdy5YRpci04Ryc95n1IOs5JHSDGXaeLF9nlkj1Lz2_p-C1dA8wo7gPdUa08xMYb47NOKPKfpSLRCrxBed3JUOIuckcjyprldi0Z_prA6CwRffjshbubS8JyIbKUf3n3dy_gg3vyWTBfobf5vTWX6MtsyivYv_0TX4UV-xebrfLn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD3rx-2N-RvAa16ZN2nqT4Zg6d3AbeAtpmkrFZcNtV_92X5p2IiiC9FLahKbvpe-D_t77IXSpEhqlAZWEJsojofQ1kV6WkFD5nmJpnDFpa4cf-7w7Cu-f2XMDtetaGAurrGy_s-mlta6utCpptqZF0Rp44Gq5LRWFfUoT21ByNWRBZHF9Vx9fOA8eO-gcjCZ2eF0_V4K8jF4YbSGV1Cs7eVbcMD_4p9_iz9IPdbbQRhVA4hu3xm3U0GYHbdbkDLj6VnfRqO0YBs0LHvT7MyxNhp_sycTgsonleAIiLhR21eXYQkVnej67xoNiXEC-W7ZaLafVJCpgUvbQqHM7bHdJxaFAFLimOckhf0h56kUS8grFqAwh39B5HoY68lUeq1SlVDJGNc9i7mUUjpjpLJeK28Y_wT5aMROjDxGG0CWgTEZUJQFknUxaVepYccYgRPdZEwW15ISqGoxbnos3USPJXoWTt7DyFpb-0vObiCxnTV2DjT_GR7VSxLeNIsAH_DHzotahgG_I_hiRRk8WM0Hh1TjkZgFvogOn3OVaAhpzHoXs6N_PPUdr3eFjT_Tu-g_HaN3ecXiYE7Qyf1_oU4hq5ulZuWs_AaiM87I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+SNNs+and+RNNs+on+neuromorphic+vision+datasets%3A+Similarities+and+differences&rft.jtitle=Neural+networks&rft.au=He%2C+Weihua&rft.au=Wu%2C+YuJie&rft.au=Deng%2C+Lei&rft.au=Li%2C+Guoqi&rft.date=2020-12-01&rft.issn=0893-6080&rft.volume=132&rft.spage=108&rft.epage=120&rft_id=info:doi/10.1016%2Fj.neunet.2020.08.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2020_08_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |