Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces

Electroencephalographic measurement of cortical activity subserving motor behavior varies among different individuals, restricting the potential of brain computer interfaces (BCIs) based on motor imagery (MI). How to deal with this variability and thereby improve the accuracy of BCI classification r...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 151; pp. 111 - 120
Main Authors Sun, Biao, Wu, Zexu, Hu, Yong, Li, Ting
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalographic measurement of cortical activity subserving motor behavior varies among different individuals, restricting the potential of brain computer interfaces (BCIs) based on motor imagery (MI). How to deal with this variability and thereby improve the accuracy of BCI classification remains a key issue. This paper proposes a deep learning-based approach to transfer the data distribution from BCI-friendly — “golden subjects” to the data from more typical BCI-illiterate users. In this work, we use the perceptual loss to align the dimensionality-reduced BCI-illiterate data with the data of golden subjects in low dimensions, by which a subject transfer neural network (STNN) is proposed. The network consists of two parts: 1) a generator, which generates the transferred BCI-illiterate features, and 2) a CNN classifier, which is used for the classification of the transferred features, thus outperforming traditional classification methods both in terms of accuracy and robustness. Electroencephalography (EEG) signals from 25 healthy subjects performing MI of the right hand and foot were classified with an average accuracy of 88.2%±5.1%. The proposed model was further validated on the BCI Competition IV dataset 2b, and was demonstrated to be robust to inter-subject variations. The advantages of STNN allow it to bridge the gap between the golden subjects and the BCI-illiterate ones, paving the way to real-time BCI applications.
AbstractList Electroencephalographic measurement of cortical activity subserving motor behavior varies among different individuals, restricting the potential of brain computer interfaces (BCIs) based on motor imagery (MI). How to deal with this variability and thereby improve the accuracy of BCI classification remains a key issue. This paper proposes a deep learning-based approach to transfer the data distribution from BCI-friendly — “golden subjects” to the data from more typical BCI-illiterate users. In this work, we use the perceptual loss to align the dimensionality-reduced BCI-illiterate data with the data of golden subjects in low dimensions, by which a subject transfer neural network (STNN) is proposed. The network consists of two parts: 1) a generator, which generates the transferred BCI-illiterate features, and 2) a CNN classifier, which is used for the classification of the transferred features, thus outperforming traditional classification methods both in terms of accuracy and robustness. Electroencephalography (EEG) signals from 25 healthy subjects performing MI of the right hand and foot were classified with an average accuracy of 88.2%±5.1%. The proposed model was further validated on the BCI Competition IV dataset 2b, and was demonstrated to be robust to inter-subject variations. The advantages of STNN allow it to bridge the gap between the golden subjects and the BCI-illiterate ones, paving the way to real-time BCI applications.
Electroencephalographic measurement of cortical activity subserving motor behavior varies among different individuals, restricting the potential of brain computer interfaces (BCIs) based on motor imagery (MI). How to deal with this variability and thereby improve the accuracy of BCI classification remains a key issue. This paper proposes a deep learning-based approach to transfer the data distribution from BCI-friendly - "golden subjects" to the data from more typical BCI-illiterate users. In this work, we use the perceptual loss to align the dimensionality-reduced BCI-illiterate data with the data of golden subjects in low dimensions, by which a subject transfer neural network (STNN) is proposed. The network consists of two parts: 1) a generator, which generates the transferred BCI-illiterate features, and 2) a CNN classifier, which is used for the classification of the transferred features, thus outperforming traditional classification methods both in terms of accuracy and robustness. Electroencephalography (EEG) signals from 25 healthy subjects performing MI of the right hand and foot were classified with an average accuracy of 88.2%±5.1%. The proposed model was further validated on the BCI Competition IV dataset 2b, and was demonstrated to be robust to inter-subject variations. The advantages of STNN allow it to bridge the gap between the golden subjects and the BCI-illiterate ones, paving the way to real-time BCI applications.Electroencephalographic measurement of cortical activity subserving motor behavior varies among different individuals, restricting the potential of brain computer interfaces (BCIs) based on motor imagery (MI). How to deal with this variability and thereby improve the accuracy of BCI classification remains a key issue. This paper proposes a deep learning-based approach to transfer the data distribution from BCI-friendly - "golden subjects" to the data from more typical BCI-illiterate users. In this work, we use the perceptual loss to align the dimensionality-reduced BCI-illiterate data with the data of golden subjects in low dimensions, by which a subject transfer neural network (STNN) is proposed. The network consists of two parts: 1) a generator, which generates the transferred BCI-illiterate features, and 2) a CNN classifier, which is used for the classification of the transferred features, thus outperforming traditional classification methods both in terms of accuracy and robustness. Electroencephalography (EEG) signals from 25 healthy subjects performing MI of the right hand and foot were classified with an average accuracy of 88.2%±5.1%. The proposed model was further validated on the BCI Competition IV dataset 2b, and was demonstrated to be robust to inter-subject variations. The advantages of STNN allow it to bridge the gap between the golden subjects and the BCI-illiterate ones, paving the way to real-time BCI applications.
Author Hu, Yong
Li, Ting
Sun, Biao
Wu, Zexu
Author_xml – sequence: 1
  givenname: Biao
  orcidid: 0000-0002-4124-9350
  surname: Sun
  fullname: Sun, Biao
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
– sequence: 2
  givenname: Zexu
  orcidid: 0000-0001-7609-9762
  surname: Wu
  fullname: Wu, Zexu
  organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
– sequence: 3
  givenname: Yong
  surname: Hu
  fullname: Hu, Yong
  organization: Department of Orthopaedics and Traumatology, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
– sequence: 4
  givenname: Ting
  surname: Li
  fullname: Li, Ting
  email: t.li619@foxmail.com
  organization: Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35405471$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFTEUxYNU7Gv1G4hk6Wam-TfJTBdCKVqFQje6DpnkRvKcSZ5JptJvb8prXbhQCPdCOL97ueecoZOYIiD0lpKeEiov9n2ELULtGWGsJ7wnbHiBdnRUU8fUyE7QjowT7yQZySk6K2VPCJGj4K_QKR8EGYSiO5Ru0uIg4rLNe7AVh4LhHvJD23WJr_5812xi8ZBx25nN0lr9lfIP7FPGa6qthtV8b1w3mwIOz9mEiG1aD1ttVIitemOhvEYvvVkKvHnq5-jbp49frz93t3c3X66vbjvLJasdeAKzZ9YowrkdvBITFVwCtVIZBkzOniqn2huVm7jyoxPMKe8HLodJGn6O3h_nHnL6uUGpeg3FwrKYCGkrmkkxDRMXQjXpuyfpNq_g9CG3W_KDfjapCS6PAptTKRm8tqGaGlJstoRFU6IfE9F7fUxEPyaiCdctkQaLv-Dn-f_BPhwxaCbdB8i62ADRggu5BaJdCv8e8BtZYqkY
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106863
crossref_primary_10_1016_j_bspc_2023_105621
crossref_primary_10_3389_fnins_2023_1303648
crossref_primary_10_1016_j_bspc_2023_104693
crossref_primary_10_3390_electronics12030604
crossref_primary_10_1364_BOE_487456
crossref_primary_10_3389_fnins_2023_1274320
crossref_primary_10_1111_ina_13062
crossref_primary_10_1088_1741_2552_ad0c61
crossref_primary_10_1080_27706710_2023_2285052
crossref_primary_10_1016_j_engappai_2022_105347
crossref_primary_10_3390_s24010077
crossref_primary_10_1364_BOE_504669
crossref_primary_10_1016_j_irbm_2024_100836
crossref_primary_10_3389_fbioe_2023_917328
crossref_primary_10_1109_ACCESS_2023_3346674
crossref_primary_10_3389_fnhum_2023_1194751
crossref_primary_10_1016_j_bspc_2023_105154
crossref_primary_10_3390_s24051678
crossref_primary_10_3390_s23136210
crossref_primary_10_1109_ACCESS_2023_3299497
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1016_j_bbe_2024_11_003
crossref_primary_10_1016_j_compbiomed_2022_106220
crossref_primary_10_1371_journal_pone_0313261
crossref_primary_10_1109_TNSRE_2023_3243257
crossref_primary_10_1007_s13246_023_01316_6
crossref_primary_10_1038_s41598_024_79202_8
Cites_doi 10.1109/TNSRE.2016.2601240
10.1126/scirobotics.aaw6844
10.1049/htl.2016.0073
10.1137/0515056
10.1371/journal.pone.0207351
10.1016/0028-3932(95)00073-C
10.1016/S0013-4694(97)88021-6
10.1007/s10548-009-0121-6
10.1037/0735-7028.24.2.190
10.4236/jbbs.2019.93006
10.1109/MCI.2015.2501545
10.1016/j.jphysparis.2006.03.012
10.1088/1741-2552/aace8c
10.1109/CVPR.2017.195
10.1016/j.neuron.2018.01.040
10.1088/1741-2552/aaf3f6
10.1088/1741-2560/12/6/066024
10.1016/j.neunet.2009.06.003
10.1007/s10916-019-1270-0
10.1016/j.neuropsychologia.2017.02.005
10.1109/CVPR.2016.265
10.1109/5.488704
10.1016/j.neunet.2020.01.017
10.1155/2017/4653256
10.1016/j.biopsycho.2011.09.006
10.1109/86.847819
10.1109/LSP.2021.3049683
10.1016/j.jneumeth.2015.01.033
10.1109/CVPR.2015.7298965
10.3389/fnsys.2013.00031
10.1073/pnas.1817207116
10.1111/cts.12086
10.1523/JNEUROSCI.2912-18.2019
10.1016/j.compbiomed.2019.02.023
10.1016/j.neuroimage.2015.04.020
10.1038/18581
10.1109/TASE.2020.3021456
10.1113/jphysiol.2006.123067
10.1109/TBME.2004.827062
10.1016/j.neuroimage.2019.07.003
10.1016/j.neuroimage.2010.03.022
10.1109/JBHI.2018.2832538
10.1016/j.jneumeth.2009.04.006
10.1109/TBME.2010.2082539
10.3389/fncom.2019.00087
10.1109/JPROC.2020.2976475
10.1016/j.eswa.2018.08.031
10.1088/1741-2560/14/1/016003
10.1088/1741-2560/13/2/026024
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2022.03.025
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 120
ExternalDocumentID 35405471
10_1016_j_neunet_2022_03_025
S0893608022001034
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c362t-ef0ebf2ca7033c5f7491436e1c67a2e26bf17d77d787d937f8d42d7ff536596a3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Fri Jul 11 01:12:04 EDT 2025
Mon Jul 21 06:00:19 EDT 2025
Tue Jul 01 01:24:40 EDT 2025
Thu Apr 24 22:56:07 EDT 2025
Fri Feb 23 02:39:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords BCI-illiterate
Motor imagery (MI)
Brain computer interfaces (BCIs)
Convolutional neural network (CNN)
Golden subject
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-ef0ebf2ca7033c5f7491436e1c67a2e26bf17d77d787d937f8d42d7ff536596a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4124-9350
0000-0001-7609-9762
PMID 35405471
PQID 2649593447
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2649593447
pubmed_primary_35405471
crossref_citationtrail_10_1016_j_neunet_2022_03_025
crossref_primary_10_1016_j_neunet_2022_03_025
elsevier_sciencedirect_doi_10_1016_j_neunet_2022_03_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
2022-Jul
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Šťastný, Sovka, Kostilek (b52) 2014; 23
Betzel, Bertolero, Gordon, Gratton, Dosenbach, Bassett (b3) 2019; 202
Wierzbicki, Pekarik (b64) 1993; 24
Ahn, Jun (b1) 2015; 243
Faller, Cummings, Saproo, Sajda (b15) 2019; 116
Fu, Tian, Bao, Meng, Shi (b18) 2019; 43
Blankertz, Sannelli, Halder, Hammer, Kübler, Müller (b6) 2010; 51
Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In
Han, Gu, Lo (b23) 2021
Collinger, Kryger, Barbara, Betler, Bowsher, Brown (b9) 2014; 7
Hammer, Halder, Blankertz, Sannelli, Dickhaus, Kleih (b22) 2012; 89
Lotte, Guan (b35) 2010; 58
Dose, Møller, Iversen, Puthusserypady (b12) 2018; 114
Birbaumer, Ghanayim, Hinterberger, Iversen, Kotchoubey, Kübler (b4) 1999; 398
Deng, Li, Han, Shi, Xie (b10) 2020; 108
Lotze, Halsband (b36) 2006; 99
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In
Jayaram, Alamgir, Altun, Scholkopf, Grosse-Wentrup (b26) 2016; 11
Ketkar (b30) 2017
Sitnikova, Hramov, Koronovsky, van Luijtelaar (b50) 2009; 180
Edelman, Meng, Suma, Zurn, Nagarajan, Baxter (b13) 2019; 4
Grossmann, Morlet (b21) 1984; 15
Vasilyev, Liburkina, Yakovlev, Perepelkina, Kaplan (b60) 2017; 97
Schlögl (b49) 2003
Vidaurre, Blankertz (b61) 2010; 23
(pp. 3431–3440).
Hramov, Koronovskii, Makarov, Pavlov, Sitnikova (b24) 2015
Oikonomou, Nikolopoulos, Petrantonakis, Kompatsiaris (b40) 2018
Saha, Baumert (b46) 2019; 13
Scherer, Muller, Neuper, Graimann, Pfurtscheller (b48) 2004; 51
Fahimi, Zhang, Goh, Lee, Ang, Guan (b14) 2019; 16
Kingma, Ba (b31) 2014
(pp. 1251–1258).
Smith, Duff, Groves, Nichols, Jbabdi, Westlye (b51) 2019; 39
Sun, Mu, Wu, Zhu (b53) 2021
Radford, Metz, Chintala (b42) 2015
Johnson, Alahi, Fei-Fei (b29) 2016
Sannelli, Vidaurre, Müller, Blankertz (b47) 2019; 14
Yumatov, Hramov, Grubov, Glazachev, Dudnik, Karatygin (b65) 2019; 9
Unser, Aldroubi (b59) 1996; 84
Dobkin (b11) 2007; 579
Zhang, Yao, Valdés-Sosa, Li, Li, Zhang (b67) 2015; 12
Wang, Collinger, Perez, Tyler-Kabara, Cohen, Birbaumer (b63) 2010; 21
Tabar, Halici (b56) 2016; 14
Zhang, Goodfellow, Metaxas, Odena (b66) 2019
Fazli, Grozea, Danóczy, Blankertz, Popescu, Müller (b16) 2009
Pfurtscheller (b41) 1997; 1
Zhang, Zhao, Wu, Sun, Li (b69) 2021; 18
Zhang, Zhang, Sun, Fan, Zhong (b68) 2019; 107
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b32) 2018; 15
Lu, Li, Ren, Miao (b37) 2016; 25
Middendorf, McMillan, Calhoun, Jones (b38) 2000; 8
Tan, Sun, Zhang (b57) 2018
Blankertz, Sanelli, Halder, Hammer, Kübler, Müller (b5) 2009; 10
Sun, Zhao, Zhang, Bai, Li (b55) 2020; 18
Goswami, Chan (b20) 2011
Liu, Breuel, Kautz (b33) 2017
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
Raghu, Sriraam, Temel, Rao, Kubben (b43) 2020; 124
(pp. 2414–2423).
Vyas, Even-Chen, Stavisky, Ryu, Nuyujukian, Shenoy (b62) 2018; 97
Braun, Kranczioch, Liepert, Dettmers, Zich, Büsching (b7) 2017; 2017
Fazli, Popescu, Danóczy, Blankertz, Müller, Grozea (b17) 2009; 22
Jiao, Zhang, Chen, Yin, Jin, Wang (b28) 2018; 23
Ang, Chin, Zhang, Guan (b2) 2008
Zich, Debener, Kranczioch, Bleichner, Gutberlet, De Vos (b70) 2015; 114
Nijboer, Birbaumer, Kubler (b39) 2010; 4
Townsend, Platsko (b58) 2016; 13
Rönnberg, Lunner, Zekveld, Sörqvist, Danielsson, Lyxell (b44) 2013; 7
Jeannerod (b27) 1995; 33
Saha, Ahmed, Mostafa, Khandoker, Hadjileontiadis (b45) 2017; 4
Sun, Zhang, Wu, Zhang, Li (b54) 2021; 28
Ioffe, Szegedy (b25) 2015
Lotte (10.1016/j.neunet.2022.03.025_b35) 2010; 58
Tabar (10.1016/j.neunet.2022.03.025_b56) 2016; 14
Sitnikova (10.1016/j.neunet.2022.03.025_b50) 2009; 180
Dose (10.1016/j.neunet.2022.03.025_b12) 2018; 114
Jiao (10.1016/j.neunet.2022.03.025_b28) 2018; 23
Ang (10.1016/j.neunet.2022.03.025_b2) 2008
Pfurtscheller (10.1016/j.neunet.2022.03.025_b41) 1997; 1
Fazli (10.1016/j.neunet.2022.03.025_b16) 2009
Lotze (10.1016/j.neunet.2022.03.025_b36) 2006; 99
Grossmann (10.1016/j.neunet.2022.03.025_b21) 1984; 15
Zhang (10.1016/j.neunet.2022.03.025_b69) 2021; 18
Oikonomou (10.1016/j.neunet.2022.03.025_b40) 2018
Fahimi (10.1016/j.neunet.2022.03.025_b14) 2019; 16
10.1016/j.neunet.2022.03.025_b19
Kingma (10.1016/j.neunet.2022.03.025_b31) 2014
Sannelli (10.1016/j.neunet.2022.03.025_b47) 2019; 14
Townsend (10.1016/j.neunet.2022.03.025_b58) 2016; 13
Blankertz (10.1016/j.neunet.2022.03.025_b6) 2010; 51
Sun (10.1016/j.neunet.2022.03.025_b54) 2021; 28
Blankertz (10.1016/j.neunet.2022.03.025_b5) 2009; 10
Wang (10.1016/j.neunet.2022.03.025_b63) 2010; 21
Ahn (10.1016/j.neunet.2022.03.025_b1) 2015; 243
Johnson (10.1016/j.neunet.2022.03.025_b29) 2016
Betzel (10.1016/j.neunet.2022.03.025_b3) 2019; 202
Sun (10.1016/j.neunet.2022.03.025_b55) 2020; 18
Vasilyev (10.1016/j.neunet.2022.03.025_b60) 2017; 97
Birbaumer (10.1016/j.neunet.2022.03.025_b4) 1999; 398
Zhang (10.1016/j.neunet.2022.03.025_b66) 2019
Vyas (10.1016/j.neunet.2022.03.025_b62) 2018; 97
Lawhern (10.1016/j.neunet.2022.03.025_b32) 2018; 15
Tan (10.1016/j.neunet.2022.03.025_b57) 2018
10.1016/j.neunet.2022.03.025_b8
Deng (10.1016/j.neunet.2022.03.025_b10) 2020; 108
Lu (10.1016/j.neunet.2022.03.025_b37) 2016; 25
Ioffe (10.1016/j.neunet.2022.03.025_b25) 2015
Scherer (10.1016/j.neunet.2022.03.025_b48) 2004; 51
10.1016/j.neunet.2022.03.025_b34
Rönnberg (10.1016/j.neunet.2022.03.025_b44) 2013; 7
Dobkin (10.1016/j.neunet.2022.03.025_b11) 2007; 579
Radford (10.1016/j.neunet.2022.03.025_b42) 2015
Šťastný (10.1016/j.neunet.2022.03.025_b52) 2014; 23
Unser (10.1016/j.neunet.2022.03.025_b59) 1996; 84
Fu (10.1016/j.neunet.2022.03.025_b18) 2019; 43
Braun (10.1016/j.neunet.2022.03.025_b7) 2017; 2017
Jayaram (10.1016/j.neunet.2022.03.025_b26) 2016; 11
Saha (10.1016/j.neunet.2022.03.025_b45) 2017; 4
Liu (10.1016/j.neunet.2022.03.025_b33) 2017
Raghu (10.1016/j.neunet.2022.03.025_b43) 2020; 124
Vidaurre (10.1016/j.neunet.2022.03.025_b61) 2010; 23
Collinger (10.1016/j.neunet.2022.03.025_b9) 2014; 7
Han (10.1016/j.neunet.2022.03.025_b23) 2021
Hammer (10.1016/j.neunet.2022.03.025_b22) 2012; 89
Jeannerod (10.1016/j.neunet.2022.03.025_b27) 1995; 33
Zich (10.1016/j.neunet.2022.03.025_b70) 2015; 114
Wierzbicki (10.1016/j.neunet.2022.03.025_b64) 1993; 24
Smith (10.1016/j.neunet.2022.03.025_b51) 2019; 39
Yumatov (10.1016/j.neunet.2022.03.025_b65) 2019; 9
Fazli (10.1016/j.neunet.2022.03.025_b17) 2009; 22
Nijboer (10.1016/j.neunet.2022.03.025_b39) 2010; 4
Sun (10.1016/j.neunet.2022.03.025_b53) 2021
Edelman (10.1016/j.neunet.2022.03.025_b13) 2019; 4
Zhang (10.1016/j.neunet.2022.03.025_b67) 2015; 12
Middendorf (10.1016/j.neunet.2022.03.025_b38) 2000; 8
Saha (10.1016/j.neunet.2022.03.025_b46) 2019; 13
Ketkar (10.1016/j.neunet.2022.03.025_b30) 2017
Zhang (10.1016/j.neunet.2022.03.025_b68) 2019; 107
Schlögl (10.1016/j.neunet.2022.03.025_b49) 2003
Goswami (10.1016/j.neunet.2022.03.025_b20) 2011
Hramov (10.1016/j.neunet.2022.03.025_b24) 2015
Faller (10.1016/j.neunet.2022.03.025_b15) 2019; 116
References_xml – volume: 7
  start-page: 52
  year: 2014
  end-page: 59
  ident: b9
  article-title: Collaborative approach in the development of High-Performance Brain–Computer interfaces for a neuroprosthetic arm: Translation from animal models to human control
  publication-title: Clinical and Translational Science
– volume: 14
  year: 2016
  ident: b56
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: Journal of Neural Engineering
– volume: 84
  start-page: 626
  year: 1996
  end-page: 638
  ident: b59
  article-title: A review of wavelets in biomedical applications
  publication-title: Proceedings of the IEEE
– reference: Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. In
– start-page: 700
  year: 2017
  end-page: 708
  ident: b33
  article-title: Unsupervised image-to-image translation networks
  publication-title: Advances in neural information processing systems
– volume: 25
  start-page: 566
  year: 2016
  end-page: 576
  ident: b37
  article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 14
  year: 2019
  ident: b47
  article-title: A large scale screening study with a SMR-based BCI: Categorization of BCI users and differences in their SMR activity
  publication-title: PLoS One
– volume: 51
  start-page: 1303
  year: 2010
  end-page: 1309
  ident: b6
  article-title: Neurophysiological predictor of SMR-based BCI performance
  publication-title: Neuroimage
– start-page: 513
  year: 2009
  end-page: 521
  ident: b16
  article-title: Subject independent EEG-based BCI decoding
  publication-title: Advances in neural information processing systems
– year: 2015
  ident: b42
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– start-page: 1
  year: 2021
  end-page: 4
  ident: b23
  article-title: Semi-supervised contrastive learning for generalizable motor imagery EEG classification
  publication-title: 2021 IEEE 17th international conference on wearable and implantable body sensor networks (BSN)
– volume: 21
  start-page: 157
  year: 2010
  end-page: 178
  ident: b63
  article-title: Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity
  publication-title: Physical Medicine and Rehabilitation Clinics
– reference: Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In
– year: 2014
  ident: b31
  article-title: Adam: A method for stochastic optimization
– start-page: 207
  year: 2018
  end-page: 210
  ident: b40
  article-title: Sparse kernel machines for motor imagery eeg classification
  publication-title: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC)
– volume: 10
  start-page: P84
  year: 2009
  ident: b5
  article-title: Predicting BCI performance to study BCI illiteracy
  publication-title: BMC Neuroscience
– volume: 15
  year: 2018
  ident: b32
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
– volume: 23
  start-page: 194
  year: 2010
  end-page: 198
  ident: b61
  article-title: Towards a cure for BCI illiteracy
  publication-title: Brain Topography
– volume: 97
  start-page: 56
  year: 2017
  end-page: 65
  ident: b60
  article-title: Assessing motor imagery in brain-computer interface training: psychological and neurophysiological correlates
  publication-title: Neuropsychologia
– volume: 108
  start-page: 485
  year: 2020
  end-page: 532
  ident: b10
  article-title: Model compression and hardware acceleration for neural networks: A comprehensive survey
  publication-title: Proceedings of the IEEE
– volume: 22
  start-page: 1305
  year: 2009
  end-page: 1312
  ident: b17
  article-title: Subject-independent mental state classification in single trials
  publication-title: Neural Networks
– volume: 4
  start-page: 55
  year: 2010
  ident: b39
  article-title: The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study
  publication-title: Frontiers in Neuroscience
– volume: 243
  start-page: 103
  year: 2015
  end-page: 110
  ident: b1
  article-title: Performance variation in motor imagery brain–computer interface: a brief review
  publication-title: Journal of Neuroscience Methods
– volume: 114
  start-page: 532
  year: 2018
  end-page: 542
  ident: b12
  article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs
  publication-title: Expert Systems with Applications
– volume: 116
  start-page: 6482
  year: 2019
  end-page: 6490
  ident: b15
  article-title: Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task
  publication-title: Proceedings of the National Academy of Sciences
– volume: 97
  start-page: 1177
  year: 2018
  end-page: 1186
  ident: b62
  article-title: Neural population dynamics underlying motor learning transfer
  publication-title: Neuron
– volume: 2017
  year: 2017
  ident: b7
  article-title: Motor imagery impairment in postacute stroke patients
  publication-title: Neural Plasticity
– volume: 4
  start-page: 39
  year: 2017
  end-page: 43
  ident: b45
  article-title: Enhanced inter-subject brain computer interface with associative sensorimotor oscillations
  publication-title: Healthcare Technology Letters
– volume: 28
  start-page: 219
  year: 2021
  end-page: 223
  ident: b54
  article-title: Adaptive spatiotemporal graph convolutional networks for motor imagery classification
  publication-title: IEEE Signal Processing Letters
– volume: 18
  start-page: 541
  year: 2020
  end-page: 551
  ident: b55
  article-title: Eeg motor imagery classification with sparse spectrotemporal decomposition and deep learning
  publication-title: IEEE Transactions on Automation Science and Engineering
– start-page: 7354
  year: 2019
  end-page: 7363
  ident: b66
  article-title: Self-attention generative adversarial networks
  publication-title: International conference on machine learning
– start-page: 195
  year: 2017
  end-page: 208
  ident: b30
  article-title: Introduction to pytorch
  publication-title: Deep learning with Python
– year: 2015
  ident: b25
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 107
  start-page: 248
  year: 2019
  end-page: 256
  ident: b68
  article-title: Portable brain-computer interface based on novel convolutional neural network
  publication-title: Computers in Biology and Medicine
– start-page: 916
  year: 2018
  end-page: 920
  ident: b57
  article-title: Deep transfer learning for EEG-based brain computer interface
  publication-title: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP)
– volume: 39
  start-page: 6136
  year: 2019
  end-page: 6149
  ident: b51
  article-title: Structural variability in the human brain reflects fine-grained functional architecture at the population level
  publication-title: Journal of Neuroscience
– volume: 4
  year: 2019
  ident: b13
  article-title: Noninvasive neuroimaging enhances continuous neural tracking for robotic device control
  publication-title: Science Robotics
– volume: 23
  start-page: 631
  year: 2018
  end-page: 641
  ident: b28
  article-title: Sparse group representation model for motor imagery EEG classification
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 51
  start-page: 979
  year: 2004
  end-page: 984
  ident: b48
  article-title: An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 13
  year: 2016
  ident: b58
  article-title: Pushing the P300-based brain–computer interface beyond 100 bpm: Extending performance guided constraints into the temporal domain
  publication-title: Journal of Neural Engineering
– volume: 114
  start-page: 438
  year: 2015
  end-page: 447
  ident: b70
  article-title: Real-time EEG feedback during simultaneous EEG–fMRI identifies the cortical signature of motor imagery
  publication-title: Neuroimage
– year: 2015
  ident: b24
  article-title: Wavelets in neuroscience
– start-page: 694
  year: 2016
  end-page: 711
  ident: b29
  article-title: Perceptual losses for real-time style transfer and super-resolution
  publication-title: European conference on computer vision
– volume: 1
  start-page: 26
  year: 1997
  ident: b41
  article-title: EEG event-related desynchronization (ERD) and synchronization (ERS)
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 24
  start-page: 190
  year: 1993
  ident: b64
  article-title: A meta-analysis of psychotherapy dropout.
  publication-title: Professional Psychology: Research and Practice
– volume: 18
  year: 2021
  ident: b69
  article-title: Motor imagery recognition with automatic EEG channel selection and deep learning
  publication-title: Journal of Neural Engineering
– volume: 579
  start-page: 637
  year: 2007
  end-page: 642
  ident: b11
  article-title: Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation
  publication-title: The Journal of Physiology
– start-page: 2390
  year: 2008
  end-page: 2397
  ident: b2
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence)
– volume: 33
  start-page: 1419
  year: 1995
  end-page: 1432
  ident: b27
  article-title: Mental imagery in the motor context
  publication-title: Neuropsychologia
– volume: 58
  start-page: 355
  year: 2010
  end-page: 362
  ident: b35
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 7
  start-page: 31
  year: 2013
  ident: b44
  article-title: The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances
  publication-title: Frontiers in Systems Neuroscience
– volume: 15
  start-page: 723
  year: 1984
  end-page: 736
  ident: b21
  article-title: Decomposition of Hardy functions into square integrable wavelets of constant shape
  publication-title: SIAM Journal on Mathematical Analysis
– volume: 11
  start-page: 20
  year: 2016
  end-page: 31
  ident: b26
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Computational Intelligence Magazine
– volume: 16
  year: 2019
  ident: b14
  article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI
  publication-title: Journal of Neural Engineering
– volume: 89
  start-page: 80
  year: 2012
  end-page: 86
  ident: b22
  article-title: Psychological predictors of SMR-BCI performance
  publication-title: Biological Psychology
– year: 2011
  ident: b20
  article-title: Fundamentals of wavelets: Theory, algorithms, and applications, Vol. 233
– volume: 124
  start-page: 202
  year: 2020
  end-page: 212
  ident: b43
  article-title: EEG based multi-class seizure type classification using convolutional neural network and transfer learning
  publication-title: Neural Networks
– volume: 9
  start-page: 67
  year: 2019
  end-page: 77
  ident: b65
  article-title: Possibility for recognition of psychic brain activity with continuous wavelet analysis of EEG
  publication-title: Journal of Behavioral and Brain Science
– volume: 12
  year: 2015
  ident: b67
  article-title: Efficient resting-state EEG network facilitates motor imagery performance
  publication-title: Journal of Neural Engineering
– volume: 180
  start-page: 304
  year: 2009
  end-page: 316
  ident: b50
  article-title: Sleep spindles and spike–wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis
  publication-title: Journal of Neuroscience Methods
– volume: 23
  year: 2014
  ident: b52
  article-title: Overcoming inter-subject variability in BCI using EEG-based identification
  publication-title: Radioengineering
– volume: 202
  year: 2019
  ident: b3
  article-title: The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability
  publication-title: Neuroimage
– volume: 43
  start-page: 169
  year: 2019
  ident: b18
  article-title: Improvement motor imagery EEG classification based on regularized linear discriminant analysis
  publication-title: Journal of Medical Systems
– volume: 8
  start-page: 211
  year: 2000
  end-page: 214
  ident: b38
  article-title: Brain-computer interfaces based on the steady-state visual-evoked response
  publication-title: IEEE Transactions on Rehabilitation Engineering
– reference: (pp. 3431–3440).
– volume: 99
  start-page: 386
  year: 2006
  end-page: 395
  ident: b36
  article-title: Motor imagery
  publication-title: Journal de Physiologie (Paris)
– reference: (pp. 1251–1258).
– volume: 13
  start-page: 87
  year: 2019
  ident: b46
  article-title: Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review
  publication-title: Frontiers in Computational Neuroscience
– year: 2003
  ident: b49
  article-title: Outcome of the BCI-competition 2003 on the Graz data set
– year: 2021
  ident: b53
  article-title: Training-free deep generative networks for compressed sensing of neural action potentials
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 398
  start-page: 297
  year: 1999
  end-page: 298
  ident: b4
  article-title: A spelling device for the paralysed
  publication-title: Nature
– reference: Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In
– reference: (pp. 2414–2423).
– year: 2011
  ident: 10.1016/j.neunet.2022.03.025_b20
– volume: 25
  start-page: 566
  issue: 6
  year: 2016
  ident: 10.1016/j.neunet.2022.03.025_b37
  article-title: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2016.2601240
– year: 2015
  ident: 10.1016/j.neunet.2022.03.025_b25
– volume: 18
  issue: 1
  year: 2021
  ident: 10.1016/j.neunet.2022.03.025_b69
  article-title: Motor imagery recognition with automatic EEG channel selection and deep learning
  publication-title: Journal of Neural Engineering
– start-page: 2390
  year: 2008
  ident: 10.1016/j.neunet.2022.03.025_b2
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
– volume: 4
  issue: 31
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b13
  article-title: Noninvasive neuroimaging enhances continuous neural tracking for robotic device control
  publication-title: Science Robotics
  doi: 10.1126/scirobotics.aaw6844
– volume: 4
  start-page: 39
  issue: 1
  year: 2017
  ident: 10.1016/j.neunet.2022.03.025_b45
  article-title: Enhanced inter-subject brain computer interface with associative sensorimotor oscillations
  publication-title: Healthcare Technology Letters
  doi: 10.1049/htl.2016.0073
– year: 2003
  ident: 10.1016/j.neunet.2022.03.025_b49
– start-page: 700
  year: 2017
  ident: 10.1016/j.neunet.2022.03.025_b33
  article-title: Unsupervised image-to-image translation networks
– volume: 15
  start-page: 723
  issue: 4
  year: 1984
  ident: 10.1016/j.neunet.2022.03.025_b21
  article-title: Decomposition of Hardy functions into square integrable wavelets of constant shape
  publication-title: SIAM Journal on Mathematical Analysis
  doi: 10.1137/0515056
– volume: 14
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b47
  article-title: A large scale screening study with a SMR-based BCI: Categorization of BCI users and differences in their SMR activity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0207351
– volume: 33
  start-page: 1419
  issue: 11
  year: 1995
  ident: 10.1016/j.neunet.2022.03.025_b27
  article-title: Mental imagery in the motor context
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(95)00073-C
– volume: 1
  start-page: 26
  issue: 103
  year: 1997
  ident: 10.1016/j.neunet.2022.03.025_b41
  article-title: EEG event-related desynchronization (ERD) and synchronization (ERS)
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/S0013-4694(97)88021-6
– volume: 23
  start-page: 194
  issue: 2
  year: 2010
  ident: 10.1016/j.neunet.2022.03.025_b61
  article-title: Towards a cure for BCI illiteracy
  publication-title: Brain Topography
  doi: 10.1007/s10548-009-0121-6
– volume: 24
  start-page: 190
  issue: 2
  year: 1993
  ident: 10.1016/j.neunet.2022.03.025_b64
  article-title: A meta-analysis of psychotherapy dropout.
  publication-title: Professional Psychology: Research and Practice
  doi: 10.1037/0735-7028.24.2.190
– volume: 9
  start-page: 67
  issue: 3
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b65
  article-title: Possibility for recognition of psychic brain activity with continuous wavelet analysis of EEG
  publication-title: Journal of Behavioral and Brain Science
  doi: 10.4236/jbbs.2019.93006
– volume: 11
  start-page: 20
  issue: 1
  year: 2016
  ident: 10.1016/j.neunet.2022.03.025_b26
  article-title: Transfer learning in brain-computer interfaces
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2015.2501545
– volume: 99
  start-page: 386
  issue: 4–6
  year: 2006
  ident: 10.1016/j.neunet.2022.03.025_b36
  article-title: Motor imagery
  publication-title: Journal de Physiologie (Paris)
  doi: 10.1016/j.jphysparis.2006.03.012
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2022.03.025_b32
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aace8c
– ident: 10.1016/j.neunet.2022.03.025_b8
  doi: 10.1109/CVPR.2017.195
– volume: 97
  start-page: 1177
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2022.03.025_b62
  article-title: Neural population dynamics underlying motor learning transfer
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.01.040
– volume: 16
  issue: 2
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b14
  article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aaf3f6
– volume: 12
  issue: 6
  year: 2015
  ident: 10.1016/j.neunet.2022.03.025_b67
  article-title: Efficient resting-state EEG network facilitates motor imagery performance
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/12/6/066024
– volume: 22
  start-page: 1305
  issue: 9
  year: 2009
  ident: 10.1016/j.neunet.2022.03.025_b17
  article-title: Subject-independent mental state classification in single trials
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.06.003
– volume: 43
  start-page: 169
  issue: 6
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b18
  article-title: Improvement motor imagery EEG classification based on regularized linear discriminant analysis
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-019-1270-0
– volume: 97
  start-page: 56
  year: 2017
  ident: 10.1016/j.neunet.2022.03.025_b60
  article-title: Assessing motor imagery in brain-computer interface training: psychological and neurophysiological correlates
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2017.02.005
– ident: 10.1016/j.neunet.2022.03.025_b19
  doi: 10.1109/CVPR.2016.265
– start-page: 207
  year: 2018
  ident: 10.1016/j.neunet.2022.03.025_b40
  article-title: Sparse kernel machines for motor imagery eeg classification
– volume: 84
  start-page: 626
  issue: 4
  year: 1996
  ident: 10.1016/j.neunet.2022.03.025_b59
  article-title: A review of wavelets in biomedical applications
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.488704
– volume: 124
  start-page: 202
  year: 2020
  ident: 10.1016/j.neunet.2022.03.025_b43
  article-title: EEG based multi-class seizure type classification using convolutional neural network and transfer learning
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.01.017
– start-page: 916
  year: 2018
  ident: 10.1016/j.neunet.2022.03.025_b57
  article-title: Deep transfer learning for EEG-based brain computer interface
– year: 2015
  ident: 10.1016/j.neunet.2022.03.025_b42
– volume: 2017
  year: 2017
  ident: 10.1016/j.neunet.2022.03.025_b7
  article-title: Motor imagery impairment in postacute stroke patients
  publication-title: Neural Plasticity
  doi: 10.1155/2017/4653256
– volume: 89
  start-page: 80
  issue: 1
  year: 2012
  ident: 10.1016/j.neunet.2022.03.025_b22
  article-title: Psychological predictors of SMR-BCI performance
  publication-title: Biological Psychology
  doi: 10.1016/j.biopsycho.2011.09.006
– volume: 4
  start-page: 55
  year: 2010
  ident: 10.1016/j.neunet.2022.03.025_b39
  article-title: The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study
  publication-title: Frontiers in Neuroscience
– volume: 8
  start-page: 211
  issue: 2
  year: 2000
  ident: 10.1016/j.neunet.2022.03.025_b38
  article-title: Brain-computer interfaces based on the steady-state visual-evoked response
  publication-title: IEEE Transactions on Rehabilitation Engineering
  doi: 10.1109/86.847819
– volume: 28
  start-page: 219
  year: 2021
  ident: 10.1016/j.neunet.2022.03.025_b54
  article-title: Adaptive spatiotemporal graph convolutional networks for motor imagery classification
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2021.3049683
– volume: 243
  start-page: 103
  year: 2015
  ident: 10.1016/j.neunet.2022.03.025_b1
  article-title: Performance variation in motor imagery brain–computer interface: a brief review
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2015.01.033
– volume: 10
  start-page: P84
  issue: Suppl 1
  year: 2009
  ident: 10.1016/j.neunet.2022.03.025_b5
  article-title: Predicting BCI performance to study BCI illiteracy
  publication-title: BMC Neuroscience
– start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2022.03.025_b23
  article-title: Semi-supervised contrastive learning for generalizable motor imagery EEG classification
– start-page: 513
  year: 2009
  ident: 10.1016/j.neunet.2022.03.025_b16
  article-title: Subject independent EEG-based BCI decoding
– ident: 10.1016/j.neunet.2022.03.025_b34
  doi: 10.1109/CVPR.2015.7298965
– volume: 7
  start-page: 31
  year: 2013
  ident: 10.1016/j.neunet.2022.03.025_b44
  article-title: The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances
  publication-title: Frontiers in Systems Neuroscience
  doi: 10.3389/fnsys.2013.00031
– volume: 116
  start-page: 6482
  issue: 13
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b15
  article-title: Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1817207116
– start-page: 195
  year: 2017
  ident: 10.1016/j.neunet.2022.03.025_b30
  article-title: Introduction to pytorch
– volume: 7
  start-page: 52
  issue: 1
  year: 2014
  ident: 10.1016/j.neunet.2022.03.025_b9
  article-title: Collaborative approach in the development of High-Performance Brain–Computer interfaces for a neuroprosthetic arm: Translation from animal models to human control
  publication-title: Clinical and Translational Science
  doi: 10.1111/cts.12086
– start-page: 694
  year: 2016
  ident: 10.1016/j.neunet.2022.03.025_b29
  article-title: Perceptual losses for real-time style transfer and super-resolution
– volume: 39
  start-page: 6136
  issue: 31
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b51
  article-title: Structural variability in the human brain reflects fine-grained functional architecture at the population level
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2912-18.2019
– volume: 107
  start-page: 248
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b68
  article-title: Portable brain-computer interface based on novel convolutional neural network
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2019.02.023
– start-page: 7354
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b66
  article-title: Self-attention generative adversarial networks
– volume: 114
  start-page: 438
  year: 2015
  ident: 10.1016/j.neunet.2022.03.025_b70
  article-title: Real-time EEG feedback during simultaneous EEG–fMRI identifies the cortical signature of motor imagery
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.020
– volume: 398
  start-page: 297
  issue: 6725
  year: 1999
  ident: 10.1016/j.neunet.2022.03.025_b4
  article-title: A spelling device for the paralysed
  publication-title: Nature
  doi: 10.1038/18581
– volume: 18
  start-page: 541
  issue: 2
  year: 2020
  ident: 10.1016/j.neunet.2022.03.025_b55
  article-title: Eeg motor imagery classification with sparse spectrotemporal decomposition and deep learning
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2020.3021456
– volume: 579
  start-page: 637
  issue: 3
  year: 2007
  ident: 10.1016/j.neunet.2022.03.025_b11
  article-title: Brain–computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2006.123067
– volume: 51
  start-page: 979
  issue: 6
  year: 2004
  ident: 10.1016/j.neunet.2022.03.025_b48
  article-title: An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2004.827062
– volume: 202
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b3
  article-title: The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.07.003
– volume: 51
  start-page: 1303
  issue: 4
  year: 2010
  ident: 10.1016/j.neunet.2022.03.025_b6
  article-title: Neurophysiological predictor of SMR-based BCI performance
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.022
– year: 2015
  ident: 10.1016/j.neunet.2022.03.025_b24
– volume: 23
  start-page: 631
  issue: 2
  year: 2018
  ident: 10.1016/j.neunet.2022.03.025_b28
  article-title: Sparse group representation model for motor imagery EEG classification
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2018.2832538
– volume: 180
  start-page: 304
  issue: 2
  year: 2009
  ident: 10.1016/j.neunet.2022.03.025_b50
  article-title: Sleep spindles and spike–wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2009.04.006
– volume: 58
  start-page: 355
  issue: 2
  year: 2010
  ident: 10.1016/j.neunet.2022.03.025_b35
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2010.2082539
– volume: 13
  start-page: 87
  year: 2019
  ident: 10.1016/j.neunet.2022.03.025_b46
  article-title: Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2019.00087
– volume: 108
  start-page: 485
  issue: 4
  year: 2020
  ident: 10.1016/j.neunet.2022.03.025_b10
  article-title: Model compression and hardware acceleration for neural networks: A comprehensive survey
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2020.2976475
– year: 2014
  ident: 10.1016/j.neunet.2022.03.025_b31
– volume: 21
  start-page: 157
  issue: 1
  year: 2010
  ident: 10.1016/j.neunet.2022.03.025_b63
  article-title: Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity
  publication-title: Physical Medicine and Rehabilitation Clinics
– year: 2021
  ident: 10.1016/j.neunet.2022.03.025_b53
  article-title: Training-free deep generative networks for compressed sensing of neural action potentials
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 114
  start-page: 532
  year: 2018
  ident: 10.1016/j.neunet.2022.03.025_b12
  article-title: An end-to-end deep learning approach to MI-EEG signal classification for BCIs
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.031
– volume: 23
  issue: 1
  year: 2014
  ident: 10.1016/j.neunet.2022.03.025_b52
  article-title: Overcoming inter-subject variability in BCI using EEG-based identification
  publication-title: Radioengineering
– volume: 14
  issue: 1
  year: 2016
  ident: 10.1016/j.neunet.2022.03.025_b56
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/14/1/016003
– volume: 13
  issue: 2
  year: 2016
  ident: 10.1016/j.neunet.2022.03.025_b58
  article-title: Pushing the P300-based brain–computer interface beyond 100 bpm: Extending performance guided constraints into the temporal domain
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/13/2/026024
SSID ssj0006843
Score 2.5107048
Snippet Electroencephalographic measurement of cortical activity subserving motor behavior varies among different individuals, restricting the potential of brain...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111
SubjectTerms BCI-illiterate
Brain computer interfaces (BCIs)
Convolutional neural network (CNN)
Golden subject
Motor imagery (MI)
Title Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces
URI https://dx.doi.org/10.1016/j.neunet.2022.03.025
https://www.ncbi.nlm.nih.gov/pubmed/35405471
https://www.proquest.com/docview/2649593447
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iFy9-f8yPEcFrXJe0SettiHMq7qKD3UKbJjCZ3XDbwYt_u-817URQBkIpNCRtyO8l77X95fcIuYyMypVzjsVGKAbvG5wlea4Y584EFgwgTnBz8lNf9gbhwzAarpGbei8M0iqrtd-v6eVqXZW0qtFsTUej1nMArlb6raKYrAA1QcNQoZVffX7TPGTsmXNQmWHtevtcyfEq7KKwyKjkvJQ6xYTZv7unv8LP0g11d8hWFT_Sju_iLlmzxR7ZrnMz0Gqq7pPJ3WQMSwqdLTL80kJHM2rBaj8mhb2mnWXxvIxboSHqWsJ9C88KpxDKUgARzqM3VLn4YOjucpphRglq6seh2MS7Q1bXARl0b19ueqxKrsAM-Kw5sy6wmeMmhSkvTORUmEDoJG3bSJVyy2Xm2gAjHLHKIYZxcR5yhDUSMkpkKg7JegF9PiY0lUEmRGLyVMnQcJQ-ThwK06UiijOeNYiox1SbSnkcE2CMdU0xe9UeCY1I6EBoQKJB2LLV1CtvrKivarj0DwvS4BxWtLyo0dUwufCPSVrYyWKmIVpE4WYwqwY58rAv-4IfzCJw7Sf_fu4p2cQrT_49I-vz94U9hxBnnjVLG26Sjc79Y6__BcQg_Jk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONBLW6CPLQWMBEd3g53YSaUeEK_leQEkbm7i2NJWNIvYXVV76Z_qH2QmThYhgZCQkKIckvg545lJ8vkbgI3E6lJ773lqpeb4viF4VpaaC-Ft5FAB0ow2J5-eqd5lfHSVXM3A_3YvDMEqG9sfbHptrZsr3WY2uzf9fvc8QlerwlZRSlYQN8jKYzf5i-9tw5-HuyjkTSH29y52erxJLcAtWuwRdz5yhRc2R4WXNvE6zjBwUG7LKp0LJ1Tht3AQeKS6RA_u0zIWNKhEqiRTucR638BcjOaC0iZ8_3ePK1FpgOph7zh1r92vV4PKKjeuHEE4hai5VSlD9-P-8Kl4t_Z7-x_gXROwsu0wJwsw46pFeN8mg2CNbViCwcHgGm0YG44L-rTD-kPmcJlMBpX7wbanl0d1oIwFiUgT660CDJ1h7MxQa_Dc_0O0GhNO_rVkBaWwYLZtjtgtbj3ByD7C5atM-SeYrbDPX4DlKiqkzGyZaxVbQVzLmScmvFwmaSGKDsh2To1tqM4p48a1aTFtv02QhCFJmEgalEQH-LTUTaD6eOZ53YrLPFBZg97omZLrrXQNrmb6RZNXbjAeGgxPiSk6jnUHPgexT_tCX-gSjCW-vrjdNZjvXZyemJPDs-NleEt3AvL4G8yObsduBeOrUbFa6zODX6-9gO4AnKk4Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Golden+subject+is+everyone%3A+A+subject+transfer+neural+network+for+motor+imagery-based+brain+computer+interfaces&rft.jtitle=Neural+networks&rft.au=Sun%2C+Biao&rft.au=Wu%2C+Zexu&rft.au=Hu%2C+Yong&rft.au=Li%2C+Ting&rft.date=2022-07-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=151&rft.spage=111&rft_id=info:doi/10.1016%2Fj.neunet.2022.03.025&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon